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Abstract Car pooling is one method that can be easily instituted and can help to resolve
a variety of problems that continue to plague urban areas, ranging from energy demands
and traffic congestion to environmental pollution. Although car pooling is becoming more
common, in practice, participant matching results are still being obtained by an inefficient
manual approach, which may possibly result in an inferior solution. In the past, when car
pooling studies have been done the problem has been treated as either a to-work problem
(from different origins to the same destination) or return-from-work problem (from the same
origin to different destinations). However, in this study we employ a time-space network
flow technique to develop a model for the many-to-many car pooling problem with multiple
vehicle types and person types. The model is formulated as an integer multiple commodity
network flow problem. Since real problem sizes can be huge, it could be difficult to find
optimal solutions within a reasonable period of time. Therefore, we develop a solution algo-
rithm based on Lagrangian relaxation, a subgradient method, and a heuristic for the upper
bound solution, to solve the model. To test how well the model and the solution algorithm
can be applied to real world, we randomly generated several examples based upon data re-
ported from a past study carried out in northern Taiwan, on which we performed numerical
tests. The test results show the effectiveness of the proposed model and solution algorithm.

Keywords Car pooling · Many-to-many · Time-space network · Multiple commodity
network flow problem · Lagrangian relaxation

1 Introduction

In the past few years, the number of private automobiles on the roads has grown significantly,
gasoline has become more and more expensive, and parking space in urban areas more and
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more difficult to find. Although public transport services are becoming more developed,
they are often incapable of effectively servicing non-urban areas where cost-effective trans-
portation systems cannot be set up. It is in this type of situation that carpooling could be an
effective solution. We define car pooling as the sharing of a private vehicle by more than
one user who needs to reach their destination following a semi-common route, between the
points of origin and destination (Ferrari et al. 2003). There are many benefits to be derived
from car pooling such as the sharing of driving costs and parking fees. From the environmen-
tal perspective, the practice results in less traffic congestion, less pollution, less stress, and
fewer accidents. In addition, it should be mentioned that not only does car pooling reduce
the traffic volume in urban areas, but it can also make up for the lack of public transporta-
tion system in outlying non-urban areas. In Taiwan, there is a particularly serious lack of
adequate public transportation system in non-urban areas, plus most of trips in these areas
are of necessity longer than those in more urban areas. Therefore, our study is focused on
non-urban carpool planning.

Although carpool is a good and old idea, it has not often been applied, at least in Taiwan.
There are many reasons for this, the major one being that it is difficult to group people
together and find a plan that is mutually satisfactory. Some car pooling organizations have
set up web sites for consulting or exchanging information about partners’ travel routes,
departure/arrival times, departure/arrival location or requests, however, users can only find
matches by exchanging data or by simple logic program. This means that the matching
results obtained are not very efficient, possibly resulting in an inferior solution.

There have actually been only a few studies of the carpool optimization problem. Ferrari
et al. (2003) did design several different automatic and heuristic data processing routines
based on savings functions to support efficient matching in carpool schemes. The problem
involved locating users at their origin locations who needed to reach the same destination
point given temporal and topographical constraints. Baldacci et al. (2004) discussed car
pooling as a transportation service organized by a large company which encouraged its
employees to pick up colleagues while driving to/from work, to minimize the number of
private cars traveling to/from the company site. Their model was formulated as a dial-a-
ride problem/pickup and delivery vehicle routing problem. To solve this model they also
proposed both an exact and a heuristic method, based on two integer programming formula-
tions. The exact method is based on a bounding procedure that combines three lower bounds
derived from different relaxations of the problem. A valid upper bound is obtained by the
heuristic method, which transforms the Lagrangian lower bound solution into a feasible so-
lution. Wolfler-Calvo et al. (2004) presented an integrated system for the organization of a
car pooling service, using several current information and communication technologies: i.e.,
the web, GIS and SMS. At the core of the system is an optimization module which solves the
daily car pooling problem heuristically. The service is supported by a database of potential
users (company employees that commute daily from their home to the workplace).

It should be mentioned that Fagin and Williams (1983) presented a simple carpool
scheduling algorithm where driver fairness is considered, in which no penalty is assessed
for a carpool member who does not ride on any given day. Naor (2005) and Coppersmith et
al. (2005) also solved the same problem with a different algorithm. However, they did not
decide on vehicle routes or schedules, which is different from our study.

As mentioned above, car pooling is an activity based on the shared use of private vehi-
cles by participants who need to reach their destination by a semi-common route. In prac-
tical terms this most often leads to many-origins-to-many-destinations (henceforth called
many-to-many) car pooling problems. For example, a transportation service can be orga-
nized by the government designed to encourage commuters to pick up colleagues while driv-
ing to/from work, especially when the group company has many branches or sub-companies.
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This car pooling problem can be generalized as a many-to-many problem, which includes the
many-origins-to-one-destination (henceforth called many-to-one) and one-origin-to-many-
destinations (henceforth called one-to-many) car pooling problems.

There has been some research on the “dial-a-ride” problem, which is closely related to
the car pooling problem. The dial-a-ride problem consists of designing vehicle routes and
schedules for n users who specify pickup and delivery requests between origins and destina-
tions. In the standard version, transport is supplied by a fleet of m identical vehicles from the
same depot (Cordeau and Laporte 2007). A number of studies have been carried out dealing
with these types of problems. For example, Teodorovic and Radivojevic (2000), Colorni and
Righini (2001), Cordeau and Laporte (2003a, 2003b, 2007), Diana and Dessouky (2004),
Rekiek et al. (2005), Xiang et al. (2006), Wong and Bell (2006), Cordeau (2006), Coslovich
et al. (2006), Ropke et al. (2007), Melachrinoudis et al. (2007), Wolfler-Calvo and Colorni
(2007), and Jørgensen et al. (2007). The major difference between the dial-a-ride problem
and our problem is the vehicle ownership. In the former type of problem, it is assumed that
there are full-time drivers that service all of the passengers. In our problem, the vehicles be-
long to the participants themselves, who share the use of their cars and take turns as drivers
to pick up the others. In other words, the drivers are also subject to a transportation demand.

It is also found that individuals were matched in past car pooling studies. However, in
reality, groups may also need to be matched in the car pooling problem. Each group may
contain more than one individual. In addition, in most past studies (whether on car pool-
ing or dial-a-ride problems) only a single vehicle type and a single person type have been
considered. However, we consider multiple vehicle types and person types so as to conform
more closely to reality, although this does make our problem more complicated and diffi-
cult to solve. As a result, it is difficult to apply past approaches to our problem, which is a
many-to-many car pooling problem with multiple vehicle types and person types.

The many-to-many car pooling problem, with its multiple vehicle and person types, in-
volves complicated analysis among numerous time-window and space constraints which
are highly correlated to each other, coupled with many choice constraints between vehicle
and person types. It is difficult to use the traditional integer programming techniques (e.g.,
traditional vehicle routing models) to formulate and efficiently solve this type of problem.
On the other hand, the time-space network method has been popularly employed to solve
conveyance scheduling/routing problems, because it provides a natural and efficient way to
represent multiple conveyance routings with multiple ODs (origins-destinations) in the di-
mensions of time and space. Although the resulting model scale is generally enlarged due
to extension in the dimension of time, complicated time-related constraints can normally
be easily modeled for realistic problems, particularly in comparison with the space network
models. Coupled with the development of efficient algorithms, the time-space models (usu-
ally formulated as multiple commodity network flow problems or network flow problems
with side constraints) can be effectively and efficiently solved. For examples, see Yan et
al. (2006b) and Yan and Shih (2009). Based on these characteristics, the time-space net-
work technique could be a suitable way for solving many-to-many car pooling problems,
although, to the best of our knowledge, there has not yet been any model formulated using
this technique to solve this type of problem. Therefore, in this study we employ the time-
space network flow technique to develop a model designed to help the authorities solve the
many-to-many car pooling problem with multiple vehicle types and person types. Certainly,
the development of other models using other methods for solving this type of problem and
comparison with our model could be a direction of future research.

The model is formulated as an integer multiple commodity network flow problem that is
characterized as NP-hard (Garey and Johnson 1979). Since real problem sizes are expected
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to be huge, the model is difficult to optimally solve within a reasonable time. To efficiently
solve the model for practical-sized problems, we develop a solution algorithm based on
Lagrangian relaxation, a sub-gradient method and a heuristic for the upper bound solution.
The development of this model, together with the Lagrangian relaxation-based algorithm,
is the focus of this study. The model and the solution algorithm are anticipated to function
as an effective planning tool. The rest of this paper is organized as follows: The problem
is outlined in Sect. 2, the model is introduced in Sect. 3, the development of the solution
algorithm is elucidated in Sect. 4, and numerical tests are performed in Sect. 5. Finally, we
conclude in Sect. 6.

2 Problem description

This study is aimed at developing a car pooling model and a solution algorithm suitable
for practical applications. It is very complicated to simultaneously and optimally determine
every participant’s role (driver or passenger), driver schedules, and passenger deliveries,
as well as to match several participants in a car. This involves complicated movements of
drivers (or vehicles) and passengers in terms of time and space. The objective is to minimize
the sum of the route cost, time cost and the penalty for unserved carpool members, while
satisfying the participant related constraints. To simplify the description of this complicated
problem, we first define the terminologies used.

Carpool member group: A carpool member can request to share the same trip with his/her
friends, in which case they are treated as a group. Each carpool member group (CG) is
associated with a data set. The number of persons in a CG can be greater than one, but
cannot exceed the vehicle capacity (or a planning capacity, less than the true vehicle ca-
pacity, which might be set by the authorities due to operational considerations). CGs can
be further divided into CVGs and CNGs, which are explained below.

CNG: A CNG is a CG which cannot provide a vehicle. A CNG will be assigned to act as
passengers or determined not to be serviced.

CVG: A CVG is a CG which can provide a vehicle with a driver. A CVG could be assigned
to act as a driver with passengers or have only passengers (similar to a CNG) utilizing the
optimization process to be described later. In order to discriminate between a CNG and a
pure passenger CVG, a new term “CVPG” is used to represent a CVG when it is assigned
to act as passengers.

CNG characteristic: CNGs can be divided into four types according to sex and smoking
status: non-smoking female, smoking female, non-smoking male and smoking male. If
there is more than one member in a CNG and their characteristics are different, they should
be identified by one characteristic. It should be mentioned that in Taiwan non-smokers and
females are disadvantaged in car pooling. In order to protect them, if there are females and
males in a CNG, then the CNG characteristic is regarded as male; if there are non-smokers
and smokers in a CNG, then the CNG characteristic is regarded as a smoker.

CNG request: This indicates the CNG characteristic of partners requested by a CNG to
participate in the carpool plan. CNG requests can be divided into nine different types:
(1) riding with non-smoking females; (2) riding with smoking females; (3) riding with
females (do not care smoking); (4) riding with non-smoking males; (5) riding with smoking
males; (6) riding with males (do not care about smoking); (7) riding with non-smokers (do
not care about sex); (8) riding with smokers (do not care about sex); (9) non-requester (no
preference). However, the categories can be simplified (according to Taiwan customs) by
removing requests for riding with males or smokers only, because these kinds of CNGs
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Table 1 CNG characteristic and request analysis

Characteristics Request

Non-smoking female Female Non-smoking No request

Non-smoking female (1) (2) (3) (4)

Smoking female – (5) – (6)

Non-smoking male – – (7) (8)

Smoking male – – – (9)

Note: “–” means the corresponding CNG type is illegitimate

can be matched with non-requester CNGs, after excluding requests for riding with females
or non-smokers. As a result, CNG requests can be compressed into four types: (1) riding
with non-smoking females; (2) riding with females; (3) riding with non-smokers; (4) non-
requesters. Note that passengers within a CNG can make only one request, which should
comply with the protection of non-smokers and females only, as mentioned above.

CNG type: This leaves us with four characteristics and four request types. After remov-
ing illegitimate requests (such as a smoker requesting to ride with non-smokers, or males
request to ride with females only), we are left with nine different CNG types: (1) non-
smoking females who request to ride with non-smoking females; (2) non-smoking females
who request to ride with only females; (3) non-smoking females who request to ride with
non-smokers; (4) non-smoking females who have no request; (5) smoking females who
request to ride with females; (6) smoking females who have no request; (7) non-smoking
males who request to ride with non-smokers; (8) non-smoking males who have no request;
(9) smoking males who have no request; see Table 1.

CVG/Vehicle type: Based on the four CNG requests, CVGs/vehicles (which are provided
by the CVGs) can be divided into four types: “non-smoking female”; “female”; “non-
smoking” and “general.” Note that if the members in a CVG agree to allow smoking, then
this CVG cannot provide a “non-smoking female” or “non-smoking” type of vehicle. Sim-
ilarly, if a CVG contains male members, then it cannot provide the “non-smoking female”
or “female” type of vehicle.

CNG/CVG types and vehicle types are shown in Fig. 1. The non-smoking female vehicles
can service CNGs of types (1), (2), (3), (4), and CVGs of type (1); the female vehicles can
service CNGs of types (2), (4), (5), (6), and CVGs of type (2); the female vehicles can
service CNGs of types (3), (4), (7), (8), and CVGs of type (3); and the general vehicles can
service CNGs of types (4), (6), (8), (9), and CVGs of type (4).

In this study, the data set provided for each CG must be known beforehand including:

• The CG’s origin and destination.
• Time window: Time window is composed of a CG’s earliest departure time and its last

arrival time. The length of the time window indicates the longest travel time that can be
tolerated by the CG, which can influence the matching success and efficiency. If the length
of time window is too short, then matching is difficult. To better understand the influence
of the length of time window, we perform a sensitivity test in Sect. 5.

• The number of people: The number of members requesting the same trip in the CG.
• Vehicle or no vehicle: If a vehicle can be provided, then it will be labeled a CVG; other-

wise, it will be labeled a CNG.
• Vehicle capacity and vehicle type: These are provided by the CVG.
• CNG type.
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Fig. 1 Relations between CNG/CVG types and vehicle types

In conclusion, the many-to-many car pooling problem involves selecting the CVGs to
drive and to be carried (i.e., as CVPGs), matching all CNGs and CVGs and simultaneously
identifying the routes of all CVGs and CNGs. The goal is to minimize the service costs,
subject to the CG (whether CNG or CVG) time window, CNG type, vehicle type, CVPG
selection, and vehicle capacity constraints. There is a penalty for unserved CNGs. Note that
the objective function is adjustable and can be modified. Since most vehicles for carpool
actives in Taiwan are four-passenger vehicles, the vehicle capacity is assumed to be five
(including the driver and four passengers) in this study for simplicity. The car pooling model
can be extended to include vehicles with different capacity in future.

3 The model

A time-space network technique is applied to construct a car pooling model for the purpose
of minimizing the system cost. This model demands the optimal management of CVG and
CNG movements/matching within the network. The major elements in the modeling include
the CVG vehicle-flow time-space networks, the CVG passenger-flow time-space networks,
the CNG passenger-flow time-space networks, other relational constraints, and the mathe-
matical formulation. Note that a CVG could be assigned to act as a driver with passengers
or as pure passengers (a CVPG). The CVG vehicle-flow time-space networks and the CVG
passenger-flow time-space networks are used to formulate the potential movements of the
two types of CVGs.



Ann Oper Res (2011) 191:37–71 43

Fig. 2 CVG vehicle-flow time-space networks

3.1 The CVG vehicle-flow time-space networks

As shown in Fig. 2 each CVG vehicle-flow time-space network represents potential move-
ments for CVGs and vehicle within a certain time period between certain locations. A layer
in the CVG vehicle-flow time-space networks is associated with a specific ODTGV pair (ori-
gin, destination, time-window, group, and vehicle type), as shown in Fig. 2. In other words,
the number of network layers is equal to the number of ODTGV pairs. Note that our problem
allows a carpool member to share the same trip with his/her friends, which are then treated
as a group. To avoid mixed flows of groups with different numbers of members, different
networks are built for groups with a different numbers of members. In other words, groups
are classified into one-member groups, two-member groups, etc. For example, in Fig. 2, the
ODTGV pair of (1, 8, 1, 1, 2) in the second layer of network indicates the ODTGV pair of
one-member CVGs providing type 2 vehicles, form L1 to L8, within the type 1 time window.
The horizontal axis represents the location; the vertical axis the time duration. “Nodes” and
“arcs” are the two major components in the network. A node stands for a location at a spe-
cific time, while an arc designates an activity for the vehicles. The arc flows express the flow
of CVGs (each being associated with a vehicle) in the network. The length of the network
is set according to the length of the time window specified for each CVG. The starting time
for the time window (the network begins) is the earliest time at which the CVG leaves the
original location; the ending time for the time window (the network ends) is the last time at
which the CVG can arrive at the destination. The length of each CVG vehicle-flow network
may be different. In addition, the node of origin, when the network begins, is a supply node.
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The destination node, when the network ends, is a demand node. The flow unit for the CVG
vehicle-flow network is a “group.” The node supply/demand denotes the amount of asso-
ciated CVGs that will flow in the network. Since a CVG may be assigned as a CVPG, the
node supply/demand is set as a variable. This will be addressed in more detail in the CVG
passenger-flow time-space networks. There are two types of arcs.

(1) Vehicle travel arc
A vehicle travel arc represents a CVG trip (associated with a vehicle) from one time-

space point (location and time) to another. In practice, after CVGs have departed from
their origin point, they do not return to the origin to service other CGs. Similarly, when
CVGs have arrived in their destination, they do not depart to service other CGs. There-
fore, at each time-space point associated with the CVGs’ origin, we need only build a
travel arc from their origin to the other zones. Similarly, at each time-space point as-
sociated with their destination, we need only build a travel arc from the other zones to
the destination. All possible vehicle travel arcs within a reasonable block of time are
installed into the network. Each arc contains information about the departure time, the
departure location, the arrival time, the arrival location, and the travel cost of a CVG.
The time block for a vehicle travel arc is calculated as from the time when a vehicle is
prepared for travel to the time when this travel is finished. The arc cost is the vehicle
operating cost plus a time cost for the members of a CVG to travel between locations.
The arc flow’s upper bound is infinity. The arc flow’s lower bound is zero, implying that
no CVG travels on this arc.

(2) Vehicle holding arc
A vehicle holding arc represents the holding of CVGs (each being associated with

a vehicle) at a location in a time period. The arc cost denotes the time cost incurred
for holding a CVG at this location, except the origin/destination location, in the cor-
responding time period. Note that CVGs are not really held at their origin/destination,
since they can be notified in advance. Therefore, the vehicle holding arc cost associated
with the CVGs’ origin/destination location is set to zero. Naturally, the arc costs can be
modified to match the planner’s needs. The arc flow’s upper bound is infinity. The arc
flow’s lower bound is zero, implying that no CVG is held on this arc.

3.2 CVG passenger-flow time-space networks

Each CVG passenger-flow time-space network represents the potential movement of
CVPGs, when the associated CVGs are assigned to be pure passenger CVGs, within a
certain time period and at certain locations, as shown in Fig. 3. To facilitate problem solv-
ing, these networks are designed to be symmetrical to the CVG vehicle-flow time-space
networks; the number of network layers and network lengths are the same as that of the
CVG vehicle-flow networks. In addition, side constraints should be used to ensure that each
CVG only can flow in only one network between the CVG vehicle-flow and the associated
CVG passenger-flow networks. The horizontal and vertical axes are the same as those de-
scribed in the CVG vehicle-flow networks. The node of origin, where the network begins,
is a supply node. The node of destination, where the network ends, is a demand node. The
flow unit for the CVG passenger-flow network is a “group.” Since a CVG could be assigned
to having a car or a CVPG during the optimization process, the supply/demand in each
CVG vehicle-flow time-space network is set as a supply/demand variable. Hence, the node
supply/demand in each CVG passenger-flow time-space network is set to be the amount
of CVGs associated with the corresponding ODTGV pair, minus the node supply/demand
variable of the corresponding CVG vehicle-flow network. There are two types of arcs.
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Fig. 3 CVG passenger-flow time-space networks

(1) CVPG travel arc
A CVPG travel arc represents the transport of CVPGs from one time-space point

(location and time) to another; for example, if arc (a, b) has 2 units of flow, it means that
2 CVPGs are transported from L1 at 7:15 to L3 at 7:30. The transportation time is the
same as the corresponding time block for the associated CVG trip in the corresponding
CVG vehicle-flow network. The arc cost is a variable time cost for transporting a CVPG
between locations. The arc flow’s upper bound is infinity. The arc flow’s lower bound is
zero.

(2) CVPG holding arc
A CVPG holding arc indicates the holding of CVPGs at some location in some time

period; for example, if arc (c, d) has 1 unit of flow, it means that a CVPG is held at
L4 from 7:15 to 7:30. The arc cost is the time cost incurred for holding a CVPG at this
location in the corresponding time period. Similar to the design of holding arcs in the
CVG vehicle-flow networks, CVPGs do not need to arrive before their departure time or
stay after their arrival time. Therefore, the CVPG holding arc cost associated with the
corresponding origin and destination locations is set to zero. The arc flow’s upper bound
is infinity. The arc flow’s lower bound is set to be zero.

3.3 CNG passenger-flow time-space networks

To facilitate problem solving, these networks are designed to be similar to the CVG vehicle-
flow time-space networks; see Fig. 5. The horizontal and vertical axes are the same as those
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Fig. 4 Example of a CNG
passenger-flow time-space
network

in the CVG vehicle-flow network. However, each CNG passenger-flow time-space network
associated with a specific ODTGV pair represents a potential movement of CNGs within
a certain time period and certain locations. Unlike a CVG which is associated with a given
vehicle type, a CNG associated with an ODTG pair (origin, destination, time-window, and
group) could be assigned to different vehicle types. Thus, a CNG with an ODTG pair could
be built associated with different vehicle type networks. For example, for a non-requesting
non-smoking female CNG we build a four-layer CNG passenger-flow time-space network,
to differentiate whether they ride in the non-smoking female vehicle, female vehicle, non-
smoking vehicle, or the general vehicle; see Fig. 4.

The networks for each CNG are designed similarly to those in the CVG vehicle/passen-
ger-flow time-space networks. To illustrate the node supply/demand specified in each net-
work for a CNG we can use Fig. 4 as an example. First assume that the number of non-
requesting non-smoking female CNGs is f (a constant) and the node supply/demand in the
CNG passenger-flow network associated with the non-smoking female vehicle is set to be γ

(a variable); associated with the female vehicle it is set to be ε (a variable); and associated
with the non-smoking vehicle it is set to be φ (a variable). Since the sum of CNGs assigned
to all of the four vehicle types is f , the supply/demand in the CNG passenger-flow network
associated with the general vehicle is then set to be f − γ − ε − φ. There are three types of
arcs.

(1) CNG travel arc
A CNG travel arc represents the transport of CNGs from one time-space point (loca-

tion and time) to another. The transportation time is the same as the corresponding time
block for the associated CVG trip in the CVG vehicle-flow time-space network. The arc
cost is a variable time cost for transporting a CNG between locations. The arc flow’s
upper bound is infinity. The arc flow’s lower bound is zero.

(2) CNG holding arc
A CNG holding arc indicates the holding of CNGs at some location in some time

period. The arc cost is the time cost incurred for holding a CNG at this location in the
corresponding time period. Similar to the design of holding arcs in the CVG passenger-
flow networks, CNGs do not need to arrive early before their departure time or stay
after their arrival time. Therefore, the CNG holding arc cost is set to zero associated
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Fig. 5 CNG passenger-flow time-space networks

with their corresponding origin and destination locations. The arc flow’s upper bound is
infinity. The arc flow’s lower bound is set to be zero.

(3) CNG unserved arc
A CNG unserved arc indicates CNGs which cannot be serviced for this ODTGV pair.

A CNG unserved arc connects the origin supply node to the destination demand node.
The arc cost is set as a large penalty per person multiplied by the number of people in
the CNG. The arc flow’s upper bound is infinity and the arc flow’s lower bound is zero,
indicating that all CNGs from the corresponding ODTGV pair are serviced.

3.4 Other relational constraints

In addition to the flow conservation constraints for all nodes in the above three types of
networks, there are several relational constraints between/among different networks that
need to be considered in the modeling.

(1) Supply/demand constraints between the CVG vehicle and passenger-flow networks
The sum of supply/demand in the paired CVG vehicle and passenger-flow networks

must be equal to the number of CVGs participating in the carpool plan, for each ODTGV
pair.

(2) Supply/demand constraints for the CNG passenger-flow networks
The sum of supply/demand among the CNG passenger-flow networks associated

with all possible vehicle types must be equal to the number of CNGs participating in the
carpool plan, for each ODTG pair.
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(3) Vehicle capacity constraints
The sum of all members, with respect to all associated CVGs, CVPGs and CNGs, in

each vehicle must not exceed the vehicle capacity.

3.5 The model formulation

Given the CVG vehicle-flow, CVG passenger-flow, and the CNG passenger-flow time-space
networks, as well as the relational constraints, the model can now be formulated as an integer
program. The objective is to simultaneously “flow” the CVGs and the CNGs in all networks,
at a minimum cost. We now list the notations and symbols used in the model formulation:
Sets:

VAm/VNm: the set of all arcs/nodes in the mth CVG vehicle-flow network, which is associ-
ated with a ODTGV pair;

VPAm/VPNm: the set of all arcs/nodes in the mth CVG passenger-flow network, which is
associated with the mth CVG vehicle-flow network;

PAkn/PNkn: the set of all arcs/nodes in the (k, n)th (namely the kth ODTG pair of CNG
rides the nth type of vehicle) CNG passenger-flow network; since the CNGs in an ODTG
pair can choose different vehicle types, for ease of model formulation, we use two indexes
(k and n) to represent a ODTGV pair.

M : the set of all CVG vehicle-flow networks;
H : the set of all CVG passenger-flow networks;
K : the set of all CNG passenger-flow networks;
ODTG: the set of all ODTG pairs (origin, destination, time-Window, and group);
VSm: the set of all supply nodes in the mth CVG vehicle-flow network;
VDm: the set of all demand nodes in the mth CVG vehicle-flow network;
VTm: the set of all transfer nodes in the mth CVG vehicle-flow network;
VPSm: the set of all supply nodes in the mth CVG passenger-flow network;
VPDm: the set of all demand nodes in the mth CVG passenger-flow network;
VPTm: the set of all transfer nodes in the mth CVG passenger-flow network;
PSkn: the set of all supply nodes in the (k, n)th CNG passenger-flow network;
PDkn: the set of all demand nodes in the (k, n)th CNG passenger-flow network;
PTkn: the set of all transfer nodes in the (k, n)th CNG passenger-flow network;
FNV : the set of all CNG passenger-flow networks which contain the CNGs that can ride
the “female and non-smoking” type of vehicle;

FV : the set of all CNG passenger-flow networks which contain the CNGs that can ride the
“female” type of vehicle;

NV : the set of all CNG passenger-flow networks which contain the CNGs that can ride the
“non-smoking” type of vehicle;

GV : the set of all CNG passenger-flow networks which contain the CNGs that can ride the
“general” type of vehicle;

VTA: the set of all routes between every two-location pair;
QV : the set of all vehicle types;
PCHn: the set of all CNG passenger-flow networks which contain the CNGs that can ride
the nth type of vehicle;

VCHn: the set of all CVG vehicle-flow networks which contain the nth vehicle type.

Parameters:

vm: the number of CVGs supplied to the mth CVG vehicle-flow network;
cm

ij : the arc(i, j) cost in the mth CVG vehicle-flow network;
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tmij : the arc(i, j) cost in the mth CVG passenger-flow network;
tkn
ij : the arc(i, j) cost in the (k, n)th CNG passenger-flow network;
ak : the number of non-smoking female CNGs which request to ride with non-smoking fe-
males for the kth ODTG pair;

bk : the number of non-smoking female CNGs which request to ride with females for the
kth ODTG pair;

dk : the number of non-smoking female CNGs which request to ride with non-smokers for
the kth ODTG pair;

f k : the number of non-smoking female CNGs which have no request for the kth ODTG
pair;

gk : the number of smoking female CNGs which request to ride with females for the kth
ODTG pair;

hk : the number of smoking female CNGs which have no request for the kth ODTG pair;
lk : the number of non-smoking male CNGs which request to ride with non-smokers for the
kth ODTG pair;

ok : the number of non-smoking male CNGs which have no request for the kth ODTG pair;
pk : the number of smoking male CNGs which have no request for the kth ODTG pair;
em: the number of people per group in the mth CVG passenger-flow network;
ekn: the number of people per group in the (k, n)th CNG passenger-flow network;
qm: the vehicle’s remaining capacity in the mth CVG vehicle-flow network; which equals
the vehicle capacity excluding the number of people in a CVG.

Variables:

xm
ij : the flow of arc(i, j) in the mth CVG vehicle-flow network;

zm
ij : the flow of arc(i, j) in the mth CVG passenger-flow network;

ykn
ij : the flow of arc(i, j) in the (k, n)th CNG passenger-flow network;

ωm: the supply variable in the mth CVG vehicle-flow network, representing the number of
CVGs driving a vehicle;

λk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the non-smoking female vehicle, representing the number of non-smoking female
CNGs which request to ride with females for the kth ODTG pair, that are assigned to
non-smoking female vehicles;

βk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the non-smoking female vehicle, representing the number of non-smoking female
CNGs which request to ride with non-smokers for the kth ODTG pair, that are assigned to
non-smoking female vehicles;

γ k : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the non-smoking female vehicle, representing the number of non-smoking female
CNGs which have no request, that are assigned to non-smoking female vehicles;

εk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the female vehicle, representing the number of non-smoking female CNGs which
have no request, that are assigned to female vehicles;

φk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the non-smoking vehicle, representing the number of non-smoking female CNGs
which have no request, that are assigned to non-smoking vehicles;

θk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the female vehicle, representing the number of smoking female CNGs which have
no request, that are assigned to female vehicles;
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δk : the supply variable in the CNG passenger-flow network associated with the kth ODTG
pair and the non-smoking vehicle, representing the number of non-smoking male CNGs
which have no request, that are assigned to non-smoking vehicles.

The model is formulated as an integer multiple commodity network flow problem as
follows:

Model (A)

Min
∑

m∈M

∑

(i,j)∈VAm

cm
ij x

m
ij +

∑

m∈H

∑

(i,j)∈VPAm

emtmij zm
ij +

∑

(k,n)∈K

∑

(i,j)∈PAkn

ekntkn
ij ykn

ij (1)

The objective function (1) is to minimize the system cost, which includes CVG traveling
cost (including vehicle operating cost and CVG time cost), CVPG time cost, and CNG time
cost including the penalty for unserved CNGs.

S.t.
∑

j∈VNm

xm
ij = ωm ∀i ∈ VSm, ∀m ∈ M (2)

∑

j∈VNm

xm
hj −

∑

i∈VNm

xm
ih = 0 ∀h ∈ VTm, ∀m ∈ M (3)

−
∑

i∈VNm

xm
ij = −ωm ∀j ∈ VDm, ∀m ∈ M (4)

∑

j∈VPNm

zm
ij = vm − ωm ∀i ∈ VPSm, ∀m ∈ H (5)

∑

j∈VPNm

zm
hj −

∑

i∈VPNm

zm
ih = 0 ∀h ∈ VPTm, ∀m ∈ H (6)

−
∑

i∈VPNm

zm
ij = −(vm − ωm) ∀j ∈ VPDm, ∀m ∈ H (7)

Constraint (2) ensures flow conservation at the supply node in each CVG vehicle-flow
network. Constraint (3) ensures flow conservation at every transfer node in each CVG
vehicle-flow network. Constraint (4) ensures flow conservation at the demand node in each
CVG vehicle-flow network. Constraint (5) ensures flow conservation at the supply node in
each CVG passenger-flow network. Note that (vm − ωm) represents the CVPG supply in the
mth CVG passenger-flow network. Constraint (6) ensures flow conservation at every trans-
fer in each CVG passenger-flow network. Constraint (7) ensures flow conservation at the
demand node in each CVG passenger-flow network.

∑

j∈PNkn

ykn
ij = ak + λk + βk + γ k ∀i ∈ PSkn, ∀k ∈ ODTG, ∀n ∈ FNV (8)

∑

j∈PNkn

ykn
ij = (bk − λk) + εk + gk + θk ∀i ∈ PSikn, ∀k ∈ ODTG, ∀n ∈ FV (9)

∑

j∈PNkn

ykn
ij = (dk − βk) + φk + lk + δk ∀i ∈ PSkn, ∀k ∈ ODTG, ∀n ∈ NV (10)
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∑

j∈PNkn

ykn
ij = (f k − γ k − εk − φk) + (hk − θk) + (ok − δk) + pk

∀i ∈ PSkn, ∀k ∈ ODTG, ∀n ∈ GV (11)

−
∑

i∈PNkn

ykn
ij = −(ak + λk + βk + γ k) ∀j ∈ PDkn, ∀k ∈ ODTG, ∀n ∈ FNV (12)

−
∑

i∈PNkn

ykn
ij = −((bk − λk) + εk + gk + θk)

∀j ∈ PDkn, ∀k ∈ ODTG, ∀n ∈ FV (13)

−
∑

i∈PNkn

ykn
ij = −((dk − βk) + φk + lk + δk)

∀j ∈ PDkn, ∀k ∈ ODTG, ∀n ∈ NV (14)

−
∑

i∈PNkn

ykn
ij = −((f k − γ k − εk − φk) + (hk − θk) + (ok − δk) + pk)

∀j ∈ PDkn, ∀k ∈ ODTG, ∀n ∈ GV (15)
∑

j∈PNkn

ykn
hj −

∑

i∈PNkn

ykn
ih = 0 ∀h ∈ PTkn, ∀(k, n) ∈ K (16)

Constraints (8)–(11) ensure flow conservation at the supply node in the CNG passenger-
flow networks, for CNGs taking the non-smoking female, female, non-smoking and general
types of vehicle. To better understand these constraints, from Fig. 1 we know that the amount
of CNGs which ride in “non-smoking female” vehicles = all of type 1 CNGs (a constant) +
part of type 2 CNGs (a variable) + part of type 3 CNGs (a variable) + part of type 4
CNGs (a variable) for the same ODTG pair. Constraint (8) can now be transformed into∑

j∈PNkn ykn
ij = ak +λk +βk +γ k . Constraints (9)–(11) can be generated similarly. Similar to

Constraints (8)–(11), Constraints (12)–(15) ensure flow conservation at the demand node in
the CNG passenger-flow networks, for CNGs taking the non-smoking female, female, non-
smoking and general types of vehicle. Constraint (16) ensures flow conservation at every
transfer node in each CNG passenger-flow network.

∑

kn∈PCHp

ekn × ykn
ij +

∑

m∈PCHp

em × zm
ij ≤

∑

m∈VCHp

qm × xm
ij

∀(i, j) ∈ VTA, ∀p ∈ QV (17)

bk − λk ≥ 0 ∀k ∈ ODTG (18)

dk − βk ≥ 0 ∀k ∈ ODTG (19)

f k − γ k − εk − φk ≥ 0 ∀k ∈ ODTG (20)

hk − θk ≥ 0 ∀k ∈ ODTG (21)

ok − δk ≥ 0 ∀k ∈ ODTG (22)

vm − ωm ≥ 0 ∀m ∈ M (23)

Constraint (17) ensures that the sum of all passengers, with respect to all associated
CVPGs and CNGs, does not exceed the vehicle’s remaining capacity on every route be-
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tween two locations for every vehicle type. It should be mentioned that the arc flow unit in
the CNG passenger-flow time-space network is the “group,” but the vehicle capacity is the
“person.” Therefore, each arc’s flow must be multiplied by a corresponding parameter ekn

which represents the number of people per CNG. For example, if the network is associated
with a CNG of two people, then ekn is 2. Similarly, each arc’s flow in the CVG passenger
networks must be multiplied by a corresponding parameter em which represents the num-
ber of people per CVG. Constraints (18)–(22) ensure that the CNG supply in each CNG
passenger-flow network is nonnegative. Constraint (23) ensures that the CVPG supply in
each CVG vehicle-flow network is nonnegative.

xm
ij ≥ 0, integer ∀(i, j) ∈ VAm, ∀m ∈ M (24)

ykn
ij ≥ 0, integer ∀(i, j) ∈ PAkn, ∀(k, n) ∈ K (25)

zm
ij ≥ 0, integer ∀(i, j) ∈ PAm, ∀m ∈ H (26)

ωm ≥ 0, integer ∀m ∈ M (27)

λk ≥ 0, integer ∀k ∈ ODTG (28)

βk ≥ 0, integer ∀k ∈ ODTG (29)

γ k ≥ 0, integer ∀k ∈ ODTG (30)

εk ≥ 0, integer ∀k ∈ ODTG (31)

φk ≥ 0, integer ∀k ∈ ODTG (32)

θk ≥ 0, integer ∀k ∈ ODTG (33)

δk ≥ 0, integer ∀k ∈ ODTG (34)

Constraints (24)–(34) ensure the integrality and non-negativity of all variables. It should
be mentioned that our model is designed for the many-to-many car pooling problem with
multiple vehicle types and person types. With suitable reduction of networks or modification
of parameters, the model can be simplified to solve the many-to-one, one-to-many, single
vehicle type, or single person type car pooling problems. Moreover, the model is designed to
be flexible enough to be modified to match the planner’s needs. For example, if the objective
is to minimize the number of vehicles used, then the objective function can be modified to be∑

m∈M

∑
i∈VSm

∑
j∈VNm cm

ij x
m
ij , where cm

ij is modified to be 1. Finally, to ensure the correct-
ness of the model, several small examples are designed and solved using the mathematical
programming solver, CPLEX. Since these examples are so small, the obtained solutions can
be manually verified to be correct. One of the examples is shown in the Appendix.

4 Solution algorithm

The model is formulated as an integer multiple commodity network flow problem which is
characterized as NP-hard (Garey and Johnson 1979). We first tried using the mathematical
programming solver, CPLEX 11.0, to directly solve the problem. Note that the solution
method used in CPLEX is a branch and bound algorithm, coupled with the simplex method
to solve the linear relaxation problem in each sub-problem. It was found that after 5 hours we
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could not find an optimal solution (or even a feasible solution) for many problem instances.
We thus developed a heuristic algorithm to solve the problem.

Lagrangian relaxation with subgradient methods (LRS) is known for its fast convergence
and efficient allocation of memory space when solving large-scale integer linear programs
(Fisher 1981). Therefore, we suggest using LRS for the approximation of near-optimal so-
lutions. The solution process is described below. We first relax constraint (17) to construct
a Lagrangian problem, which is then solved to procure a lower bound for the optimal solu-
tion. Second, a Lagrangian heuristic is developed to solve for the upper bound of the optimal
solution. A sub-gradient method is then utilized to revise the Lagrangian multipliers, by it-
erating the lower and upper bounds, until an acceptable convergence result is reached, or
until the number of iterations exceeds a preset number. The algorithm includes the compu-
tation of lower bound of the optimal solution, the computation of upper bound of the optimal
solution, the sub-gradient method and the solution process.

4.1 The lower bound of the optimal solution

The steps for searching for the lower bound are:

Step 1: Side constraints (17) are relaxed with the corresponding non-negative Lagrangian
multipliers π

p
ij and are added to the objective function of Model (A), resulting in

Model (B). The optimal objective value for Model (B) becomes the lower bound of
Model (A).

Step 2: Model (B) is a pure network flow problem. The problem sizes are also reduced,
so that they can be directly solved using the mathematical programming solver,
CPLEX.

Step 3: The lower bound of the optimal solution is obtained.

Model (B):

Min
∑

m∈M

∑

(i,j)∈VAm

emcm
ij x

m
ij +

∑

m∈H

∑

(i,j)∈VPAm

emcm
j zm

ij +
∑

(k,n)∈K

∑

(i,j)∈PAkn

eknckn
ij ykn

ij

+
∑

(i,j)∈VTA

∑

p∈QV

π
p
ij

( ∑

(k,n)∈PCHp

ekn × ykn
ij +

∑

m∈PCHp

em × zm
ij

−
∑

m∈VCHp

qm × xm
ij

)
(35)

subject to constraints (2)–(16) and (18)–(34).
It should be mentioned that constraints (8)–(15) may look like side constraints, rather

than node conservation constraints. However, they are the same as node conservation con-
straints. For example, as shown in Fig. 6, suppose that we add a super supply node with four
starting arcs and a super demand node with four ending arcs to the CNG networks associated
with the four vehicle types for an ODTG pair. Each starting arc goes from the super node to
the original supply node in each network and each ending arc goes from the original demand
node in each network to the super demand node. Let us set the super node supply/demand
to be f/–f . Now constraints (8)–(15) can be substituted by two conservation constraints,
one for the super supply node and the other for the super demand node. Similarly, the other
supply/demand constraints can be transferred into node conservation constraints. Because
the three networks in Model (B) are independent, Model (B) can be divided into three in-
dependent and pure network flow problems. As a result, Model (B) is a pure network flow
problem.
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Fig. 6 Example illustrating the
supply/demand constraints

4.2 The upper bound of the optimal solution

Since our model contains three types of networks: CVG vehicle-flow networks; CVG
passenger-flow networks; and CNG passenger-flow networks with many side constraints
across several networks, it is not simple to adjust a good feasible network flow from an in-
feasible lower bound solution. The searching process is outlined in Fig. 7, and the steps are
listed below. We first define the following symbols that are used in the Lagrangian heuristic:

CVGNs, CVPGNs, CNGNs: the CVG vehicle-flow networks, the CVG passenger-flow net-
works and the CNG passenger-flow networks, respectively.

cvgflowi , cvpgflowi , cngflowi : the CVG flows in the CVG vehicle-flow networks, the CVPG
flows in the CVG passenger-flow networks, and the CNG flows in the CNG passenger-flow
networks, in the ith step.

svi : the supply variable values in the ith step.
soli : the upper bound solution in the ith step, including the cvgflowi , cvpgflowi and
cngflowi .

obji : the objective value of soli .

The steps are listed below:

Step 0: Obtain cvgflow0 from the lower bound solution.
Step 1: Let the vehicle flows from the lower bound (Step 0) or Step 3 solution be

cvgflow0. Now, construct a modified network from the original network. For ev-
ery arc in each CVGN, the flow lower bound is reset to be the arc flow ob-
tained from cvgflow0. Finally, use CPLEX to solve the modified network to find
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Fig. 7 Upper bound search
process

cvgflow1, cvpgflow1, cngflow1 and obj1. With this step, we obtain the initial feasible
solution sol1.

Step 2: Find a new sol2 based on cvgflow1 and cngflow1 as obtained from Step 1. First, we
construct a modified network from the original network. For every vehicle/CNG
holding arc and travel arc in CVGNs/CNGNs, the flow lower bound is then re-
set to be the arc flow obtained from cvgflow1/cngflow1. Note that we do not reset
the lower bound of the unserved arc in CNGNs in order to decrease the number
of unserved CNGs. Finally, we use CPLEX to solve the modified network to find
cvgflow2, cvpgflow2, cngflow2 and obj2. In this step, the number of unserved CNGs
could be decreased, and obj2 will not be worse than obj1.

Step 3: Find a new sol3 based on cngflow2 as obtained from Step 2. First, we fix the val-
ues of variables obtained from cngflow2 in CNGNs to construct a modified model
from Model (A). Now, use CPLEX to solve the modified model to find a new sol3

(including cvgflow3, cvpgflow3 and cngflow3) and obj3. In this step, the CVGs are
assigned again to driving a vehicle or acting as a CVPG, and obj3 will not be worse
than obj2.

Step 4: If obj3 is better than obj2, then set cvgflow0 = cvgflow3 obtained from Step 3 and go
to Step 1; else, go to Step 5.

Step 5: Find a new sol5 based on sv3 from Step 3. We first fix sv3 to construct a modified
model from Model (A). Note that since sv3 is fixed, the supply/demand constraints
are removed from the modified model, which can be then divided into four inde-
pendent sub-models according to the four vehicle types. Each sub-model associated
with a vehicle type contains several CVGNs, CVPGNs, and CNGNs. Finally, use
CPLEX to solve these four sub-models, and add up the four objective values to ob-
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tain obj5. The CVG, CVPG and CNG routings can be improved in this step, and
obj5 will not be worse than obj3.

4.3 Sub-gradient method and the solution process

Yan and Young’s (1996) sub-gradient method for adjusting Lagrangian multipliers is applied
in this study due to its good performance in actual experience. The steps of the Lagrangian
relaxation-based algorithm are:

Step 1: Set iteration i = 0; the initial Lagrangian multipliers are set to be the dual variables
of constraint (17) for the optimal solution of the linear relaxation problem of Model
(A).

Step 2: Use CPLEX to solve Model (B) and get a lower bound ZL(π i). If the solution is
feasible and also satisfies the condition,

∑

(i,j)∈VTA

∑

p∈QV

π
p
ij

( ∑

(k,n)∈PCHp

ekn × ykn
ij +

∑

m∈PCHp

em × αm
ij −

∑

m∈VCHp

qm × xm
ij

)
= 0,

then we have found an optimal solution and the solution process can be stopped.
Otherwise, update the lower bound ZL.

Step 3: Apply the upper bound heuristic to find an upper bound ZU(πi), then update the
upper bound ZU .

Step 4: If the gap between the lower bound ZL, and the upper bound ZU falls within a
specified tolerance θ (i.e., |(ZU − ZL)/ZU | ≤ θ ), or the solution time reaches a
preset limit, stop the algorithm.

Step 5: Adjust πi to help improve the convergence by applying the sub-gradient method
developed in Yan and Yang (1996).

Step 6: Set i = i + 1. Go to Step 2.

It should be mentioned that, generally, the initial Lagrangian multipliers (π0) are set to be
zero. We first used Yan and Young’s (1996) sub-gradient method to revise the Lagrangian
multipliers from 0, but found that the lower bound was not good (i.e., good Lagrangian
multipliers could not be found) and the convergence was slow. Hence, we had to relax the
integer constraints in Model (A), and then use CPLEX to solve for the optimal solution to
this linear relaxation problem. We use the dual variables for constraint (17), found based on
the linear optimal solution, as the initial Lagrangian multipliers. In theory, these π values
are the optimal Lagrangian multipliers for the linear relaxation problem (Yan 1996). That
is, the optimal objective of the Lagrangian problem relaxed with these optimal Lagrangian
multipliers (i.e., the initial lower bound solution) is the same as the objective value of the
linear relaxation problem. Thus, the sub-gradient method mainly functions for the adjust-
ment of the Lagrangian multipliers in the search for various good lower bound solutions that
are used for searching for potentially good upper bound solutions, rather than improving the
lower bound solutions for this algorithm.

The complexity of the algorithm is now discussed. During each iteration, a lower bound
solution and an upper bound solution are solved after which a subgradient method is used
to revise the Lagrangian multipliers. To search for the lower bound solution, the simplex
algorithm is used to solve the relaxation problem, Model (B), whose complexity is O(2ψ)

(Papadimitriou and Steiglitz 1982), where ψ is the number of total variables. To search
for the upper bound solution, the simplex algorithm, coupled with the branch and bound
technique, is used to solve a series of models modified from the original, whose complexity
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is O(σ2ψ), assuming that σ is the number of modified models that need to be solved (i.e.,
until the solution cannot be improved). The Lagrangian multipliers are revised by the sub-
gradient method which contains a simple calculation whose complexity is O(ψ2), according
to Yan and Young (1996). Suppose that the number of iterations in the solution process is τ ,
then the algorithm complexity is τ × (O(2ψ)+O(σ2ψ)+O(ψ2)), which is approximately
O(κ2ψ), where κ = τ ×σ . Although the algorithm complexity is exponential, the algorithm
is efficient in practice as shown in the numerical tests to be described later.

Finally, it should be noted that the CVG/CVPG/CNG flows obtained above cannot yet be
directly put into practice without identifying each CVG/CVPG/CNG path in the networks.
Therefore, we use a flow decomposition method (Yan and Yang 1996) to decompose the arc
flows, in every CVG/CVG/CNG vehicle/passenger-flow time-space network, into arc chains.
Each arc chain represents a CVG/CVPG/CNG’s route/schedule in the planning period.

4.4 Another heuristic method

Based on real practices, we develop another heuristic method (herein called the AH method)
to suitably evaluate our algorithm. The steps of the AH method are as follows.

Step 1: Sort CVGs and CNGs, separately, by their time windows and then their ori-
gins/destinations. Note that we have tried to sort CVGs and CNGs, separately, by
their origins/destinations, and then by their time windows. However, after testing,
we found the results were worse.

Step 2: Assign a CVG to sequentially service the CNGs according to the sequence obtained
from Step 1, provided that the CVG/CNG/vehicle type, time window and vehicle
capacity constraints are satisfied. The process is repeated until every CVG has been
examined or all CNGs have been assigned to a CVG. Note that this step is used to
assign a CVG to act as a driver.

Step 3: Assign a pending CVG (which has not been examined in Step 2), to be serviced
by a driver (i.e., a CVG which has already been examined in Step 2), provided
that all constraints (including CVG/CNG/vehicle type, time window and capacity
constraints) are satisfied. The process is repeated until the pending CVGs are all
examined and either assigned to a driver or not (meaning that they will act as a
driver). Note that this step is used to assign a CVG to act as a CVPG (passenger)
and to decrease the number of used vehicles.

5 Numerical tests

To test the applicability of the network model and the solution algorithm in the real world,
we randomly generated several instances after referring to data from Guo’s (2003) study of
northern Taiwan. The C++ computer language, coupled with the mathematical program-
ming solver, CPLEX 11.0, was used to build the model and to develop the solution algo-
rithm. The tests were performed on a Core2 Quad Q6600 2.4 GHz with 3 GB of RAM in
the environment of Microsoft Windows XP. Finally, we analyzed the test results and carried
out a number of sensitivity analyses.

5.1 Test results

To evaluate the efficiency of the proposed model and solution algorithm for different prob-
lems, we randomly generated and tested 30 problem instances having five different network
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Table 2 Problem instances for tests

#Network layers
(CVGNs/CVPGNs/CNGNs)

Problem
instance

# Variables # Constraints # CVGs
(groups)

# CNGs
(groups)

45 (10/10/25) P1-1, Q1-1 175,457 54,080 158 376

P1-2, Q1-2 162,392 53,549 159 397

P1-3, Q1-3 144,885 51,612 132 312

70 (15/15/40) P2-1, Q2-1 264,945 62,081 257 608

P2-2, Q2-2 202,963 58,119 260 556

P2-3, Q2-3 239,070 60,248 288 496

95 (20/20/55) P3-1, Q3-1 325,198 66,763 355 681

P3-2, Q3-2 281,273 63,703 323 728

P3-3, Q3-3 345,707 68,908 460 743

120 (25/25/70) P4-1, Q4-1 380,732 72,787 550 838

P4-2, Q4-2 428,480 75,467 651 1,152

P4-3, Q4-3 443,295 74,928 701 1,206

145 (30/30/85) P5-1, Q5-1 537,659 79,895 823 1,399

P5-2, Q5-2 537,584 78,302 798 1,349

P5-3, Q5-3 453,307 76,266 808 1,439

scales. In the real world, if the number of people within a CG is three or four, then they
would not participate in the carpool plan, but would likely coordinate their own plan. The
most common CGs are those which contain one or two people. Our 30 problem instances
were divided into two classes, P and Q, each consisting of 15 instances of 5 different net-
work scales, varying from 45 to 145 layers, with an increment of 25 layers. Each scale is
composed of 3 different problem instances, as shown in Table 2. All CGs in the P-class
problem instances contain one person while in the Q-class, 20% of contain two people
and 80% contain one person. Note that the number of CGs does not affect the network
scale.

The time interval for constructing the time-space points in each network is 15 minutes,
based on the configuration and average travel speed in this area of northern Taiwan. Theoret-
ically, the higher the density of the nodes (i.e., the shorter the time interval associated with
a node), the more precise the solution; however, the larger the problem size. In practice, the
planner would select the most suitable time interval associated with a node to meet their own
actual requirements. It should be mentioned that when applied to real operations the model
solution could be slightly and manually adjusted by the planner, after optimization, to meet
the actual operating requirements (usually called a post-optimization analysis, for example,
see Yan et al. 2006a), if the model solution is not fully satisfactory due to the model design.
For example, if the time interval associated with a node is set too large, then the obtained
vehicle departure or arrival schedule can be slightly modified by a couple of minutes, to
conform to real practices. The adjustment should not affect the optimality or feasibility of
the model solution. Based on post-optimization analysis, some inaccuracy due to the model
design or solution efficiency can be resolved when handling real problems. There were 30
carpool stations in the carpool plan. All CG origins and destinations were located at these
stations. The planning time length was assumed to be 4 hours (17 time points). The average
vehicle speed was assumed to be 60 km/hr. All the cost parameters were set according to
Guo’s (2003) survey in north Taiwan and are listed as follows:
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• Vehicle operating cost: NT $5.49/km.
• CG’s traveling time cost: NT $1.13/min·person.
• CG’s holding time cost: NT $2.34/min·person.
• The penalty cost of a person who cannot be serviced: NT $1000/person.

The generation process of problem instances is now outlined. For the P-class: given the
number of total network layers, we first set the number of network layers for the CVGNs,
CVPGNs and CNGNs. Since a CVGN and a CVPGN should be built for each ODTGV pair
of CVGs, the number of CVGNs and of CVPGNs are the same. Several CNGNs were built
for every ODTG pair with its possible vehicle types for riding. All the CNGNs generated
for every ODTV pair were then summed up to match the designated number of CNGNs.
Next, we randomly generated the number of CVGs/CNGs for each ODTGV/ODTG pair.
The randomly generated number of CVGs for each ODTGV pair and that of CNGs for each
ODTG pair ranged from 1 to 35. The ratio of the number of CNGs to that of CVGs was
between 1.5 and 3.

To generate the detailed attributes for each ODTGV/ODTG pair of CVGs/CNGs,
the 30 carpool stations were first used to generate the origin and destination for each
ODTGV/ODTG pair. Then, the time-window length for each CG was set according to the di-
rect travel time plus a randomly chosen time between 2 and 6 time intervals (i.e., 30 minutes
and 90 minutes). The CVG type was randomly generated from the four CVG types (which
are the same as the four vehicle types); the CNG type was randomly generated from the nine
CNG types. Finally, every arc cost was calculated according to the given parameters. For the
generation of Q-class problem instances: for simplicity we modified the 15 P-class problem
instances to generate another 15 instances. In particular, for each P-class problem instance
we randomly choose 20% of CVGs and 20% of CNGs and set these groups to contain two
people. Note that in all P-class problem instances, every CVG/CNG contains only one per-
son. All in all as shown in Table 2, 30 problem instances of substantially large size, up to
537,659 variables and 79,895 constraints, were generated.

To evaluate how well the problem instances could be optimally solved using the exact
method (the branch and bound method), we first used the mathematical programming solver,
CPLEX 11.0, to directly solve all the problem instances. It was found that after 5 hours we
could not find a feasible solution for many problem instances (e.g., P3-1, P4-1, and P5-1).
Therefore, we used the proposed solution algorithm to solve the problem instances. The re-
sults are shown in Tables 3 and 4. We found that all problem instances were solved to within
a gap of 3% convergence, which denotes the maximum error for the feasible solution (the up-
per bound solution) from the truly optimal solution. We also found that the computation time
increased as the problem size (mainly the number of network layers) increased. The most
time-consuming instance (P5-3) was still solvable within 2 hours, which is generally effi-
cient enough for real practices, typically one day before the operating day. If necessary, bet-
ter computer equipment could be used to speed the solution process in real operations. The
number of vehicles used, the number of people unserved, the vehicle use ratios (V/C = the
number of vehicle used / the number of CVGs), the service ratios (S/P = (the number of
participants – the number of unserved people) / the number of participants), and the average
number of persons served by a vehicle (T/V = (the number of participants – the number of
unserved people) / the number of vehicles used), are shown in Tables 3 and 4. We found that
the vehicle use ratios (V/Cs) ranged from 41.96% to 60.68% (on average 49.19%) for class
P, and from 48.04% to 71.83% (on average 58.70%) for class Q. Most people were serviced
in each instance, with S/Ps ranging from 62.92% to 93.01% (on average 82.91%) for class
P, and from 56.16% to 93.52% (on average 81.19%) for class Q. The average number of
persons served by a vehicle (T/V ) ranged from 4.39 to 5.37 (on average 4.95) for class P,
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Table 3 Test results for P-class problem instances

Problem
instance

Upper
bound

Lower
bound

Gap CPU
(s)

# vehi-
cles

# unserved
people

# partic-
ipants

V/C

(%)
S/P

(%)
T/V

P1-1 236,681.40 233,257.77 0.014 3.28 73 198 534 46.20 62.92 4.60

P1-2 168,797.85 166,010.63 0.017 6.33 84 117 556 52.83 78.96 5.23

P1-3 177,169.55 174,937.32 0.013 18.50 61 154 444 46.21 65.32 4.75

P2-1 180,010.10 176,499.53 0.020 324.28 127 125 784 49.42 84.06 5.19

P2-2 242,702.65 239,344.95 0.014 29.77 144 184 816 55.38 77.45 4.39

P2-3 288,737.30 283,004.63 0.020 36.48 129 218 865 44.79 74.80 5.02

P3-1 171,435.95 166,663.53 0.028 819.86 182 92 1,036 51.27 91.12 5.19

P3-2 242,326.60 235,607.27 0.028 863.12 196 160 1,051 60.68 84.78 4.55

P3-3 426,462.10 418,857.04 0.018 1,063.59 193 331 1,203 41.96 72.49 4.52

P4-1 200,254.75 194,794.76 0.027 1,120.61 267 97 1,388 48.55 93.01 4.84

P4-2 305,586.20 301,065.32 0.015 4,316.63 307 155 1,803 47.16 91.40 5.37

P4-3 337,898.30 327,783.73 0.030 4,713.72 330 173 1,907 47.08 90.93 5.25

P5-1 363,035.15 353,014.98 0.028 6,498.02 388 173 2,222 47.14 92.21 5.28

P5-2 361,573.10 350,952.16 0.029 6,302.28 397 167 2,147 49.75 92.22 4.99

P5-3 379,371.30 368,223.18 0.029 6,885.83 400 180 2,247 49.50 91.99 5.17

Average 0.023 Average 49.19% 82.91% 4.95

Table 4 Test results for Q-class problem instances

Problem
instance

Upper
bound

Lower
bound

Gap CPU (s) # vehi-
cles

# unserved
people

# partic-
ipants

V/C

(%)
S/P

(%)
T/V

Q1-1 322,764.35 313,623.18 0.028 1.0 77 281 641 48.73 56.16 4.68

Q1-2 228,292.25 224,850.44 0.015 7.58 105 164 667 66.04 75.41 4.79

Q1-3 226,076.05 223,272.38 0.012 7.03 69 199 532 52.27 62.59 4.83

Q2-1 251,267.50 243,845.44 0.030 9.78 150 187 941 58.37 80.13 5.03

Q2-2 325,159.65 315,878.64 0.029 93.61 165 255 979 63.46 73.95 4.39

Q2-3 375,350.60 368,071.07 0.019 26.28 154 287 1,038 53.47 72.35 4.88

Q3-1 243,501.00 239,984.90 0.014 1,347.23 224 144 1,243 63.10 88.42 4.91

Q3-2 313,160.25 307,661.14 0.018 2,789.24 232 216 1,262 71.83 82.88 4.51

Q3-3 539,522.25 529,289.25 0.019 655.00 221 423 1,444 48.04 70.71 4.62

Q4-1 263,723.70 256,199.88 0.029 637.28 320 138 1,666 58.18 91.72 4.78

Q4-2 355,093.45 345,039.40 0.028 4,328.20 380 161 2,163 58.37 92.56 5.27

Q4-3 414,110.35 402,912.41 0.027 6,459.50 428 202 2,288 61.06 91.17 4.87

Q5-1 430,313.55 422,602.15 0.018 3,300.78 474 186 2,667 57.59 93.03 5.23

Q5-2 403,811.30 392,205.68 0.029 2,320.70 477 167 2,577 59.77 93.52 5.05

Q5-3 434,868.45 425,147.79 0.022 1,987.98 487 180 2,697 60.27 93.33 5.17

Average 0.023 Average 58.70% 81.19% 4.87
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Table 5 Test results and differences from the AH method for all problem instances

Problem
instance

OBJ
by AH

OBJ
Diff. (%)a

#
vehicles
by AH

Diff. (%)b

# vehicles
# unserved
people by
AH

Diff. (%)c

# unserved
people

CPU
time (s)
by AH

P1-1 349,040.64 47.47 104 42.27 283 42.93 1.54

P1-2 283,667.08 68.05 143 69.66 187 59.83 2.24

P1-3 259,655.20 46.56 90 47.75 222 44.16 1.70

P2-1 338,842.81 88.24 205 61.53 202 61.60 3.36

P2-2 467,049.79 92.44 254 76.62 353 91.85 3.04

P2-3 466,689.58 61.63 163 26.08 391 79.36 2.73

P3-1 432,164.71 152.09 223 22.64 325 253.26 3.97

P3-2 608,806.18 151.23 269 37.09 435 171.88 3.54

P3-3 787,044.68 84.55 401 107.65 569 71.90 5.01

P4-1 666,977.93 233.06 393 47.01 500 415.46 6.49

P4-2 819,901.50 168.30 383 24.91 613 295.48 6.32

P4-3 955,436.10 182.76 570 72.80 642 271.10 5.70

P5-1 1,210,231.45 233.36 688 77.42 691 299.42 9.06

P5-2 1,234,125.26 241.32 668 68.24 730 337.13 7.89

P5-3 1,196,521.35 215.40 796 99.04 760 322.22 9.17

Q1-1 390,626.87 21.03 152 97.27 300 6.76 0.97

Q1-2 426,598.23 86.86 136 29.88 298 81.71 1.71

Q1-3 300,245.93 32.81 119 72.06 249 25.13 1.88

Q2-1 659,947.06 162.65 241 92.93 469 150.80 3.18

Q2-2 523,969.42 61.00 232 40.64 401 57.25 2.74

Q2-3 478,953.27 28.00 211 36.80 346 20.56 3.40

Q3-1 845,245.00 247.00 333 63.31 595 313.19 5.40

Q3-2 792,479.89 153.00 303 30.64 597 176.39 4.98

Q3-3 983,652.24 82.00 424 92.07 639 51.06 3.77

Q4-1 877,533.50 233.00 510 59.46 657 376.09 6.47

Q4-2 1,137,424.39 220.00 563 48.21 821 409.94 5.95

Q4-3 1,308,902.62 216.00 684 75.69 735 263.86 7.79

Q5-1 1,201,140.05 179.00 806 70.10 744 300.00 9.16

Q5-2 1,306,252.00 223.00 758 74.74 669 300.60 9.73

Q5-3 1,248,084.23 187.00 801 64.46 787 337.22 8.36

aDiff. = (OBJ by AH − OBJ by Proposed algorithm)/OBJ by Proposed algorithm

bDiff. = (#vehicles by AH − # vehicles by Proposed algorithm)/# vehicles by Proposed algorithm
cDiff. = (#unserved people by AH − # unserved people by Proposed algorithm)/# unserved people by Pro-
posed algorithm

and from 4.39 to 5.27 (on average 4.87) for class Q. Note that since the goal of car pooling is
to fully utilize the vehicle occupancy within allowable travel time windows so as to decrease
the system cost, in some cases the average number of persons served by a vehicle (T/V )
could exceed 5. For example, assume that the route for a CVG is A → B → C → D → E,
and that the CVG carries 4 people from A to B to C and 2 other people from C to D to E,
excluding the driver. Thus, the T/V for this route is 7, and the vehicle capacity constraint is
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satisfied for the four segments of this route. To sum up, our solution algorithm could solve
all the problem instances to within a reasonable toleration gap (on average 2.3% for class P
and for class Q, respectively) in a reasonably short computation time, as well as reduce the
number of vehicles used, service most of the participants, and increase the vehicle usage.
From this we conclude that our model and solution algorithm are both efficient and effective
and could be a useful planning tool for car pooling practices. The planner should perform
similar tests on their own operations to evaluate the model and solution algorithm and to
understand its limitations, before putting them to practical use.

To suitably evaluate the proposed algorithm, we also compare the results obtained from
the proposed algorithm and the AH method. As shown in Table 5, the proposed algorithm
consumes more computation time but has better objective values than the AH method by an
average of 139.99%. In addition, the proposed algorithm requires fewer vehicles and there
are fewer unserved people than the AH method, on average by 60.97% and 189.60%, re-
spectively. Note that the AH method, which is a greedy based algorithm, requires a shorter
computation time to solve the problems, but cannot ensure solution effectiveness. On the
contrary, the proposed algorithm, developed from a systematic optimization perspective, can
solve the problems comparatively effectively and steadily. Consequently, since the computa-
tion time is not a major concern in the planning stage, the proposed algorithm is a significant
improvement over the AH method and is therefore more effective to use in actual operations.

5.2 Case illustration with sensitivity analyses

Here, we choose P3-1 to illustrate the detailed solution results shown in Table 6. Case illus-
trations of other examples can be similarly performed in future. In P3-1 there are 355 CVGs
and 681 CNGs. The average time-window is 95.75 minutes for CVGs and 85.68 minutes
for CNGs. As shown in Table 6, there were 182 CVGs assigned to drive a vehicle in 355
CVGs. That is, 182 vehicles were used in this car pooling plan. The total CVG driving time
(including traveling and holding times) was 14,985 minutes; the average CVG driving time
was 82.34 minutes/CVG. 173 groups were assigned to CVPG in 355 CVGs. The total CVPG
riding time was 9,495 minutes; the average CVPG riding time was 54.88 minutes/CVPG.
92 CNGs (or people) could not be serviced in 681 CNGs, due to the small time-windows

Table 6 Detailed results for P3-1

# Vehicles used # CVPGs # CNGs unserved

182 173 92

Total CVG Total CVPG Total CNG

driving time (min.) riding time (min.) riding time (min.)

14,985 9,495 21,135

Avg. CVG driving time (min./vehicle) Avg. CVPG Avg. CNG riding time (min./CNG)

riding time (min./CVPG)

82.34 54.88 35.88

V/C S/P T/V

51.27 % 91.12% 5.19
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Fig. 8 Example of a CVG/CVPG/CNG’s route/schedule

required. This will be discussed further in later sensitivity analyses. The total CNG riding
time was 21,135 minutes; the average CNG riding time was 35.88 minutes. We found that
the CVG’s average driving time was significantly longer than the CVPG’s and the CNG’s.
There could be two reasons for this. The first is that the CVG’s time window is longer than
that of the CNG’s (i.e., 95.75 minutes ≥ 85.68 minutes). The second is that CVGs fully
utilize time to service more passengers (whether CVPGs or CNGs) so as to decrease total
system cost. We also found that the vehicles could be efficiently used when the V/C was
equal to 51.27%. Most people could be serviced when the S/P was equal to 91.12%; and
each vehicle could efficiently service people when the T/C was equal to 5.19. Note that
since we focused on carpool plans in non-urban areas, each vehicle had a greater chance to
carry CVPGs or CNGs.

Finally, we use the flow decomposition method to decompose all the arc flows in each
network into arc chains, each representing a CVG/CVPG/CNG’s route/schedule. To save
space, only an example of a CVG’s route/schedule, coupled with the CVPG and CNG it
served, is shown in Fig. 8. This example shows that a CVG carries a CNG from Station L9
at 6:15, and then travels to L12 to carry a CVPG at 6:45. Finally, they arrive together at
Station L22 at 8:00.

To more clearly understand how well the model would perform in different situations,
we performed sensitivity analyses of the CG holding cost, vehicle operating cost, time-
window length, percentage of two-people groups, and unserved CNG penalty cost which
are essential inputs. We chose instance P3-1 and the proposed solution algorithm to perform
the sensitivity analyses. Note that the sensitivity results may be slightly disturbed by the
heuristic algorithm at optimality, but the overall trends are reasonable and are thus useful
for interpreting the parameter effects. Sensitivity analyses of other factors may be similarly
performed in future.

(1) CG holding cost
Here, the CG holding cost is set to the average participant time cost. Since the time

cost varies in practice (Guo 2003), we tested four scenarios with different CG holding
costs to examine its effect on the results. The results displayed in Table 7 show that
the objective value increased as the CG holding cost increased. We further analyzed the
solution in detail and found that the value of the total CG holding time decreased as the
holding cost increased. When the holding cost was 0, 1.13, 2.34, and 3.55, the number
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Table 7 Results due to changing
the CG holding cost Holding

cost (NT
$/min)

Obj. Total CG
holding
time (min)

# Vehicles
used

0 169,504.10 14,580 178

1.13 171,020.00 8,715 182

2.34 171,435.95 8,550 182

3.55 172,333.15 8,460 187

Table 8 Results due to changing
the vehicle operating cost Percentage of

vehicle operating
cost (%)

Obj. Total vehicle
operating
time (min.)

# Vehicles
used

50 150,486.95 11,370 196

75 160,374.50 11,115 191

100 171,020.00 10,920 182

125 179,105.00 10,680 179

150 189,131.45 10,635 178

of vehicles used was 178, 182, 182, and 187, respectively. In other words, as the holding
costs increased, more vehicles had to be used to decrease the total holding time.

(2) Vehicle operating cost
The vehicle operating cost is an important factor in car pooling. It is affected by

many operating issues, for example the price of gasoline. To examine its effect on the
results, we tested five scenarios, 50%, 75%, 100%, 125% and 150% of the original
vehicle operating cost. The results displayed in Table 8 show that the objective value
increased as the vehicle operating cost increased. We also found that the total vehicle
operating time (excluding the holding time) and the number of vehicles used decreased
as the vehicle operating cost increased, meaning that fewer vehicles had to be used in
order to reduce the total vehicle operating time and therefore the objective value.

(3) Time-window length
The length of the time-window required by each participant has an effect on success-

ful matching and efficiency. In order to better understand its influence on the results we
tested three scenarios, −15 minutes, +0 minutes and +15 minutes of the original time-
window length. The results displayed in Table 9 show that the objective value decreased
as the time-window length increased, meaning the less restricted the time-window re-
quired by the participants, the lower the system cost. Moreover, when the length of
the time-windows increased, more CNGs could be served and fewer vehicles needed to
be used. Note that when the original time-window lengths were 15 minutes larger, all
CNGs could be serviced.

(4) Percentage of two-people CGs
Differences in the number of two-person and one-person CGs would have different

impacts on the car pooling results. To examine this issue, we tested five scenarios, 0%,
10%, 20%, and 30% of the percentage of two-people groups (whose em or ekn = 2) (de-
noted as pg2). The results displayed in Table 10 show that the objective value increased
as pg2 increased. We also found that the total CVG driving time (including the holding
time) and the number of vehicles used increased as pg2 increased. This is because, as
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Table 9 Results due to changing
the length of the time-window Addition to length

of time-window
Obj. # Unserved

CNGs
# Vehicles
used

−15 min 227,744.05 154 183

+0 min 171,020.00 92 182

+15 min 118,745.60 0 173

Table 10 Results due to
changing the percentage of
two-people groups

Percentage of
two-people
groups (pg2)

Obj. Total CVG
driving time
(min.)

Total CVPG
& CNG
riding time
(min.)

#
Vehicles
used

0% 171,020.00 14,985 30,630 182

10% 198,775.60 16,290 30,570 194

20% 243,501.00 19,080 29,085 224

30% 251,879.55 20,805 28,650 242

Table 11 Results due to
changing the unserved CNG
penalty cost

Penalty cost (per person) Obj. # CNGs unserved

1000 171,020.00 92

800 150,748.90 92

600 130,432.82 92

400 113,664.30 93

200 95,342.15 106

pg2 increased, the vehicle capacity was correspondingly reduced. The number of vehi-
cles had to be increased, and, consequently, the total CVG driving time increased. In
contrast to the total CVG driving time, the total CVPG and CNG riding time (include
the holding time) decreased as pg2 increased. This is because as pg2 increased, vehicle
capacity was correspondingly reduced, so the number of CVPGs or CNGs for vehicle
service was reduced. As a result, the CVG routing complexity decreased and therefore
the riding time of a CVPG or a CNG on average was reduced.

(5) Unserved CNG penalty cost
The unserved CNG penalty cost in the model is not a real cost, but rather a policy-

making cost used in car pooling to reduce the number of CNGs unserved. To examine
the influence of its value on the results, we tested five scenarios, 1000, 800, 600, 400 and
200 per person. As shown in Table 11, as the unserved CNG penalty cost decreased, the
objective value decreased, as expected. We found that the number of CNGs unserved
was not changed until the penalty cost was less than 600 per person. Therefore, if we
want as many CNGs to be serviced as possible, then the penalty cost should be set at
least as 600 per person.

6 Conclusion

In this study we extend the conventional many-to-one and one-to-many car pooling prob-
lem to become a many-to-many car pooling problem, with multiple vehicle types and per-
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son types. We employ the time-space network flow technique to develop a model for this
problem. The model includes multiple CVG vehicle-flow networks, CVG passenger-flow
networks, CNG passenger-flow networks and a set of side constraints across the networks.
Mathematically, the model is formulated as an integer multiple commodity network flow
problem. An algorithm, based on Lagrangian relaxation, a subgradient method and a heuris-
tic for the upper bound solution, are developed to solve the problem. Numerical tests, utiliz-
ing the data from Guo’s (2003) study on northern Taiwan, were performed to demonstrate
and to preliminarily evaluate the model and the solution algorithm. Specifically, we gen-
erated 30 random instances of substantially large size (up to 537,659 variables and 79,895
constraints) to evaluate the model and solution algorithm in simulated real-word operations.
The average convergence gap was about 2.30%. The most time-consuming problem was still
solvable within 2 hours, which is efficient enough for the matching/scheduling decision in
practice, typically one day before the operating day. We also found that the model could help
reduce the number of vehicles used, service most of the participants, and increase the vehi-
cle usage. To demonstrate the detailed model results and to better understand the model’s
performance in different situations, we provided a case illustration and performed sensitiv-
ity analyses of several essential model parameters. All of the results show that our model
and solution algorithm are both efficient and effective enough to solve the many-to-many
car pooling problem and have the potential to be a useful planning tool for authorities in
designing car pooling plans.

Although the results show that the model and the solution algorithm could be useful,
more tests should be conducted, to allow the authorities to better grasp the model’s limi-
tations, before putting it to practical use. It should be mentioned that, when the same test
problem instances are used but the time interval associated with a node is set to 5 or 10 min-
utes, it will result in huge sized problems, up to 896,098 variables and 119,842 constraints
or 1,182,849 variables and 239,685 constraints, which cannot be solved using the algorithm
within one day. This means that the algorithm needs to be improved before solving larger-
size problems in future. How to develop suitable algorithms for solving larger-size problems
could be a direction of future research. Finally, we used an average travel time between any
two locations for ease of modeling. However, in real practice, the travel time between two
locations is generally stochastic, which could affect the car pooling/scheduling results. Thus,
how to incorporate the stochastic travel times into the many-to-many car pooling problem
to develop a more realistic and useful model could be a future research topic.
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Appendix

In this example, it is assumed that three groups (two CVGs and one CNG) participate the
carpool plan. As shown in Table 12, two CVGs (each containing one person) with the same
ODT from L1 at 7:00 to L3 at 8:00 can provide a car with a driver. One CNG (containing
two people) with the ODT from L2 at 7:00 to L3 at 8:00 does not provide a car. The trav-
eling costs per vehicle/person are 198.6/33.9, 297.9/50.85 and 99.3/16.95 between L1 and
L2, between L1 and L3, and between L2 and L3, respectively. The holding cost per vehi-
cle/person per 15 minutes at an intermediate station is 35.1/35.1. Note that since there is no
extra operating cost except for the driver time cost for holding a vehicle still at a station, the
holding costs per vehicle and per person are assumed to be the same.
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Table 12 OD data

NO. CVG or CNG e Group Type Origin tw-begins Destination tw-ends

1 CVG 1 2 Non-smoking only L1 7:00 L 3 8:00

2 CNG 2 1 CNG type (3) L 2 7:00 L 3 8:00

Fig. 9 Time-space networks

Based on these data, three networks are created, one CVG vehicle-, one CVG passenger-
and one CNG passenger-flow time-space network (see Fig 9).

Denoting VA/VPA/PA as the set of all arcs in the CVG vehicle-/CVG passenger-/CNG
passenger-flow networks, the problem can be formulated as follows.

Formulation

Min

1 × 35.1 × (x0607 + x0708 + x0809 + x0910)

+ 1 × 198.6 × (x0108 + x0209 + x0310 + x0603 + x0704 + x0805)

+ 1 × 297.9 × (x0114 + x0215 + x1104 + x1205)

+ 1 × 99.3 × (x0612 + x0713 + x0814 + x0915 + x1107 + x1208 + x1309 + x1410)

+ 1 × 35.1 × (z0607 + z0708 + z0809 + z0910)

+ 1 × 33.9 × (z0108 + z0209 + z0310 + z0603 + z0704 + z0805)

+ 1 × 50.85 × (z0114 + z0215 + z1104 + z1205)

+ 1 × 16.95 × (z0612 + z0713 + z0814 + z0915 + z1107 + z1208 + z1309 + z1410)

+ 2 × 35.1 × (y0102 + y0203 + y0304 + y0405)

+ 2 × 33.9 × (y0108 + y0209 + y0310 + y0603 + y0704 + y0805)

+ 2 × 50.85 × (y0114 + y0215 + y1104 + y1205)

+ 2 × 16.95 × (y0612 + y0713 + y0814 + y0915 + y1107 + y1208 + y1309 + y1410)



68 Ann Oper Res (2011) 191:37–71

S.t.

x0102 + x0108 + x0114 = ω

− x0102 + x0203 + x0209 + x0215 = 0

− x0203 − x0603 + x0304 + x0310 = 0

− x0304 − x0704 − x1104 + x0405 = 0

− x0405 − x0805 − x1205 = 0

x0603 + x0607 + x0612 = 0

− x0607 − x1107 + x0704 + x0708 + x0713 = 0

− x0108 − x0708 − x1208 + x0805 + x0809 + x0814 = 0

− x0209 − x0809 − x1309 + x0910 + x0915 = 0

− x0310 − x0910 − x1410 = 0

x1107 + x1104 + x1112 = 0

− x0612 − x1112 + x1218 + x1205 + x1213 = 0

− x0713 − x1213 + x1309 + x1314 = 0

− x0114 − x0814 − x1314 + x1410 + x1415 = 0

− x0215 − x0915 − x1415 = −ω

z0102 + z0108 + z0114 = 2 − ω

− z0102 + z0203 + z0209 + z0215 = 0

− z0203 − z0603 + z0304 + z0310 = 0

− z0304 − z0704 − z1104 + z0405 = 0

− z0405 − z0805 − z1205 = 0

z0603 + z0607 + z0612 = 0

− z0607 − z1107 + z0704 + z0708 + z0713 = 0

− z0108 − z0708 − z1208 + z0805 + z0809 + z0814 = 0

− z0209 − z0809 − z1309 + z0910 + z0915 = 0

− z0310 − z0910 − z1410 = 0

z1107 + z1104 + z1112 = 0

− z0612 − z1112 + z1218 + z1205 + z1213 = 0

− z0713 − z1213 + z1309 + z1314 = 0

− z0114 − z0814 − z1314 + z1410 + z1415 = 0

− z0215 − z0915 − z1415 = −(2 − ω)

y0102 + y0108 + y0114 = 0

− y0102 + y0203 + y0209 + y0215 = 0
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− y0203 − y0603 + y0304 + y0310 = 0

− y0304 − y0704 − y1104 + y0405 = 0

− y0405 − y0805 − y1205 = 0

y0603 + y0607 + y0612 = 1

− y0607 − y1107 + y0704 + y0708 + y0713 = 0

− y0108 − y0708 − y1208 + y0805 + y0809 + y0814 = 0

− y0209 − y0809 − y1309 + y0910 + y0915 = 0

− y0310 − y0910 − y1410 = 0

y1107 + y1104 + y1112 = 0

− y0612 − y1112 + y1218 + y1205 + y1213 = 0

− y0713 − y1213 + y1309 + y1314 = 0

− y0114 − y0814 − y1314 + y1410 + y1415 = 0

− y0215 − y0915 − y1415 = −1

2 × y0108 + z0108 ≤ 4 × x0108

2 × y0114 + z0114 ≤ 4 × x0114

2 × y0209 + z0209 ≤ 4 × x0209

2 × y0215 + z0215 ≤ 4 × x0215

2 × y0310 + z0310 ≤ 4 × x0310

2 × y0603 + z0603 ≤ 4 × x0603

2 × y0612 + z0612 ≤ 4 × x0612

2 × y0704 + z0704 ≤ 4 × x0704

2 × y0713 + z0713 ≤ 4 × x0713

2 × y0805 + z0805 ≤ 4 × x0805

2 × y0814 + z0814 ≤ 4 × x0814

2 × y0915 + z0915 ≤ 4 × x0915

2 × y1104 + z1104 ≤ 4 × x1104

2 × y1107 + z1107 ≤ 4 × x1107

2 × y1205 + z1205 ≤ 4 × x1205

2 × y1208 + z1208 ≤ 4 × x1208

2 × y1309 + z1309 ≤ 4 × x1309

2 × y1410 + z1410 ≤ 4 × x1410

xij ≥ 0, integer ∀(i, j) ∈ VA

yij ≥ 0, integer ∀(i, j) ∈ PA
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zij ≥ 0, integer ∀(i, j) ∈ VPA

ω ≥ 0, integer

Solution CPLEX can be used to optimally solve the problem with the objective of 382.65
and ω = 1, x0108 = 1, x0814 = 1, x1415 = 1, z0108 = 1, z0814 = 1, z1415 = 1, y0607 = 1,
y0708 = 1, y0814 = 1, y1415 = 1 with the other variables being 0. This solution can be manu-
ally checked to be correct.

Extension The formulation needs to be modified if more CVG types and CNG types are
considered. For example, if two one-person CVG groups of type 1 (i.e., non-smoking female
only) from L1 at 7:00 to L3 at 8:00 and a two-person CNG group of type 4 (i.e. non-smoking
female with no request) from L2 at 7:00 to L3 at 8:00 join the carpool plan, then the for-
mulation is modified as follows: Firstly, three networks similar to the previous three are
added, i.e., an additional CVG and CVPG network for the additional two CVGs, and an ad-
ditional CNG network for the additional CNG. Secondly, the decision variables are similarly
defined. Thirdly, a similar operating cost for the three new networks is added to the objec-
tive. Fourthly, retaining all the original constraints, the network conservation constraints for
the three new networks and the variable domain constraints are similarly added. Finally,
the carrying constraints for the travel arcs in the additional CVG network are added. Note
that these carrying constraints are different from the previous ones, because the additional
CVGs can carry the previous CVGs/CNG and the additional CVGs and CNG. To clearly de-
scribe these new carrying constraints, assume that xxij , zzij , and yyij represent the variables
associated with arc (i, j ) in the three additional networks, respectively. The carrying con-
straint associated with arc (01, 08) in the additional CVG network can now be represented
as 2 × y0108 + z0108 + 2 × yy0108 + zz0108 ≤ 4 × xx0108. Other carrying constraints can be
similarly constructed. The formulation is now extended to include two types of CVGs and
two types of CNGs. Finally, the formulation can be similarly modified to extend to other
problems indicated in the problem description (Sect. 2).
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