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Abstract This paper studies discrete optimization problems with ordering requirements.
These problems are formulated on general discrete sets in which there exists an ordering on
their elements together with a cost function that evaluates each element of a given subset
depending on its ordering relative to the remaining elements in the set. It is proven that
ordered sequences over the original ground set define an independence system. The simplest
such ordering problem, that consists of finding the ordered sequence of maximum weight,
and its restriction to sets of a fixed cardinality are studied. In both cases, the polyhedral
structure of the corresponding feasible sets is analyzed.

Keywords Discrete optimization · Ordering problems

1 Introduction

Combinatorial optimization is one of the most active fields in Discrete Mathematics and Op-
erations Research. Problems in this area have been widely studied, due to their many appli-
cations, but also because the analysis of their structural properties has had deep implications
for understanding some difficult aspects of discrete optimization. Most classical combinato-
rial optimization problems have been studied for additive objective functions. Nevertheless,
other objectives have also been considered, particularly for some applications. Some exam-
ples include minimax problems (Hansen 1980; Schrijver 1983), combining minisum and
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minimax (Averbakh et al. 1995; Hansen and Labbé 1988; Hansen et al. 1991; Minoux 1989;
Punnen et al. 1995; Tamir et al. 2002), k-centrum optimization (Garfinkel et al. 2006; Kalc-
sics et al. 2002; Punnen 1992; Slater 1978a, 1978b; Tamir 2000), lexicographic optimiza-
tion (Calvete and Mateo 1998; Della Croce et al. 1999), k-th best solutions (Lawler 1972;
Martello et al. 1984; Pascoal et al. 2003; Yen 1970/1971), most uniform solutions (Galil
and Schieber 1998; López de los Mozos et al. 2008), minimum-envy solutions (Espejo et
al. 2009), solutions with minimum deviation (Gupta et al. 1990), regret solutions (Averbakh
2001; Conde 2004; Puerto and Rodríguez-Chía 2003), equity measures (Gupta and Punnen
1988; López de los Mozos et al. 2008; Mesa et al. 2003; Punnen and Aneja 1997), dis-
crete ordered median location problems (Boland et al. 2006; Marín et al. 2009; Puerto 2008;
Puerto and Tamir 2005), and covering objectives (Balas and Padberg 1972; Breuer 1970;
Christofides and Korman 1974–1975; Kelly 1944; Lawler 1966); among many others. (The
reader is referred to the comprehensive list of references in Schrijver 2003 for different
objectives functions and applications in combinatorial optimization.)

Despite the long and incomplete list of objective functions mentioned above, there is
one aspect that has been only partially covered in the literature and will be the goal of this
paper: optimization with ordering. In this work we address discrete optimization problems
in which the objective function is defined over the subsets of a ground set E, but it is not
necessarily additive over all the elements of each subset. In particular, we consider discrete
optimization problems with ordering requirements. That is, we are given a ground set E,
an implicit ordering on the elements of E, and a cost function that evaluates each subset S

of E in such a way that it may assign a different value to a given element depending on its
ordering relative to the remaining elements of S. This type of problems generalizes most
of the objective functions mentioned above. Moreover, new meaningful objective functions
can be easily cast within this framework.

Our models share some common points with problems that consider ordering, in partic-
ular with the well-known linear ordering problem (Grötschel et al. 1984; Reinelt 1985) in
which the objective is to find the best ordering or permutation of a finite set of elements rel-
ative to some criterion. Unlike the linear ordering problem, discrete problems with ordering
requirements aim at finding the feasible subset of E whose evaluation relative to the cost
function induced by the ordering is optimized. From this point of view, these problems can
be seen as complementary to Linear Ordering Problems.

The interest of the problems that we study comes not only from a theoretical point of
view, but also from the potential applications of the considered models. For instance, prob-
lems where decisions must be made according to a given priority or hierarchy, sequencing
problems with precedence constraints, discrete multiperiod problems where the cost of any
element depends on the period when the decision is made and, from a more general point of
view, ordered median problems (see for instance, Kalcsics et al. 2010 and Nickel and Puerto
2005 for a description of several ordered median problems on different contexts, Möhring
1989, Schulz 1996 for scheduling problems or Boyd 1993, Stanley 1986 for problems with
precedence constraints). We can think of matching or spanning tree problems on networks
where matched (connected) nodes interchange information. Assume that setup costs are
proportional to distance and quality of communication (noise) depends on the distance be-
tween pairs, so that the system wants to penalize long distances, in such a way that longest
distances receive higher penalties, to enforce as much as possible homogeneous (not noisy),
short connections. One way to model such a situation is to establish, in any solution, a pri-
ori correcting factors associated with edges sorted by length: the largest weight will always
correct the longest edge in the solution, the second largest corrects the second longest, and
so on. In this setting, we would solve the corresponding combinatorial problem (matching,
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spanning tree. . .) with an objective function that looks for a minimum total sorted weighted
distance. These problems have not been considered in the literature of combinatorial opti-
mization; yet being of interest.

In all the problems that we study, the evaluation of feasible subsets depends on the rel-
ative position of the elements with respect to the sorted sequence of their costs. As we will
see, the solutions to the considered problems can be seen as ordered sequences that induce
a structure of an independence system. In most cases we will describe the set of feasible
solutions in terms of an integer polytope. The first problem that we study, the Simple Or-
dering Problem (SOP), is such that any subset of the ground set defines a feasible solution,
whereas in the Simple Ordering Problem with Cardinality Constraint (SOPC) feasible so-
lutions are required to have a fixed number of elements. For these two problems we give a
full description of the integer polytope of the feasible set by means of an exponential num-
ber of inequalities. We show that these inequalities can be separated in polynomial time,
thus providing polynomial time resolution methods. Moreover, we prove that both problems
can be equivalently stated as shortest path problems on specialized networks which gives
alternative polynomial time solution schemes.

The goal in this paper is twofold. On the one hand, we have a theoretical interest in
analyzing the combinatorial structure of the simple ordering problem, thus relating it to some
known problems and providing some polyhedral description of its polytope. On the other
hand, we want to incorporate this information to some other combinatorial optimization
problems where we wish to impose specific ordering constraints induced by the position
of the elements in sorted lists that fit exactly with the structure of SOP. Specifically, we
are interested in combinatorial problems that look to minimize ordered weighted averages
(ordered median) of the elements in a solution set. Examples of such type of problems are
the generalized balanced optimization problem (Punnen and Aneja 2004; Turner et al. 2011)
which generalizes the k-sum optimization problem (Gupta and Punnen 1988), the balanced
optimization problem and the lexicographical balanced optimization problem (Martello et
al. 1984), the generalized bottleneck problem (Punnen et al. 1995), the robust combinatorial
optimization problem (Bertsimas and Sim 2003) and the ordered median objective applied to
spanning trees (Puerto and Tamir 2005), assignments, matchings, paths or matroids; among
others. In these problems, any elements e in the ground set have a weight w(e) and the goal is
to find, for a given set of λ-weights, the combinatorial structure that minimizes the λ-ordered
weighted sum of its elements where the λ-weight of an element is dependent on its sorted
position with respect to sequence of its w-weight. For example, if T = {ei1 , . . . , ein−1} are the
edges of a spanning tree of a graph and w(ei1) ≥ · · · ≥ w(ein−1) then the objective function
evaluation would be

∑n−1
j=1 λjw(eij ). All these problems share a common structure that is

compatible with the Simple Order Polytope analyzed in this paper. Assuming simple shapes
of the λ-weights, there exist combinatorial algorithms for some of the above mentioned
problems. However, for general λ-weights most of them have either unknown complexity
or they are already NP -hard. We expect that the properties and description of SOP will be
useful to be combined with the specific characteristics of each particular problem to develop
algorithmic procedures for its exact or approximate resolution.

The paper is organized in four sections. Section 2 is devoted to the SOP. There, we
formulate the problem and give a polyhedral description of its feasible solutions set. In
addition, we prove that SOP reduces to a shortest path problem on an ad hoc graph and
thus, that the problem is polynomially solvable. Section 3 deals with the SOPC. We prove
that properties similar to those of SOP also hold for this problem and we give a polyhedral
description and a polynomial resolution approach. The last section draws some conclusions
and outlines future research continuations of this work.
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2 The simple ordering problem and some properties

Let E = {e1, . . . , en} be a finite ground set, and assume that we are given a hierarchy on
E induced by an order function c : E −→ R, such that c1 := c(e1) ≥ · · · ≥ cn := c(en).
A sequence of elements F = {ej1 , . . . , ejr }, F ⊆ E, is an ordered chain if c(eji ) ≥ c(eji+1)

for i = 1, . . . , r − 1. Consider the sets of indices N = {1, . . . , n}, K = {1, . . . , p} and let
(d

j

i )i∈N,j∈K be a given real matrix. Furthermore, let � denote the set of monotonic functions
from N to K . That is, � contains all functions γ : N −→ K , such that γ (i) ≤ γ (j) iff i ≤ j .
Let also d̂ : E × � −→ R be such that for an ordered chain F ⊆ E, F = {ej1 , . . . , ejr }, with
r ≤ p, and for a given γ ∈ �, d̂(F, γ ) = ∑r

k=1 d
γ (jk)

jk
. The Simple Ordering Problem (SOP)

is to find the ordered chain of E and the function γ ∈ � of maximal total weight with respect
to d̂ .

One of the main difficulties for addressing SOP is that the objective function dE is not
additive. Next we present an alternative statement of the problem that allows to reformulate
the SOP as an optimization problem with an additive objective function.

Let us consider the multiset EK that contains p copies of each element e ∈ E. For each
e ∈ E, k ∈ K , ek ∈ EK denotes the k-th copy of element e, and Ek denotes the subset of
EK that contains the k-th copy of all the elements, that is EK = E1 ∪ · · · ∪ Ep . Without loss
of generality, we will represent any subset of elements F ⊆ EK by F = {ek1

j1
, . . . , e

kr
jr

} with
k1 ≤ · · · ≤ kr . Notice that any element of F is associated both with an element of E and
with an order index (element of K).

Let also d be a given weight function on EK defined as

d : EK −→ R

S −→
∑

ek
j
∈S

dk
j .

Throughout, d will be represented by means of a n × p matrix, where the rows indicate the
elements of E and the columns indicate the index k ∈ K .

We use the standard compact notation f (A) ≡ ∑
ek
j
∈A f k

j when A ⊆ EK , and f is a

vector or a function defined on EK .

Definition 2.1

1. F ⊆ EK is an ordered sequence if F = {ek1
j1

, . . . , e
kr
jr

} is such that ki < ki+1 and ji < ji+1

for i = 1, . . . , r − 1.
2. Given F ⊆ EK , a subset S ⊆ F is a maximal ordered sequence in F if S is an ordered

sequence and there does not exist any ordered sequence R ⊆ F such that S ⊂ R.

One of the main characteristics of any subset F ⊆ EK is the length of the maximal
ordered sequence in F , that we denote �(F ),

�(F ) = max{|S| : S ⊆ F, S is an ordered sequence}.

Note that F is an ordered sequence if and only if �(F ) = |F |.
We can now reformulate the SOP as the problem of finding the ordered sequence of EK

of maximal total weight with respect to d . In particular, the SOP can be stated as the problem
of finding a subset F ∗ ⊆ EK such that
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d(F ∗) := maxd(F )

s.t. |F | ≤ �(F ), F ⊂ EK

Remark 2.1 When different weight functions d are considered, the optimal solutions to the
SOP do not necessarily have the same cardinality. For instance, when all the components of
d are non-positive the empty set is an optimal solution, i.e. an ordered sequence with null
cardinality. Nevertheless, it is indeed possible to find examples in which an optimal solution
has any number of ordered elements in the range [1,p].

Remark 2.2 When F ⊆ EK is an ordered sequence, then S is also an ordered sequence, for
all S ⊆ F . Therefore, I = (EK, F ) is an Independence System, where F = {F ⊂ EK : F

is an ordered sequence}. However, I = (EK, F ) is not a matroid since, for a given F , it is
possible to find two maximal ordered sequences S,T ⊆ F such that �(S) �= �(T ), as the
following example shows.

Let E = {e1, e2, e3} and K = {1,2,3}. Suppose c1 ≥ c2 ≥ c3. The set F = {e1
2, e

2
3, e

3
1}

contains two maximal ordered sequences S1 = {e1
2, e

2
3} and S2 = {e3

1}, which have different
lengths: �(S1) = 2, �(S2) = 1.

Remark 2.3 The function �(·) is not submodular, since for some given F ⊂ EK , ek1
j1

, e
k2
j2

/∈ F ,

�(F ∪ {ek1
j1

}) − �(F ) ≥ �(F ∪ {ek1
j1

, e
k2
j2

}) − �(F ∪ {ek1
j1

})

does not necessarily hold. For instance, in the above example, when F = {e3
1}, e

k1
j1

= e2
2,

e
k2
j2

= e3
3, then �({e3

1, e
2
2}) − �({e3

1}) = 1 − 1 = 0 < 1 = �({e3
1, e

2
2, e

3
3}) − �({e3

1, e
2
2}).

As a consequence, the polytope

P (�) = {x ∈ Rn×p : x(F ) ≤ �(F ),F ⊆ EK}
is not a polymatroid (Groetschel et al. 1993).

Remark 2.4 Given that I = (E, F ) is not a matroid nor P (�) is a polymatroid, the greedy
algorithm needs not produce an optimal solution. Consider, the above example with d given
by

d =
⎛

⎝
2 0 1
2 2 1
3 0 0

⎞

⎠ .

The greedy algorithm would give the solution S = {e1
3} with objective function value 3.

However the optimal solution is S = {e1
1, e

2
2}, with objective function value 4.

The next lemma states the SOP as a special case of the longest path problem on a directed
acyclic graph.

Lemma 2.1 The SOP can be stated as a longest path problem on a directed acyclic graph
(DAG) with O(np) nodes and O(n2p2) arcs.

Proof Consider the auxiliary digraph G = (V0 ∪ {s, t}, A) where V0 = EK and each pair
ek
j , e

k′
j ′ ∈ EK with j < j ′ is connected by an arc (ek

j , e
k′
j ′) if and only if k′ > k. The cost of arc
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(ek
j , e

k′
j ′) is dk′

j ′ . There is a fictitious source node s that is connected with each node ek
j ∈ V0

with an arc (s, ek
j ) of cost dk

j . Similarly, t is a fictitious sink node that is connected with
the source node s with an arc (s, t) of cost zero, and with each node ek

j ∈ V0 with an arc

(ek
j , t) of cost zero. Note that G is an acyclic graph, where arcs correspond to ordered pairs

of elements of EK that can be part of a feasible solution to the SOP. Therefore, every s − t -
path in G corresponds to a feasible solution to the SOP and for each feasible solution to
SOP there is a s − t -path in G that represents it. The objective function value of a solution
to SOP and that of its associated s − t -path coincide. Thus, the SOP can be stated as the
problem of finding a longest path in G. �

As the longest path problem on a directed acyclic graph can be solved in O(|E|), the SOP
can be solved in O(n2p2). More efficient ad hoc dynamic programming algorithms can be
used to solve the SOP in O(np) (Tamir 2009). However, as mentioned in the introduction,
our goal is not to propose the most efficient solution algorithm for the SOP, but to study
the polyhedral structure of the SOP, as a basis for the study of the polyhedral structure
of more complex discrete optimization problems with ordering, which cannot be solved in
polynomial time.

Let A denote the node-arc incidence matrix of G (as introduced in the proof of
Lemma 2.1), d the cost function on its arcs and b a column vector of dimension |V0| + 2
whose components are associated with the nodes of G, and take value zero excepting those
corresponding to the source and sink nodes that take values 1 and −1, respectively. As a
consequence of Lemma 2.1, by defining decision variables z associated with the arcs of A,
the SOP can be formulated as

min
∑

a∈A

daza

s.t. z ∈ PG,

where PG = {z ∈ [0,1]|A| : Az = b}. Given that A is a node-arc incidence matrix, it is totally
unimodular and, thus, all the vertices of PG are integer. The dimension of the space where
PG is defined is n2 × p2, which becomes quite big even for a moderate number of nodes n.
Also, the definition of the variables may seem unnatural for the SOP. Therefore, a question
that arises is whether there is an “easier” polytope (for instance, of lower dimension) that is
still integral for this problem. Next we give a positive answer to the above question which,
not surprisingly, is given in terms of the “natural” decision variables for the SOP. Define the
binary decision variables:

xjk =
{

1, if element ek
j ∈ Ek is selected,

0, otherwise.

The condition that the selected elements define an ordered sequence can be modeled by
means of the set of constraints:

xjk +
∑

j ′≤j

xj ′k′ ≤ 1, ∀j ∈ N, ∀k, k′ ∈ K,k′ > k

which, for all j ∈ N,k ∈ K , guarantee that if element ek
j is selected, then no element with

j ′ ≤ j will be selected for any k′ > k. Given that in an ordered sequence, at most one element
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in Ek can be chosen, the above constraints can be easily reinforced to (see Fig. 1):

∑

j ′≥j

xj ′k +
∑

j ′≤j

xj ′k′ ≤ 1, ∀j ∈ N, ∀k, k′ ∈ K, k′ > k.

Therefore, we propose the following new integer linear programming formulation for the
SOP

max
∑

k∈K

∑

j∈N

dk
j xjk (1)

s.t.
∑

j∈N

xjk ≤ 1, ∀k ∈ K (2)

∑

k∈K

xjk ≤ 1, ∀j ∈ N (3)

∑

j ′≥j

xj ′k +
∑

j ′≤j

xj ′k′ ≤ 1, ∀j ∈ N; ∀k, k′ ∈ K, 1 ≤ k ≤ p, k′ > k (4)

xjk ∈ {0,1}, j ∈ N,k ∈ K. (5)

Constraints (2) guarantee that at most one element is selected from each Ek , k ∈ K .
Constraints (3) ensure that at most one copy of any original element is selected. As indi-
cated above, inequalities (4) imply that solutions are ordered sequences. Finally, (5) are the
integrality conditions on the variables.

It is easy to check that when integrality constraints on the variables are removed the
polytope of the resulting linear program has fractional vertices. Consider, for instance, the
SOP, where E = {e1, e2, e3, e4}, p = 3 and d given by the matrix

d =

⎛

⎜
⎜
⎝

4 0 0
0 4 20

20 0 0
0 0 4

⎞

⎟
⎟
⎠ .

For any order function c such that c1 ≥ c2 ≥ c3 ≥ c4, the optimal solution to the Linear
Programming relaxation to program (1)–(4) is given by x11 = x31 = x22 = x23 = x43 = 1

2 .
Inequalities (4) can be reinforced to the following set of inequalities (6) (see Fig. 1 where

we have added to the right hand side of constraint (4) all the elements in the j -th row between
the k-th and k′-th columns):

∑

j ′≥j

xj ′k +
∑

k<h<k′
xjh +

∑

j ′≤j

xj ′k′ ≤ 1, ∀j ∈ N; ∀k, k′ ∈ K,1 ≤ k ≤ p,k′ > k. (6)

As can be seen the fractional solution of the above example is cut-off with the inequality of
type (6) with j = 2, k = 1 and k′ = 3. However, the polytope of the linear program asso-
ciated with constraints (2), (3) and (6) still has fractional vertices as the following example
shows.
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Example 2.1 Consider the SOP, where E = {e1, e2, e3, e4}, p = 4 and d given by the fol-
lowing matrix:

d =

⎛

⎜
⎜
⎝

4 0 0 24
0 0 20 0
0 20 0 0
24 0 0 0

⎞

⎟
⎟
⎠ .

For any order function c such that c1 ≥ c2 ≥ c3 ≥ c4, the optimal solution of the Linear
Programming relaxation to the program with objective function (1) and set of constraints
(2), (3) and (6) is given by x11 = x41 = x32 = x23 = x14 = 1

3 .

Next, we introduce some new inequalities that are stronger than constraints (6). As we
will see the new constraints cut-off all fractional vertices of (2), (3), (6).

Definition 2.2 A set H ⊂ EK is called a staircase if ek
j , e

k′
j ′ ∈ H and j ′ ≤ j , then k ≤ k′.

In the next proposition we see that no two elements of a staircase may belong to an
ordered sequence.

Proposition 2.1 Let H be a staircase. Then the inequality

x(H) :=
∑

ek
j
∈H

xjk ≤ 1 (7)

is valid for SOP.

Proof Note that ek
j , ek′

j ′ ∈ H and at the same time being part of a feasible solution x̂, i.e.
x̂jk = x̂j ′k′ = 1 is impossible since by definition of staircase the first condition requires
j ′ ≤ j and k ≤ k′, whereas feasibility implies j < j ′ and k < k′. Hence, no feasible solution
to the SOP contains more than one element of any staircase. �

Inequalities (7) generalize all the inequalities considered so far since, inequalities (2),
(3), (4) and (6) are particular cases of inequalities (7). In particular:

• inequalities (2) correspond to staircases Hk
2 = Ek , k ∈ K ;

• inequalities (3) correspond to staircases H
j

3 = {ek
j , k ∈ K}, j ∈ N ;

• inequalities (4) correspond to staircases H
j,k,k′
4 = {ek

j ′ , j ′ ≥ j} ∪ {ek′
j ′ , j ′ ≤ j} j ∈ N and

k, k′ ∈ N , such that, k′ > k; and
• inequalities (6) correspond to staircases H

j,k,k′
6 = {ek

j ′ , j ′ ≥ j} ∪ {eh
j , k < h < k′} ∪

{ek′
j ′ , j ′ ≤ j} j ∈ N and k, k′ ∈ N , such that, k′ > k.

A staircase H is maximal if there does not exist another staircase H ′ such that H ⊂ H ′.
Since non-maximal staircases are contained in maximal staircases, the only non dominated
inequalities (7) are associated with maximal staircases. Observe that the number of elements
in maximal staircases is n + p − 1 and that both e1

n and e
p

1 belong to any maximal staircase.
Note also that there is an exponential number of maximal staircase inequalities.

The successive reinforcement of the inequalities can be appreciated graphically in Fig. 1.
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Fig. 1 Successive reinforcement of order constraints: inequalities (4), (6) and (7)

Remark 2.5 Maximal staircases of EK are associated with maximal cliques in the undirected
graph G = (V0,E0) defined such that, V0 = EK and ek

j , e
k′
j ′ ∈ EK with j ′ ≤ j are connected

by an edge if and only if k ≤ k′. (Observe that the directed version of the complement of G, is
the graph G defined in Lemma 2.1.) Indeed, given a maximal staircase H and et

s ∈ V0 \ H ,
we have that there exist either ek

s−1 ∈ H with k < t or ek
s+1 ∈ H with k > t . Therefore,

H ∪ {et
s} is not a clique for any maximal staircase H and for any et

s ∈ V0 \ H .

Consider now the polytope associated with maximal staircases:

PS =
{
x ∈ [0,1]n×p : x(H) ≤ 1, for all maximal staircase H ⊂ EK

}
.
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The next theorem states that PS is all integer proving that the graph G in Remark 2.5 is
a perfect graph. This argument given in Loos et al. (2009) simplifies an earlier proof by the
authors.

Theorem 2.1 The polytope PS is all integer.

Proof First, we observe that staircases describe all the cliques of the graph G = (V0,E0).
Thus, PS is the so called fractional node packing polytope. Therefore, proving that PS is
integer is equivalent to prove that the graph G is perfect, see Nemhauser and Wolsey (1998,
Definition 5.5).

To this end, we prove that G itself is a comparability graph (and therefore perfect, Schri-
jver 2003, Corollary 66.2a), with respect to the partial order

(i, j) < (i ′, j ′) iff i ≥ i ′, j ≤ j ′, and (i, j) �= (j, j ′).

Indeed one can orient each arc of G according to the direction given by this partial order:
(i, j) → (k, l) for k ≤ i and l ≥ j . Then such an orientation is transitive since (s, t) →
(i, j) → (k, l) implies s ≥ i ≥ k, t ≤ j ≤ l, and this is a sufficient condition for the graph G

being a comparability graph. �

As we have seen, PS is an integer polyhedron. However, it has a number of inequalities
(7) that is exponential on the number of elements of EK . Thus, the solution to the separation
problem is fundamental to guarantee the usefulness of PS in an algorithmic framework.
Polynomial time separation algorithms based on semidefinite programming exist for the
separation problem on a general perfect graph (see for instance Groetschel et al. 1984).

In our framework, taking advantage of the structure of the problem, we present an ad-
hoc, simpler separation algorithm. For a given x̂ ∈ R

n×p such that 0 ≤ x̂jk ≤ 1, for all
j ∈ N,k ∈ K , the separation problem for inequalities (7) consists of finding a staircase
H ⊂ EK such that x̂(H) > 1, or to determine that no such set exists. We define an aux-
iliary network N(x̂) = (Vx̂ ∪ {s, t},A(x̂)) to be the directed version of the subgraph of G

defined in Remark 2.5 induced by the solution x̂. That is, Vx̂ = {ek
j ∈ EK : x̂jk > 0} is the

support of x̂, s and t are a fictitious source and sink node, respectively. The set A(x̂) contains
the following arcs:

1. One arc (s, vk
j ) of cost x̂jk , associated with each node vk

j ∈ Vx̂ .

2. One arc (vk
j , v

k′
j ′ ) of cost x̂j ′k′ , connecting each pair of nodes vk

j , v
k′
j ′ ∈ Vx̂ , with j ≥ j ′ and

k ≤ k′.
3. One arc (vk

j , t) of cost zero, for each node vk
j ∈ Vx̂ .

Proposition 2.2 For a given x̂ ∈ R
n×p such that 0 ≤ x̂jk ≤ 1, for all j ∈ N,k ∈ K , the

separation problem for inequalities (7) can be solved in polynomial time by finding the
s − t -path of maximum cost in N(x̂).

Proof Let Px̂ be an s − t -path in N(x̂), and let HPx̂
denote its set of nodes after eliminating

s and t . By construction of N(x̂), HPx̂
defines a staircase. Also, by the definition of the cost

function on the arcs of N(x̂), the cost of Px̂ gives x̂(HPx̂
). Thus, the staircase H ∗ with a

maximum value of the left hand side of constraint (7) can be obtained by finding the s − t -
path P ∗

x̂
with maximum cost. If the value of P ∗

x̂
is strictly greater than 1, then H ∗ = HP ∗

x̂
is

a staircase that defines a violated inequality (7). Otherwise, if the cost of P ∗
x̂

is smaller than
or equal to one, there is no inequality (7) violated by x̂.
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Finally, note that N(x̂) is acyclic by construction. Again, an ad hoc dynamic program-
ming algorithm of complexity O(np) can be used to find the maximum s− t -path in N(x̂). �

We finish this section with an informal comparison between polyhedra PG and PS . While
PG has a polynomial number of constraints O(np), it has O(n2p2) variables. On the other
hand, PS has a considerably smaller number of variables O(np) but an exponential number
of constraints. However, as we have just shown, these constraints can be separated in O(np)

time. A deep comparison between the two polyhedra is beyond the scope of this work and
would require a thorough computational experimentation to evaluate the usefulness of each
of them.

3 The simple ordering problem with cardinality constraints

The Simple Ordering Problem with Cardinality Constraint (SOPC) is the variant of the SOP
that arises when |K| cardinality constraints requiring that feasible solutions contain exactly
one element of each Ek , k ∈ K are posed. Therefore, in the SOPC feasible solutions consist
of p elements {e1

j1
, . . . , e

p

jp
}, ek

jk
∈ Ek , k ∈ K such that cj1 ≥ · · · ≥ cjp . The requirement

that exactly one element of each Ek , k ∈ K , is selected can be modeled by means of the
constraints

∑

j∈N

xjk = 1, for all k ∈ K. (8)

Given that feasible solutions to the SOPC must also fulfill the ordering constraints, the
maximal staircase inequalities must hold. Recall that, in particular, these constraints forbid
solutions that contain more than one element of any set Ek , k ∈ K . Thus, in the SOPC the
set of constraints (8) can be substituted by one single constraint of the form

∑

k∈K

∑

j∈N

xjk = p. (9)

Consider now the polyhedron

PSC =
{
x ∈ [0,1]n×p : x(H) ≤ 1, for all maximal staircase H ⊂ EK, and

∑

k∈K

∑

j∈N

xjk = p
}
.

The goal is to prove the integrality of the above polytope. The reader may note now
that we cannot use the comparability graph argument of the previous section. Indeed, that
argument applies for polytopes of the form x(H) ≤ 1 but in this case we have an additional
constraint with right-hand-side equal to p > 1. Moreover, the analogous of graph G (see the
proof of Theorem 2.1) required in this case does not satisfy transitivity and therefore cannot
be a comparability graph. In order to prove the integrality of PSC , we give the following
result.

Theorem 3.1 The polytope PSC is all integer.

Proof In order to address the integrality condition of PSC , we will prove that the set of
optimal solutions to the linear relaxation for SOPC defined on PSC coincides with the set
of optimal solutions to the linear relaxation for SOP defined on PS when we add a huge



94 Ann Oper Res (2013) 207:83–96

number to the weight of each element. Once, this assertion has been proved, as the linear
relaxation for SOP is integral it also follows that SOPC is integral.

First, given an instance τ of SOPC, consider the instance τW obtained by adding a big

weight W to the weight associated with each element of EK , i.e., d
k

j = dk
j + W . For W

sufficiently big (for instance, W = ∑
k∈K

∑
j∈N |dk

j |) τ and τW have the same set of optimal
solutions (as we only changed the objective function by a constant value pW ). Moreover,
the sets of optimal solutions to the linear programs associated with τ and τW also coincide
(again only their values differ by pW ).

Furthermore, due to the effect of the big weight W , the set of optimal solutions to τW

considered as a SOP instance (without cardinality constraint) also coincides with that of
τW considered as a SOPC instance. Again, this also holds for their corresponding linear
programming relaxations.

Consider now the set of extreme points of PSC and suppose toward contradiction that
there exists an extreme point x ∈ PSC which is not an extreme point of PS . Since x is an
extreme point of PSC there exists an SOPC instance τ such that x is the unique optimal
solution to τ . From the above discussion, x is also the unique optimal solution to τW con-
sidered both as SOPC and as SOP. Thus, x must be an extreme point of PS and therefore
PSC is also integral. �

Therefore, analogously to the case of PS we can prove the following result:

Theorem 3.2 The polytope PSC is all integer and the SOPC can be solved in polynomial
time.

4 Conclusions

Nowadays, ordering requirements appear in many real life situations as, for instance, those
related to scheduling, multiperiod decision-making, and hierarchical problems, among oth-
ers. Therefore, it is challenging to consider models that are better suited for such real world
situations by capturing the ordering nature. However, the inclusion of the ordering require-
ments within a discrete problem implies additional difficulties that need to be addressed and
solved. We have obtained interesting properties of the polyhedral structure of the considered
problems. In this regard, our study can be considered as an initial analysis on these types
of problems, and it opens new avenues of research for discrete optimization problems with
ordering requirements. In particular, in an ongoing research, we are applying the results in
this paper to analyze the polyhedral structure of more general optimization problems with
ordering requirements (ordered median maximum weighted spanning tree and ordered me-
dian maximum weighted matching problems). At a longer term we believe that our results
can be useful for addressing more general ordered median combinatorial optimization prob-
lems. The valid inequalities developed in this paper are the basis for obtaining new ones in
these alternative problems.

Another future line of research would be to consider the problem of finding a maximum
weight chain of cardinality p within a general partial order with weights on the elements. In
particular, we wonder whether one can generalize the result of SOPC to this problem.
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