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Abstract In this paper we develop a simulation model to study bed occupancy levels in an
Intensive Care Unit (ICU). The main contributions of this study are: (1) A proposal for gen-
eralized regression models to fully capture the high variability of patients’ length of stay;
(2) Proof that a simulation model that does not incorporate the management decisions by
clinical staff cannot be considered valid; (3) The development of a mathematical model to
represent these management decisions, and (4) A proposal for a method combining opti-
mization with simulation to estimate the model parameters.

This provides a valid simulation model that includes the physician management of an
ICU. Validation is accomplished by comparing distribution patterns in daily bed occupancy
records against simulated bed occupancy data.

The methodology is tested using data provided by the Hospital of Navarre in Spain.

Keywords Simulation · Statistical modeling · Validation of simulation models ·
Optimization with simulation · Intensive care units

1 Introduction

The Intensive Care Unit (ICU) is a key area within hospitals caring for critically ill patients.
The beds and the specialized staff of an ICU are costly resources, subject to budget con-
straints. High quality care provision involves the analysis of a number of important ICU
sizing and capacity issues and resource management policy decisions (see, for example,
Griffiths et al. 2005).

This paper describes the construction of a credible ICU simulation model designed in the
purpose of convincing managers of its reliability as a tool for sizing and capacity analysis.
A simulation model and its results have credibility if they are accepted as correct by the
decision-maker and other key project personnel (Law 2006). Credibility is therefore one of
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the attributes we need to build into our simulation model in order to provide a meaning-
ful guide for ICU management decisions. Our specific task is to develop an ICU simula-
tion model for the Hospital of Navarre (Spain). This hospital is the main center of referral
for a city population over 200,000, and a complementary center for the whole province of
Navarre (population over 500,000) and other bordering regions (for specialties such as On-
cology, Neurosurgery, etc.). Managerial decisions include determining the number of beds
required to manage an increased workload due to the opening of new operating theaters and
increasing population growth. These decisions have an important impact on both the quality
and cost of the health service offered (the estimated cost of a bed in the ICU is around 2000
euro per day). Complete confidence in the simulation tool is essential for it to be of use in
guiding this decision-making process.

Simulation has been widely used to tackle health-care system management and opera-
tion problems, which are characterized by an uncertain working environment and limited
human and material resources. Since the introduction of simulation modeling for hospital
facilities (Fetter and Thompson 1965), this operations research technique has been used to
address a wide range of problems, such as patient flow modeling, bed capacity, waiting list
management, health care center design, emergency facilities etc. Reviews and discussion
papers dealing with the application of simulation modeling in health care can be found in
Brailsford et al. (2009), Eldabi et al. (2007), Fone et al. (2003), Günal and Pidd (2010), Jun
et al. (1999) and (Katsaliaki and Mustafee 2010). Many studies use simulation to analyze
hospital capacity and bed allocation, but only a few deal specifically with ICUs. In Kim
et al. (1999), ICU admission and discharge processes are analyzed through simulation; in
Kim et al. (2000), the same authors evaluate several rules for bed allocation in a two-criteria
problem; and Litvack et al. (2008) and Ridge et al. (1998) a nalyze the problem of ICU
capacity. In (Kolker 2009) the author uses simulation to model ICU patient flow, to establish
a quantitative link between the daily load leveling of elective surgeries and ICU diversion.

A key issue in the building of valid ICU simulation models is the determination of ap-
propriate statistical models for the stochastic elements involved: arrival patterns, patient’s
personal and medical characteristics and length of stay (LoS) in the ICU. An overview of
length of stay and patient flow modeling techniques can be found in Marshall et al. (2005).

Many studies have found a high percentage of extreme values in LoS data. That is, val-
ues that are far enough from the mean value to be considered outliers (see Vasilakis and
Marshall 2005). In these cases, distributions commonly used to represent service times in
the health context are not suitable to fit real LoS data. This problem of lack of fit to the
original data has been addressed in the literature in different ways, sometimes erroneously,
as when patients with long LoS values are considered as outliers and not included in the
statistical analysis. Some studies compensate for withdrawn data by reducing the number of
beds by the same percentage as the percentage of outliers in the data. This approach is also
erroneous, however, because a given percentage of outlier patients will not always use the
same percentage of resources. This study also finds heavy-tailed distributions for the LoS
data and a lack of fit to the usual distributions. We address this statistical fitting problem
by developing non-normal regression models, including variables with the power to explain
some of the LoS variability.

The impact of workload on service time in health care has recently been considered by
Kc and Terwiesch (2009), who show that hospital resources are sensitive to load levels and
that service workers can adapt to system needs by increasing the service rate. Nevertheless,
all previous ICU simulation studies assume patient length of stay to be independent of the
ICU workload, which is why our first model also incorporated this assumption. However, the
validation process demonstrated that this premise does not always hold and that the length
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of stay of some patients can be influenced by the ICU bed occupancy level. This finding was
confirmed by the ICU medical staff, who reported that some of their decisions depend on
the number of occupied beds.

Specifically, doctors may discharge patients earlier when the number of occupied beds
reaches the point where the medical care of incoming patients may be compromised. Con-
versely, when the ICU workload is low, patients may be allowed to continue in intensive
care to ensure a complete recovery. There is no written protocol or structured methodology
for these decisions. We therefore accommodate them in the model by defining a set of rules
dependent on a set of parameters. We then obtain the parameter values, by solving an opti-
mization problem using a combination of optimization with simulation techniques. The set
of rules with their estimated optimal parameters are included in the simulation model. The
validation process is then repeated and presented to the medical staff. The result is a valid
and credible simulation model to guide the medical staff’s resource allocation decisions. Our
review of the literature revealed no previous studies where the modeling of human decision
rules had been validated in a simulation model.

The combination of simulation and optimization techniques is novel in the analysis of
ICUs, although there have been some recent proposals for its use in the health care context.
Simulation and goal programming are used in Oddoye et al. (2009) to solve a planning prob-
lem in the medical assessment unit of a general hospital. An optimization simulation model
is proposed in Ahmed and Alkhamis (2009) to obtain the optimal staff distribution for a hos-
pital emergency unit, and, in Azcárate et al. (2008), to solve a hospital sizing problem in a
multiple criteria context. In de Angelis et al. (2003), the authors combine a simulation model
with nonlinear programming and neuronal networks to determine the optimal configuration
of a transfusion center. In Brailsford et al. (2007), a discrete-event simulation model is em-
bedded in an ant colony optimization model for the optimal choice of screening policies for
diabetic retinopathy.

The paper is organized as follows. Section 2 describes the ICU, the available data and the
statistical analysis of patient arrival and length of stay. Section 3 describes the simulation
model, its validation process and the combination of simulation and optimization to model
ICU decision rules. Finally, Sect. 4 contains the conclusions and a discussion about the main
point of the paper that is the modeling of the management decisions made by the physicians
of the ICU. We also include our work in progress and some suggestions for future research.

2 Input modeling

2.1 Recorded data at the ICU

The Hospital of Navarre is a general public hospital in the Autonomous Community of
Navarre, which is a reference in a number of specialties (Neurosurgery, cardiac surgery,
vascular surgery, thoracic surgery, oncology, radiotherapy, nuclear medicine, infectious dis-
eases, endocrinology, dermatology, rheumatology and bone marrow transplant). It has 483
beds, 2015 members of staff and 10 surgery rooms. The ICU of this hospital has 20 beds
and 86 physicians and nurses. It receives patients from three sources (emergency, operating
theater and ward). The ICU classifies the patients into eight pathology types:

Group 1 (G1): patients from elective surgery, i.e., scheduled surgery. These patients would
never be admitted over the weekend.

Group 2 (G2): patients referred from emergency units.
Group 3 (G3): patients admitted due to deterioration post surgery.
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Table 1 Initial summary of the data: mean (standard deviation)

Pathology
type

Patients
percentage

Daily
arrival rate

APACHE II % died
(exitus = 1)

Length
of stay

G1 39% 0.744 (0.75) 11.157 (5.641) 4.32% 4.379 (8.739)

G2 14% 0.27 (0.528) 20.758 (9.885) 31.19% 8.032 (15.276)

G3 7% 0.135 (0.372) 19.116 (8.274) 27.27% 9.927 (14.174)

G4 12% 0.226 (0.466) 21.550 (9.257) 36.81% 9.820 (18.694)

G5 11% 0.205 (0.449) 17.7 (7.895) 31.73% 10.307 (12.932)

G6 10% 0.137 (0.382) 15.665 (8.963) 20.08% 10.552 (12.442)

G7 5% 0.096 (0.309) 15.555 (9.135) 24.84% 10.677 (15.029)

G8 2% 0.054 (0.243) 21.9 (9.249) 34.25% 5.2707 (9.5886)

Group 4 (G4): patients transferred from nursing wards.
Group 5 (G5): patients from (unscheduled) emergency surgery.
Group 6 (G6): multiple trauma patients having required no surgery.
Group 7 (G7): multiple trauma patients post surgery.
Group 8 (G8): other patients.

The Hospital of Navarre provided us with a large data set collected by the ICU adminis-
tration staff over the period 1/1/2000 to 31/12/2008. The data occupy three files:

The first file contains records of 6,414 patients treated in the ICU during the nine-year
period. There is a file entry for each patient showing age, arrival and discharge dates, in-
fections in the ICU, APACHE II scores and exitus. APACHE II score (“Acute Physiology
and Chronic Health Evaluation II”) is a severity-of-disease classification system: after ad-
mission of a patient to an intensive care unit, an integer score is computed based on several
measurements (Knaus et al. 1985). Higher scores imply a more severe condition and a higher
mortality risk. Exitus is a binary-coded variable that represents whether the patient leaves
the ICU following recovery or mortality. Patient length of stay (number of days in the ICU)
was computed from the arrival and discharge date records.

The second file records the daily total of arrivals to the ICU. The third is a daily record
of bed occupancy taken at four pm each day.

We began by making a descriptive statistical analysis of these data in order to familiarize
ourselves with them. An initial summary of the data for the eight patient groups considered
in the model is shown in Table 1. This table shows the percentage of patients for each group,
means and standard deviations of the daily arrival rate, Apache II score, percentage of exitus
and length of stay (in days).

2.2 Arrival analysis

Many studies (see for example, Kim et al. 2000; Litvack et al. 2008; Oddoye et al. 2009 and
Ridge et al. 1998) use a Poisson Process as a statistical model for patient arrival to a health
care center. The following characterization of a Poisson Process illustrates the model’s suit-
ability for representing the patient arrival pattern.

Let us denote by Nt the number of patients that arrive up to time t . The stochastic arrival
process of patients {Nt, t ≥ 0} is a Poisson Process if:

1. Patients arrive one at a time.
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Table 2 Arrival distributions. POIS() stands for the Poisson distribution and EMPDIST() stands for empiri-
cal distribution

Pathology
type

Arrival
distributions

p-values of
χ2 tests

G2 POIS(0.270) 0.393

G3 POIS(0.135) 0.459

G4 POIS(0.226) 0.204

G5 POIS(0.205) 0.773

G6 POIS(0.187) 0.088

G7 POIS(0.096) 0.474

Pathology type Arrival distributions

G1 Weekends: 0

Monday-Friday: EMPDIST (0: p = 0.1519; 1: p = 0.5869; 2: p = 0.2454; 3: p = 0.0148;
4: p = 0.001)

July: EMPDIST (0: p = 0.4301; 1: p = 0.4514; 2: p = 0.1185)

G8 EMPDIST (0: p = 0.9489; 1: p = 0.0487; 2: p = 0.0021; 4: p = 0.0003)

2. The number of arrivals in the time interval (t, t + s], Nt+s − Nt , is independent of the
number and times of arrivals from 0 to time t . That is, it is independent of the variable
set {Nu,0 ≤ u ≤ t}.

3. The distribution of Nt+s − Nt is independent of t for all t , s ≥ 0.

Properties 1 and 2 can be interpreted as follows. Patients arrive at the ICU on an individual
basis, their arrival times are not influenced by prior patient arrivals and they are not coordi-
nated according to any pre-established plan. Condition 3 sets the homogeneity of the process
through time.

However, the Poisson Process fits the daily arrival data for Saturdays and Sundays, but
not for weekdays. Closer analysis of the weekday data showed that they fit a translated
Poisson distribution. This type of distribution, which is related to the Poisson distribution, is
obtained by the sum of a Poisson and an independent, approximately normally-distributed,
integer-valued random variable (see Röllin 2005). The difference between the weekday and
weekend arrival patterns reflects the fact that there is no scheduled surgery at the weekend.
Consequently, group G1 patients are never admitted at weekends. Therefore, from the orig-
inal data files, we had to derive new ones containing the number of arrivals per pathology
type per day.

The arrival data analysis for each group reveals that the arrival patterns of groups G2
to G7 fit a Poisson Process (p-values of the χ2-tests are shown in Table 2). However, the
hypothesis of Poisson arrivals is rejected for both the pre-scheduled patients (G1) and the
small percentage of patients in group G8 (others). Furthermore, the elective surgery group
(G1) presents a different arrival pattern for July, due to this being a holiday period.

In our simulation model, we use Poisson distributions for groups G2 to G7 and empirical
discrete probability distributions for groups G1 and G8, with values between 0 and 4. These
distributions are displayed in Table 2.
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2.3 Length of stay analysis

We also found that the stochastic behavior of LoS is different for each group of patients.
All showed a high percentage of long stays, far from the mean value. As an example, Fig. 1
presents a summary of the G1 group LoS data. Note that the median and mean values are
quite different and that the mean is even greater than the third quartile. The box plot also
shows that many of the observations are outliers. These empirical findings suggest the suit-
ability of modeling with weighted-tail distributions. Earlier studies have noticed that LoS
distributions are skewed and contain outliers (Kim et al. 2000; Marazzi et al. 1998 and
Rauner et al. 2003) Nevertheless, common distributions, including those with weighted tails,
showed poor fit to the data, as shown in Fig. 2 for group G1, when we consider the lognormal
and loglogistic distribution families.

Various outlier trimming rules are commonly used in the literature in order to deal with
this problem of lack of fit to the original data (Marazzi et al. 1998). This kind of procedure
provides good results when the interest is in the robust estimation of parameters or in as-
sessing the influence of a set of independent variables (Rauner et al. 2003). Nevertheless,
outliers can provide important information for the study of various aspects of health service
management, including ICU bed occupancy levels. Outliers should therefore not simply be
eliminated, but rather carefully represented and included in the statistical model.

To illustrate the importance of including extreme values when fitting statistical models
to data, we present a simple, hypothetical, numerical example. Let us suppose that patients
with LoS of more than 15 days are considered as outliers and assume that they account for
5% of the total number of patients. Let 4 be the mean LoS for non-outlier patients and let 60
be the mean LoS for outlier patients (then mean LoS is 4 × 0.95 + 60 × 0.05 = 6.8). In this
example, outlier patients account for over 44% of ICU occupancy. Some studies compensate
for the elimination of outliers by reducing both the sample and the number of available beds

Fig. 1 Statistical results for LoS of G1 patients
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Fig. 2 Statistical fitting of pathology type G1 LoS to Lognormal and Loglogistic families

by the same percentage. The weakness of this approach is obvious, however, since a 5%
reduction in capacity leads to ICU service over-performance (95% of the available resources
are retained to serve 56% of the workload). A 44% reduction in bed capacity would also be
incorrect, since, even assuming average values, the new scenario will have a different degree
of variance, and queuing theory holds that some important queue performance measures
depend strongly on variances.

Observe that a patient with LoS of 100 days uses the same amount of resources as 100
patients who spend only 1 day in the ICU. Due to the significant impact on ICU resources
of patients with high LoS values, an appropriate statistical model of LoS should accurately
capture the behavior of the distribution tail. For each patient group, we analyze the depen-
dence between LoS and other variables (age, sex, infections, APACHE II score and exitus).
The data (see Table 3) show that LoS is positively correlated with the APACHE II score
in the case of patients leaving the ICU following recovery (that is, exitus = 0) and nega-
tively correlated with the APACHE II score in cases of mortality (exitus = 1). No significant
correlation is found for LoS vs. age and LoS vs. sex pairs.

The variables found to be significantly related with LoS are included in the statistical
model of each group by using regression models for the location parameters of their distri-
bution function. Specifically, let us denote by F(μ,σ) a distribution function for a family
of distributions with location and scale parameters μ and σ , respectively. It is assumed that
the distribution function of the variable LoSGk

, LoS for group Gk , belongs to one of these
families with location and scale parameters.

LoSGk

d→ Fk(μk, σk) (1)

The influence of explanatory variables such as APACHE II and Exitus is introduced into
the distribution function through a regression model for the location parameter:

μk = β0,k + β1,k × APACHE + β2,k × EXITUS for k = 2,3, . . . ,8 (2)
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Table 3 Correlations between LoS and APACHE II and p-values (in brackets)

G1 G2 G3 G4 G5 G6 G7 G8

Exitus = 0.1 0.388
(0.000)

−0.009
(0.781)

0.031
(0.509)

−0.067
(0.066)

0.095
(0.013)

0.089
(0.156)

0.132
(0.019)

−0.253
(0.008)

Exitus = 0 0.420
(0.000)

0.155
(0.000)

0.141
(0.066)

−0.067
(0.000)

0.360
(0.011)

0.409
(0.000)

0.414
(0.000)

0.137
(0.328)

Exitus = 1 −0.011
(0.944)

−0.160
(0.127)

−0.177
(0.051)

−0.249
(0.000)

−0.266
(0.000)

−0.428
0.002)

−0.154
(0.177)

−0.341
(0.009)

Fig. 3 Standard residuals for group G1

The estimation of the parameters β0,k, β1,k and σk gives distribution functions that closely
fit the LoS data for all groups except G1. The latter requires the use of explanatory variables
to capture four different types of infections. We consider binary variables (INFECTIONi ,
i = 1,2,3,4), that takes a value of 1 if the patient is infected by infection type i and 0
otherwise.

μ1 = β0,1 +
4∑

i=1

βi,1 × INFECTIONi + β5,1 × APACHE + β6,1 × EXITUS (3)

Table 4 shows the estimated distributions obtained to model LoS for each patient
group. The location and scale distribution functions belong in all cases to the lognormal
(k = 2,3,5,6,7) and the loglogistic (k = 1,4,8) distributions. The parameters are esti-
mated by the maximum likelihood method and the models validated by analyzing the stan-
dard and Cox-Snell residuals. By way of illustration, Fig. 3 plots the standard residuals for
group G1.

Observe that, to simulate the LoS from these distributions, we also need to simulate
values for the explanatory variables included in the regression models. The distribution fits
of these variables are straightforward and they also are included in Table 4. The software
used for the statistical analysis was the Minitab� 15.1.30.0 Package.
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Table 4 Exitus, Apache II and LoS distributions

Group Exitus (EX) % APACHE II Length of stay

G1 EX = 0 95.7% WEIB(12.9,2.22) Loglogistic (μ,σ ):
μ: 0.230098 + infection1 × 1.57507 + infection2 ×
1.10923 + inf ection3 × 1.05665 + infection4 ×
0.903656 + exitus × 1.34681 + apache ×
0.0542346-exitus × apache × 0.06969
σ : 0.302509

EX = 1 4.3% LOGLOG(0.173,2.95)

G2 EX = 0 68.8% WEIB (20.48,2.277) Loglogistic (μ,σ ):
μ: 0.859410 + apache × 0.0338953 + exitus ×
1.85895-exitus × apache × 0.094334
σ : 1.17510

EX = 1 31.2% NORM (29.27,8.955)

G3 EX = 0 72.7% GAMMA(5.91,2.819) Loglogistic (μ,σ ):
μ: 0.992703 + apache × 0.0420803 + exitus ×
1.62775-exitus × apache × 0.085255
σ : 1.13368

EX = 1 27.3% WEIB (28.49,3.373)

G4 EX = 0 63.2% LOGIST(4.465,18.79) Loglogistic (μ,σ ):
μ: 1.22707 + apache × 0.0221330 + exitus ×
2.32357-exitus × apache × 0.103393 σ : 0.661459

EX = 1 36.8% NORM(28.23,8.936)

G5 EX = 0 68.3% NORM(15.94,6.742) Loglogistic (μ,σ ):
μ: 0.83441 + apache × 0.0664619 + exitus ×
2.60450-exitus × apache × 0.157931
σ : 1.09284

EX = 1 31.7% LOGLOG(0.180,3.15)

G6 EX = 0 79.9% WEIB(15.52,2.102) Loglogistic (μ,σ ):
μ: 0.988974 + apache × 0.0750502 + exitus ×
2.08852-exitus × apache × 0.159748
σ : 1.04561

EX = 1 20.1% LOGIST(4.347,27.88)

G7 EX = 0 75.2% WEIB(14.78,1.964) Loglogistic (μ,σ ):
μ: 0.844700 + apache × 0.0831031 + exitus ×
2.08434-exitus × apache × 0.156644 σ : 1.07846

EX = 1 24.8% NORM(27.04, 6.568)

G8 EX = 0 65.7% WEIB(3.91,9.801) Loglogistic (μ,σ ):
μ: 0.769804 + apache × 0.0355266 + exitus ×
0.263105-exitus × pache × 0.06273
σ : 0.542519

EX = 1 34.3% WEIB(29.27,3.322)

3 Simulation model building and validation

The ICU was mathematically modeled as a queuing system, where the clients are the pa-
tients, the servers are the 20 beds and there is no waiting room. Any patient arriving when
the ICU is full is transferred to an alternative ICU (in a local private facility or a neigh-
boring region). The simulation model is therefore structurally quite simple and can be run
using the statistical modeling techniques presented in Sect. 2. Patient arrival times are sim-
ulated using Poisson processes and empirical distributions. Their service times (LoS) are
simulated from statistical distributions. The location parameters of these also need to be
calculated from simulated values of the explanatory variables, as described in the previ-
ous section. This queuing model was implemented in ARENA 11 software. After verifying
the model, 20-year simulation experiments were run, with a 3-year warm-up period. These
were sufficient for the ICU system to reach a stationary state as verified by bed occupancy
data.
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Table 5 Two-sample test on bed occupancy real data vs simulated data

N Mean St. dev SE mean

t-Test: Ho: μ(real) = μ(simulated)

Real bed occupancy 20 14.44 0.87 0.19

Simulated bed occupancy 36 14.19 1.46 0.24

T -test of diff. = 0 (vs. <> 0): t-value = 0.79, p-value = 0.434

Fig. 4 Real vs. simulated bed
occupancy frequencies

3.1 Model validation

The most definitive test of a simulation model’s validity is whether its output data closely
resemble the output data of the actual system (Law 2006). This validation approach is appli-
cable to our simulation model because we are using real output data from an existing ICU.
That is, we use the bed occupancy variable to compare the real ICU with the simulated ICU.
If the two sets of data resemble each other closely then our simulation model of the existing
ICU can be considered valid.

We use the ICU daily bed occupancy records to validate the simulation model. A test of
equality of means does not reject the null hypothesis of equality of mean bed occupancy
for the recorded data and the simulation output data (see Table 5). To perform this t -test,
we take the two streams of data in 50-day batches and calculate the averages. This gives
samples with independent observations.

This equality of means cannot be extended to the whole distribution, however, as sug-
gested by the frequency graphs of both data sets (see Fig. 4 and Table 6). In fact, the
Kolmogorov-Smirnov test clearly rejects the hypothesis of equal distributions (p-value <

0.0001).
Therefore, these results do not completely validate our simulation model. A visual in-

spection of Fig. 4 and Table 6 suggests that the length of stay of some patients might be
influenced by the ICU bed occupancy level. The real data show a higher frequency of val-
ues 14, 15, 16 and 17 and the simulated data show higher frequencies at both ends of the
distribution, especially for values of 19 and 20.

The only explanation for these discrepancies is that the ICU system does not work as
“automatically” as its mathematical simulation. This suggests the influence of management
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Table 6 Frequency values of real and simulated bed occupation data

Daily bed occupancy Real data frequencies Simulated data frequencies

1 0 0

2 0 0

3 0 0

4 0 0.05

5 0 0.16

6 0.1 0.49

7 0.2 0.88

8 1.08 1.31

9 2.16 2.96

10 3.43 5.15

11 6.57 6.84

12 8.14 11.06

13 10.59 12.37

14 14.51 12.70

15 16.57 11.71

16 15.59 10.89

17 12.16 9.09

18 7.35 6.40

19 1.27 4.98

20 0.29 2.96

policies for patient admission and discharge on the bed occupancy distribution. The ICU
staff confirmed that some discharge decisions are made in order to keep the number of oc-
cupied beds between 12 and 17. These figures correspond with the general recommendation
that ICUs should have 60–70% average bed occupancy (The Intensive Care Society 1997).
Clearly, therefore, these human decisions are based on the ICU bed occupancy level, the
ICU bed requirement forecast and the medical condition of the ICU patients. Medical staff
may therefore slightly delay discharge or authorize slightly earlier discharge if the patient’s
condition allows.

3.2 ICU management decision modeling

Since these decisions appear to have a crucial impact on ICU performance, they must be in-
troduced into the simulation model. There is no written protocol for managers to determine
patient admission and discharge automatically; these decisions are subject to the judgment
of the intensive care consultant. Our approach to modeling this decision-making process re-
quires us to define a set of rules to determine the conditions for the slightly earlier discharge
of certain patients or the slightly delayed discharge of others. These conditions should de-
pend on the bed occupancy level. Specifically, we mathematically model early and delayed
discharge by considering the following rules:

1. If the bed occupancy level is high (n > 15) and some patients’ length of stay conditions
are satisfied (if the patient’s prognosis is good and the remaining LoS is less than PRn%
and less than DRn days), then some patients may be discharged early.
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2. If the bed occupancy level is low (n < 14) and some patients’ length of stay conditions
are satisfied (if the patient’s initial LoS is less than DIn days), then some patients’ stay
can be slightly extended (PIn).

The definition of these rules depends on the following parameters:

– DRn: upper limit for the reduction in the number of LoS days when bed occupancy level
is n, n = 16, . . . ,20.

– PRn: percentage reduction in LoS when bed occupancy level is n, n = 16, . . . ,20.
– Numn: upper limit for the number of patients where LoS can be reduced when bed occu-

pancy level is n, n = 16, . . . ,20.
– PIn: percentage increase in LoS when bed occupancy level is n,n = 0, . . . ,13.
– DIn: upper limit for the number of LoS days for which an increase is allowed, when bed

occupancy level is n,n = 0, . . . ,13.

3.3 Finding the best set of rules to describe the management decisions

Observe that the set of rules defines infinite management policies for the ICU: one for each
set of parameter values. The simulation model only allows us to assess the performance of
one set of parameters in each simulation run. By running the simulation model for some
reasonable values of the rule parameters, we confirm their influence on the distribution of
the bed occupancy frequencies and the approximation of the simulated to the real frequency
distribution. This brings us to the question of how to find the best set of parameter values.
We address this by defining an optimization problem aimed at matching the simulated bed
occupancy output with the real one, denoted by simulfrequi and realfrequi , respectively.

Specifically, we consider a mathematical programming problem where the decision vari-
ables are the parameters of the rules described above (DRn,PRn,Numn,PIn,DIn). The upper
and lower bounds for these variables (upperDR, lowerDR, upperPR, lowerPR, upperNum,
lowerNum, upperPI, lowerPI, upperDI and lowerDI) are parameters of the optimization
problem. The sum of squared differences of the simulated and real frequencies of bed occu-
pancy is minimized (4). The constraints represent the monotonicity of the values for the five
groups of decision variables in accordance with the decision rules described above and their
upper and lower bounds (5)–(9). As an example, constraints (5) establish that reductions in
length of stay when 20 ICU beds are occupied (DR20) must be no less than when 19 beds
are occupied (DR19). The following nonlinear integer programming problem is considered:

Min
20∑

i=0

(
realfrequi − simulfrequi

)2
(4)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

upperDR ≥ DR20 ≥ DR19 ≥ · · · ≥ DR16 ≥ lowerDR (5)

upperPR ≥ PR20 ≥ PR19 ≥ · · · ≥ PR16 ≥ lowerPR (6)

upperNum ≥ Num20 ≥ Num19 ≥ · · · ≥ Num16 ≥ lowerNum (7)

upperPI ≥ PI1 ≥ PI2 ≥ · · · ≥ PI13 ≥ lowerPI (8)

upperDI ≥ DI1 ≥ DI2 ≥ · · · ≥ DI13 ≥ lowerDI (9)

DRi ,Numi ,DIj integer, i = 16, . . . ,20, j = 1, . . . ,13
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Fig. 5 Combination of
simulation with optimization
techniques

Table 7 Two-sample test on real bed occupancy data vs simulated data using decision rules

N Mean St. dev SE mean

t-Test: Ho: μ(real) = μ(simulated)

Real bed occupancy 20 14.44 0.87 0.19

Rules-simulated bed occupancy 36 14.46 1.40 0.12

t-Test of diff. = 0 (vs. <>0): t-value = −0.11, p-value = 0.911

Observe that the objective function can only be evaluated through simulation. Therefore,
an optimization with simulation procedure has to be used to solve the proposed optimization
problem. Simulation and optimization are combined (see April et al. 2003) as follows. The
optimization procedure determines a set of parameter values or solution, that is, a value for
the decision variables of the problem. This system configuration is simulated. The output
of this simulation is used in the optimization procedure to evaluate the random objective.
Using this information and its own search method, the optimization procedure decides the
next solution to be evaluated (Fig. 5). This process continues until the stopping conditions
of the optimization method are met.

We use ARENA and OptQuest software to solve this optimization problem and to obtain
the optimal value of the rule parameters for the simulation model.

3.4 Validation of the simulation model including management decisions

To validate the new simulation model, we check that the daily bed occupancy generated by
the simulation model matches the real data, both in mean values and in distributions. The
equality of means cannot be rejected (see Table 7) and can be extended to the whole distri-
bution. Graphical and numerical experimental results of real and simulated bed occupancy
frequencies are presented in Fig. 6 and Table 8, respectively. The Kolmogorov-Smirnov test
does not reject the null hypothesis of equal distributions (p-value = 0.531).

Figure 6 shows the daily bed occupancy frequencies for the real data (dark gray bars), the
frequencies for the simulation model including the optimal rule parameters (white bars), and
the frequencies for the simulation model without management rules (pale gray bars). This
figure and the numerical values in Table 8 confirm the need to introduce management rules
into the simulation model. We also checked that the application of these management rules
does not modify the distribution of the data. These results allow us to validate the simulation
model.

4 Conclusions and discussion

This paper describes a simulation model that may be viewed as a reliable tool for ICU sizing
and capacity analysis and the testing of different ICU management policies. We illustrate the
proposed methodology with a simulation of the ICU at the Hospital of Navarre, Spain.
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Fig. 6 Real vs. simulated (with and without rules) bed occupancy frequencies

We focus particularly on the statistical modeling of stochastic elements, thus reaching
beyond the usual scope of simulation studies. We model the arrival process for each patient
pathology group. All patient groups except groups G1 and G8 fit Poisson processes. Group
G8 is a residual group, but G1 has a major impact on the arrival process, since it accounts
for 40% of ICU admissions. More research is required to find a better statistical model
for this group and obtain more information about surgery scheduling and operating theater
performance. We have initiated the search for this information. We illustrate the importance
of constructing an accurate LoS model. Furthermore, since our data show weighted tails, and
therefore do not fit standard statistical models, we include explanatory variables to improve
the fit of the LoS data by fitting them to non-normal regression models.

Using descriptive statistical analysis, we check for trends and seasonality components
in both arrivals and LoS averages. We find a seasonality component in the arrivals for pro-
grammed surgery due to physicians’ vacations, which we take into account by fitting differ-
ent statistical models. We also find a change in the rate of arrivals of group G6 patients in
2005 due to the decrease of traffic accidents (resulting from new traffic regulations including
harder penalties for lawbreakers). For this group we only fit the data for the period 2005 to
2008.

One of the main issues addressed in this study is the validation of the model. We use
a bed occupancy variable to compare the real ICU against our first ICU simulation model.
Further analysis reveals that, despite having equal means, the simulated distribution does
not match the real one. The explanation for this was that we initially included the common
assumption of independency between LoS and workload in the ICU. The validation process
showed this assumption to be incorrect, however, since patient length of stay is sometimes
influenced by the bed occupancy level. Our results are consistent with accounts given in
interviews by ICU managers and medical staff. They reported their personal experience to
be that some commonly-applied bed-management decisions imply early discharge for some
patients and slightly delayed discharge for others.
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Table 8 Bed occupancy frequency values for the new simulation model

Daily bed occupancy Real data frequencies Rule-simulated frequencies

1 0 0.00

2 0 0.00

3 0 0.00

4 0 0.03

5 0 0.05

6 0.1 0.23

7 0.2 0.49

8 1.08 1.31

9 2.16 2.11

10 3.43 3.37

11 6.57 5.93

12 8.14 8.16

13 10.59 10.91

14 14.51 14.15

15 16.57 16.04

16 15.59 15.48

17 12.16 11.19

18 7.35 6.16

19 1.27 2.53

20 0.29 1.82

The selection of patients for admission to and discharge from the ICU is a triage problem
that physicians face on a daily basis. This problem of triage is particularly difficult when the
ICU is full or almost full. Despite the impact of these triage decisions on the everyday run-
ning of the ICU, to the best of our knowledge they have never been included in a simulation
model in previous research. Thus, our attempt to represent them by using a mathematical
model that can be included in the simulation model is one of the main contributions of this
paper. Furthermore, we show that a simulation model omitting these management decisions
would not be valid.

We model these patient discharge decisions using a set of rules expressing in mathemat-
ical language physicians’ declarations regarding earlier discharge for some patients without
compromising their health when the ICU is fully, or almost fully, occupied. The rule for
shortening LoS is then described by two variables that establish, in absolute and relative
terms, respectively, the conditions under which early discharge can take place by limiting
the reduction time. We need a pair of these variables for each level of bed occupancy. We
model extended length of stay in a similar way.

The ICU staff, not trained in mathematical models, understood the purpose of the mathe-
matical rules and accepted them as a good way to represent what they do. In fact, this study
has made them think for the first time about how they were making the decisions. This issue
has until now never been addressed from a global perspective in a structured way (working
in an ICU is usually stressful and physicians are focused on healthcare decisions concerning
the patients at hand).

From a technical point of view, these rules depend on a set of parameters whose “best”
values are determined by the solution of an optimization problem requiring the combination
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of simulation and optimization. Comparison of this new simulation model with the real ICU
reveals close similarity between the two, which not only validates the simulation model; it
also demonstrates its credibility for use as a decision-support tool.

Nevertheless, since the first version of this paper they (the physicians) and we (math-
ematicians) have continued studying this modeling problem. Currently we are trying to
improve the rules by incorporating other medical criteria, by distinguishing between the
triage decisions for different patient groups, for example. The most challenging improve-
ment, however, stems from the consideration that interventions to modify a patient’s normal
length of stay (from entry to recovery, or death) should be kept to a minimum. The consid-
eration of this new element leads to the formulation of bicriteria optimization problems in
which historical data are no longer the only criterion used to determine parameter values.
This is our work in progress.

Another issue has to do with the meaning of management decisions at the ICU. The fact
that a single physician makes all the decisions required for each patient raises a question:
are there significant differences in the decisions made by different physicians? ICU staff
think not, but they do not know for sure. There has been a stable team of physicians over the
period and they usually discuss the patients’ health, but these circumstances alone do not
guarantee identical decisions. Moreover, the information in the database is aggregated for
all physicians, so comparison using historical data is not possible. Given the interest that this
issue has for physicians, and also for us, we plan as future work to develop an interactive
simulation model for the ICU in which the decisions are made by the user. Its purpose is to
record information about how different physicians reached their decisions, in order to test
the equality of their management decisions.

We therefore achieved our initial aim of building a credible simulation model for ICU
managers. It serves as a starting point from which to develop capacity-planning studies.
As an example of its use, consider the problem of determining the number of beds needed
to meet an increase of patients at the ICU due to the increase of patients coming from
programmed surgery. One of the main problems of the public health care system is the
length of waiting lists for some specialist surgical procedures. To reduce waiting lists and
improve service quality, the hospital is considering extending some operating theater hours,
which would increase the number of patients from elective surgery (group G1) by 50%.
Simulation results show that two more ICU beds are required to keep rejected admissions to
a maximum of 5%, and six more to keep them below 1%.

Although the results obtained in this study are directly related to the input data and the
characteristics of this ICU, it should be noted that the proposed methodology could be used
to model other ICUs.
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