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Abstract We study the Multi-Depot Multiple Traveling Salesman Problem (MDMTSP),
which is a variant of the very well-known Traveling Salesman Problem (TSP). In the
MDMTSP an unlimited number of salesmen have to visit a set of customers using routes that
can be based on a subset of available depots. The MDMTSP is an NP-hard problem because
it includes the TSP as a particular case when the distances satisfy the triangular inequality.
The problem has some real applications and is closely related to other important multi-depot
routing problems, like the Multi-Depot Vehicle Routing Problem and the Location Routing
Problem. We present an integer linear formulation for the MDMTSP and strengthen it with
the introduction of several families of valid inequalities. Certain facet-inducing inequalities
for the TSP polyhedron can be used to derive facet-inducing inequalities for the MDMTSP.
Furthermore, several inequalities that are specific to the MDMTSP are also studied and
proved to be facet-inducing. The partial knowledge of the polyhedron has been used to im-
plement a Branch-and-Cut algorithm in which the new inequalities have been shown to be
very effective. Computational results show that instances involving up to 255 customers and
25 possible depots can be solved optimally using the proposed methodology.

Keywords Multiple depot traveling salesman problem · Polyhedral study · Branch-and-cut

1 Introduction

Multi-Depot Multiple Traveling Salesman Problem (MDMTSP) is a generalization of the
well-known Traveling Salesman Problem (TSP), which consists of determining a set of
routes for the salesmen that jointly visit a set of given clients, such that each sales-
man starts from and returns to one depot among a set of available depots and the to-
tal cost of the routes is minimized. We denote the set of clients by J and the set of
potential depots by I . Let G = (V ,E) be an undirected graph with V = I ∪ J , and
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E = {(i, j) : i ∈ V, j ∈ J }. The cost of any edge (i, j) ∈ E is denoted by cij . Costs are
assumed to be symmetric, i.e. cij = cji and routes visiting only one client, called re-
turn trips, are allowed. This problem has some applications as in the motion planning
of a set of unmanned aerial vehicles (Yadlapalli et al. 2007, 2009, Malik et al. 2007;
Rathinam et al. 2007) and the routing of service technicians where the technicians are leav-
ing from multiple depots (Parragh 2010). If costs satisfy the triangular inequality, it is easy
to show that there is always an optimal solution in which at most one route will start and
end at each depot. Therefore, in this case the TSP reduces to the MDMTSP with |I | = 1, so
this problem is NP-hard.

The TSP is undoubtedly one of the most widely studied problems in the area of combina-
torial optimization and there are a lot of literature reviews on it, see for example Gutin and
Punnen (2002) and Applegate et al. (2006). We concentrate here on reviewing the literature
on problems nearer to the MDMTSP.

As far as we know, there is no reference in the literature that deals with the MDMTSP as
we define it in this paper, and the literature on similar problems is very scarce. The nearest
problem to the MDMTSP is the Generalized Multiple Depot, Multiple Traveling Salesman
Problem (GMTSP), studied by Malik et al. (2007), in which there are m salesmen, located
at different depots, but at most p of them can be used. They assume that the costs are
symmetric and satisfy the triangular inequality and propose a 2-approximation algorithm.
Yadlapalli et al. (2009) study a variant of the GMTSP where each route must contain at
least three nodes and propose a formulation for the GMTSP using binary variables and a
lagrangean relaxation in the same spirit as Held-Karp’s method for the TSP. This method
combined with subgradient optimization allows them obtaining an improved lower bound.
A lagrangean heuristic based on this method is also proposed. They present computational
results for instances with a number of nodes between 15 and 45 and a number of salesmen
between 3 and 10. Yadlapalli et al. (2007) study the same problem with asymmetric costs and
allowing trips with two nodes. They also present a binary formulation, a similar lagrangean
relaxation and lagrangean heuristic that is applied to a set of instances with up to 50 nodes
and 7 salesmen.

Bektas (2006) presents an overview of the Multiple Traveling Salesman Problem (mTSP)
and some of its variants, including the multi-depot case. In the mTSP there are m salesmen
that have to visit a set of customers from a single depot and every salesman must visit at
least one customer. Bektas (2006) reviews the applications, exact and heuristic solution pro-
cedures and transformations to the TSP for these problems, although the review concentrates
on the mTSP.

Kara and Bektas (2006) propose integer formulations with a polynomial number of con-
straints for the mTSP and for a multi-depot mTSP that is denoted by MmTSP. In the MmTSP
there are mi salesmen located at each depot i, all the salesmen have to be used and the num-
ber of customers visited by a salesman must lie between given upper and lower bounds.
They study two variants of the MmTSP: the fixed destination MmTSP in which the sales-
men have to return to their original depots, and the nonfixed destination MmTSP in which
the salesmen do not have to return to their original depots but the number of salesmen at
each depot should remain the same as it was at the beginning. The proposed formulations
are tested on a large set of randomly generated instances with the number of nodes being 100
or 120, the number of depots 3, 4 or 5 and up to 2 salesmen at each depot. All the instances
were optimally solved with a time limit of 3 hours. GuoXing (1995) proposed a polynomial
transformation of the MmTSP with asymmetric costs into an asymmetric TSP; this transfor-
mation cannot be adapted easily to the MDMTSP that we study in this paper because it uses
the fact that in the MmTSP the number of salesmen used at each depot is known. Kara and
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Bektas (2006) have also tried to use this transformation to solve the MmTSP and conclude
that it is preferable to solve the MmTSP directly. Benavent and Martínez (2011) present
a polynomial transformation of the symmetric MDMTSP to the symmetric TSP, assuming
that the costs satisfy the triangular inequality.

The MDMTSP can also be considered as a special case of other routing problems in
which the vehicles have limited capacities. Multi-Depot Vehicle Routing Problem (MDVRP)
consists of finding a set of routes based at a set of given depots to serve the demand of
a set of customers with vehicles of limited capacity. Laporte et al. (1988) study different
variants of this problem with asymmetric costs and propose a Branch-and-Bound algorithm
that solves instances with up to 80 customers and 3 depots. Laporte et al. (1984) propose
a Branch-and-bound algorithm for the symmetric case. Recently, Baldacci and Mingozzi
(2009) have designed an exact solution framework to solve different routing problems that
can be applied to the MDVRP and solve instances with up to 200 nodes and 4 depots.
Several heuristics have been proposed for the MDVRP, among which we can mention the
tabu-search of Cordeau et al. (1997).

The Location Routing Problem (LRP) generalizes the MDVRP in the sense that there
are opening costs for the depots and, in addition to the vehicles, the depots can also have a
limited capacity. Exact methods for the LRP are the Branch-and-Cut algorithms of Laporte
et al. (1986) and of Belenguer et al. (2011), the last one having been able to solve instances
with up to 50 customers and 5 possible depots. A lot of heuristic procedures exist for the
LRP, one of the most effective being that proposed by Prins et al. (2007).

In the Plant-cycle Location Problem (PCLP) introduced by Labbé et al. (2004), salesmen
are substituted by plants; there are assignment costs of the clients to the plants and opening
costs for the plants. The goal is to assign the clients to the plants and, for each plant, to
find a cycle containing the plant and the clients assigned to it, if any, in such a way that the
sum of the routing costs, opening costs and assignment costs is minimized. They present a
Branch-and-Cut algorithm that solves real-world data instances with up to 120 clients and
16 potential plants.

As far as we know, there is no polyhedral study of any of these multi-depot problems.
In this paper we present an integer formulation of the MDMTSP and study the associated
polyhedron. This study is the basis of a Branch-and-Cut algorithm that optimally solves large
MDMTSP instances. One of our motivations for studying the MDMTSP is to contribute to
the study of other multi-depot routing problems. We hope that the results we obtain for
the MDMTSP will be useful in the resolution of more realistic routing problems like the
MDVRP and the LRP.

The remainder of this article is organized as follows: In Sect. 2 the MDMTSP is formu-
lated as an integer lineal program, and the notation and some basic results that will be used
throughout the paper are introduced. In Sect. 3 we define the polyhedron associated with
the MDMTSP and derive some facet-defining results including the study of the inequalities
present in the formulation, the inequalities derived from the TSP, and two new families of
valid constraints. A Branch-and-Cut algorithm based on the polyhedral description of the
MDMTSP is described in Sect. 4. Section 5 presents computational results on two sets of
instances.

2 Integer formulation of the MDMTSP

Recall that the MDMTSP is defined on a set of clients J and a set of potential depots I . Un-
less otherwise stated, we will denote: |J | = q , and |I | = p and assume that p ≥ 1 and q ≥ 1.
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Let G = (V ,E) be an undirected graph where V = I ∪ J , and E = {(i, j) : ∀i ∈ V,∀j ∈ J }
(note that E does not include any edge between depots). The cost of edge e = (i, j) is de-
noted by cij = ce . A set of routes such that each route contains exactly one depot and each
customer is visited exactly once by the set of routes is called a MDMTSP solution. Each
route is assumed to be performed by a salesman or, equivalently, by a vehicle. Throughout
the paper, the MDMTSP defined on the set of potential depots I and set of clients J will be
denoted by MDMTSP(I, J ).

For each edge e = (i, j), i, j ∈ J , we define one binary variable xij which takes the value
1 if the edge e is traveled by one route and 0 otherwise. For each edge e = (i, j), i ∈ I, j ∈ J

we define a variable xij which takes the value 2 if one vehicle does a trip between depot i

to client j and immediately comes back to the depot (this is called a return trip), the value
1 if the edge e is traveled once by one vehicle, and 0 otherwise. For two node subsets
S,S ′ ⊆ V , define (S : S ′) = {(i, j) : i ∈ S, j ∈ S ′}. Given a node subset, S ⊆ V , let us denote
δ(S) = (S : V \S) and γ (S) = {(i, j) ∈ E : i, j ∈ S}. If S = {v}, we simply write δ(v) instead
of δ({v}). Finally, for F ⊆ E, define x(F ) = ∑

(i,j)∈F xij . We simply write x(S : S ′) instead
of x((S : S ′)). We propose the following formulation for the MDMTSP:

Minimize
∑

(i,j)∈E

cij xij

s.t. x (δ(j)) = 2 ∀j ∈ J (1)

x (γ (S)) ≤ |S| − 1 ∀S ⊆ J (2)
∑

i∈I ′
xij + 2x(γ (S ∪ {j, l})) +

∑

k∈I\I ′
xkl ≤ 2|S| + 3

∀j, l ∈ J,S ⊆ J\{j, l}, S 	= ∅; I ′ ⊂ I (3)
∑

i∈I ′
xij + 3xjl +

∑

k∈I\I ′
xkl ≤ 4 ∀j, l ∈ J, I ′ ⊂ I (4)

xij ∈ {0,1,2} ∀i ∈ I,∀j ∈ J (5)

xij ∈ {0,1} ∀i ∈ J,∀j ∈ J (6)

Degree equations (1), ensure that all the clients are visited exactly once by the set of
tours. Inequalities (2) are the very well-known subtour elimination inequalities. Inequal-
ities (3), called path elimination constraints, were introduced by Laporte et al. (1986)
and modified by Belenguer et al. (2011). These inequalities prevent solutions that include
a path starting at one depot and ending at a different one. Thus, a solution including
a path i1, j1, . . . , jt , i2, where i1, i2 ∈ I , and j1, . . . , jt ∈ J, t ≥ 3 violates inequality (3)
with I ′ = {i1}, S = {j2, . . . , jt−1}, j = j1, and l = jt . Let us show that these inequali-
ties are valid for the MDMTSP. Note first that any feasible MDMTSP solution satisfies
x(γ (S ∪{j, l})) ≤ |S|+1 because a subtour that only contains customers is forbidden. Con-
sider two cases:

(a) If x(γ (S ∪ {j, l})) = |S| + 1 then the solution contains a path where all the customers
in S ∪ {j, l} are consecutive. Therefore, neither j nor l are visited by return trips, so∑

i∈I ′ xij ≤ 1 and
∑

k∈I\I ′ xkl ≤ 1. Note that
∑

i∈I ′ xij = ∑
k∈I\I ′ xkl = 1 cannot hold,

because it would mean that the solution contains a path starting at a depot in I ′ and
ending at a depot in I\I ′, which is forbidden. Then,

∑
i∈I ′ xij + ∑

k∈I\I ′ xkl ≤ 1 holds
and the inequality (3) is satisfied.
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(b) Let us assume that x(γ (S ∪ {j, l})) ≤ |S|. Then, if
∑

i∈I ′ xij + ∑
k∈I\I ′ xkl ≤ 3 the in-

equality (3) is clearly satisfied. On the other hand, if
∑

i∈I ′ xij + ∑
k∈I\I ′ xkl = 4, it

means that customers j and l are visited by different return trips, so there exists no
edge in the solution with one endpoint in S and the other in {j, l}, so x(γ (S ∪ {j, l})) =
x(γ (S)) ≤ |S| − 1 and (3) is satisfied.

Inequalities (4) are in the same spirit as (3) that are not valid if S = {∅}. It can easily be
checked that they are valid and avoid solutions containing a path that connects two different
depots and visits only two clients.

This formulation allows solutions with paths connecting two depots and visiting only one
client, called 2-paths. However, if one solution of the MDMTSP contains a 2-path i1, j, i2,
where i1, i2 ∈ I , and j ∈ J , then the solution which visits the client j by a return trip from
the nearest depot does not have a greater cost, so this kind of solutions will never appear in
an optimal solution.

3 The MDMTSP polyhedron

Denote by P(I,J ) the polytope defined by the convex hull of feasible solutions of the
MDMTSP(I, J ). That is:

P(I,J ) = conv{x ∈ R
|E| : x satisfies (1) to (6) and contains no 2-path}.

Let Kn denote the complete graph on n vertices and let En be its set of edges. Given a
subset of edges A ⊆ En, we denote by xA ∈ R

|En| the incidence vector associated with
A, that is, xA

e = 1, if e ∈ A, and xA
e = 0 if e /∈ A. Then the polytopes associated to the

Traveling Salesman Problem, PTSP(n), and the Hamiltonian Path Problem, PHP(n), are defined
as follows:

PTSP(n) = conv
{
xA ∈ R

|En| : A is the set of edges of a hamiltonian cycle of Kn

}

PHP(n) = conv
{
xA ∈ R

|En| : A is the set of edges of a hamiltonian path of Kn

}

Grötschel and Padberg (1979) proved that dim(PTSP(n)) = n(n−1)

2 − n for all n ≥ 3, while
Queyranne and Wang (1993) proved that dim(PHP(n)) = n(n−1)

2 − 1. A null vector of any
dimension will be denoted by 0 and given a set of vectors R,aff (R) will denote the affine
hull of R.

Theorem 1 dim(P(I,J )) = q2−q

2 + pq − q .

Proof The number of variables is q2−q

2 + pq and all solutions satisfy the q linearly inde-
pendent degree equations (1), so dim(P(I,J )) ≤ q(q−1)

2 + pq − q . Let us denote this quantity
by d , then we have to find d + 1 affinely independent (or linearly independent, because
0 /∈ aff (P(I,J ))) MDMTSP solutions.

The first solution, denoted by B1, consists of visiting each client with a return trip from
depot d1 ∈ I . If q > 1, there are q(q−1)

2 affinely independent Hamiltonian paths on the set of
clients J and these paths are also linearly independent because 0 /∈ aff (PHP(q)). By joining
the terminal vertices of each path to depot d1 we obtain the same number of MDMTSP(I, J )

solutions. Let us denote this set of solutions by B2.
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Fig. 1 MDMTSP solutions of
Theorem 1

If p > 1, for each di ∈ I\{d1} and each j ∈ J , we may build a solution that visits client
j by a return trip from di and all the other clients with a unique route from d1. Thus, we
may build q(p − 1) additional MDMTSP(I, J ) solutions. Let us denote this set of solutions
by B3. Thus, in total we have constructed d + 1 solutions. These solutions are depicted as
the block matrix of Fig. 1 whose rows correspond to the solution blocks and whose columns
correspond to subsets of edges (for simplicity, the number of depots is assumed to be two
in Fig. 1). A constant in a cell corresponds to a submatrix of the appropriate dimensions
with all its entries equal to the constant. Note that the matrix is block-triangular and the
diagonal blocks are non singular, so the whole matrix has full rank, thus proving that the
d + 1 solutions constructed are linearly independent. �

In the remainder of this section we study the conditions under which several families of
inequalities (including those appearing in the MDMTSP formulation) define facets of P(I,J ).
The proofs of these results are rather technical and sometimes tedious. For this reason we
chose not including all of them in this paper. The interested reader can find all the proofs in
Benavent and Martínez (2011).

3.1 Trivial inequalities

In this section we study which trivial inequalities are facet-inducing inequalities for the
MDMTSP(I, J ) polyhedron.

Theorem 2 If q ≥ 4, the inequality xe ≥ 0 defines a facet of P(I,J ) for each e ∈ γ (J ).

Proof See Benavent and Martínez (2011). �

Inequalities xe ≤ 1, e ∈ γ (J ) are a particular case of subtour elimination constraints (2)
with |S| = 2, and are studied in Sect. 3.4.

Theorem 3 If q ≥ 4, the inequality xe ≥ 0 defines a facet of P(I,J ) for each e ∈ (I : J ).

Proof See Benavent and Martínez (2011). �

For any e = (i, j) ∈ (I : J ), the inequality xe ≤ 2 does not define a facet of P(I,J ) because
any solution satisfying xe = 2 also satisfies xjl = 0, for all l ∈ J , which implies that the
dimension of the face induced by the inequality xe ≤ 2 is less than dim(P(I,J )) − 1 if q > 2.
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3.2 Depot lifting

Let f x ≥ f0 be a valid inequality for MDMTSP(I, J ). An inequality f ∗x ≥ f0 for the
MDMTSP(I ∪ I ′, J ), with |I ′| ≥ 1, is said to have been obtained from f x ≥ f0 by lifting
depot d0 ∈ I to the set of depots I ′, if:

f ∗
lj =

{
fd0j ∀(l, j) ∈ (I ′ : J )

flj ∀(l, j) /∈ (I ′ : J ).

Note that the edges incident with the new depots have the same coefficients in the lifted
inequality as the corresponding edges incident with depot d0.

The lifted inequality f ∗x ≥ f0 is valid for the MDMTSP(I ∪ I ′, J ) because if a solution
y∗ existed such that f ∗y∗ < f0, we could build a solution y for the MDMTSP(I, J ) by
changing all the edges incident with depots in I ′ by the corresponding edges incident with
depot d0, and fy = f ∗y∗ < f0, which contradicts that f x ≥ f0 is valid. Theorem 4 shows
that the property of being facet-inducing is also inherited by the lifted inequality.

Theorem 4 Let ax ≥ a0 be a non-trivial inequality that defines a facet of P(I,J ). Then, an
inequality obtained from ax ≥ a0 by lifting depot d0 ∈ I to the set of depots I ′ defines a facet
of P(I∪I ′,J ).

Proof See Benavent and Martínez (2011). �

3.3 Path elimination constraints

In this section we prove that path elimination constraints (3) define facets of P(I,J ). Path
elimination inequalities (4) are also facet-inducing for P(I,J ), but the proof is very similar
and is omitted here.

In the proof of the next and subsequent theorems, we use a similar strategy: most of
the solutions are generated by blocks, where each block Bk, k = 1,2, . . . , contains a set
of solutions that use the edges of a set, say Ek , which is not used by the solutions of the
preceding blocks. Furthermore, each solution of block Bk uses a single edge of Ek that is not
used by any other solution of the same block, thus making it evident that all the solutions are
linearly independent. We denote by rk the rank of the matrix formed by the corresponding
solution vectors of block Bk restricted to Ek . To facilitate understanding, a representative
solution of each block is depicted in a figure (like Fig. 2). We use the following convention
in the pictures: solid edges correspond to edges that are fixed in the block, while pointed and
dashed edges may change in each solution of the block; a dashed edge indicates an edge that
belongs to only one solution of the block. Finally, return trips are depicted by a line with a
double arrow.

Theorem 5 Let j, l ∈ J, I ′ ⊂ I , and S ⊆ J\{j, l} such that S 	= ∅, I ′ 	= ∅ and I\I ′ 	= ∅.
Then the path elimination inequality

∑

i∈I ′
xij + 2x(γ (S ∪ {j, l})) +

∑

k∈I\I ′
xkl ≤ 2|S| + 3 defines a facet of P(I,J ).

Proof Thanks to the depot lifting Theorem 4 we may assume that |I | = 2, with |I ′| = 1 and
|I\I ′| = 1. Let d and h be the depots in I ′ and I\I ′ respectively, and define T = S ∪ {j, l},
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Fig. 2 Block solutions of Theorem 5

and q ′ = |T | (note that q ′ ≥ 3). We will prove the theorem by assuming that J\T 	= ∅,
in the case where J = T the proof is very similar and is omitted here. Let F be the face

induced by the path elimination inequality (3). We have to build q2+q

2 linearly independent
MDMTSP(I, J ) solutions of F .

To build the first block B1, we consider solutions where all the clients in J\T are visited
from depot d by return trips and clients in T are visited from depot d in the same route.
Inequality xdj ≤ 1 induces a facet of the polytope associated with the TSP of node set T ∪{d}
(Grötschel and Padberg 1979). Then there are r1 = q ′2+q ′

2 − q ′ − 1 linearly independent
routes using the edge (d, j) and visiting all the clients in T (see Fig. 2). Note that each one
of these solutions are in F because they use the edge (d, j) and satisfy x(γ (S ∪ {j, l})) =
|S| + 1. In this block E1 = γ (T ∪ {d}).

The next block of solutions B2 uses one of the routes used in B1 containing the node set
T ∪ {d}, and different ways of visiting the clients in J\T from depot d (see Fig. 2 (B2)).
Note that the solutions in B1 do not use any edge of γ (J/T ). Given that |J\T | = q − q ′,
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there are r2 = (q−q ′)(q−q ′−1)

2 linearly independent Hamiltonian paths on the node set J\T ,
which can be converted into routes by connecting their extremes nodes to depot d . Note that
E2 = γ (J/T ) and that the components of these solutions that correspond to edges in E2

form a non-singular matrix.
Block B3 contains solutions that each use a different edge (l, t) for every t ∈ J\T . See

Fig. 2 (B3). These solutions are all in the face F and the restriction to the set of edges
E3 = ({l} : J/T ) is the identity matrix, so r3 = q − q ′.

The next block, B4, uses edges with one endpoint in S and the other in J\T . For every
pair of clients s ∈ S, and t ∈ J\T we may build a solution such as the one depicted in Fig. 2
(B4). In this case E4 = (S : J/T ) and r4 = (q ′ − 2)(q − q ′). Block B5 contains solutions
as depicted in Fig. 2 (B5). In each solution a client in J\T is visited with a return trip from
depot h while the remaining clients in J\T are visited by return trips from depot d . For this
block, E5 = ({h} : (J\T )) and r5 = q −q ′. Block B6 contains only one solution where client
l is visited by a return trip from depot h so E6 = {(l, h)} and r6 = 1.

Note that all the solutions in blocks B1 to B6 satisfy the equation xdj = 1. The next
solution is depicted in Fig. 2 (x∗) and satisfies xdj = 2; therefore, it is affinely independent
of them (and linearly independent, because 0 /∈ aff (MDMTSP(I, J ))). Up to now we have
built

r1 + r2 + r3 + r4 + r5 + r6 + 1 = q2 − q + 2

2
affinely independent solutions.

The next block, B7, contains r7 = q ′ − 1 solutions each one using an edge of E7 = ({h} : S ∪
{j}). Finally, the r8 = q − q ′ solutions of block B8 use different edges of E8 = (J\T : {j})
(see Fig. 2 (B7 and B8)). It can easily be checked that q2−q+2

2 + r7 + r8 = q2+q

2 , so the proof
is completed. �

3.4 TSP derived inequalities

Given the great similarity between the MDMTSP and the classical TSP it is natural to ask
if valid and facet-inducing inequalities for the TSP can be used to derive valid and facet-
inducing inequalities for the MDMTSP. In this section we show that the answer is indeed
affirmative, in particular, facet-inducing inequalities of the TSP polytope written in tight tri-
angular form (TT form) (see Naddef and Rinaldi 1993) can be used to derive facet-inducing
inequalities of the MDMTSP polytope P(I,J ).

Given a TSP instance, we will denote its corresponding node set by VTSP. We say that
a valid inequality ax ≥ a0 for the TSP is written in TT-form if for all i, j, k ∈ VTSP, aik ≤
aij + ajk , and for all i ∈ VTSP, there are j, k ∈ VTSP such that ajk = aij + aik .

Consider the MDMTSP(I, J ), and let d1 ∈ I . Let a′x ≥ a0 be a valid and non-trivial
inequality for the TSP defined on the node set J ∪ {d1}, then the MDMTSP inequality ax ≥
a0, where aij = a′

ij∀i, j ∈ J , and aij = a′
d1j∀i ∈ I and j ∈ J is said to be an extended

inequality from a′x ≥ a0.

Theorem 6 Let ax ≥ a0 be an MDMTSP extended inequality from a′x ≥ a0, which is a
valid and non-trivial inequality for the TSP written in TT form. Then the inequality ax ≥ a0

is valid for the MDMTSP.

Proof Suppose that ax ≥ a0 is not valid for the MDMTSP, so there is one solution x∗ satis-
fying ax∗ < a0. Given that aij = a′

d1j∀i ∈ I ; ∀j ∈ J , we can assume that the solution x∗ uses
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only the depot d1 ∈ I , because if x∗ used other depots we can change the edges incident with
these depots for edges incident with d1. Furthermore, we can assume that x∗ uses only one
route: if, for instance, x∗ contains two routes (d1, j1, . . . , jr , d1) and (d1, l1, . . . , lr ′ , d1), we
could merge them into a single route (d1, j1, . . . , jr , l1, . . . , lr ′ , d1) that would also violate
the constraint ax ≥ a0 because the coefficients satisfy the triangular inequality. However, if
we discard the depots I\{d1} in x∗, we obtain a solution for the TSP defined on the node set
J ∪ {d1} that violates a′x ≥ a0, which is a contradiction. �

Theorem 7 Let ax ≥ a0 be an MDMTSP extended inequality from a non-trivial inequality
for the TSP written in TT form, a′x ≥ a0, that defines a facet of the TSP polytope. Then
ax ≥ a0 defines a facet of P(I,J ).

Proof Thanks to the depot lifting Theorem 4 we can assume that I = {d1}. Recall from the
definition of extended inequality that a′x ≥ a0 is an inequality for the TSP instance with
VTSP = J ∪ {d1}. Then, by hypothesis, a′x ≥ a0 defines a facet of PTSP(q+1), so there are
(q+1)q

2 − q − 1 linear independently TSP tours satisfying a′x = a0. These tours are also
MDMTSP({d1}, J ) solutions satisfying ax = a0, and these solutions also verify equation
x(δ(d1)) = 2. Given that inequality a′x ≥ a0 is written in TT form, there are two nodes,
say k and l, such that a′

kl = a′
d1k + a′

d1l . Let x be a TSP solution satisfying a′x = a0 such
that xkl = 1 (such a solution exists because a′x ≥ a0 is non-trivial). If we substitute edge
(k, l) by edges (d1, k) and (d1, l) in x, we obtain a MDMTSP({d1}, J ) solution, say x ′,
with two routes based at depot d1. This solution satisfies ax ′ = a0 and x ′(δ(d1)) = 4, so it
is affinely independent with the preceding ones and given that 0 /∈ aff (P({d1},J )), it is also
linearly independent. Thus we have (q+1)q

2 − q linearly independent solutions of P({d1},J )

and the proof is complete. �

Note that the condition stating that the TSP inequality is in TT form is too restrictive; in
fact the extended inequality is facet-inducing for the MDMTSP(I, J ) if the TSP inequality
is facet-inducing for the TSP polyhedron and there is an MDMTSP(I, J ) solution satisfying
ax = a0 and x(δ(d)) > 2 for a depot d ∈ I .

There are many families of valid and facet-inducing inequalities for the TSP that can be
written in TT form and that can be used to derive valid and facet-inducing inequalities for
the MDMTSP. In particular, it is known that TSP subtour elimination inequalities can be
written in TT form and are facet-inducing of PTSP(n) if n ≥ 4. The corresponding extended
inequalities for the MDMTSP are, in fact, the subtour elimination inequalities (2). Therefore,
as a consequence of Theorem 7, inequalities (2) are facet-inducing for P(I,J ) if q ≥ 3.

Comb inequalities are other facet-inducing inequalities for the TSP that are very impor-
tant, especially when solving the TSP by Branch-and-Cut. They were introduced by Chvátal
(1973), and Grötschel and Padberg (1979), and can be written in TT form. A comb inequal-
ity is usually defined by a set H ⊂ VTSP, called handle, and an odd number t ≥ 3 of vertex
subsets {T1, . . . , Tt }, called teeth, such that:

(C.1) H ∩ Ti 	= ∅ ∀i = 1, . . . , t,

(C.2) Ti\H 	= ∅ ∀i = 1, . . . , t,

(C.3) Ti ∩ Tj = ∅ 1 ≤ i < j ≤ t.
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Conditions (C.1), (C.2) say that every tooth Ti intersects the handle H and condition (C.3)
that no two teeth intersect. The corresponding comb inequality in TT form is:

x (δ(H)) +
t∑

j=1

x
(
δ(Tj )

) ≥ 3t + 1. (7)

Grötschel and Padberg (1979) showed that (7) define a facet of PTSP(n) if n ≥ 6. Given the
instance MDMTSP(I, J ), let H,T1, . . . , Tt be the handle and teeth, respectively, that define
a comb inequality in the associated TSP instance with VTSP = J ∪ {d1}. The corresponding
extended inequality for the MDMTSP(I, J ) can be written as in (7) and is facet-inducing
for P(I,J ). We will call these inequalities TSP-combs. Depending on which part of the comb
contains node d1 in the original TSP inequality, different types of TSP-combs are obtained
for the MDMTSP:

• If d1 /∈ H ∪ (
⋃t

i=1 Ti), then all the depots will be outside the TSP-comb, that is I ∩ (H ∪
(
⋃t

i=1 Ti) = ∅.
• If d1 ∈ H\(⋃t

i=1 Ti), then all the depots will be in the handle but in no tooth in the TSP-
comb, that is I ⊆ H\(⋃t

i=1 Ti).
• If d1 ∈ Ti ∩ H for some i ∈ {1, . . . , t}, then all the depots will be in Ti ∩ H in the TSP-

comb, that is I ⊆ Ti ∩ H for some i ∈ {1, . . . , t}.
• If d1 ∈ Ti\H for some i ∈ {1, . . . , t}, then all the depots will be in Ti\H in the TSP-comb,

that is I ⊆ Ti\H for some i ∈ {1, . . . , t}.

3.5 New comb inequalities for the MDMTSP

As stated above, in the TSP-combs the whole set of depots I is contained in the same part
of the structure of the comb. In this subsection we present two new families of inequalities
that are also defined by a handle and a number of teeth, so they can be considered a kind of
comb, but in these new combs, the depots may be simultaneously in different parts of the
comb structure. These new constraints are closely related to the multi-depot characteristic
of our problem and have been shown to be very useful in the Branch-and-Cut algorithm
described in Sect. 4.

3.5.1 H-comb inequalities

This new inequality has the same expression as the usual comb inequality (7), but in this
case the handle must contain at least one depot and at least one depot must be outside the
comb. More precisely, the H -comb inequality is defined by a subset H ⊂ I ∪ J , called a
handle, satisfying H ∩ I 	= ∅ and I\H 	= ∅, and an odd number of subsets of J,T1, . . . , Tt ⊆
J, t ≥ 1, called teeth, satisfying conditions (C.1), (C.2) and (C.3). The corresponding H-
comb inequality for the MDMTSP(I, J ) is (7).

Note that if I\H = ∅ and t ≥ 3, then the inequality is in fact a TSP-comb. On the other
hand, if I\H = ∅ and t = 1, then the inequality (7) is not facet-inducing as all the solutions
satisfying x(δ(H)) + x(δ(T1)) = 4 also satisfy the equation x(δ(H)) = 2, that cannot be
generated as a linear combination of the degree equations (1) and the equation x(δ(H)) +
x(δ(T1)) = 4. This is the same situation for the TSP in which a comb with one tooth is not
a facet-inducing inequality.

Theorem 8 H -comb inequalities are valid for the MDMTSP.
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Proof Let H be the handle and T1, . . . , Tt be the teeth of the H -comb and let x be the vector
associated with an MDMTSP solution. For each i = 1, . . . , t , we define:

ci =
{

1 if x contains at least one edge between H ∩ Ti and Ti\H,

0 otherwise.

Obviously,
∑t

i=1 ci ≤ t , and given that the teeth are pairwise disjoint, it holds that x(δ(H)) ≥∑t

i=1 ci . Then x(δ(H)) ≥ 2
∑t

i=1 ci − ∑t

i=1 ci ≥ 2
∑t

i=1 ci − t , and, since x(δ(H)) must be
even and t is odd, we conclude that x(δ(H)) ≥ 2

∑t

i=1 ci − t +1. On the other hand, for each
tooth Ti , if ci = 0, then x(δ(Ti)) ≥ 4, because both H ∩ Ti and Ti\H contain at least one
client and no depot, we therefore conclude that x(δ(Ti)) ≥ 4−2ci . Adding these inequalities
for all i = 1, . . . , t to the above derived inequality for x(δ(H)), we obtain inequality (7). �

Note that the number of teeth can be equal to one in the H -combs. We have proved that
H -comb inequalities with at least three teeth are facet-inducing for the MDMTSP polyhe-
dron but the proof is omitted here for the sake of brevity.

Theorem 9 H -comb inequalities (7) with at least 3 teeth (t ≥ 3) define facets of P(I,J ).

Proof See Benavent and Martínez (2011). �

H -comb inequalities with only one tooth are also facet-inducing of the MDMTSP(I, J )

polyhedron under mild conditions (see Benavent and Martínez 2011). Here we present the
proof for the case where the tooth contains only one client outside the handle.

Theorem 10 H -comb inequalities with one handle H and one tooth T , such that
|T \H | = 1 are facet-inducing for P(I,J ).

Proof Let us denote the only client in T \H by k. Thanks to the depot lifting theorem we can
assume that there is only one depot in the handle, say d , and one depot outside the handle,

say h. Then we have to build q2+q

2 linearly independent MDMTSP solutions satisfying (7)
with equality.

Let us denote by q ′ the number of clients in J\(H ∪ T ). The first block B1 contains
solutions where clients in H ∪ T are visited from depot d and the clients outside the comb
are visited from depot h. Taking into account the dimension of the polyhedron P({h},J\(H∪T )),

there are b′
1 = q ′(q ′−1)

2 + 1 linearly independent solutions that visit the clients in J\(H ∪ T )

using edges in γ ({h} ∪ J\(H ∪T )), and these solutions can be completed with a fixed route
based at depot d that visits the clients of H ∪ T , like the one depicted in Fig. 3 (B1). On the
other hand, if we assume that |T ∩H | ≥ 2, given that the subtour inequality x(δ(T ∩H)) ≥ 2
is facet-inducing for the polytope P({d},J∩(H∪T )), there are b′′

1 = (q−q ′)(q−q ′−1)

2 linearly inde-
pendent solutions that use edges from γ (H ∪ T ); all of these solutions can be completed
with a fixed route visiting all the clients in J\(H ∪ T ) from depot h. It is easy to see that
by combining these two sets of solutions we obtain r1 = b′

1 + b′′
1 − 1 linearly independent

solutions that satisfy (7) with equality. Note that in the case where |T ∩ H | = 1, every so-
lution in the polyhedron P({d},J∩(H∪T )) can be used to visit the clients of J ∩ (H ∪ T ), so in
this case we have in fact one more solution, r1 + 1.

In B2 we build r2 = q ′ +1 solutions using exactly one edge in the set E2 = ({k} : V \(H ∪
T )). The first solution visits k with a return trip from h, and the remaining solutions use
edge (k,h) and one edge (k, t), where t ∈ J\(H ∪ T ) (see Fig. 3 (B2)). Block B3 contains
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Fig. 3 Block solutions of Theorem 10

r3 = (q ′ + 1)|T ∩ H | solutions, one solution for each edge with one endpoint in T ∩ H

and the other in V \(H ∪ T ), see Fig. 3 (B3). Block B4 contains solutions using edges of
E4 = (J ∩H\T : V \(H ∪T )), that is r4 = (q ′ +1)|H\T | solutions (note that r2 + r3 + r4 =
(q ′ + 1)(q − q ′) solutions). Finally, block B5 contains q ′ solutions using edges of E5 =
({d} : J\(H ∪ T )), see Fig. 3 (B5). Note that all the solutions constructed so far satisfy the
equation x(δ(T ∩ H)) = 2. If |T ∩ H | ≥ 2, we can construct an additional solution x ′ that
satisfies x(δ(T ∩ H)) = 4, see Fig. 3 (x ′), so it is linearly independent with all the previous
solutions (if |T ∩ H | = 1 this solution is not needed, as stated before). Therefore, we have
b′

1 + b′′
1 + (q ′ + 1)(q − q ′) + q ′ = q2+q

2 and the proof is complete. �

3.5.2 T-comb inequalities

These inequalities also have a similar structure to the combs but in this case all the teeth must
contain at least one depot. The T -comb inequality is defined on a subset of clients H ⊂ J ,
called the handle, and t ≥ 1 subsets of I ∪ J,T1, . . . , Tt , called teeth, satisfying conditions
(C.1), (C.2), (C.3), and:

(C.4) Ti ∩ I 	= ∅ ∀i ∈ {1, . . . , t},

(C.5) H\⋃t

i=1 Ti 	= ∅, and

(C.6) I\⋃t

i=1 Ti 	= ∅.
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The T -comb inequality is:

x (δ(H)) +
t∑

j=1

x
(
δ(Tj )

) ≥ 2t + 2. (8)

Note that the number of teeth can be even and the right-hand side of the inequality is different
to that in the preceding comb inequalities.

Theorem 11 T -comb inequalities are valid for the MDMTSP.

Proof We prove the validity by induction on t , the number of teeth. If t = 1 the inequality is
the same as the H -comb inequality with one tooth which has been shown to be valid. Let us
assume that the inequality is valid for H -combs with less than t teeth, and let us show that
it is valid for an H -comb with t teeth, like in (8). Consider a feasible solution that satisfies
x(δ(Tt )) ≥ 2, then, given that the comb inequality with the same handle and the first t − 1
teeth is valid, it is obvious that (8) is satisfied by this solution. Let us now consider a feasible
solution for which x(δ(Tt )) = 0 holds, and consider now a comb with the first t −1 teeth and
handle H ′ = H\(Tt ∩H), then, by the induction hypothesis x(δ(H ′))+∑t−1

j=1 x(δ(Tj )) ≥ 2t .
Note that x(δ(H)) = x(δ(H ′)) + x(Tt ∩ H : V \H ′) − x(Tt ∩ H : H ′); if x(δ(Tt )) = 0, then
x(Tt ∩ H : H ′) = 0 and all the clients in Tt ∩ H will be visited from a depot in Tt\H so
x(Tt ∩H : V \H ′) ≥ 2, which implies that x(δ(H)) ≥ x(δ(H ′))+2. This inequality together
with the one satisfied by the induction hypothesis, implies that this feasible solution also
satisfies (8). �

Theorem 12 T -comb inequalities (8) with handle H and teeth T1, . . . , Tt , t ≥ 2 are facet-
inducing for P(I,J ).

Proof See Benavent and Martínez (2011). �

4 Branch & Cut algorithm

The MDMTSP formulation and the additional constraints described in Sect. 3 have been
embedded in a cutting plane algorithm to produce a valid lower bound (LB) for the prob-
lem. This cutting plane is the core of a Branch-and-Cut algorithm for finding the optimal
solution of the MDMTSP. The cutting plane algorithm is an iterative procedure that works
as follows. Initially, we build a linear program (LP) including the objective function, the
degree constraints and the bounding inequalities 0 ≤ xij ≤ 1, if i, j ∈ J , and 0 ≤ xij ≤ 2, if
i ∈ I, andj ∈ J . At each iteration, we solve the current LP, look for a set of valid inequalities
that are violated by the optimal LP solution, add them to the LP and proceed as before. If in
an iteration no violated inequality is found and the LP solution is integer, then the optimal
solution has been found; otherwise, we resort to branching.

4.1 Separation algorithms

Separation algorithms try to find valid inequalities of a given family that are violated by
the current LP solution. Let x̄ be the optimal solution of the current LP. Denote by G(x̄)

the support graph associated with a given LP solution x̄, that is, G(x̄) is the weighted graph
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induced by the edges e such that x̄e > 0. The graph that results from shrinking all the possible
depots I of the support graph in a single vertex will be denoted by G′(x̄).

As mentioned before, some of the inequalities for the MDMTSP also appear in the formu-
lation of other related problems. In those cases we have used separation algorithms already
designed for those inequalities. Thus, the subtour elimination inequalities were separated
using procedures designed for the TSP: the shrinking procedure described by Padberg and
Rinaldi (1990), and the function CCtsp_exact_subtours of the Concorde callable library
(http://www.tsp.gatech.edu/concorde/DOC/concorde_funcs.html) that implements an exact
separation algorithm consisting of finding a minimum weighted cut in G′(x̄).

The shrinking procedure is also used to separate the path elimination constraints (3)
and (4). This procedure is based on the idea of sequentially shrinking edges whose weight is
equal to one in the support graph. In our problem, only edges with both end-points in J were
shrunk. If the shrunk graph contains a vertex, say v, linked to more than one depot, we check
whether a path elimination constraint is violated. Note that vertex v will in fact correspond
to a path in G(x̄) where all the edges have weight 1. Then identifying the extremes of this
path as the clients j and l, is quite easy to check if there is a subset of depots I ′ for which
the corresponding path elimination inequality is violated by x̄. Note that if x̄ is integer this
procedure will find a violated path constraint if any exists.

Two heuristic procedures were used to separate TSP-comb inequalities in the graph.
The first one is the routine COMBSEP_SeparateCombs of Lysgaard’s CVRPSEP library
(http://www.hha.dk/~lys/CVRPSEP.htm) that is devoted to separating strengthened combs
in the CVRP. It has been used in our problem by simply defining the capacity of the vehicles
as a large number. The second one adapts the procedure proposed by Grötschel and Holland
(1987) for the TSP to work on graph G(x̄), which contains several depots. This procedure
may find not only violated TSP-combs, but also violated H -combs.

Finally, we have implemented two new heuristic algorithms to separate T -comb inequal-
ities. The first one looks for violated T -combs with only one tooth and works as follows.
First, the tooth T is built by starting with a set that contains only one depot, and then cus-
tomers are added to the tooth one by one in such a way that, at each step, x̄(δ(T )) is as small
as possible. Whenever a set T is found such that x̄(δ(T )) < 2, we look for an appropriate
handle H starting with H = T ∩J and adding customers to it sequentially in such a way that
x̄(δ(H)) is kept as small as possible. If a handle is found such that x̄(δ(H)) + x̄(δ(T )) < 4,
we get a violated T -comb inequality. This procedure is applied for each depot and at most
one violated T -comb inequality is generated for each depot. The second heuristic looks for
T -combs with several teeth. First, a set of teeth are built in the same way as before, starting
each tooth with a different depot. Then, for every subset of this set of teeth such that: (i) they
are pairwise disjoint, (ii) belong to the same connected component of G(x̄), and (iii) do not
together contain all the customers of that connected component, an appropriate handle H is
built. The construction of H starts with the set of customers of the corresponding connected
component and customers are removed sequentially in such a way that x̄(δ(H)) is kept as
small as possible (the customers of the teeth are not removed). Every time a customer is
removed, the T -comb inequality is checked.

4.2 Branch-and-Cut strategies

The separation procedures were called in the following order: (1) shrinking procedure
for subtour and path elimination inequalities, (2) exact procedure for subtour inequalities,
(3) procedure to look for T -combs with one tooth, (4) procedure to look for T -combs with
several teeth, (5) modified Grötschel and Holland procedure for TSP-combs and H -combs,

http://www.tsp.gatech.edu/concorde/DOC/concorde_funcs.html
http://www.hha.dk/~lys/CVRPSEP.htm
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(6) Lysgaard procedure for combs. Whenever at least one violated inequality is found by
any procedure, the following ones are not called and the LP is re-optimized.

The cutting plane algorithm was implemented in C++ and embedded in a Branch-and-
Cut procedure using the commercial solver CPLEX 9 through Concert Technology. The
branching variable and the next node to separate are determined by CPLEX using the Strong
Branching strategy.

5 Computational results

The Branch-and-Cut code written in C++ was run on an Intel Core i5 at 2.4 GHz with 4GB of
RAM under Windows 7, and applied to two sets of Euclidean instances. The first set contains
30 instances that have been generated from LRP instances by simply considering a very large
capacity for the vehicles and depots and zero opening costs for the depots. The complete set
of instances can be downloaded from http://prodhonc.free.fr/ (see Instances Benchmarks
1 and 2). Some of these instances become identical when the capacity of the vehicles is
increased and they were discarded. The first numbers in the name of these instances are
the number of customers and the number of potential depots, respectively; furthermore, the
name includes a suffix s ∈ {i, f } that indicates how traveling costs have been calculated: i for
Euclidean distances multiplied by 100 and rounded up to the nearest integer, and f for not
rounded Euclidean distances. This first set contains instances with a number of customers
from 20 to 200 and a number of potential depots from 5 to 10. The second set of instances
were generated from two TSP instances of the TSPLIB (Reinelt 1991): a280 and bier127,
with 280 and 127 nodes respectively. From each of these instances four MDMTSP instances
were generated by randomly choosing 1, 5, 10, and 25 nodes as potential depots. Note that
the instances with one depot are equivalent to TSP instances, respectively. Traveling costs
are Euclidean distances rounded to the nearest integer in these instances.

Tables 1 and 2 show the results obtained by the Branch-and-Cut algorithm applied to
the first and second sets of instances respectively. The first two columns give the instance
name and the optimal cost (OPT). The next two columns display the total running time in
seconds (Time), and the time spent to separate inequalities (TimeSEP), the remaining time
having been spent to solve the LPs. The next three columns give the total number of nodes
in the Branch-and-cut tree (BCnodes), the total number of constraints generated (Cuts) and
the number of routes in the optimal solutions (Routes). Routes visiting only one customer
from a depot that is located at the same point as the customer were discarded when counting
the number of routes.

The results presented in Tables 1 and 2 indicate that the proposed Branch-and-Cut algo-
rithm can solve instances involving more than 200 customers and up to 25 possible depots
within modest computing times. Note that all the instances were solved with a maximum
CPU time of 1297.5 seconds and 23 out of 30 instances were solved in the root node, in-
cluding one instance with 275 customers. In general, instances obtained from the TSP seem
to be easier than those obtained from LRP instances.

It is also interesting to see the contribution of the H -comb and T -comb constraints,
which are completely new and specific to the MDMTSP, to strengthen the linear relaxation.
We have made two versions of the cutting plane algorithm to study this contribution. The
first version, called base, uses only the separation procedures for the subtour elimination,
path elimination and TSP-comb constraints, and the second version, called base+nc, also
includes the separation procedures for the new H -comb and T -comb constraints. The av-
erage results obtained by these two versions of the cutting plane algorithm are shown in

http://prodhonc.free.fr/
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Table 1 Results of the
Branch-and-Cut on LRP
instances

Instance OPT Time TimeSep BCnodes Cuts Routes

20-5-1-i 16283.0 0.14 0.03 1 35 2

20-5-1b-i 15959.0 0.06 0.01 1 11 2

20-5-2-i 14544.0 0.16 0.02 1 46 4

20-5-2b-i 16555.0 0.12 0.00 1 47 2

50-5-1-i 28384.0 0.34 0.07 1 66 2

50-5-2-i 22521.0 0.31 0.06 5 68 2

50-5-2BIS-i 16151.0 0.05 0.02 1 37 2

50-5-2bBIS-i 13450.0 0.09 0.02 1 19 2

50-5-3-i 27521.0 0.42 0.12 1 84 1

Christ50-5-f 399.5 0.41 0.08 1 84 5

Christ75-10-f 502.9 1.79 0.76 1 153 4

Gaspelle21-f 267.2 0.19 0.02 1 39 3

Gaspelle22-5-f 447.5 0.11 0.03 1 29 2

Gaspelle29-5-f 356.0 0.47 0.12 1 111 2

Gaspelle32-5-f 389.0 0.11 0.02 1 41 3

Gaspelle36-5-f 359.0 0.12 0.00 1 23 3

Min27-5-f 2164.1 0.16 0.03 1 55 3

Das88-8-f 207.4 6.80 5.44 5 191 5

Christ100-10-f 631.6 5.08 3.21 1 167 4

Min134-8-f 4001.3 3.07 1.91 1 154 3

Das150-10-f 22481.0 13.18 9.03 7 237 5

100-5-1-i 37943.0 13.48 8.27 6 417 4

100-5-2-i 30832.0 2.31 1.17 3 139 2

100-5-3-i 32850.0 7.69 5.23 5 225 4

100-10-1-i 39608.0 7.78 6.43 2 157 5

100-10-2-i 30641.0 8.66 4.87 6 257 2

100-10-3-i 32521.0 1.33 0.48 3 129 5

200-10-1-i 53047.0 123.21 102.45 5 483 5

200-10-2-i 39663.0 304.53 247.34 21 826 4

200-10-3-i 45289.0 82.79 42.92 20 523 3

Table 3. Here, LRPm and TSPm denote the sets of instances generated from LRP and TSP
instances, respectively. Table 3 shows the average deviations in % (GAP) of the lower bound
obtained by each version of the code to the optimal cost, the number of instances for which
the corresponding lower bound was equal to the optimal cost (LBopt), and the average CPU
time. Table 3 also shows the average gap closed by the new constraints which is computed,
for each instance, as 100(LB1-LB0)/(OPT-LB0), where LB0 is the lower bound obtained
with the base code, and LB1 is the lower bound obtained by the code base+nc that includes
the new constraints. Note that the gap closed by the new constraints in each set of instances
is 93.6% and 80.43% on average, respectively. Furthermore, the lower bound obtained by
the base+nc code is equal to the optimal cost in 26 instances, while the base code reaches
the optimal cost only in four instances. These results show that the new constraints are very
useful in closing the integrality gap because they are specific for the case where several de-
pots are available; we hope that they will also be useful in other multi-depot problems like
the LRP and the MDVRP.
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Table 2 Results of the
Branch-and-Cut on TSP
instances

Instance OPT Time TimeSep Nodes Cuts Routes

bier126-1 118282.0 1.5 0.27 1 97 1

bier122-5 116072.0 3.42 0.97 4 172 3

bier117-10 114747.0 7.1 4.57 1 177 4

bier102-25 108353.0 3.5 2.37 1 147 10

a279-1 2579.0 29.0 1.79 4 147 1

a275-5 2534.0 22.8 17.44 1 95 3

a270-10 2521.0 112.5 73.99 1 348 3

a255-25 2454.0 1297.5 1016.81 14 1487 11

Table 3 The effect of using the
new comb constraints # instances Base Base+nc

GAP LBopt Time GAP GAPclosed LBopt Time

LRPm 30 2.00 2 4.8 0.10 93.60 21 22.0

TSPm 8 0.38 2 62.2 0.02 80.43 5 321.0

6 Conclusions

We have presented what we believe to be the first polyhedral study of a multi-depot rout-
ing problem. An integer linear programming formulation including several classes of facet-
defining inequalities was proposed, together with a Branch-and-Cut algorithm. The pro-
posed approach was tested on two classes of instances. The largest solved involved 255
customers and 25 potential depots. We hope that the results presented in this paper could
also help in the exact resolution of other multi-depot problems like the Multi-Depot Vehicle
Routing Problem and the Location Routing Problem.
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