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Abstract In this paper we present an exact algorithm for the Maximum Common Induced
Subgraph Problem (MCIS) by addressing it directly, using Integer Programming (IP) and
polyhedral combinatorics. We study the MCIS polytope and introduce strong valid inequal-
ities, some of which we prove to define facets. Besides, we show an equivalence between
our IP model for MCIS and a well-known formulation for the Maximum Clique problem.
We report on computational results of branch-and-bound (B&B) and branch-and-cut (B&C)
algorithms we implemented and compare them to those yielded by an existing combinatorial
algorithm.

Keywords Maximum common induced subgraph · Polyhedral combinatorics · Integer
programming · Branch-and-bound · Branch-and-cut · Maximum clique

1 Introduction

Using graphs it is possible to model a large number of real world problems, and a signifi-
cant portion of them is related to graph isomorphism. Particularly, the Maximum Common
Induced Subgraph (MCIS) has several applications in areas like Computer Vision (Horaud
and Skordas 1989; Pelillo et al. 1999), Video indexing (Shearer et al. 2001), Chemistry and
Biology (Willet 1999; Gifford et al. 1996; Chen and Robien 1994). This problem can be
defined as follows:
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Input: two graphs G and H .
Goal: find an induced subgraph G′ in G isomorphic to an induced

subgraph H ′ in H with a maximum number of vertices.

Here we should recall the concepts of isomorphism and of induced subgraph. Two graphs
G = (V ,E) and H = (W,F ) with |V | = |W | are called isomorphic if there is a bijection π :
V → W such that (i, j) ∈ E ⇒ (π(i),π(j)) ∈ F and (i, j) ∈ F ⇒ (π−1(i),π−1(j)) ∈ E.
Besides, given a graph G = (V ,E), a graph H = (W,F ) is an induced subgraph of G

if W ⊆ V and F = {(i, j) ∈ E : i ∈ W and j ∈ W }, i.e., F is the set of edges with both
extremities in W . In that case, we also say that H is the subgraph induced by W in G.

Another manner of defining the problem would be the following: given two graphs, find
a mapping from a vertex subset in one graph to a vertex subset in the other graph such that
these subsets have a maximum size (the subgraph is maximum) and the following restric-
tions are observed: each vertex in one graph can be mapped at most to one vertex in the
other graph (the subgraphs are isomorphic) and a pair of adjacent vertices in one of the
graphs cannot be mapped to a pair of non-adjacent vertices in the other graph (the subgraph
is induced in both graphs).

The MCIS is an N P -hard problem and can be found in the classic list in Garey
and Johnson (1979). Therefore, unless P = N P , there are no polynomial algorithms
to solve it. For this reason, several heuristics and approximation algorithms were pro-
posed for the MCIS (Kann 1992; Messmer and Bunke 1999; Raymond and Willett 2002;
Raymond et al. 2002a, 2002b; Suters et al. 2005; Wang and Maple 2005). However, despite
its complexity, it is still important to know exact solutions for instances, even if small ones,
of the problem. The most used methods in the literature to solve this problem exactly are
based in backtracking algorithms as in Mcgregor (1982), Wong and Akinniyi (1983) and
Krissinel and Henrick (2004), or in the reduction to another more studied N P -hard prob-
lem, such as the Clique problem, as done in Falkenhainer et al. (1989/1990) and in two of
the algorithms presented in Conte et al. (2003).

In this work we try to address the problem directly through Integer Programming (IP)
models and polyhedral combinatorics techniques. To do so, we perform a theoretical inves-
tigation of the MCIS using the tools provided by polyhedral theory. Doing that, we aim to
find strong valid inequalities that allow us to build a better formulation of the problem as
an IP. Later, we verify the impact of these theoretical results in the computational perfor-
mance of Branch-and-Bound (B&B) and Branch-and-Cut (B&C) algorithms we developed
to solve the problem and, also, compare these results with those achieved by an existing
combinatorial algorithm.

The rest of the text is organized as follows. The next section introduces some basic defini-
tions to help the understanding of the text. Section 3 presents the initial IP model for MCIS.
Section 4 shows a polyhedral study of MCIS, including proofs that some of the valid in-
equalities we found are facet-defining. Section 5 discusses the relationship between MCIS
and the Maximum Clique Problem. The computational results are discussed at Sect. 6. At
last, in Sect. 7 some conclusions are presented.

2 Basic definitions

The purpose of this section is to briefly review some concepts from Graph Theory, Linear
Algebra and Integer Programming necessary to the understanding of the text. A full treat-
ment of these topics can be found in textbooks such as (West et al. 2001), for Graph Theory,
and (Nemhauser and Wolsey 1988), for Integer Programming.
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Graph theory Let G be a graph. If there is an edge joining two vertices i and j of G they
are adjacent. If i and j are non-adjacent, (i, j) is called a non-edge of G. The complement
graph of G is the graph with the same vertices as G whose edges are precisely the non-edges
of G. A clique in G is a complete subgraph of G (all vertices of the subgraph are adjacent to
each other). An independent set (or IS for short) in G is a set of its vertices such that no two
of them are adjacent. An isolated vertex (or singleton) in G is a vertex that is not adjacent
to any other vertex in the graph. A vertex of G is said to be universal if it is adjacent to all
the remaining vertices in G. Finally, for a positive integer t , if the vertex set of G can be
partitioned into t subsets such that no edge of G joins two vertices in one subset, we say that
G is t -partite.

Linear algebra The vectors x1, . . . , xq in R
n are said to be affine independent if the only

solution to the linear system {∑q

i=1 λix
i = 0,

∑q

i=1 λi = 0} is λi = 0 for all i = 1, . . . , q . If
S is a subset of R

n, the dimension of S corresponds to the size of the largest subset of points
in S that are affine independent minus 1. Let U = {u1, . . . , un} be a set and S be a subset
of U . The n-dimensional binary vector x(S) with x(S)i set to one if and only if the element
ui belongs to S, is called the characteristic vector of S.

Integer programming We focus on the necessary background in Polyhedral Combina-
torics. To this end, consider the set of feasible solutions of an integer programming for-
mulation P = {x ∈ R

n+ | Ax = b} ∩ Z
n for a problem Π . The convex hull of the points in P ,

denoted by conv(P ), is named the Π polytope. This polytope is full-dimensional if its di-
mension is n (the dimension of R

n). An inequality μx ≤ μ0 is said to be valid for conv(P )—
or for P , for that matter—if it is satisfied by all vectors in P . The face F(μ,μ0) defined by the
valid inequality μx ≤ μ0 in conv(P ) is the set F(μ,μ0) = {x ∈ conv(P ) | μx = μ0}. If the di-
mension of F(μ,μ0) is that of conv(P ) minus one, then the face is called a facet. The relevance
of finding facet-defining inequalities comes from the fact that they are necessary and suffi-
cient to describe conv(P ) in terms of a linear system. To prove that an inequality μx ≤ μ0

defines a facet of conv(P ) one can directly compute the dimension of the face by counting
affine independent points. Alternatively, assuming that conv(P ) is full-dimensional, one can
show that any valid inequality πx ≤ π0 whose face F(π,π0) contains the face F(μ,μ0) can be
obtained by multiplying μx ≤ μ0 by a positive value. A lifting of a valid inequality μx ≤ μ0

for conv(P ) is an operation in which one or more elements of μ are increased in such a way
that the inequality remains valid while the new face it defines has higher dimension and
contains the previous one.

3 Integer programming model for the MCIS

In this section we present a simple IP formulation for the MCIS problem. This model is
based on the one given in Manić (2007) and reads:

max
∑

i∈V (G)

∑

j∈V (H)

yij (1)

∑

i∈V (G)

yij ≤ 1, ∀j ∈ V (H), (2)

∑

j∈V (H)

yij ≤ 1, ∀i ∈ V (G), (3)
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yij + ykj + yil + ykl ≤ 1, ∀(i, k) ∈ E(G),∀(l, j) /∈ E(H), (4)

yij + ykj + yil + ykl ≤ 1, ∀(i, k) /∈ E(G),∀(l, j) ∈ E(H), (5)

yij ∈ {0,1}, ∀i ∈ V (G),∀j ∈ V (H). (6)

In this formulation, for all i ∈ V (G) and j ∈ V (H), the binary variable yij is set to 1 if, and
only if, the vertex i is mapped to the vertex j . Constraints (2) and (3) guarantee, respectively,
that every vertex in V (H) is mapped to at most one vertex in V (G) and that every vertex
in V (G) is mapped to, at most, a single vertex in V (H). Constraints (4) and (5) though,
guarantee, respectively, that no two adjacent vertices in V (G) are mapped simultaneously
to two non-adjacent vertices of V (H) and that no two adjacent vertices in V (H) are mapped
simultaneously to a pair of non-adjacent vertices in V (G). It is a simple task to show that
this formulation is correct.

In the remainder of the text we denote by P the set of integer solutions of (2)–(5). The
MCIS polytope is defined as the convex hull of P , denoted by conv(P ). In the next section
we investigate the facial structure of this polyhedron.

4 Theoretical study of the MCIS polytope

In this section, we introduce strong valid inequalities that we encountered in the theoretical
study of the MCIS, establishing the conditions under which these inequalities are facet-
defining and present the respective proofs. The section is organized in such a way that each
specific group of inequalities is considered in a separate subsection. So, Sect. 4.1 is focused
on the inequalities that guarantee that each vertex in one of the graphs is mapped to a single
vertex in the other graph. As for Sect. 4.2, it is concentrated on the inequalities that determine
that a pair of adjacent vertices in one of the graphs cannot be mapped to a pair of non-
adjacent vertices in the other graph.

From now on, every inequality mentioned in this section should be considered as hav-
ing an equivalent inequality in which the roles of the two input graphs of the MCIS are
interchanged. For example, when the inequality

yij + ykj + yil + ykl ≤ 1, ∀(i, k) ∈ E(G),∀(l, j) /∈ E(H)

is discussed in the text, the reader must bear in mind that an analogous discussion applies to
the inequality

yij + ykj + yil + ykl ≤ 1, ∀(i, k) /∈ E(G),∀(l, j) ∈ E(H),

in the sense that all properties found for the former also hold for the latter.
We present in Fig. 1 an example that is used throughout this section to illustrate the

structure of the inequalities. In that figure, in graph B there are some marked subsets linked
by dashed lines. These lines indicate that every vertex in one subset is adjacent to every
vertex in the other subset.

Prior to assess the strength of valid inequalities for the MCIS polytope we have to estab-
lish its dimension.

Proposition 1 The dimension of conv(P ) is |V (G)| × |V (H)|, i.e., the MCIS polytope is
full-dimensional.
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Fig. 1 Example of an input instance for the MCIS

Proof Let eij be the vector with 0 at all positions except at position ij whose value is 1. For
every i ∈ V (G) and j ∈ V (H), the vector eij satisfies the restrictions defining P and the
same holds for the null vector. Hence, we have |V (G)| × |V (H)| + 1 vectors in P that are
affine independent and, therefore, we can say that the dimension of conv(P ) is no smaller
than |V (G)| × |V (H)|. However, since the dimension of the polytope cannot be higher than
that of the space that contains it, we can deduce that conv(P ) is full-dimensional, which
completes the proof. �

4.1 Unique mapping

Now, consider the family of inequalities that enforces the unicity of vertex mappings and
given by:

∑

i∈V (G)

yij +
∑

l∈C(j)\{j }

∑

k∈DG

ykl +
∑

l∈I (j)\{j }

∑

k∈UG

ykl ≤ 1,

∀j ∈ V (H),∀C(j), I (j) ∈ H (7)
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where:

– C(j) is a maximal clique containing the vertex j ;
– I (j) is a maximal independent set containing the vertex j ;
– UG is the set of universal vertices in G; and
– DG is the set of isolated vertices in G.

As an example, in Fig. 1, consider the graphs A1 ⊂ A induced by the vertex set
V (A1) = {a1, . . . , a6} and B1 ⊂ B induced by the vertex set V (B1) = {b1, . . . , b4}. Set-
ting G = A1, H = B1 and j = b4, we have DG = {a5, a6} and C(j) = {b2, b3, b4}. In this
case, the inequality is ya1b4+ ya2b4+ ya3b4+ ya4b4+ ya5b4+ ya6b4+ ya5b2+ ya5b3+ ya6b2+
ya6b3 ≤ 1.

We first prove that these inequalities are valid for the MCIS polytope.

Proposition 2 The inequalities of the form of (7) are valid for the MCIS polytope.

Proof First note that DG �= ∅ implies that UG = ∅ and UG �= ∅ implies that DG = ∅. It is
still possible that DG = UG = ∅.

Suppose that DG �= ∅, then, assume by contradiction that one inequality in (7) is not valid
for the MCIS polytope. So, there must be some point in the polytope for which at least two
variables in the LHS of the inequality have value 1 at the same time. There are three possible
cases where that can happen:

Case 1 Two variables have value one in the first summation. This is not possible since, in
this case, inequality (2) is not satisfied.

Case 2 Two variables have value one in the second summation. This implies that either one
vertex in G is mapped to two vertices in H , or that a pair of isolated, and therefore,
non-adjacent vertices in G is mapped to a pair of adjacent vertices in H (vertices in
the clique C(j)). Thus, there is a violated inequality given by constraint (3) or by
constraint (5).

Case 3 One variable in the first summation and another in the second summation have both
value 1. This means that a vertex i in G is mapped to j and that, simultaneously, an
isolated vertex k in G is mapped to a vertex l in H that is adjacent to j . However, in
this situation, we have a non-edge in G that is mapped to an edge of H , contradicting
constraint (5).

In the case where UG �= ∅ the reasoning is similar.
Therefore, there is no point in the MCIS polytope that violates the inequality, which

contradicts the initial hypothesis. So, the inequalities of the form of (7) are valid for this
polyhedron. �

Now, consider the following conditions:

|UG| �= 1 or I (j) = Adj(j), and (8)

|DG| �= 1 or C(j) = Adj(j), (9)

where Adj(j) stands for the set of vertices adjacent to j whereas Adj(j) stands for the set
of vertices not adjacent to j .

Notice that if we had G = A1 \ {a6}, H = B1 ∪{b6} and j = b4 with A1 and B1 defined as
before, the inequality defined as in (7) could be lifted to have coefficient one for ya5b6 . As a
result, we can conclude that the original inequality is not facet-defining. Hence, we propose
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that an inequality of the form of (7) is facet-defining only if, condition (9) is satisfied as shall
be proved below. The same reasoning can be used when there is a universal vertex.

Proposition 3 An inequality in (7) induces a facet F = {x ∈ conv(P ) : ∑
i∈V (G) yij +∑

l∈C(j)\{j }
∑

k∈DG
ykl + ∑

l∈I (j)\{j }
∑

k∈UG
ykl = 1} of conv(P ) if, and only if, conditions

(8) and (9) are satisfied.

Proof (⇐) The face defined by an inequality in (7) is proper, because the null vector is not
in the face and is in conv(P ), and any vector with 0 at all the positions except at ij , for some
i ∈ V (G) is in the face.

Let F ′ = {x ∈ conv(P ) : πx = π0} and F ⊆ F ′. Now, if the inequality is facet-defining,
then there must exist a positive constant α ∈ R satisfying: (π,π0) = α(γ,1) where γij ′ = 1
if j ′ = j ∀i ∈ V (G) or (i ∈ DG and j ′ ∈ C(j)) or (i ∈ UG and j ′ ∈ I (j)) and γij ′ = 0
otherwise. i.e., we must show that π0 = α and πij ′ = α = π0 if j ′ = j or (i ∈ DG and
j ′ ∈ C(j)) or (i ∈ UG and j ′ ∈ I (j)) and πij ′ = 0 otherwise.

If the inequality is facet-defining, we should be capable of getting to the same relations
as above using the fact that F ⊆ F ′. So, we have:

(1) In this first case of the proof we show that πij ′ = π0 for any i ∈ V (G), j ′ ∈ V (H)

where the variable xij ′ have coefficient 1 in F . We do it by showing that every vector having
value 1 for one of these variables and value 0 for every other variables is in F . So we have:

Obviously the vectors (. . . ,0,1ij ′ ,0, . . .), where (i ∈ V (G) and j ′ = j) or (i ∈ DG and
j ′ ∈ C(j)) or (i ∈ UG and j ′ ∈ I (j)) are in F . As F ⊆ F ′ ⇒ (. . . ,0,1ij ′ ,0, . . .) ∈ F ′ ⇒
πij ′ = π0.

(2) This case proves that πkl = 0 for any k ∈ V (G), k /∈ DG, k /∈ UG and l ∈ V (H) \ {j}.
This is done by showing a vector in F representing a mapping from such a k to an l and from
i ∈ V (G)\{k} to j and no other mappings. From this vector we conclude that πij +πkl = π0

and from the previous case, that πkl = 0. So the proof goes as follows:
Let (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ V (G), i ∈ V (G)\k, l ∈ V (H)\{j},

k /∈ DG and k /∈ UG. So we have two cases to consider, in the first one (l, j) ∈ E(H), then
as k is not isolated we can always chose i so that (i, k) ∈ E(G). The second case occurs if
(l, j) /∈ E(H), then as k is not universal we can always chose i so that (i, k) /∈ E(G). As
F ⊆ F ′ ⇒ (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij +πkl = π0. Therefore, from (1), we
have πkl = 0 ∀k ∈ V (G), k �∈ DG, k /∈ UG and l ∈ V (H) \ {j}.

(3) Here we show that πkl = 0 for any k ∈ DG, l /∈ C(j). We do that by presenting a
vector in F having value 1 for a variable mapping such a vertex k to an l and also having
value 1 for a variable xij ′ where πij ′ = π0; every other variable have value 0. Thus we can
conclude that πij ′ + πkl = π0 and so, πkl = 0. The details of the proof are shown next:

Let (. . . ,0,1ij ′ , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ DG, i ∈ V (G) \ {k}, l /∈ C(j),
j ′ ∈ C(j). We first consider the case where |DG| = 1, so we choose j ′ = j and, from condi-
tion (9), we have (l, j ′) /∈ E(H). In case |DG| > 1, then i is chosen in DG and j ′ is chosen
in such a way that (l, j ′) /∈ E(H), which is always possible because C(j) is maximal. No-
tice that for k ∈ DG, one of the two situations always happen because of condition (9). As
F ⊆ F ′ ⇒ (. . . ,0,1ij ′ , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij ′ + πkl = π0. Therefore, from (1),
we have πkl = 0 ∀k ∈ DG, l /∈ C(j).

(4) This is the equivalent to (3) when there is a universal vertex in G instead of an
isolated. Thus, the proof is very similar.

Let (. . . ,0,1ij ′ , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ UG, i ∈ V (G) \ {k}, l /∈ I (j),
j ′ ∈ I (j). We first consider the case where |UG| = 1, so we choose j ′ = j and, from condi-
tion (8), we have (l, j ′) ∈ E(H). In case |UG| > 1, then i is chosen in UG and j ′ is chosen
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in such a manner that (l, j ′) ∈ E(H), which is always possible because I (j) is maximal.
Notice that for k ∈ UG, one of the two situations always happen because of condition (8).
As F ⊆ F ′ ⇒ (. . . ,0,1ij ′ , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij ′ + πkl = π0. Therefore, from
(1), we have πkl = 0 ∀k ∈ UG, l /∈ I (j).

(⇒) If condition (8) is not satisfied, then for some k ∈ UG and l /∈ I (j) non-adjacent to
j it would not be possible to choose i ∈ V (G) and j ′ = j , with i non-adjacent to k, because
k is universal; i could not be universal because there is only one isolated vertex, which is k;
and i, certainly could not be isolated, because k is universal. Therefore, there is no vector in
F with value 1 at position kl, that is equivalent to say that in the polyhedron defined by F

there is an equality ykl = 0. Hence, its dimension is less than |V (G)| × |V (H)| − 1, thus, it
is not a facet of conv(P ).

If condition (9) is not satisfied, then for some k ∈ DG and l /∈ C(j) adjacent to j it would
not be possible to choose i ∈ V (G) and j ′ = j , with i adjacent to k, because k is isolated;
i could not be isolated because there is only one isolated vertex which is k; and i, certainly
could not be universal, because k is isolated. Therefore, there is no vector in F with value
1 at position kl, that is equivalent to say that in the polyhedron defined by F there is an
equality ykl = 0. Hence, its dimension is less than |V (G)| × |V (H)| − 1, consequently, it is
not a facet of conv(P ).

Ergo, if (¬(8) or ¬(9)) the inequality in (7) is not facet-defining for conv(P ). �

It is noteworthy that when there is neither an isolated nor a universal vertex in G (for
example, in Fig. 1, suppose that G = A2 induced by V (A2) = {a1 . . . a4}, H = B1 as defined
as before and j = b4), (7) is the same as (2). An analogous situation occurs if there are
isolated vertices in G and j is isolated (for A1 and B1 defined earlier, in Fig. 1 suppose G =
A1, H = B1 ∪ {b5} and j = b5), because, then, C(j) is empty. Clearly a similar conclusion
can be drawn if there are universal vertices in G and j is universal, because, in that case,
I (j) is empty. It is not difficult to show that the previous conditions are necessary for (2) to
be facet-defining. Such a proof can be found in Piva and de Souza (2011).

If there is exactly one isolated or one universal vertex in G, the inequalities

∑

i∈V (G)

yij +
∑

l∈Adj(j)

ykl +
∑

l /∈Adj(j)

ypl ≤ 1, ∀j ∈ V (H),

are facet defining, where k is the isolated vertex or p is the universal vertex in G. Of course,
as mentioned earlier, only one such vertex can exist at a time in any graph. Therefore, at
most one of the last two summations is present in the LHS of the inequalities. This result
can be obtained starting from (7) and lifting the variables corresponding to the mapping
of the isolated/universal vertex in G to the vertices in Adj(j) \ C(j)/Adj(j) \ I (j) in H .
Recall that this lifting was also explored right before the proof that the inequalities (7) define
facets. Thus, not surprisingly, the proofs of validity and facet-definition of (10) are based on
arguments that are similar to those in the analogous proofs for (7). They are also given in
detail in Piva and de Souza (2011).

4.2 Edge mapping

So far we have considered vertex mappings. However, enforcing the correct edge mappings
is also important. Since the IP model does not include variables representing edge mappings,
the inequalities dealing with this situation involve the mappings of the endpoints of the edges
or non edges being considered. In this way, as the input graphs are assumed to be undirected,
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the mapping of edge (i, j) in G to edge (k, l) in H may be understood as the mapping of i

to k and j to l, or, i to l and j to k. Analogously, the mapping of a non-edge to another non-
edge is the mapping of a pair of non-adjacent vertices of one graph to a pair of non-adjacent
vertices in the other graph.

In this section, we are going to deal with inequalities whose goal is to guarantee that
no edge is mapped to a non-edge or vice versa, which would violate the MCIS definition.
As we show below, the inequalities presented in the model in Sect. 3 are too weak. In fact,
through lifting, they can be strengthened to yield the following inequalities:

∑

i∈C

∑

j∈I

yij ≤ 1, ∀ maximal clique C ∈ G,∀ maximal IS I ∈ H. (10)

These are called the Clique-IS inequalities. They impose that, given a maximal clique C in
G and a maximal independent set (IS) I in H , at most one mapping can be done between
vertices in C and vertices in I . Clearly, they can be thought as being a generalization of the
inequalities (4) of the original model presented in Sect. 3. Their validity can be established
immediately from the problem definition.

Rather than investigating the CLIQUE-IS inequalities further, we focus on an even
stronger family of inequalities which can be obtained from them by intensifying even more
the lifting process. These new inequalities are called SeqClique-SeqIS and read:

min{|S C(G)|,|S I(H)|}−1∑

h=0

∑

i∈C(Gh)

∑

j∈I (Hh)

yij ≤ 1, ∀S C(G),∀S I(H), (11)

where:

– S C(G) = (C(G0),L(G0),C(G1),L(G1), . . . ,C(Gp),L(Gp)), with:

(1) G0 = G;
(2) C(Gi) is a maximal clique in Gi , i = 0, . . . , p;
(3) L(Gi) = {v ∈ Gi : v /∈ C(Gi) and ∃u ∈ C(Gi) with (u, v) ∈ E(Gi)}, for all i ∈

{0, . . . , p}. In other words, L(Gi) is the subgraph composed by the vertices in V (Gi)

that are adjacent to some vertex in C(Gi). Observe that |C(Gi)| = 1 implies that
L(Gi) is empty. Besides, as C(Gi) is maximal, it is clear that for every v ∈ L(Gi)

there exists a vertex u′ in C(Gi) that is not adjacent to v;
(4) Gi+1 = Gi − (C(Gi) ∪ L(Gi)), i = 0, . . . , p. Hence, the graph Gi+1 is obtained by

removing from Gi the vertices in C(Gi) and all their neighbors, i.e., the vertices in
L(Gi). Notice that, there is no edge incident to one vertex in C(Ga) and another
one in C(Gb), with a �= b, since, by construction, the cliques in the sequence are
independent from each other.

– S I(H) = (I (H0),L(H0), I (H1),L(H1), . . . , I (Hq),L(Hq)), with:

(1) H0 = H ;
(2) I (Hj ) is a maximal independent set in Hj , j = 0, . . . , q;
(3) L(Hj) = {v ∈ Hj : v /∈ I (Hj ) and ∃u ∈ I (Hj ) with (u, v) /∈ E(Hj)}, for all j ∈

{0, . . . , q}. In other words, L(Hj) is the subgraph composed by the vertices in V (Hj )

that are non-adjacent to some vertex in I (Hj ). Observe that |I (Hj )| = 1| implies that
L(Hj ) is empty. Besides, by construction, it is clear that for every vertex v in L(Hj)

there is also a vertex u′ in I (Hj ) which is adjacent to v since, otherwise, I (Hj ) would
not be maximal;
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(4) Hj+1 = Hj − (I (Hj ) ∪ L(Hj)), j = 0, . . . , q . Hence, the graph Hj+1 is obtained by
removing from Hj the vertices in I (Hj ) and all their neighbors, i.e., the vertices in
L(Hj ). Notice that, there are edges linking every vertex in I (Ha) to every vertex in
I (Hb), with a �= b, since, by construction, the independent sets in the sequence are
completely connected to each other.

Before we continue, it is convenient to define the following sets:

– RG = Gmin{|S C(G)|,|S I(H)|};
– RH = Hmin{|S C(G)|,|S I(H)|}.

Notice that these definitions imply that if RG is not empty then RH is empty, whereas if RH

is not empty then RG is empty.
It is not hard to see that inequality (11) can be generated by lifting the Clique-IS inequal-

ity corresponding to C(G0) in G and I (H0) in H . Indeed, because no vertex in C(G0) and
C(G1) are adjacent and any vertex in I (H0) is adjacent to any vertex in I (H1), we can add
to the LHS of the original Clique-IS inequality all the variables associated to mappings of
vertices in C(G1) to vertices in I (H1), making it stronger. Clearly, in any feasible solution,
the sum of the new terms is at most one. Besides, this upper bound cannot be reached if the
original LHS value for this solution is also one since, otherwise, there would be a non-edge
in G mapped to an edge in H . Similar arguments, show that this lifting procedure can be
repeated for C(Gi) and I (Hi), for all 2 ≥ i ≥ min{|S C(G)|, |S I(H)|} − 1, in which case,
we end up with the SeqClique-SeqIS inequality.

As an example of a sequence of cliques in G and independent sets in H having the prop-
erties described above, consider again the graph depicted in Fig. 1. Define A3 ⊂ A as the
subgraph induced by V (A3) = {a1, . . . , a4, a6, . . . , a12} and set G = A3 and H = B . A pos-
sible clique sequence for G is S C(G) = (C(G0) = {a1, a3},L(G0) = {a2, a4},C(G1) =
{a6, a7, a8},L(G1) = {a9, a10},C(G2) = {a11, a12},L(G2) = {}). Now, in graph H , a pos-
sible IS sequence is S I(H) = (I (H0) = {b1, b4, b5},L(H0) = {b2, b3}, I (H1) = {b6, b7},
L(H1) = {b8, b9}, I (H2) = {b10, b11},L(H2) = {b12}, I (H3) = {b13, b14},L(H3) = {},
I (H4) = {b15, b16},L(H4) = {b17, b18, b19}, I (H5) = {b20, b21, b22},L(H5) = {b23, b24, b25}).
In this case, because min{|S C(G)|, |S I(H)|} = |S C(G)| = 3, we have that RH = H3 =
I (H3) ∪ L(H3) ∪ I (H4) ∪ L(H4) ∪ I (H5) ∪ L(H5).

Notice that, different sequences S C(G), and S I(H) give rise to different inequalities.
Even the order at which each component is considered, has influence in the structure of
the inequalities. So, it is easy to see that the number of inequalities in this family is huge,
and in the worst case, grows exponentially with the number of vertices of the input graphs.
Below we prove that, under certain conditions, some of the inequalities in this family are
facet-defining for the MCIS polytope. But, prior to that, we show that they are valid.

Proposition 4 The inequalities of the form of (11) are valid for the MCIS polytope.

Proof Assume that an inequality in (11) is not valid for the MCIS polytope. So, there must
exist some point in that polyhedron that does not satisfy the inequality. There are two cases
to consider.

Case 1 Two variables assume value one for the same index h of the summation in the LHS
of the inequality. For this to occur, one of the following conditions must hold: (i) a single
vertex in G is mapped to more than one vertex in H ; (ii) more than one vertex in G is
mapped to a single vertex in H , or (iii) a pair of adjacent vertices in C(Gh) is mapped to
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a pair of non-adjacent vertices in I (Hh), meaning that an edge of G is mapped to a non-
edge of H . Clearly, none of these situations fulfill the definition of the MCIS, since the
corresponding solution would violate constraints (2), (3) and (4), respectively.

Case 2 Two variables assume value one for different indexes of the summation
in the LHS of the inequality. This means that, for two distinct values h and h′ in
{0, . . . ,min{|S C(G)|, |S I(H)|}}, there exist four vertices i ∈ C(Gh), j ∈ I (Hh), k ∈
C(Gh′) and l ∈ I (Hh′), with i mapped to j and k mapped to l. However, by construc-
tion, vertices in different cliques of S C are non-adjacent while vertices in different ISs of
S I are adjacent. Hence, this case implies the mapping of an non-edge in G to an edge in H ,
which does not satisfy constraint (5).

Therefore, any point in the MCIS polytope satisfies the inequality, contradicting the
hypotheses. Thus, the inequality is valid. �

Now, consider the following conditions:

∀C(Gh) ∈ S C(G), |C(Gh)| > 1 (12)

∀I (Hh) ∈ S I(H), |I (Hh)| > 1 (13)

Proposition 5 If conditions (12) and (13) are satisfied, an inequality in (11) defines a facet
F = {x ∈ conv(P ) : ∑min(|S C(G)|,|S I(H)|)−1

h=0

∑
i∈C(Gh)

∑
j∈I (Hh) yij = 1} of conv(P ).

Proof In this proof we consider that |S C(G)| < |S I(H)|. For the other case, the proof is
similar and, therefore, omitted. We first notice that F is a proper face because the null vector
belongs to conv(P ) \ F , and F is nonempty. The latter can be verified by noticing that, for
any proper value h such that i is a vertex in C(Gh) and j is a vertex in I (Hh), the vector x

representing only the mapping of i to j and no further mappings, belongs to F .
Now, let F ′ = {x ∈ conv(P ) : πx = π0} and F ⊆ F ′. If the inequality (11) is facet-

defining, then, there must exist a positive constant α ∈ R satisfying (π,π0) = α(γ,1), where
γij = 1 if i ∈ C(Gh) and j ∈ I (Hh), h = 0 . . . |S C(G)| − 1 and γij = 0, otherwise. In other
words, we must show that: (i) π0 = α; (ii) πij = α = π0, if i ∈ C(Gh), j ∈ I (Hh) and
h = 0 . . . |S C(G)| − 1, and (iii) πij = 0, in all other cases not covered in (ii).

To facilitate the understanding of the remainder of the proof, we present in Fig. 2 a
diagram with the kinds of mappings covered in each case discussed below. In this diagram,
a line connecting clique C(Gh) to IS I (Hh) represents a mapping of a vertex in C(Gh) to a
vertex in I (Hh). The different kinds of lines used in the figure represent the different cases
of the proof as described in the legend. To avoid overfilling the image, only the mappings for
the sets C(Gh) and L(Gh) are shown, although, it is easily verifiable that the other mappings
are encompassed by the cases treated in the proof.

Back to the proof itself, to show that the inequality is facet-defining, we must get to the
same relations above by using the fact that F ⊆ F ′. To this end, we considered the following
cases:

(1) The first case proves that πij = π0 for any position ij having coefficient 1 in F . This
is easily done by showing that a vector that represents a mapping from such an i to a j , and
no other mappings, is in F and also in F ′. Thus, we can conclude that relation as shown
bellow:

Obviously the vectors (. . . ,0,1ij ,0, . . .), where i ∈ C(Gh) and j ∈ I (Hh), h =
0 . . . |S C(G)| − 1 are in F . As F ⊆ F ′ ⇒ (. . . ,0,1ij ,0, . . .) ∈ F ′ ⇒ πij = π0.

(2) The next case considered is the one that proves that πkl = 0 for any k ∈ C(Gh) and
l ∈ I (Hr), with different values for h and r . We can find a vector in F corresponding to
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Fig. 2 Proposition 5: proof diagram

a mapping of a vertex i to a vertex j where i and j satisfy the conditions from (1), also
mapping such a k to an l and no other mapping. From this vector we conclude that πij +
πkl = π0 and, from (1), that πkl = 0. The details are present next:

Let us consider the vectors (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ C(Gh), l ∈
I (Hr), h, r = 0 . . . |S C(G)| − 1 and h �= r . We can choose i in C(Gr) and j in I (Hr)

(which is always possible because of condition (13)), thus, (i, k) /∈ E(G) and (j, l) �∈ E(H).
As F ⊆ F ′ ⇒ (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij +πkl = π0. Therefore, from (1),
we have πkl = 0 ∀k ∈ C(Gh), l ∈ I (Hr), h, r = 0 . . . |S C(G)| − 1, h �= r .

(3) Here we prove that πkl = 0 for any k ∈ C(Gh) and l ∈ L(Hr). Once again it is simply
a matter of finding a vector in F corresponding to a mapping of vertices satisfying the
conditions from (1), a mapping of such a k and l and no other mapping. Then we can
conclude that πij + πkl = π0 and, from (1), that πkl = 0. The proof goes as follows:

Consider the vectors (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ C(Gh), l ∈ L(Hr),
h, r = 0 . . .min(|S C(G)|, |S I(H)|)−1. We have two cases to consider, the fist one occurs if
r ≥ h. In this case we can choose j in I (Hh) so that (j, l) ∈ E(H) (which is always possible
because I (Hh) is maximal) and we can choose i in C(Gh) (which is always possible because
of condition (12)), thus, (i, k) ∈ E(G), because the two vertices are in the same clique. In
the case r < h we can choose j in I (Hr) so that (j, l) /∈ E(H) (which is always possible
by the definition of L(Hr)) and we choose i in C(Gr), thus, (i, k) /∈ E(G). As F ⊆ F ′
⇒ (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij + πkl = π0. Therefore, from (1), we have
πkl = 0 ∀k ∈ C(Gh), l ∈ L(Hr), h, r = 0 . . . |S C(G)| − 1.

(4) This case is very similar to case (3), but instead of considering the mapping from a
k ∈ C(Gh) to an l ∈ L(Hr), we consider the mapping of a k ∈ L(Gr) to an l ∈ I (Hh). Thus,
the proof is very similar to the previous case.

Let (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ L(Gr), l ∈ I (Hh), h, r =
0 . . . |S C(G)| − 1. We have two cases to consider, the first one occurs when r ≥ h. In
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this case we can choose i in C(Gh) so that (i, k) /∈ E(G) (which is always possible be-
cause C(Gh) is maximal) and we can choose j in I (Hh) (which is always possible be-
cause of (13)), so, (j, l) /∈ E(H), because the two vertices are in the same IS. In the
case r < h we can choose i in C(Gr) so that (i, k) ∈ E(G) (which is always possible
by the definition of L(Gr)) and we can choose j in I (Hr), so, (j, l) ∈ E(H). As F ⊆ F ′
⇒ (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij + πkl = π0. Therefore, from (1), we have
πkl = 0 ∀k ∈ L(Gr), l ∈ I (Hh), h, r = 0 . . .min(|S C(G)|, |S I(H)|) − 1.

(5) The fact proven here is that πkl = 0 for any k ∈ L(Gh) and l ∈ L(Hr). The proof
follows the same reasoning from the previous cases.

Let (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ L(Gh), l ∈ L(Hr), h, r =
0 . . . |S C(G)| − 1. We have two cases to consider, the first occurs when h ≤ r , in this case
we can choose i in C(Gh) so that (i, k) ∈ E(G) (which is always possible, or else, k would
be part of some clique in the sequence) and we can choose j in I (Hh) so that (j, l) ∈ E(H)

(which is always possible because I (Hh) is maximal). In case h > r , we can choose j in
I (Hr) so that (j, l) /∈ E(H) (which is always possible by the definition of L(Gh)) and we
can choose i in C(Gr) so that (i, k) /∈ E(G) (which is always possible because C(Gr) is
maximal). As F ⊆ F ′ ⇒ (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij + πkl = π0. There-
fore, from (1), we have πkl = 0 ∀k ∈ L(Gh), l ∈ L(Hr), h, r = 0 . . . |S C(G)| − 1.

(6) Here we prove that πkl = 0 for any k ∈ C(Gh) and l ∈ RH . The ideas used in the
proof are the same as before.

Let (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ C(Gh), h = 0 . . . |S C(G)| − 1,
l ∈ RH . We can choose i in C(Gh), so, (i, k) ∈ E(G) and we can choose j in I (Hh), so,
(j, l) ∈ E(H) (or else, l would be in I (Hh) or in L(Hh)). As F ⊆ F ′ ⇒ (. . . ,0,1ij , . . . ,0,

. . . ,1kl,0, . . .) ∈ F ′ ⇒ πij + πkl = π0. Therefore, from (1), we have πkl = 0 ∀k ∈ C(Gh),
h = 0 . . . |S C(G)| − 1, l ∈ RH .

(7) This case proves that πkl = 0 for any k ∈ L(Gh) and l ∈ RH . Once again the ideas
used in the proof are very much alike the ones used in the previous cases.

Let (. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F , where k ∈ L(Gh), h = 0 . . . |S C(G)| − 1,
l ∈ RH . We can choose i in C(Gh) so that (i, k) ∈ E(G) and we can choose j in
I (Hh), so (j, l) ∈ E(H) (or else, l would be in I (Hh) or in L(Hh)). As F ⊆ F ′ ⇒
(. . . ,0,1ij , . . . ,0, . . . ,1kl,0, . . .) ∈ F ′ ⇒ πij + πkl = π0. Therefore, from (1), we have
πkl = 0 ∀k ∈ L(Gh), h = 0 . . . |S C(G)| − 1, l ∈ RH . �

Now that we proved necessary conditions under which the SeqClique-SeqIS inequalities
are valid and facet-defining, we comment on the strength of the Clique-IS inequalities. It is
easily seen that whenever |S C(G)| = 1 or |S I(H)| = 1, (11) looks exactly the same as (10).
This means that when there is only one clique or one IS with more than one vertex, the
Clique-IS inequalities are also facet-defining. More accurately, it is possible to prove that
Clique-IS inequalities are facet-defining if, and only if, for all k ∈ V (G) \ C, there exists in
C a vertex adjacent to k; and, for all l ∈ V (H) \ I , there exists in I a vertex adjacent to l.
Details of this proof can be found in Piva and de Souza (2011).

Conditions (12) and (13) are too stringent in the sense they force all cliques and inde-
pendent sets in the sequences to have two or more vertices. A natural question arises when
these sequences contain elements of size one. In this case, again, starting from the basic
SeqClique-SeqIS inequality, one can perform lifting to get a stronger inequality that can be
shown to be facet-defining. These new inequalities will be called LiftSeqClique-SeqIS and
are displayed below:

min{|S C(G)|,|S I(H)|}−1∑

h=0 : h/∈mci(G) ∧ h/∈mii(H)

∑

i∈C(Gh)

∑

j∈I (Hh)

yij +
∑

k∈MC(G)

∑

l∈MI(H)

ykl
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+
∑

k∈MC(G)

∑

l∈Cl(RH )

ykl +
∑

k∈Is(RG)

∑

l∈MI(H)

ykl

+
∑

h∈mci(G) : {k}=C(Gh)

∑

l∈F(Hh)

ykl +
∑

h∈mii(H) : {l}=I (Hh)

∑

k∈F(Gh)

ykl ≤ 1,

∀S C(G),∀S I(H), (14)

where:

– MC(G) is the set of vertices in the cliques of the sequence having size one in graph G.
– MI(H) is the set of vertices in the ISs of the sequence having size one in graph H .
– mci(G) = {k ∈ N : k < min{|S C|, |S I|} ∧ |C(Gk)| = 1}, i.e., the set of indexes in the

sequence whose cliques have size one in graph G.
– mii(H) = {k ∈ N : k < min{|S C|, |S I|} ∧ |I (Hk)| = 1}, i.e., the set of indexes in the

sequence whose ISs have size one in graph H .
– F(Gr) ⊆ L(Gr), r ∈ mii(H). F(Gr) is maximal and satisfies the following properties:

– ∀(u, v), u ∈ F(Gr), v ∈ C(Gs), (u, v) /∈ E(G), r ∈ H), s = r +1 . . .min{|S C|, |S I|}−
1. In other words, the vertices in F(Gr) are not adjacent to any vertex in the cliques of
the sequence in G with index greater than r ;

– ∀(u, v), u ∈ F(Gr), v ∈ F(Gs), r �= s, (u, v) /∈ E(G), r, s ∈ mii(H). In other words,
the vertices in F(Gr) and F(Gs), for any distinct r and s, are non-adjacent (notice that
nothing is imposed on the vertices in the same F(Gr)); and

– Is(RG) is a IS in RG such that ∀(u, v), u ∈ F(Gr), ∀r ∈ mii(H), v ∈ Is(RG), (u, v) /∈
E(G) and Is(RG) is maximal satisfying the previous properties. In other words, there
is an IS in RG such that every vertex in F(Gr), for all r , is not adjacent to any vertex
in this set. Besides, this set is maximal with respect to this last property.

– F(Hr) ⊆ L(Hr), r ∈ mci(G). F(Hr) is maximal and satisfies the following properties:
– ∀(u, v), u ∈ F(Hr), v ∈ I (Hs), (u, v) ∈ E(H), r ∈ mci(G), s = r + 1 . . .min(|S C|,

|S I|) − 1. In other words, the vertices in F(Hr) are adjacent to all vertices in the ISs
of the sequence in H with index greater than r ;

– ∀(u, v), u ∈ F(Hr), v ∈ F(Hs), r �= s, (u, v) ∈ E(H), r, s ∈ mci(G). In other words,
the vertices in F(Hr) and F(Hs), for any distinct r and s, are adjacent (notice that
nothing is imposed on the vertices in the same F(Hr)); and

– Cl(RH ) is a clique in RH such that ∀(u, v), u ∈ F(Hr), ∀r ∈ mci(G), v ∈ Cl(RH ),
(u, v) ∈ E(H) and Cl(RH ) is maximal satisfying the previous properties. In other
words, there is a clique in RH such that every vertex in F(Hr), for all r , is adjacent to
all the vertices in this set. Besides, this set is maximal with respect to this last property.

The remaining sets and symbols are defined as before for (11).
Returning to Fig. 2, we now give an example of the inequality in (14). For G = A

and H = B , one possible clique sequence for G is S C(G) = (C(G0) = {a1, a3},L(G0) =
{a2, a4},C(G1) = {a5},L(G1) = {},C(G2) = {a6, a7, a8},L(G2) = {a9, a10},C(G3) =
{a11, a12},L(G3) = {},C(G4) = {a13},L(G4) = {}) and one possible IS sequence for H

is the same as presented before. In that case, as min{|S C(G)|, |S I(H)|} = |S C(G)| = 5,
then, RH = H5 = I (H5) ∪ L(H5). It is not hard to see that with these sequences, the in-
equality of the form of (11) could be lifted to have coefficient one for the variables ya5b20 ,
ya5b23 , ya13b17 , ya13b20 and ya13b23 . This means that the original SeqClique-SeqIS inequality is
not facet-defining and notice that, in this case, condition (12) does not hold. The proposed
lifting is exactly the one appearing at (14) with MC(G) = {a5, a13}, Cl(RH ) = {b20, b23},
F(H4) = {b17} and the remaining sets empty. A formal proof that the inequalities (14) are
valid and facet-defining is given in Piva and de Souza (2011).
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When |MC(G)| = 1, |MI(H)| = 1, |MI(G)| = 1 or |MC(H)| = 1, the inequalities of
the form of (14) are modified in such a way that the third and fourth terms of the sum are
replaced, respectively, by:

∑

l∈RH : MC(G)={k}
ykl, (15)

∑

k∈RG : MI(H)={l}
ykl . (16)

The idea here is very much alike the one discussed for (7).
In addition to the inequalities presented in this section, it is possible to devise other valid

inequalities for the MCIS polytope based on other graph structures such as odd-holes and
odd-antiholes. However, the inequalities we found that are based on these structures are not
facet-defining and, for this reason, are not discussed here. We just mention that, they can
often be strengthened by lifting procedure which eventually leads to a facet. The interested
reader is referred to Piva (2009) for more information.

5 The maximum clique problem

As said in Sect. 1, the MCIS is commonly solved through a reduction to the Maximum
Clique problem, also referred here just as the Clique problem, or simply Clique when the
meaning is clear from the context. In this section, we define the Clique problem and present
a basic IP model for it. Then, this model is compared with the one given in Sect. 3 for the
MCIS. We show that the two formulations are equivalent and that the inequalities presented
in Sect. 4 correspond to some known inequalities for the Clique model.

The Clique problem can be defined as follows:

Input: A graph G.
Goal: find a complete subgraph G′ of G whose number of vertices

is maximum.

The rest of this section is organized as follows. In Sect. 5.1 an IP model is presented for
the Clique problem. Next, in Sect. 5.2, we show how to reduce the MCIS to Clique. From
this reduction, we establish the relationship between the inequalities we found for the MCIS
model and those that are part of the Clique model, showing that the two formulations are in
fact equivalent.

5.1 IP model

We start this section by recalling the well-known result that the set of vertices of clique
in a graph forms an independent set in the complement graph. In the classical Maximum
Independent Set problem, one is given a graph with weights assigned to the vertices and is
asked to find an independent set for which the sum of the vertex weights is maximized. With
these observations in mind, it is possible to formulate the Clique problem as an IP through
simple modifications of an existing IP model for the Independent Set problem. This was the
way we pursued here.

Integer programming formulations for the Maximum Independent set are discussed in
Nemhauser and Sigismondi (1992). Here, we reproduce only the strongest of them, per-
forming the necessary changes to it in order to model the Clique problem. Notice that,
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although the formulation presented in Nemhauser and Sigismondi (1992) treats the more
general case in which the vertices are assigned to arbitrary weights, in our presentation all
the vertex weights are assumed to be one since we are interested in cliques of maximum
size. Finally, it is also worth noting that some other inequalities for the Maximum Indepen-
dent Set problem and, as a consequence, for the Clique problem, can be found in Borndörfer
(1997).

From Nemhauser and Sigismondi (1992), and according to the discussion above, a strong
formulation for the Clique problem is given by:

max
∑

i∈V (G)

yi, (17)

∑

i∈I (G)

yi ≤ 1, ∀ independent set I (G) in G, (18)

yi ∈ {0,1}, ∀i ∈ V (G). (19)

In this model, for any i ∈ V (G), the binary variable yi has value one if and only if vertex
i belongs to the maximum clique. With this definition, it is easy to see that the objective
function seeks to maximize the clique size while the constraints avoid that two non-adjacent
vertices of G to be present simultaneously in a feasible solution. Observe that an inequality
of the form (18) is valid with respect to the set of characteristic vectors of cliques of G no
matter the independent set I (G) is maximal or not. However, it is not hard to prove that it
defines a facet for the convex hull of these vectors if and only if I (G) is maximal.

5.2 MCIS and the clique problem

It is well-known that any problem in N P can be reduced in polynomial time to a problem in
N P -hard. Regarding the MCIS, this strategy is often used as an algorithmic strategy to solve
it. In particular, the problem is reduced to Clique through the construction the association
graph as described in the next paragraph.

Let G = (V (G),E(G)) and H = (V (H),E(H)) be the input graphs of an MCIS in-
stance. From these two graphs, we define the association graph A = (V (A),E(A)) as fol-
lows. To each pair of vertices (i, j) in V (G) × V (H), we associate a vertex (ij) in A. Now,
let i and k be two vertices in V (G) and, similarly, let j and l be two vertices in V (H). Then,
and edge (ij, kl) is added to E(A) if one of the two conditions hold: (i) (i, k) ∈ E(G) and
(j, l) ∈ E(H); or (ii) (i, k) /∈ E(G) and (j, l) /∈ E(H). Figure 3 shows two graphs and the
corresponding association graph. Notice that each vertex in A refers to a possible mapping
of a vertex in G to a vertex in H . Besides, an edge exists in A if the mappings corresponding
to its extremities result either in the mapping of a non-edge of G to a non-edge in H or to
the mapping of an edge of G to and edge of H . The proof that the solution of the Clique
problem for the association graph immediately translates to a solution for the MCIS and,
therefore, leads to a valid reduction between the two problems, is given in Edmonds (1975)
apud (Garey and Johnson 1979).

The IP model for the Clique problem defined over the association graph has |V (G)| ×
|V (H)| variables. Thus, we are working in a space of the same dimension as the one in
the MCIS model. Moreover, from the construction of the association graph, the meaning of
each variable in both cases is exactly the same, i.e., the binary variable yij has value one
if vertex i ∈ G is mapped to vertex j ∈ H . From this observation, it is easy to see that the
two models are equivalent in the sense that they both have the same set of feasible solutions.
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Fig. 3 Association graph constructed from two graphs. The dashed lines in the association graph represent
edges associated to the mappings of pairs of non-adjacent vertices in the two graphs

A natural question then arises on how the known valid and facet defining inequalities for
the Clique and the MCIS polytope relate to each other. The next two propositions provide a
partial answer to this query.

Proposition 6 The set of inequalities obtained from (7) is a subset of the inequalities ob-
tained from (18).

Proof To prove that (7) defines a subset of (18), we need to show that any subgraph of the
association graph obtained from the subgraphs defined by the variables with coefficient one
in (7) is an IS.

Assume that the set of vertices in the association graph A corresponding to the variables
with coefficient one in (7) is not an IS. Then, in this set there exist two vertices that are
adjacent in A. Let us name these vertices (i, j) and (k, l) (remember that a vertex in the
association graph is a pair of vertices that represents the mapping of the vertex in G to a
vertex in H ). So, by definition, the edge ((i, j), (k, l)) belongs to E(A). However, from
the construction of the association graph, these vertices can only be adjacent if i and k are
adjacent in G and j and l are adjacent in H or, if i and k are non-adjacent in G and j and l

are non-adjacent in H . By the definition of the MCIS in this situation, both variables yij and
ykl can take value one simultaneously. But then, this solution would not satisfy inequality
(7) contradicting its validity. �

Notice that, as (7) is a lifting of (2), if the variables having coefficient one in (7) corre-
spond to an IS in the association graph, the same holds for the analogous variables in (2).
Hence, (2) is also an inequality of the form of (18).

Proposition 7 The set of inequalities obtained from (14) is a subset of the inequalities
obtained from (18).

Proof Using the same arguments used in the proof of Proposition 6, we can conclude that
if the vertices of the association graph A corresponding to the variables having coefficient
one in (14) do not form an IS, then (14) is not valid and we get a contradiction. �
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As in the previous case, the inequalities in (14) are liftings of the inequalities in (11) and
(10). So, the last two inequalities are also of the form of (18).

6 Computational results

In the previous sections we presented a theoretical study on an IP formulation for the MCIS
and compare it to one that was proposed earlier for the Maximum Clique problem. In this
section we show how these information were exploited to devise algorithms to solve the
MCIS to optimality and report on computational experiments we carried out.

Algorithms tested The inequalities found in the theoretical study were used to develop
branch-and-bound (B&B) and branch-and-cut (B&C) algorithms for MCIS. In the B&B
algorithms the inequalities were added a priori to the initial IP formulation whereas in the
B&C algorithms they are generated by separation routines executed at each node of the
enumeration tree. Also, we tried some other techniques such as multiway branching instead
of the standard binary branching and changing the order in which the variables were chosen
for branching.

None of the B&C algorithms we implemented were able to outperform the best B&B
algorithm. In the former, the heuristic separation routines have been able to find violated
inequalities. However, the improvement in the dual bounds obtained by adding the cuts did
not compensate for the time spent by the separation routines. Also, the multiway branching
strategy was ineffective relative to the binary branch.

Among the several algorithms we implemented with the various valid inequalities de-
scribed in the previous section and the different branching techniques, the one that per-
formed best was a B&B algorithm using a Clique-IS formulation and a branching strategy
based on the mapping degree of the vertices. From now on, this algorithm is called the
Clique-IS algorithm. The Clique-IS formulation given as input for this algorithm is obtained
by substituting : (i) the inequalities in (4) by a small subset of inequalities in (10), and (ii) the
inequalities in (5) by a small subset of inequalities of the form (10), but with the roles of the
input graphs of the MCIS interchanged. For the correctness of the Clique-IS model, we first
find a minimal set of maximal cliques (ISs) that form a covering of the edges (non-edges)
of the respective graph of the MCIS instance. Then, we generate all the (10) inequalities (or
their equivalents with the roles of the input graphs interchanged) corresponding to a pair of
a maximal clique in one graph and a maximal IS in the other one.

To explain the branching strategy used in the Clique-IS algorithm we define the mapping
degree of a vertex v belonging to an input graph of the MCIS instance as the sum of the
degrees of the vertices of the association corresponding to mappings of v to the vertices of
the other input graph. Once the mapping degrees had been computed, we start ordering the
vertices by putting the vertex with smallest degree in the first free position of an order vector.
This vertex is removed from its graph and the association graph is updated. These steps are
repeated until every vertex has been ordered. After ordering the vertices of the two input
graphs in this way, we order the variables according to the following procedure, in which it
is assumed that |V (G)| ≤ |V (H)|. In the first position we put the variable corresponding to
the mapping of the first vertex in G to the first vertex in H . Then, the variable corresponding
to the mapping of the first vertex in G to the second vertex in H an so on, until the variables
corresponding to all the mappings of the first vertex in G are ordered. Then, we take the
mappings of the second vertex in G and the process is repeated until all the variables are
ordered. This order gives a priority for branching, i.e., for a fractional solution, we inspect
the variables in this order and branch on the first variable which is not integral.
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We compared the results of the Clique-IS algorithm to those yielded by two other exact
algorithms. To this end we implemented a B&B algorithm using the Clique formulation,
named here the Clique algorithm, according to the material presented in Sect. 5.1. To gen-
erate the initial formulation passed to the algorithm, we built the association graph corre-
sponding to the input graphs of the MCIS instance and found a minimal set of maximal ISs
covering all its non-edges. As observed earlier, the inequalities in (18) associated to these
minimal ISs constitute a correct formulation for Clique. The other exact algorithm used
in our tests is the combinatorial algorithm implemented in the package Cliquer (Östergård
2002).

Benchmark We now describe the instance set used in our tests. Initially, we randomly
generated, according to Erdös-Rényi model, graphs with 10, 12, 15, 17 and 20 vertices in
five density ranges: 10%, 30%, 50%, 70% and 90%. For each number of vertices and density
range, two graphs were generated, in a total of 50 graphs. As the MCIS input has two graphs,
every combination of pairs of graphs were used, resulting in a total of 1,225 test instances.
The utilization of different density ranges aims to analyze which range is the hardest for
the algorithms. For every test performed, a maximum of 1,800 seconds of computation was
allowed.

Computational environment The computational environment used in the experiments con-
sisted in a computer with an Intel Core 2 Quad 2.40 GHz, 4096 KB cache, 4GB of RAM
and Ubuntu 8.10 O.S. The programming language used in the implementation was C with a
gcc (Ubuntu 4.3.2-1ubuntu12) 4.3.2 compiler and all the programs compiled with −O3 op-
timization flag. Besides, XPRESS-MP-Optimizer 64-bit v19.00.00 (xpressmp2008A.2) IP
solver was used. The latter package contains special libraries to implement B&C, primal
heuristics etc. The default XPRESS-MP cuts, heuristics and preprocessing were turned off.

Analysis of the results In this work, we followed the recommendations in Johnson (2002)
on how to perform computational experiments and to present the results. For this reason,
in this text we chose not to include long tables containing experimental data individualized
by instance. Instead, we condensed the results and displayed them as statistics and graphs.
This was done mainly due to the huge amount of data collected during the experiments,
hence, the presentation of all of them would be tedious and, in some aspects, of little or
no significance. Concerning the execution times, it is worth noting that no draws occurred
among the algorithms for any instance. Therefore, when we state, for example, that the
execution times for Algorithm X were better than those for Algorithm Y in 23% of the
cases, it is the same as saying that they were worse in 77% of the cases.

In the tests performed with Clique-IS algorithm 100% of the instances were solved to
optimality in no more than 1,200 s and 91.51% of them were solved in 30 s or less. The
time necessary to build the model and setup the solver was negligible when compared to
the total time (less than 0.192 s for every instance). We observed that, for a fixed density
of one of the input graphs, the hardest instances to solve were the ones where the other
graph had density between 30% and 70%. Considering all the instances in the benchmark,
the average distance between the dual bound at the root (DBroot) of the enumeration tree
and the best dual bound (DBbest) throughout the execution of the algorithm—calculated by
100 × (�DBroot� − �DBbest�)/�DBbest�—was 20.99%.

The Clique algorithm solved all instances in no more than 1,800 s, 99.92% in no more
than 1,200 s and 82.20% were solved in 30 s or less. This does not seem much worse
than the results obtained with the Clique-IS formulation. However, looking closer, we see



96 Ann Oper Res (2012) 199:77–102

that Clique-IS algorithm outperforms the Clique algorithm in 95.76% of the cases and the
average time improvement (defined as 100 × (tClique − tCliqueIS)/tClique, with tCliqueIS
and tClique being, respectively, the times consumed by the Clique-IS and Clique algorithms)
was of 60.98%. The inferior performance of the Clique algorithm can be explained by two
facts. First, although the number of constraints in the Clique formulation is smaller than that
of the Clique-IS formulation, the constraint matrix in the first model was denser in 86.94%
of the cases. It is well-known that linear programs with denser constraint matrices tend to
be harder to compute. The second fact concerns the inequalities used in the models. Notice
that, by construction, all the inequalities in the Clique formulation are facet-defining since
they correspond to maximal ISs. However, these ISs are built in an arbitrary way which did
not exploit the fact that they are subgraphs of an association graph. On the other hand, the
inequalities in the Clique-IS formulation are, in general, not facet-defining, since they can
usually be lifted to obtain stronger valid inequalities of the form (14). Unexpectedly, we
observed that, on average, the dual bound obtained at the root of the enumeration tree is
13% better in favor of the Clique-IS algorithm. The only reason we found to explain the
superior performance of Clique-IS is that the ISs supporting the constraints in this model,
although often not maximal, are among the most relevant ones for the MCIS problem. By
relevance here, we mean that the inequalities supported by these ISs seem to be very effective
in chopping off fractional solutions that are candidates to optimize the linear relaxations
that are solved during the enumeration. This points to an advantage in the usage of a more
focused view of MCIS in opposition to general treatments in which it is viewed as a Clique
problem.

In Fig. 4 we show graphs comparing the execution times of the instances with the Clique-
IS and Clique algorithms. The y axis corresponds to the time spent to solve the instances
and the x axis represents the 1,225 instances of our benchmark represented by numerical
indexes. The indexes were assigned to the instances by ordering them by number of ver-
tices and by density of the first graph and by number of vertices and density of the second
graph. So, the index 1 in the x axis corresponds to the instance where the first and second
graphs have 10 vertices and 10% density; the index 2 corresponds to the instance in which
the first graph has 10 vertices and 10% density and the second graph has 10 vertices and a
30% density, and so on. For better visualization, the graph was divided into six parts corre-
sponding to segments of the x axis. The first part refers to the first 204 instances, the second
to the next 204, and so on, until the sixth part which refers to the last 205 instances. It is
noteworthy that although each graph is displayed as a continuous function, in reality, the x

axis represents a discrete set. However, it was our understanding that showing in a discrete
form would compromise the visualization. Note that the graph of the Clique-IS algorithm,
which has a better performance, is shown with a continuous line whilst the one of the Clique
algorithm is shown with a dashed line.

As we said before, we also compared our algorithm with a combinatorial algorithm
named Cliquer. This combinatorial algorithm outperformed the Clique-IS algorithm in
99.67% of the instances, with an average improvement of 95.34%. To give an idea of the
excellent performance reached by Cliquer in our benchmark, we mention here that the in-
stance for which it spent more time was computed in 10.52 s. This is far quicker than the
IP algorithms. As an example, in a test with an instance composed by two graphs randomly
generated with 45 vertices each and approximately 50% density, Cliquer took 1,435.61 s to
find the optimal solution, while Clique-IS algorithm could not solve it even after 12 hours
of computation. Despite this, the study of IP algorithms for MCIS is still valuable since
they are more adaptable than combinatorial algorithms. This is an important feature if, for
example, one has to incorporate some side constraints to the original MCIS problem.
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Additional experiments As it is very common for algorithms to have very distinct behav-
iors with different kinds of instances, we executed further experiments to compare the Clique
and Clique-IS formulations. For these tests we used a database of graphs for isomorphism
benchmarking that is available in Foggia et al. (2001b). The database contains pairs of iso-
morphic graphs and pairs of graphs where one of them is a subgraph of the other with size
corresponding to 20%, 40% and 60% of the size of the larger graph. The graphs are divided
into five groups: random graphs, bounded (vertex) valence (or degree) graphs, 2D, 3D and
4D meshes. Each of these groups have subgroups, divided by valence number (in the case
of bounded valence graphs), density (for the random graphs) and irregularity factors. For a
full description of the database we refer to Foggia et al. (2001a).

As for the MCIS the input can be any two graphs, we arbitrarily chose to use the large
graphs of the pairs where the other graph has 40% of the size of the larger one. Within each
subgroup we chose graphs with sizes that are likely to result in MCIS instances solvable
by the algorithms within in 1,800 seconds. In this way, for the bounded valence graphs we
picked four graphs with 20 vertices and four with 40 vertices in each of the subgroups.
For the 2D meshes we chose three graphs with 16 vertices, three with 32 and two with 64
vertices within each subgroup. From the 3D meshes subgroups we used four graphs with 27
vertices and two with 64 vertices. Within the 4D meshes subgroups we chose four graphs
with 16 vertices and two with 81. We did not used any random graphs since they were
already used in the experiments reported earlier in this section. After selecting the graphs
we performed the experiments by using every pair of graphs within the same subgroup as
input for the MCIS algorithms.

Some of these new instances are significantly bigger than the ones tested in our early
experiments. For this reason, both algorithms were unable to solve all of them to optimality
within the time limit. In this case we say that the instance is unsolved. For such an instance,
we consider as being more effective the algorithm that produces the best dual bound.

Analyzing each of the subgroups of instances individually, we notice that the Clique-IS
formulation outperforms the Clique formulation in all but four subgroups. For the instances
obtained from regular bounded valence graphs with valence 6, the Clique formulation is
better in 23 out of the 28 experiments with an average improvement of 8.47%. With respect
to the unsolved instances in the modified bounded valence graphs with valences 6 and 9, the
Clique-IS algorithm presented a better dual bounds in all 22 cases and in 21 out of the 22
cases, respectively. On the other hand, the Clique algorithm was faster in the 6 cases solved
to optimality with an average time improvement of 2.98% for the valence 6 inputs. As for
valence 9, it was also faster in all the cases solved to optimality and in one case where
there was a gap with an average improvement of 5.88% in time. For the regular bounded
valence graph instances with valence 9, this last situation is reversed. The Clique algorithm
presents a better dual bound in all instances with some gap (17) and the Clique-IS algorithm
presents a better time in all instances with no gap (11), having an average time improvement
of 17.87%.

For all the other (14) instance subgroups the Clique-IS algorithm outperformed the
Clique algorithm. For this reason, we decided not to analyze each subgroup separately. In-
stead, we present overall statistics and a graph of the computation times with the instances
ordered by the graphs sizes as described before. Relative to computation times, the Clique-IS
algorithm shows an average improvement of 23.45% in comparison to the Clique algorithm.
Figure 5 exhibits graphs comparing the execution times of the Clique-IS and Clique algo-
rithms for the instances from Foggia et al. (2001b). The y axis corresponds to the time spent
to solve the instances and the x axis represents the 400 instances ordered in a similar fash-
ion as in Fig. 4. Once again, for a better visualization, the graph was divided into six parts
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corresponding to segments of the x axis. The first part corresponds to the first 70 instances,
the second to the next 70 and so on, up to sixth part which corresponds to the last 50 in-
stances. The graph of the Clique-IS algorithm, which has a better performance, is shown
with a continuous line whilst the one of the Clique algorithm is shown with a dashed line.
The inspection of these graphs confirm the superior performance of the Clique-IS algorithm.

Now, we focus on the dual bounds generated at the root node of the enumeration tree by
the two competing formulations. Once again, the Clique-IS formulation showed an average
dual bound improvement of 5.15% when compared to the Clique formulation. Together with
the considerations relative to computation times, these results reinforce our conclusion from
the first group of experiments that it is advantageous to use a formulation directly based in
the MCIS instead of a formulation constructed from a reduction to the Clique problem.

7 Conclusions

In the theoretical study about the MCIS polytope, we found several valid inequalities and
identified necessary conditions for which they define facets. Moreover, we proved the equiv-
alence of a formulation for MCIS and a formulation for the Maximum Clique problem.
However, although the unique and edge mapping inequalities, and their generalization, from
the MCIS formulation correspond to IS inequalities in the Clique formulation, they have a
more natural interpretation in the MCIS model.

Besides, computational experiments comparing the Clique-IS algorithm with the Clique
algorithm showed that, although the inequalities for both problems belong to the same class,
choosing the inequalities to build the MCIS formulation produces better results than using
arbitrary IS constraints. This was somehow unexpected since it is known that an IS inequal-
ity is facet-defining for the Clique polytope if and only if the IS is maximal, and we showed
that, in general, the support graph of a Clique-IS inequality is not maximal. Our explanation
for what occurred is that, not only the Clique-IS inequalities have a more natural interpre-
tation in terms of the MCIS, but they also lead to inequalities which are more likely to be
active in an optimal solution than other IS inequalities chosen arbitrarily.

On the other hand, comparisons of the best IP based algorithm with Cliquer, a combina-
torial algorithm of public domain, showed that the latter is much more effective for the tested
instances. Further polyhedral investigations on the MCIS polytope are required to improve
the competitiveness of the IP algorithms. One possible approach in this direction is to en-
counter the complete convex hull corresponding to small instances of the MCIS, identifying
the inequalities that are active in the optimal solution. The computation of convex hulls can
be done with the help of computer programs like PORTA (Löebel 2010), for example. An-
other way of finding good inequalities for the MCIS is to take advantage of the equivalence
shown in Sect. 5 between the MCIS and the Clique problem. For this purpose, we could
specialize the polyhedral investigation of the Maximum Clique problem constrained to in-
stances having the peculiar characteristics of the association graphs resulting from MCIS
instances. In particular, we should focus on graphs having |V (G)| × |V (H)| vertices and
that are, at the same time, |V (G)|-partite and |V (H)|-partite, where G and H are the MCIS
input graphs.

It is important to remember that, despite the better performance of the combinatorial
algorithm, the result of our investigation remain useful even when the MCIS appears as a
part of a more complex problem. This situation occurs, for example, if one has to tackle a
problem which is the MCIS with some side constraints. In this case, it may be very hard to
adapt the Cliquer algorithm to solve the new problem. Besides, even if this can be done, this
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may affect badly its performance. This is a motivation to pursue the polyhedral investigation
of the MCIS polytope to extend the results presented in this paper.
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Manić, G. (2007). Modelagem matemática e aplicações de problemas de otimização relativos à busca de
subgrafos com estruturas comuns. FAPESP’s First Scientific Report, post-doctoral grant # 2006/01817-7
(in Portuguese, unpublished).

Mcgregor, J. J. (1982). Backtrack search algorithms and the maximal common subgraph problem. Software,
Practice & Experience, 12(1), 23–34.

Messmer, B. T., & Bunke, H. (1999). Decision tree approach to graph and subgraph isomorphism detection.
Pattern Recognition, 32(12), 1979–1998.

Nemhauser, G., & Wolsey, L. (1988). Integer and combinatorial optimization. New York: Wiley.
Nemhauser, G. L., & Sigismondi, G. (1992). A strong cutting plane/branch-and-bound algorithm for

node packing. The Journal of the Operational Research Society, 43(5), 443–457. http://www.jstor.
org/stable/2583564.

Östergård, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120, 197–207.

Pelillo, M., Siddiqi, K., & Zucker, S. W. (1999). Matching hierarchical structures using association graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 1105–1120.

Piva, B. (2009). Estudo poliedral do problema do máximo subgrafo induzido comum. Master’s the-
sis, Instituto de Computação, Universidade Estadual de Campinas, Campinas. http://cutter.unicamp.
br/document/?down=000477497 (in Portuguese).

Piva, B., & de Souza, C. (2011). Facets for the maximum common induced subgraph problem
polytope. Available online (consulted at September 2011). http://www.optimization-online.org/
DB_HTML/2011/09/3148.html

Raymond, J. W., & Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching
of chemical structures. Journal of Computer-Aided Molecular Design, 16(7), 521–533.

http://amalfi.dis.unina.it/graph
http://dx.doi.org/10.1002/spe.588
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://www.jstor.org/stable/2583564
http://www.jstor.org/stable/2583564
http://cutter.unicamp.br/document/?down=000477497
http://cutter.unicamp.br/document/?down=000477497
http://www.optimization-online.org/DB_HTML/2011/09/3148.html
http://www.optimization-online.org/DB_HTML/2011/09/3148.html


102 Ann Oper Res (2012) 199:77–102

Raymond, J. W., Gardiner, E. J., & Willett, P. (2002a). Heuristics for similarity searching of chemical graphs
using a maximum common edge subgraph algorithm. Journal of Chemical Information and Computer
Sciences, 42(2), 305–316.

Raymond, J. W., Gardiner, E. J., & Willett, P. (2002b). RASCAL: Calculation of graph similarity using
maximum common edge subgraphs. The Computer Journal, 45(6), 631–644.

Shearer, K., Bunke, H., & Venkatesh, S. (2001). Video indexing and similarity retrieval by largest common
subgraph detection using decision trees. Pattern Recognition, 34, 1075–1091.

Suters, W. H., Abu-Khzam, F. N., Zhang, Y., Symons, C. T., Samatova, N. F., & Langston, M. A. (2005).
A new approach and faster exact methods for the maximum common subgraph problem. In Lecture
notes in computer science: Vol. 3595. Computing and combinatorics (pp. 717–727). Berlin: Springer.

Wang, Y., & Maple, C. (2005). A novel efficient algorithm for determining maximum common subgraphs. In
International conference on information visualisation (IV’05) (pp. 657–663). London: IEEE Comput.
Soc. http://doi.ieeecomputersociety.org/10.1109/IV.2005.11.

West, D., et al. (2001). Introduction to graph theory. New York: Prentice Hall.
Willet, P. (1999). Matching of chemical and biological structures using subgraph and maximal common

subgraph isomorphism algorithms. The IMA Volumes in Mathematics and Its Applications, 108, 11–38.
Wong, A. K. C., & Akinniyi, F. A. (1983). An algorithm for the largest common subgraph isomorphism using

the implicit net. In Inst. electrical & electronics engineers: Vol. 1. Proc. int. conf. systems, man and
cybernetics (pp. 197–201).

http://doi.ieeecomputersociety.org/10.1109/IV.2005.11

	Polyhedral study of the maximum common induced subgraph problem
	Abstract
	Introduction
	Basic definitions
	Graph theory
	Linear algebra
	Integer programming

	Integer programming model for the MCIS
	Theoretical study of the MCIS polytope
	Unique mapping
	Edge mapping

	The maximum clique problem
	IP model
	MCIS and the clique problem

	Computational results
	Algorithms tested
	Benchmark
	Computational environment
	Analysis of the results
	Additional experiments

	Conclusions
	References


