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Abstract We consider the problem faced by managers of critical civil interdependent in-
frastructure systems of restoring essential public services after a non-routine event causes
disruptions to these services. In order to restore the services, we must determine the set of
components (or tasks) that will be temporarily installed or repaired, assign these tasks to
work groups, and then determine the schedule of each work group to complete the tasks
assigned to it. These restoration planning and scheduling decisions are often undertaken in
an independent, sequential manner. We provide mathematical models and optimization al-
gorithms that integrate the restoration and planning decisions and specifically account for
the interdependencies between the infrastructure systems. The objective function of this
problem provides a measure of how well the services are being restored over the horizon
of the restoration plan, rather than just focusing on the performance of the systems after
all restoration efforts are complete. We test our methods on realistic data representing in-
frastructure systems in New York City. Our computational results demonstrate that we can
provide integrated restoration and scheduling plans of high quality with limited computa-
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tional resources. We also discuss the benefits of integrating the restoration and scheduling
decisions.

1 Introduction

A disaster is a non-routine event that has the potential for catastrophic impacts on physical,
natural and social systems. After a disaster occurs, one of the most important ways of lim-
iting the impact of the disaster on society is the timely development of a plan to restore the
services disrupted by the disaster. The managers of Critical Civil Infrastructure (CCI) sys-
tems are often faced with the most demanding choices in this so-called restoration planning
since their systems deliver essential public services such as power, telecommunications, wa-
ter, and transportation. The public not only hopes for a timely restoration of these services
but needs them in order for society to recover from the disaster. Therefore, it is quite impor-
tant to construct and develop decision technologies for these managers to support restoration
and division of labor activities in response to non-routine events that disrupt the services of
the CCI systems.

These CCI systems are more vulnerable to disasters and the services provided by them
more difficult to restore due to the increasing amount of interdependencies among them; dis-
ruptions in one system can spread to others causing cascading and potentially catastrophic
consequences (see Mendonca and Wallace 2006 and Wallace et al. 2003). As an example,
a central office (where calls are received and routed) of the telecommunications infrastruc-
ture requires a certain amount of power to function in its own infrastructure. A disruption
of power to the central office will cause it to fail in the telecommunications infrastructure
thereby causing disruptions in this infrastructure as well. Therefore, it is extremely impor-
tant for the restoration plans of all the systems to consider the impact of their service on
the restoration of services provided by the other systems. For example, a goal of the overall
recovery effort of the systems could be to provide communications among police, fire de-
partments, and hospitals. The telecommunications restoration plan will obviously work to
restore this capability but if power is not restored to central offices in this infrastructure the
goal of the overall recovery effort cannot be accomplished. This means that decentralized
decision-making in planning the restoration efforts of the CCI systems may not allow for
the timely restoration of essential public services.

In recent years, there has been much work about the concept, importance, challenges, and
the complexities of the interdependencies of the CCI systems (see, e.g., O’Rourke 2007).
Rinaldi et al. (2001) discuss that managers of the CCI systems have become more inclined
to consider the interdependencies among the CCI systems and conduct their restoration plan
to restore all the essential public services provided by these interdependent infrastructure
systems. In this paper, we will provide the managers of the CCI systems tools that can
be used to develop plans to restore services provided by the interdependent infrastructure
systems that specifically account for the interdependencies of the systems. Our approach
is unique in that it measures the performance of the interdependent infrastructure systems
over the horizon of the problem in order to understand how well the systems come back up
online during the recovery efforts. This is opposed to focusing on the performance of the
interdependent infrastructure systems only after all recovery efforts are completed.

There has been work in recent years that provides some level of decision support to the
interdependent infrastructure systems managers in forming plans to restore essential public
services. Lee et al. (2007) develop an interdependent layered network (ILN) representation
of the services delivered by the interdependent infrastructure systems. This ILN model can
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be used to measure the service outages from a disruption and is also used to determine the
set of components (e.g., the arcs in the ILN) that need to be installed or repaired to restore
all services. However, this work does not answer the critical questions of how and when
to repair the arcs. Gong et al. (2009) focus on answering these two questions given a set
of arcs that need to be installed/repaired. They provide a Benders Decomposition approach
to determine efficient solutions to the multi-objective scheduling problem whose objectives
include the total cost incurred by the scheduling/assignment decisions, the total tardiness
of the tasks, and the makespan of the schedule. However, this work does not answer the
important question of what arcs need to be installed to restore the services.

The previous work on plans to restore services provided by interdependent infrastruc-
ture systems focuses on a single level of the decision-making, i.e., either the selection of
components to install or repair that will restore the services (see Lee et al. 2007) or the as-
signment/scheduling decisions of installing/repairing the structures (see Gong et al. 2009).
There are significant drawbacks to making these decisions sequentially, especially due to
the conflicting nature of the objectives of the two problems. In particular, the metric used
to evaluate the installation decisions is often the cost of the decisions, while the metric to
evaluate the second set of decisions is often the time to complete the recovery efforts. This
means that the recovery efforts may end up being inexpensive yet require a long time to
complete, i.e., the essential public services will not be restored as efficiently as possible.
This paper will provide an integrated model that incorporates the installation selection de-
cisions (sometimes referred to as the restoration planning decisions), the assignment of the
selected tasks to work groups, and the scheduling of the work groups to perform their set
of assigned tasks. Furthermore, our formulation offers a unique performance measure of the
scheduling decisions that measures how well the set of interdependent infrastructure sys-
tems come back online rather than focus on how late a particular task is completed (e.g., the
classic tardiness measure of a task) or how long it takes us to complete all tasks (i.e., the
classic makespan measure of a schedule).

The objective of this paper is to develop approaches to provide full restoration plans
to managers that can be used to restore essential public services to disrupted interdependent
infrastructure systems. We develop a mixed-integer program (MIP) that integrates the instal-
lation decisions and the assignment/scheduling decisions. This is a significant advantage of
our approach over previous work on interdependent infrastructure systems (Lee et al. 2007
and Gong et al. 2009). Our formulation of the MIP fully utilizes the problem characteris-
tics as described by the managers of the CCI systems (see, e.g., Lee 2006). The objective
function of this MIP measures how well the services provided by the interdependent in-
frastructure systems are restored over time by exploiting a network-flow based formulation
of the services provided by a set of interdependent infrastructures systems at appropriate
time intervals. However, it is possible that the managers of these systems do not have ac-
cess to advanced commercial software packages in order to solve this MIP to formulate
their restoration plans. There are free MIP solvers available that are almost as good as the
commercial solvers, although these may have other drawbacks. For example, MIPs can be
submitted online to the NEOS server (Dolan et al. 2002) provided the data is not confiden-
tial, and the open source suite of COIN-OR solvers (Lougee-Heimer 2003) is generally of
high quality, although a new user requires some time to learn the software. Therefore, we
provide a heuristic solution method that provides quality solutions to this problem without
the aid of commercial software packages. This heuristic solution takes full advantage of the
underlying structure of the proposed model: it first selects a set of arcs to install that help to
restore services and then schedules these arcs using ‘classic’ dispatching rules (see Pinedo
2008) for scheduling problems.



282 Ann Oper Res (2013) 203:279–294

The remainder of this paper is organized as follows. Section 2 discusses the mathemati-
cal details of the ILN model of Lee et al. (2007) and the MIP formulation of the integrated
restoration and scheduling problem. Section 3 discusses the heuristic solution method that
we propose for the problem. The formulation and solution method is then tested on real-
istic data that represents a large portion of Manhattan. This data was developed from the
input from the managers of various CCI systems, including the power and telecommunica-
tion systems. The results show that our approaches can be used to generate an integrated
restoration plan of high quality using only a modest amount of computing time on a laptop.
This is especially important for the managers of the systems since they may not have exten-
sive computational resources available to them. The results of the computational testing are
discussed in Sect. 4. We conclude the paper in Sect. 5 with some future research directions.

2 The integrated restoration and scheduling model

In this section, we discuss a mathematical formulation that can be used to develop an inte-
grated restoration and scheduling plan to restore services to disrupted interdependent infras-
tructure systems. In this problem, we are interested in determining the set of components
that will be installed (i.e., the restoration decisions), the assignment of selected components
(the tasks) to available work groups, and the order that each work group will complete the
tasks assigned to them. The objective of this problem will be concerned with the function-
ality of the set of systems throughout the horizon of the problem. In each time period, the
set of systems will function in a manner that minimizes its total operating costs and unmet
demand costs. Therefore, our objective will implicitly seek to minimize the services that
are disrupted or ‘down’ for long periods of time after the non-routine event. The objective
function is a weighted combination of three different types of costs: (i) the cost of operating
the infrastructures at each time period, (ii) the cost of unmet demand at each time period,
and (iii) the cost of restoring the infrastructures. The explicit inclusion of the cost of unmet
demand is a novel aspect of this research and captures the desire of society for the expedi-
ent restoration of services. It will thus be necessary to apply an appropriate model that can
measure the functionality of the set of systems in each time period, and in particular capture
costs (i) and (ii). We will apply the ILN model of Lee et al. (2007) in order to measure this
functionality. This model is refined through inclusion of both the scheduling aspects and the
temporal aspects.

The ILN model is a network-flow based representation of the services provided by these
infrastructure systems at a given point in time. In particular, the ‘flow’ in a layer of the net-
work corresponds to the services provided by that infrastructure. For example, the power
system has a single-commodity flow of electricity, with demand points, supply points (e.g.,
generators or the entry points of the network into the area of interest), and transshipment
nodes (e.g., substations), along with power lines represented by arcs. The telecommunica-
tions infrastructure is formulated as a multi-commodity network flow model, with different
commodities for each origin-destination pair (Ahuja et al. 1993). This model can capture
various types of interdependencies between the infrastructure systems (see Lee et al. 2009).
However, for the purposes of this paper, we focus on the most common of these interdepen-
dencies and the one that appears in our case study of the power and telecommunications in-
frastructure of lower Manhattan: the so-called input interdependency. This interdependency
occurs when a node in one infrastructure requires the services of another infrastructure in
order to operate. A central office in the telecommunications infrastructure has an input in-
terdependency with the power infrastructure: if its full required amount of power is not
delivered to it, the central office does not operate.
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The ILN model of Lee et al. (2007) will be applied in each time period to determine the
total operating costs and unmet demand costs over the current state of the set of interdepen-
dent infrastructure systems. Each infrastructure will be represented as one of the networks
in the ILN model. The network representation of the infrastructure has typical characteris-
tics of network flow problems (see Ahuja et al. 1993): each node has a certain amount of
supply/demand of each type of commodity in the network and we seek to send flow (e.g.,
services in the infrastructure) from supply nodes to demand nodes over the arcs in the net-
work. The demand nodes in the network are split into two types: ‘standard’ demand nodes
and ‘interdependent’ demand nodes. The interdependent demand nodes are those on which
components of another infrastructure have an input interdependency. This means that a de-
mand node in a power network that feeds power to a central office in the telecommunications
infrastructure is an interdependent demand node.

It is appropriate to penalize shortcomings in the services to a standard demand node on
a per-unit basis. As discussed in Lee et al. (2007), we need to treat disruptions in services
to interdependent demand nodes differently. We penalize shortcomings in the services to
an interdependent demand node with a fixed-charge cost regardless of the magnitude of the
shortcoming. In other words, we are penalized the same amount if we meet one percent or
ninety-nine percent of the demand of an interdependent node. The reasoning, as discussed
by Lee et al. (2007), is that the component of the other infrastructure with the input in-
terdependency will not be operational in its own infrastructure. The ILN model introduces
binary variables for these interdependent demand nodes that represent whether the demand
of that node is fully satisfied. These variables are then used to determine the appropriate
penalty costs and whether the component of the other infrastructure is operational in its own
infrastructure.

Our model contains four types of constraints: (a) network flow constraints in each in-
frastructure, with the explicit inclusion of slack variables representing unmet demand, (b)
constraints to represent the logical input dependencies between different infrastructures, en-
forced using binary variables, (c) constraints to represent the scheduling decisions in the
restoration process, and (d) a constraint to link the scheduling decisions to the availability
of arcs. The first two types of constraints are handled as in the ILN model, with copies con-
structed for each time period. We now discuss the formulation of the scheduling part of the
model.

Our integrated restoration and scheduling problem will select a set of arcs to install or
repair in the infrastructure systems. It will then schedule the selected arcs (or tasks) on a
series of work groups. This involves assigning each selected task to a work group and then
determining the sequence in which a work group will perform the tasks assigned to it. In
a scheduling context, we are essentially solving an unrelated parallel machine scheduling
problem. These types of scheduling problems are typically NP-hard (see Pinedo 2008) and
notoriously difficult to solve to optimality. Typical approaches to formulate parallel machine
scheduling problems where the sequence of the tasks is important (for example, when we
are minimizing total completion time or tardiness) is to incorporate a binary variable that
represents the decision of performing a certain task as the i-th task that a particular machine
completes. However, we will formulate the scheduling decisions somewhat differently using
the so-called time-indexed formulation for these problems (see Sousa and Wolsey 1992 and
Savelsbergh et al. 2005). The formulation that we offer is motivated by our discussions
with the managers of the interdependent infrastructure systems. From these discussions, we
learned that the completion times of the tasks are typically expressed as integral number of
days and that the planning horizon of the restoration activities is relatively small (between
30–60 days). Further, the number of potential tasks is quite large compared to the number
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of days in the problem. These facts motivate a formulation of the scheduling decisions that
focus on determining which task a work group completes on a particular day rather than
the order of the tasks it will complete. We will enforce the practical restriction that a work
group must work on a particular task on consecutive days until it is completed (i.e., we are
not allowing preemptions).

We will now formally discuss the input parameters of our integrated restoration and
scheduling problem. We are given a set of infrastructures M and a set of time periods which
we denote as T = {1, . . . , τ }. For each infrastructure m ∈ M, we have a set of nodes, V m, a
set of permanent (or unaffected by the disruption) arcs Em, and a set of temporary arcs that
can be installed, Ēm. For the sake of brevity, our mathematical formulation of the integrated
restoration and scheduling problem only includes single-commodity flows. However, it can
be easily modified to handle infrastructures having multi-commodity flows in both direc-
tions by adding a ‘commodity’ index to the necessary variables and parameters in the model.
The amount of supply at a node i ∈ V m is denoted by bm

i . We will let V m,+ be the set of
supply nodes in infrastructure m (i.e., bm

i > 0), V m,− be the set of demand nodes in infras-
tructure m (i.e., bm

i < 0), and V m,= be the set of transhipment nodes in infrastructure m (i.e.,
bm

i = 0). We will let hm
i,t denote the unit penalty cost of unmet demand at node i ∈ V m,− in

time period t and wm
i denote the transhipment capacity of node i ∈ V m,=. We denote cm

e for
e ∈ Em ∪ Ēm as the cost of a unit of flow on arc e in infrastructure m and um

e be the upper
bound of flow on arc e in infrastructure m. Given node i ∈ V m, we denote δm,+(i) as the set
of arcs entering i, δm,−(i) as the set of arcs leaving i, and δm(i) as the union of these sets.

For infrastructure m, we will let Bm denote the set of interdependent demand nodes in
the infrastructure, i.e., a node in another infrastructure has an input interdependency with a
node in Bm. Further, we will let Am be the set of nodes in infrastructure m that have input
interdependencies with another infrastructure. We denote the interdependencies between
infrastructure m and n as F(m,n), i.e., (i, j) ∈ F(m,n) implies that i ∈ Bm and j ∈ An so
that node j in infrastructure n is dependent on demand node i in infrastructure m. We also
refer to node i as the parent node of node j .

We let qm
e for e ∈ Ēm be the fixed cost of installing temporary arc e in infrastructure m.

We denote the set of work groups by K . The cost of assigning task e in infrastructure m to
work group k ∈ K is denoted by dm

e,k and the time required by work group k to complete this
task is denoted by pm

e,k .
The objective function contains elements that have direct monetary costs (operating costs

and restoration costs) and elements that correspond to the loss of a service (the unmet de-
mands). In order to place these elements into a single objective, we choose weights for the
unmet demands. In particular, we let hm

i,t denote the weighting given to the slack at node i

of infrastructure m at time t . The choice of these weights is discussed in Sect. 4.1.
We are now in a position to discuss the decision variables in our integrated restoration

and scheduling problem. In each time period, we will need to determine the amount of flow
on the arcs in each of the infrastructure systems to evaluate the level of services throughout
the interdependent infrastructure systems. We denote the flow on arc e ∈ Em ∪ Ēm in time
period t as xm

e,t . We will denote the amount of unmet demand (sometimes referred to as slack)
of demand node i ∈ V m,+ in time period t as sm

i,t . For each pair (i, j) ∈ F(m,n), we define

a binary variable y
n,j,t

m,i that is equal to 1 if the slack at the parent node i in infrastructure
m is zero and thus the child node j in infrastructure n is operational. For each arc e ∈ Ēm,
we define the binary variable zm

e to represent the decision to install the temporary arc e in
infrastructure m and the binary variable am

e,k to represent the decision of assigning the task
of installing the temporary arc to work group k ∈ K . In modeling the scheduling decisions
of each work group, we define the binary variable αm

e,k,t that is equal to 1 if work group k
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completes task e ∈ Ēm during time period t . We also define the binary variable βm
e,t that is

equal to 1 if we have completed task e ∈ Ēm by time period t .

The mixed-integer programming formulation of our integrated restoration and scheduling

problem is given by:

minimize
∑

t∈T

[ ∑

m∈M

∑

e∈Em∪Ēm

cm
e xm

e,t

]
(1)

+
∑

t∈T

[ ∑

m∈M

∑

i∈V m,−\Bm

hm
i,t s

m
i,t

]
(2)

+
∑

t∈T

[ ∑

m∈M

∑

i∈Bm

∑

n∈M,n�=m

∑

(i,j)∈F(m,n)

hm
i,t (−bm

i )(1 − y
n,j,t

m,i )

]
(3)

+
∑

m∈M

∑

e∈Ēm

qm
e zm

e +
∑

m∈M

∑

e∈Ēm

∑

k∈K

dm
e,ka

m
e,k (4)

subject to
∑

e∈δ−(i)

xm
e,t ≤ bm

i ∀t ∈ T , ∀i ∈ V m,+, ∀m ∈ M (5)

sm
i,t +

∑

e∈δ+(i)

xm
e,t = −bm

i ∀t ∈ T , ∀i ∈ V m,−, ∀m ∈ M (6)

∑

e∈δ+(i)

xm
e,t −

∑

e∈δ−(i)

xm
e,t = 0 ∀t ∈ T , ∀i ∈ V m,=, ∀m ∈ M (7)

∑

e∈δ+(i)

xm
e,t ≤ wm

i ∀t ∈ T , ∀i ∈ V m,=, ∀m ∈ M (8)

xm
e,t ≤ um

e ∀t ∈ T , ∀m ∈ M, ∀e ∈ Em (9)

sm
i,t ≤ (1 − y

n,j,t

m,i )(−bm
i ) ∀t ∈ T , ∀(i, j) ∈ F(m,n) (10)

∑

e∈δ−(j)

xn
e,t ≤ bn

j y
n,j,t

m,i ∀t ∈ T , ∀(i, j) ∈ F(m,n) with j ∈ V n,+ (11)

∑

e∈δ+(j)

xn
e,t ≤ −bn

j y
n,j,t

m,i ∀t ∈ T , ∀(i, j) ∈ F(m,n) with j ∈ V n,− (12)

∑

e∈δ+(j)

xn
e,t ≤ wn

j y
n,j,t

m,i ∀t ∈ T , ∀(i, j) ∈ F(m,n) with j ∈ V n,= (13)

∑

k∈K

am
e,k = zm

e ∀m ∈ M, ∀e ∈ Ēm (14)

∑

t∈T

αm
e,k,t = am

e,k ∀k ∈ K, ∀m ∈ M, ∀e ∈ Ēm (15)

βm
e,t − βm

e,t−1 =
∑

k∈K

αm
e,k,t ∀t ∈ T , m ∈ M, ∀e ∈ Ēm (16)
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∑

e∈Ēm

min{T ,t+pm
e,k

−1}∑

s=t

αm
e,k,s ≤ 1 ∀t ∈ T , ∀k ∈ K (17)

xm
e,t ≤ um

e βm
e,t ∀t ∈ T , ∀m ∈ M, ∀e ∈ Ēm (18)

xm
e,t ≥ 0 ∀t ∈ T , ∀m ∈ M, ∀e ∈ Em (19)

sm
i,t ≥ 0 ∀t ∈ T , ∀m ∈ M, ∀i ∈ V m (20)

y
n,j,t

m,i ∈ {0,1} ∀t ∈ T , ∀m,n ∈ M, ∀(i, j) ∈ F(m,n) (21)

zm
e ∈ {0,1} ∀m ∈ M, ∀e ∈ Ēm (22)

am
e,k ∈ {0,1} ∀m ∈ M, ∀e ∈ Ēm, ∀k ∈ K (23)

αm
e,k,t ∈ {0,1} ∀t ∈ T , ∀m ∈ M, ∀e ∈ Ēm, ∀k ∈ K (24)

βm
e,k,t ∈ {0,1} ∀t ∈ T , ∀m ∈ M, ∀e ∈ Ēm, ∀k ∈ K (25)

The objective function of this model minimizes the sum of (i) the flow costs, (ii) the
unsatisfied demand costs over the whole planning horizon of the restoration activities, and
(iii) the sum of the arc installations and assignment costs. The term (1) represents the total
flow costs incurred over the planning horizon while (2)–(3) represents the cost of the unsat-
isfied demands. We note that (2) represents the cost of the unsatisfied demands of nodes in a
particular infrastructure that do not impact the other interdependent infrastructures. The term
(3) represents the costs of unsatisfied demands at a nodes in an infrastructure that are ‘par-
ent’ nodes to nodes of other infrastructures. In this case, we are penalized the total amount
of the demand for not meeting the requested demand of the parent node in its infrastructure
system since we cannot operate the child node. The term (4) represents the arc installation
costs and the assignment costs of tasks to work groups.

Constraints (5)–(9) are network-flow constraints for each infrastructure system that en-
sure we do not use more than the available supply of nodes i ∈ V m,+, measure the amount
of unmet demand for nodes i ∈ V m,−, and ensure flow-balance for transhipment nodes
i ∈ V m,=. Capacity constraints are also imposed on the arcs in Em.

Constraints (10)–(13) represent the interdependencies between the infrastructures. Con-
straint (10) ensures that child node j ∈ V n is operational given the interdependence (i, j) ∈
F(m,n) only if the unmet demand of node i ∈ V m,+ is zero. Constraints (11)–(13) guaran-
tee that we only operate children nodes in an infrastructure if the unmet demands of their
parents are zero (i.e., y

n,j,t

m,i = 1).
Constraints (14)–(17) are associated with the assignment and scheduling decisions. Con-

straint (14) guarantees that we assign each arc that we choose to install to a work group.
Constraint (15) ensures that if we complete an arc, then we must have selected it (thus guar-
anteeing that we pay the installation costs associated with the arc). Constraint (16) ensures
that: (i) an arc only becomes available after it is completed by some work group and (ii) if
an arc is available in time period t − 1, it is available in time period t . We note that these
constraints ensure that once an arc is completed, it is available for the remainder of the hori-
zon. Constraint (17) ensures that, at most, one arc is being processed on work group k in
time period t . This is because if work group k completes arc e in period s, then we must
have been working on it in periods s − pm

e,k + 1 through period s.
Finally, constraint (18) links together the scheduling parts of the model and the network

flow parts of the model. It ensures that we only send flow over the arc after it is finished
being installed. The overall logic is that if an arc has not been completed by time t then its β
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variable is zero, which forces the flow on that arc to be zero (18). In turn, that may result in
unmet demand in the parent infrastructure, with some s variable strictly positive (6), which
can then force a y variable to be zero (10). If a y variable is zero then flow variables in the
child network may be forced to be zero (11)–(13), leading to unmet demand in the child
infrastructure (6).

This formulation of the integrated restoration and scheduling problem is a large-scale
mixed-integer program with underlying scheduling decisions associated with it. These types
of problems are known to be computationally difficult. Therefore, we turn our attention
now to developing a customized heuristic for this class of problems that integrates network
design and scheduling heuristics together.

3 An integrated design and scheduling heuristic solution method

The integrated restoration and scheduling problem has components representing network
flow decisions (i.e., the ILN model), network design decisions (i.e., which arcs we will in-
stall into the network), and scheduling decisions (i.e., allocating the work groups to complete
the selected arcs). Therefore, it is desirable for heuristics that are applied to this problem
to utilize the structure of these underlying decisions. We will propose a heuristic solution
method that operates in three distinct phases, each of which correspond to one of these un-
derlying sets of decisions. These phases will be referred to as the ‘network flow,’ ‘network
design,’ and ‘scheduling’ phases. The network flow phase focuses on determining the op-
erations of the network. The network design phase focuses on using the current operations
to determine which arc(s) is ‘best’ to install into the current network. The scheduling phase
then focuses on scheduling these selected arcs on the work groups.

The idea behind the network flow phase of the heuristic is to route flow in each of the
networks in the ILN model. There is obviously much flexibility in the type of method used to
route flow (e.g., we can solve the ILN model to optimality). We will describe a method that
we have used that has synergy with the network design phase. This method determines the
flows in each network independently of one another but ‘links’ them by assigning priority
levels to the demand nodes within the network. The routing procedure will then ensure
that we can meet demand at high priority nodes effectively. The priority levels can be set
to reflect the interdependencies with other infrastructures. For example, we can assign the
priority levels of the interdependent demand nodes to be higher than standard demand nodes
within a network and even assign the priority levels based on the perceived importance of the
interdependent demand node within the other infrastructure. The routing procedure proceeds
as follows: it determines the minimum cost flow in order to meet the demand of the node
with the highest priority. It then fixes the flow throughout the network and then determines
the minimum cost flow to meet the demand of the node with the second highest priority. It
then updates and fixes the flow in the network and solves a minimum cost flow problem to
meet the demand of the third highest priority node. We note that it is possible that not all
the demand of a node can be met - this corresponds to a disruption in the service. It is also
possible to modify this procedure by placing different penalty weights for unmet demand
based on the priority levels of the nodes and solving one (large) minimum cost network flow
problem.

The network design phase then focuses on selecting the next arc, or set of arcs, to in-
stall into the network. It is obvious that we want to select an arc (or arcs) that improve the
total of the operational costs plus the unmet demand costs in the ILN model. The network
design phase of the heuristic will then estimate the improvement in the performance (mea-
sured via the costs) of the ILN model of installing an arc (or arcs) into the network under
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consideration. The design phase then selects the ‘best’ arc measured by the ratio of the im-
provement in the performance to the processing time of the arc. Note, therefore, the design
phase may actually be called upon during the scheduling phase of the heuristic when work
groups become available. The selection of an arc is thus based on the classic weighted short-
est processing time (WSPT) first dispatching rule for parallel machine scheduling problems
(see, e.g., Pinedo 2008). This phase, again, has flexibility in terms of how the improvement
in the performance is measured for each arc. It may not be possible to determine the ex-
act improvement by installing an arc into one of the networks because this requires solving
the ILN model. The proposed method to estimate the improvement has synergy with the
network flow phase of the heuristic: once we have the flows routed in the network under
consideration, we select the highest priority demand node that has a disruption in service
(i.e., unmet demand). The estimate of the improvement for installing an arc into the ILN
model will then be measured via the amount of additional flow that can be delivered to this
demand node.

The description of the network design phase is general in the sense that it can be ap-
plied to both small-scale and large-scale events that cause the disruptions. However, in the
case of large-scale events, it may be that entire portions of the infrastructure are destroyed
by the event. This is the situation in the case study discussed in Lee et al. (2007), which
represents the failure of components in and around the Brooklyn-Battery Tunnel in lower
Manhattan. In these situations, the network representing an infrastructure can be viewed as
essentially two distinct components: the ‘real’ infrastructure which contains the components
that were unaffected by the extreme event and the ‘temporary’ infrastructure which contains
the components that can be installed/repaired in the network. It is often the case in these
situations that the installation of a single arc in the temporary infrastructure cannot help im-
prove the performance of the set of interdependent infrastructure systems—we must install
a path of arcs in the temporary infrastructure that connects some supply node back into the
operational infrastructure. Therefore, the network design phase, as currently described, will
rarely identify an arc that improves the performance of the ILN model.

In the case of large-scale events, however, we can modify the network design phase to
select a ‘path’ of arcs in the temporary infrastructure. Each path of arcs in the temporary
infrastructure has a capacity which can be measured as the minimum capacity of an arc on
the path. The path also has an associated processing time: the total of the processing times
of the uninstalled arcs on it. Therefore, we can aggregate paths of arcs in the temporary
infrastructure into a single arc and then apply the same rule as the one for small-scale events
(i.e., determine the estimate for improvement for each aggregated arc). We have chosen the
following procedure to aggregate the paths of arcs in the temporary infrastructure: for each
node in the real infrastructure, we determine the shortest path, with respect to processing
times, from a supply node through the temporary infrastructure to that node. We then only
consider arcs that represent the shortest path from some supply node through the temporary
infrastructure to some node in the real infrastructure. This greatly reduces the number of
paths that need to be considered and is also practically motivated since the arc from the
temporary infrastructure into the real infrastructure is usually the bottleneck of the paths in
our case study. There is an issue of determining the appropriate processing times of a path
of arcs since we can expect that they will not be processed by the same work group. For
each arc, we have chosen to assign its processing time as its average processing time across
the different work groups.

The scheduling phase of the heuristic is concerned with the assignment of arcs to work
groups. It will actually call upon the network design phase to determine the next arc or set
of arcs to be processed. The scheduling phase will operate differently depending on if the
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network design phase determines a single arc (i.e., the small-scale event situation) or a set
of arcs (the large-scale event situation). For the small-scale event situation, the scheduling
phase simply calls the network design phase whenever a work group becomes available. We
note that the network design phase will assume that the arcs being processed by other work
groups are available in the network in order to ensure that we move on to other demand
nodes if we are processing arcs to restore services to a particular node. For the large-scale
event situation, the scheduling phase will keep a queue of arcs that need to be processed by
the work groups. When a work group becomes available, it will process the next arc in the
queue if it is non-empty. Otherwise, the network design phase will be called to determine the
next path of arcs in the temporary infrastructure to process. The selected arcs will then be
placed in the queue. There is flexibility in placing the selected arcs in the queue: for example,
we could determine the placement of arcs into the queue that minimizes the makespan of the
selected arcs. We could also place the arcs into the queue according to their longest average
processing time.

It turns out that each of these different phases are actually embedded into one another:
the scheduling phase calls the network design phase, which can call the network flow phase.
Since there is flexibility in each of the phases, we will summarize the heuristic solution
method that is applied in Sect. 4.2.2:

Specialized Heuristic Solution Method

Step 0. Initialization: Determine the flow in the infrastructure under consideration by suc-
cessively routing flow to demand nodes based on their priority levels. This determines
the amount of unmet demand at each node. Refer to this as the ‘current operations of the
network.’ Initialize the queue of arcs to be empty.

Step 1 Scheduling Phase: We perform the scheduling phase until either the end of the hori-
zon or all possible demand is met. When a work group becomes available:
• If there is an arc in the queue, assign that arc to the available work group.
• Otherwise, we call the network design phase for ‘large-scale’ events to determine the

next set of arcs to be processed. We call this phase assuming that all arcs currently
being processed are available in the network by focusing on the ‘current operations of
the network.’ This phase is also called on the demand node with unmet demand and the
highest priority level. Once the network design phase returns a path of arcs:
– Update the current operations of the network by routing flow over the select path to

the appropriate demand node.
– Place the uninstalled arcs in the path into the queue according to their largest average

processing time.

4 Experimental results

4.1 Data set

We will test the mathematical formulation of the integrated restoration and scheduling prob-
lem and the heuristic for it on a data set that is a realistic representation of the power
and telecommunication systems of a large portion of Manhattan. Lee et al. (2007) devel-
oped a realistic representation of these systems through discussions with and data obtained
from respective infrastructure managers in Manhattan. The empirical results in this sec-
tion were generated by applying our mathematical formulation of the integrated restoration
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and scheduling problem and our heuristic to this realistic data set. The model has been
implemented in the OPL Development Studio 6.3 and we used CPLEX 12.1 to solve the
mixed-integer programming formulation of the problem.

In our empirical study, we will focus on a situation, similar to Lee et al. (2007), where the
set of damaged/affected arcs occurs solely in the power infrastructure. Note that this does not
mean that the disruption only affects the power infrastructure because the interdependencies
between the infrastructures will cause disruptions in the telecommunications infrastructure.
This does mean that we only need to make the restoration decisions for the installation
of temporary arcs in the power infrastructure; however, we still apply the network flow
decisions to both infrastructures to determine the performance of our restoration efforts.

The size of the power and telecommunications infrastructures in the data set can be rep-
resented by the number of nodes and arcs of each infrastructure network. The power in-
frastructure is represented by 3316 arcs (Ep) and 1810 nodes (V p) in the data set. As was
done in Lee et al. (2007), we assume that all possible components that can be installed to re-
store the power services can be represented as power arcs, i.e., we cannot install new power
nodes. There are a total of 695 temporary arcs in the power infrastructure. Many of these
arcs will not be chosen in any restoration plan, so we perform some pre-processing in order
to generate the set of temporary arcs in our mathematical model. In particular, we deter-
mine the selected arcs in the restoration plan of the ILN model used by Lee et al. (2007).
In total, 49 arcs are selected from the 695 temporary arcs. We will include these 49 arcs
in Ēp , the set of temporary arcs in our model. We then remove these 49 arcs from the set
of 695 temporary arcs and reapply the ILN model. In this situation, 92 temporary arcs are
selected. We randomly selected a subset of 52 of these 92 temporary arcs and place them
in Ēp . Therefore, the set of temporary arcs in our mathematical model includes 101 of the
‘best’ temporary arcs of the 695 original temporary arcs. There are 15 supply nodes (V p,+),
134 demand nodes (V p,−), and 1661 transhipment nodes (V p,=) in the power system. Of
the 134 demand nodes, 17 of these nodes serve as feeds for a distinct central office of the
telecommunications infrastructure. In other words, the set Bp contains these 17 nodes.

The telecommunications infrastructure is represented by 1097 arcs (Et ) and 547 nodes
(V t ) in the data set. There are 17 nodes of the 547 nodes that correspond to the central of-
fices in the system. The proper functionality of central offices is directly dependent upon
the power infrastructure because of their one-to-one connection to 17 power demand nodes
mentioned above. According to the definition of input interdependency provided by Lee et
al. (2007), any unsatisfied demand (slack) in a power node connected to a central office
would result in complete failure of the central office. This situation is also modeled in our
mixed-integer programming formulation through constraints (10)–(13). Every call is routed
to its local central office and then to the local central office for its recipient, and then on to
its recipient. We will make the simplifying assumption that the set of supply and demand
nodes of the telecommunications infrastructure system are just the 17 central offices. In
other words, all phone calls that originate in a certain (geographical) location will be viewed
as the supply of one of the central offices and all phone calls that terminate in the same geo-
graphical location will be viewed as the demand of the same central office. Unlike the power
infrastructure, the calls in the telecommunications system are modeled as multi-commodity
flows with a certain number of calls between each origin and destination pair.

We will consider two classes for the penalty costs of unmet demands in the integrated
restoration planning and scheduling problem. In both these classes, the per-unit penalty
cost of a unit of demand in a time period will be independent of the demand node and
infrastructure, i.e., we have hm

it = ht for i ∈ V m,− and m ∈ M . We will consider a class of
penalty costs where the penalty cost of unmet demands is constant over the horizon, i.e.,
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hm
it = h for i ∈ V m,−, m ∈ M , and t ∈ T . This class of constant penalty costs can be used

in situations where each time period is of equal importance. The second class of penalty
costs are ones that are discounted by the horizon of the problem, i.e., hm

it = h(τ − t)/τ for
i ∈ V m,−, m ∈ M , and t ∈ T where τ is the number of time periods in the problem. This
means that the the incurred penalty is discounted by the period in which it takes place. This
class of penalty costs can be used in situations in which it is critical to get large portions of
services back up and running in a reasonable time frame.

Workers and equipment are bundled into work groups and have sufficient skills to accom-
plish any of the tasks in the set. In this empirical study, we have assumed 3 work groups in
total which is motivated by the discussions with the managers of the infrastructure systems.
It is also assumed that each task only requires one work crew. The main differences between
the work groups are that they will require different times to complete each task. We have
assumed that the work groups are currently available to the managers, so that there are no
assignment costs in the problem. We assume that the planning horizon of the restoration plan
is 30 days, which the managers indicated is an acceptable time to perform the restoration
activities.

We performed all of our experiments using a laptop with a Intel Core 2 Duo proces-
sor operating at 2.26 GHz and 4 GB of RAM. These experiments therefore use computing
resources similar to those that would be available to the managers of the interdependent in-
frastructure systems during the time frame in which they need to formulate the restoration
plans. This is quite important in determining the applicability of our model and methods to
providing a decision support tool for these managers.

4.2 Experiments

4.2.1 The value of integration

We first seek to identify the potential value of integrating the restoration and scheduling de-
cisions. In other words, we wish to determine the amount of additional costs that would be
incurred by first determining the restoration decisions and then determining the scheduling
decisions sequentially. The previous research of Lee et al. (2007) focused on determining
the restoration decisions of the power infrastructure in order to restore the interdependent
infrastructure systems of power and telecommunications in lower Manhattan. We are, there-
fore, concerned with comparing the optimal schedule of the restoration decisions of Lee et
al. (2007) with the optimal solution to our integrated restoration and scheduling problem.
The mixed-integer programming formulation for this set of interdependent infrastructure
systems contains 1,267,950 variables (1,255,830 continuous variables and 12,120 binary
variables) and 300,202 constraints, which is significantly larger than numbers for ILN model
used in Lee et al. (2007). The reason for this increase is because our integrated restoration
and scheduling problem includes network flow decision variables for every time period in
the problem as opposed to a single time period in the ILN model. Note that, due to the large
number of variables, CPLEX 12.1 had issues with memory management and did not solve
the integrated restoration and scheduling problem to optimality for any problems considered.

We determine the restoration and scheduling plan associated with the sequential approach
by first determining the selection of temporary arcs to be installed by solving the ILN model
used in Lee et al. (2007) and then optimizing the scheduling decisions using our formulation
and objective function from Sect. 2 with the appropriate penalty costs (either constant or
discounted). The ILN model finds a total of 45 temporary arcs to be installed. In order
to determine the value of integration, we would ideally compare the optimal schedule for
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these arcs and the optimal integrated restoration and scheduling plan. However, CPLEX
12.1 terminates prior to determining the optimal integrated restoration and scheduling plan
due to the amount of memory required in solving the problem. In particular, a solution with
an optimality gap of 1.17% was found after 55 seconds for the model with constant penalty
costs. The additional costs incurred by the sequential decision-making approach to forming
the full restoration and scheduling plan was 7.76% higher than the best-known restoration
and scheduling problem identified by CPLEX 12.1. Therefore, the value of the integration
is at least 7.76% for the problem with constant penalty costs.

For the model with discounted penalty costs, a solution with an optimality gap of 1.31%
was found within 47 seconds. The additional costs incurred by the sequential decision-
making approach to forming the full restoration and scheduling plan was 5.63% higher than
the best-known restoration and scheduling problem identified by CPLEX 12.1. This means
that the value of the integration is at least 5.63% for the problem with discounted penalty
costs. Therefore, there are significant cost benefits for determining the restoration planning
and scheduling decisions in an integrated manner over the traditional manner of sequential
decision-making to these decisions.

4.2.2 Full integrated restoration and scheduling plans for the power and
telecommunications systems

We now seek to provide an integrated restoration and scheduling plan that specifically
incorporates the input interdependencies between the power and the telecommunications
systems. This section discusses the results of applying our specialized heuristic solution
method to this integrated restoration and scheduling problem. We do so by benchmarking
our heuristic solution method with respect to the (near-)optimal solution determined via
solving the mixed-integer programming formulation of the problem with CPLEX 12.1. Re-
call that CPLEX 12.1 did not solve the problem to optimality for the problem with constant
penalty costs and discounted penalty costs. Therefore, we have compared the lower bound
returned by CPLEX 12.1 after it terminated with the solution returned by the heuristic in
benchmarking it. Therefore, the optimality gaps reported for the solutions returned by the
heuristic are actually upper bounds on the actual optimality gap of these solutions.

Table 1 reports the upper bounds on the optimality gaps for the solutions returned by the
specialized heuristic solution method (SHSM) and a modified heuristic solution method (M-
SHSM) where, during the scheduling phase, the selected arcs are put in the queue based on
their optimal placement in it. In examining the objective functions of the solutions returned
by the heuristics, we note that we calculated the performance of the ILN model in each time
period over the available network (i.e., which arcs have been completed) rather than using
the routing phase of the heuristic to calculate this performance. The reason that this is done is
because the ILN model is used as a measure of the physical operations of the network, so that
we are concerned with measuring the physical operations of the available network according
to the solution returned by the heuristic. In other words, it is often not necessary for the
power/telecommuncations infrastructures to make operational decisions over the network—
the flow on these systems is determined through their physical properties. Therefore, the
ILN model can be used to measure the performance of the solution methods since it is not
necessary, for the full restoration and scheduling plan, to determine the actual operational
decisions in the network. The results of Table 1 indicate that the heuristic solution methods
run effectively in terms of both solution time and quality in order to determine these full
restoration and scheduling plans for interdependent infrastructure systems.
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Table 1 The performance of the heuristic solution methods for the 101 arc case study

Constant penalty costs Discounted penalty costs

Error bound Time (s) Error bound Time (s)

SHSM 13.3% 30 10.1% 30

M-SHSM 2.7% 68 2.5% 61

5 Conclusion

We have developed a mathematical formulation that integrates the restoration planning and
scheduling decisions in order to restore essential services provided by interdependent in-
frastructure systems. Our model has several unique features over previous research on in-
terdependent infrastructure systems: (i) the model fully integrates the restoration planning
and scheduling decisions, (ii) the objective function provides a measure of how well the ser-
vices are being restored throughout the recovery effort, rather than just at the end of it, and
(iii) the formulation of the scheduling decisions is motivated by discussions with the man-
agers of the interdependent infrastructure systems about the characteristics of the problem.
This model may be limited in its application due to the fact that the managers of these sys-
tems may not have access to advanced commercial software packages to solve mixed-integer
programming problems. Therefore, we have developed a heuristic solution method based on
ideas from network flow problems and scheduling problems. This heuristic solution is quite
flexible in terms of its application and fully utilizes the structure of the different compo-
nents of the problem. We tested our mathematical model and heuristic solution method on a
set of realistic data representing the power and telecommunications infrastructures of Man-
hattan. Our computational results demonstrate that there is significant value in integrating
the restoration planning and scheduling decisions as opposed to making them in a decen-
tralized, sequential manner. Further, we demonstrate that our heuristic solution method is
capable of providing integrated restoration plans and scheduling decisions of high quality
with computational resources similar to those that would be available to the managers of the
infrastructure systems in the time frame in which they need to make these decisions.

The work in this paper will set the foundation for several important areas of future re-
search. Solutions of high quality for the integrated restoration planning and scheduling prob-
lem can be obtained using commercial software with modest computational resources and
also with our customized heuristic for the problem. In the future, it will be interesting to
consider other specializations of our general heuristic solution method for these types of
problems. Further, the solutions to this problem could be quite useful in evaluating mitiga-
tion and pre-positioning strategies for resource allocation before the disastrous event. For
disastrous events that can be forecasted (e.g., hurricanes), we can pre-position resources
(for example, generators) in areas where services may be disrupted by the disastrous event
in order to mitigate the impact of the event on the services provided by the interdependent
infrastructure systems. In order to measure the success of the pre-positioning decisions, we
will need to evaluate them by solving the integrated restoration planning and scheduling
problem under various scenarios. Therefore, the development of customized approaches for
this problem will be important in order to determine the optimal pre-positioning strategies.
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