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Abstract In this paper, we present approaches based on a mixed integer linear programming
model (MIP) for the problem of packing rectangular boxes into a container or truck, consid-
ering multi-drop constraints. We assume that the delivery route of the container is already
known in advance and that the volume of the cargo is less than or equal to the container
volume. Considering the sequence that the boxes should be unloaded, the aim is to avoid ad-
ditional handling when each drop-off point of the route is reached, as well as ensuring that
the boxes do not overlap each other and the cargo loading is stable. Computational tests with
the proposed model and the approaches were performed with randomly generated instances
and instances from the literature using an optimization solver embedded into a modeling
language. The results validate the model and the approaches, but indicate that they are able
to handle only problems of a moderate size. However, the model and the approaches can be
useful to motivate future research to solve larger problems, as well as to solve more general
problems considering integrated vehicle routing and container loading problems.

Keywords Three-dimensional container loading · Multi-drop constraints · Cutting and
packing problems · Combinatorial optimization · Mathematical modeling

1 Introduction

Three-dimensional container loading problems satisfy two basic constraints: (i) the boxes
should be completely packed inside the containers, and (ii) they should not overlap each
other. A number of studies dealing with container loading problems are found in the lit-
erature considering these constraints, such as in George and Robinson (1980), Han et al.
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(1989), Bischoff and Marriott (1990), Haessler and Talbot (1990) and Dowsland (1991).
Other work appears in, e.g., Morabito and Arenales (1994), Bischoff and Ratcliff (1995),
Miyazawa and Wakabayashi (1999), Eley (2002), Lins et al. (2002), Silva et al. (2003) and
Parreño et al. (2010). Additional practical constraints have also been considered when deal-
ing with these problems. In Bischoff and Ratcliff (1995) twelve practical considerations that
could be taken into account concerning modeling and solving more realistic container load-
ing problems were presented. Constraints such as cargo stability, load bearing strength of
the cargo (including fragility), multi-dropping, weight limit, weight distribution inside the
container, among others, are often common and important in practice.

In this paper, we present MIP-based approaches to solve the problem of loading rectan-
gular boxes into a single rectangular container considering multi-drop constraints. Besides
the aforementioned constraints (i) and (ii), these approaches can be easily adapted to cope
with vertical and/or horizontal stability of the cargo, load bearing strength and fragility of
the boxes and weight limit of the cargo. Multi-drop constraints consider that boxes to be
delivered to the same customers (destinations) should be placed close to each other inside
the container (or truck, as it is more common in practice), and the loading patterns of boxes
must take into account the delivery route of the vehicle and the sequence in which the boxes
are unloaded on this route to avoid additional box handling when each drop-off point is
reached. To the best of our knowledge, there is not much work in the literature concerning
container loading problems with multi-dropping.

Multi-drop constraints can be dealt with in two ways. In the first, we assume that the
delivery route of the container or truck is already known in advance, and we are interested
in finding the best arrangement of the boxes inside the container. In the second, we assume
that the route is still not established, which leads to a combined approach of determining the
delivery route of the container and arranging the boxes inside the container. In this paper,
we are particularly interested in the first situation and the aim is to determine the best load-
ing pattern, ensuring that constraints (i) and (ii) above are met and taking into account the
sequence in which the boxes must be unloaded from the container, without additional han-
dling requirements when each drop-off point is reached. In case there is not enough space
to pack all boxes inside the container (i.e., constraint (i) cannot be met), the best loading
pattern is the one that maximizes the total volume (or value) of the boxes packed. Some
related studies can be found in, e.g., Bischoff and Ratcliff (1995), Scheithauer et al. (1996),
Lai et al. (1998), Terno et al. (2000), Jin et al. (2004), Moura and Oliveira (2005), Lin et al.
(2006), Iori et al. (2007), Christensen and Rousøe (2009), Moura and Bortfeldt (2009) and
Moura and Oliveira (2009). The second situation considering the integrated vehicle routing
and container loading problem is beyond the scope of this study and it is an interesting topic
for future research. Some examples are found in Gendreau et al. (2006), Moura and Oliveira
(2009), Tarantilis et al. (2009) and Fuellerer et al. (2010).

This work is organized as follows. In Sect. 2, we describe in more details the container
loading with multi-drop constraints and we present a MIP formulation for the problem,
considering as before that the route of the container or truck has already been established. In
this model, we also consider additional constraints, such as the vertical stability of the cargo.
In Sect. 3, we present two solution approaches based on the model in Sect. 2. Randomly
generated instances and instances from the literature are used to evaluate the performance of
these approaches, coded in the modeling language GAMS and solved by the CPLEX solver.
In Sect. 4, the results of these computational tests are presented and analyzed. Finally, in
Sect. 5, we present concluding remarks and some perspectives for future research.
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Fig. 1 A container is unloaded in three destinations

2 Problem description and mathematical modeling

As mentioned before, the multi-drop constraints address situations where a container (or
truck) is packed with boxes containing goods ordered by different customers (destinations),
which are spread through a region. The container leaves the depot (where it is packed), and
visits each destination in a predefined sequence, delivering the boxes containing the goods
ordered by each customer. After delivering all the goods, the empty container returns to the
depot. The question that arises is how to plan the loading of the container so as to consider
(as much as possible) the sequence in which the boxes must be unloaded, in order to avoid
that an additional amount of time is spent unloading and reloading boxes of the remaining
destinations. Figure 1 shows a loaded container that leaves a depot and is unloaded in three
destinations, before returning empty to the depot (i.e., the route depot-1-2-3-depot).

We observe that this problem can be conversely seen as the problem of an empty pick-up
container (or truck) that leaves the depot and, in each destination of its route, the boxes are
loaded inside it without having to unload the boxes already packed in the earlier destina-
tions. Note that the pick-up route is in the inverse sequence of the delivery route (i.e., the
route depot-3-2-1-depot). Figure 2 shows a container packed with boxes of three different
destinations (depicted by the different colors of the boxes). The boxes must be unloaded ac-
cording to the sequence already shown in Fig. 1. Note that if the boxes were packed as shown
in Fig. 2 (left), unnecessary additional handling would probably be incurred when reaching
each drop-off point, since some boxes would need to be unloaded and later reloaded. In this
case, a simple rearrangement of these boxes inside the container, as shown in Fig. 2 (right),
could avoid wasting time when unloading the container at a destination.

Let us now consider a container of dimensions (L,W,H) with a delivery route with n

destinations. For each destination k (k = 1, . . . , n), there are bik boxes (of a total of bi boxes
of type i, i = 1, . . . ,m, in all destinations), with length li , width wi and height hi , which
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Fig. 2 Loading patterns with and without additional handling, respectively

must be loaded inside the container (we may have bik = 0 for some i and k). We assume
that the total volume of the boxes (

∑m

i=1

∑n

k=1 li · wi · hi · bik) is less than or equal to the
container volume (L · W · H). Furthermore, we assume that the dimensions of the boxes
are integer, that the boxes can only be placed orthogonally into the container (i.e., the edges
of a box are either parallel or perpendicular to the axes of the container), and that their
orientation is fixed (i.e., the boxes cannot rotate). This last assumption can be easily relaxed
in the models presented below and here it is considered only to simplify the presentation of
the formulations. We note that k = 1 refers to the boxes that are loaded first and unloaded
last, and k = n refers to the boxes that are loaded last and unloaded first.

A Cartesian coordinate system is adopted with its origin in the container’s front-left-
bottom corner, and let (x, y, z) be the possible coordinates where the front-left-bottom cor-
ner of a box can be placed (see Fig. 2). These possible positions along axes x, y and z

of the container belong to the sets: X = {0,1,2, . . . ,L − mini (li )}, Y = {0,1,2, . . . ,W −
mini (wi)} and Z = {0,1,2, . . . ,H − mini (hi)}, respectively. Let Xi = {x ∈ X|0 ≤ x ≤
L − li}, Yi = {y ∈ Y |0 ≤ y ≤ W − wi} and Zi = {z ∈ Z|0 ≤ z ≤ H − hi}, i = 1, . . . ,m,
be defined as subsets of X,Y and Z, respectively.

We also define δik ∈ [0,L] as a parameter relative to the reach of the worker (door’s-man)
tasked to manually arrange the boxes of destination k into the container, in terms of units of
the container length (note that this parameter need not be equal for all k, but in some cases
we may have δik = δi for all k, or even δik = δ for all k and i, where δ may be related to the
arm’s reach of the worker or to a forklift truck). When the boxes of a certain destination are
already arranged into the container, the boxes of the next destination can be arranged taking
advantage of possible empty spaces left behind by the boxes of the previous destinations. In
other words, parameter δik shows how many units of length beyond the “border” between
boxes of consecutive destinations the worker is allowed to surpass in order to arrange the
boxes of the coming destinations. The “border” is a plane (or virtual wall) of type (x,0,0)

that is defined after all boxes of a destination are packed inside the container. Figure 3 (left)
shows the border (scratched) left behind by the boxes of a previous destination (k−1). From
this border on, the worker is allowed to overstep up to δik units of the container length in
order to arrange the boxes of the coming destination (k). The boxes of destination k, in turn,
once arranged, leave behind a new border, up to δi(k+1) units beyond which the boxes of the
coming destination (k + 1) could be arranged (Fig. 3, right).

The use of this parameter is particularly important in practice in order to preserve the
integrity of the cargo. It prevents the worker from relying on or even stepping on the boxes of
previous destinations already arranged, in order to put or remove some boxes of the coming
destination, which could damage the products due to deformation of the boxes containing
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Fig. 3 Maximum reach of the worker

them. As aforementioned, this parameter can also represent the arm’s reach of the worker,
or even a piece of equipment used to load/unload the boxes, for instance, a forklift truck.

The decision variables aikxyz, i = 1, . . . ,m, k = 1, . . . , n, x ∈ Xi , y ∈ Yi , z ∈ Zi , of the
model are defined as:

aikxyz =

⎧
⎪⎨

⎪⎩

1, if a box of type i from destination k is placed with its front-left-bottom
corner at position (x, y, z),
so that 0 ≤ x ≤ L − li , 0 ≤ y ≤ W − wi and 0 ≤ z ≤ H − hi ;

0, otherwise.

Let us also define L′
k as the necessary length to load all boxes of destinations 1,2, . . . , k,

and M as a sufficiently large number. Note that this variable defines the “border” afore-
mentioned. Assuming that the container length L is sufficiently large to pack all boxes of
all destinations, the problem of loading boxes inside the container with multi-dropping, and
with additional considerations of cargo vertical stability, can be written as a direct extension
of the 0–1 integer linear programming model recently presented in Junqueira et al. (2012):

min L′
n (1)

m∑

i=1

n∑

k=1

∑

{x∈Xi |x′−li+1≤x≤x′}

∑

{y∈Yi |y′−wi+1≤y≤y′}

∑

{z∈Zi |z′−hi+1≤z≤z′}
aikxyz ≤ 1

x ′ ∈ X,y ′ ∈ Y, z′ ∈ Z (2)
∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

aikxyz = bik, i = 1, . . . ,m, k = 1, . . . , n (3)

∑

{j=1,...,m|z−hj ≥0}

k∑

k′=1

∑

{x′′∈Xj |x−lj +1≤x′′≤x+li−1}

∑

{y′′∈Yj |y−wj +1≤y′′≤y+wi−1}
L[1]

ij · W[1]
ij · ajk′x′′y′′(z−hj )

≥ li · wi · aikxyz

where

{
L[1]

ij = min(x + li , x
′′ + lj ) − max(x, x ′′), i = 1, . . . ,m, k = 1, . . . , n

W[1]
ij = min(y + wi, y

′′ + wj) − max(y, y ′′), x ∈ Xi, y ∈ Yi, z ∈ Zi\{0}

(4)

(x + li ) · aikxyz ≤ L′
k, i = 1, . . . ,m, k = 1, . . . , n

x ∈ Xi, y ∈ Yi, z ∈ Zi (5)
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L′
k−1 − δik ≤ x · aikxyz + (1 − aikxyz) · M, i = 1, . . . ,m, k = 2, . . . , n

x ∈ Xi, y ∈ Yi, z ∈ Zi

(6)

L′
k−1 ≤ L′

k, k = 2, . . . , n (7)

L′
k ≥ 0, k = 1, . . . , n (8)

aikxyz ∈ {0,1}, i = 1, . . . ,m, k = 1, . . . , n

x ∈ Xi, y ∈ Yi, z ∈ Zi

(9)

where X, Y , Z and Xi , Yi , Zi are defined as before. In this formulation, the objective func-
tion (1) aims to minimize the necessary length L′

n in order to load all boxes of all destina-
tions, constraints (2) ensure that there are no overlap among the boxes inside the container,
and constraints (3) ensure that the number of boxes (bik) of type i required by destination
(customer) k is loaded in the container (note that

∑n

k=1 bik = bi). Constraints (4) refer to the
vertical stability of the cargo and ensure that the area of the bottom face of a box of type i

must be completely supported (i.e., 100% supported) by the area of the top faces of one or
more boxes placed immediately below them, or by the container’s floor. It is worth noting
that in these constraints, the boxes of a certain destination must be packed either over the
boxes of the same destination or over the boxes of a destination that will be visited later
in the sequence, so that the unloading of the boxes is not hampered. Constraints (5) ensure
that boxes of destination k are packed within the length limit L′

k , constraints (6) ensure that
boxes of destination k cannot be loaded δik units of length beyond the necessary length
L′

k−1, and constraints (7) ensure that the necessary length to pack all boxes of destination
k − 1 is smaller than the minimum length necessary to pack all boxes of destination k. Fi-
nally, constraints (8) and (9) define the domain of the decision variables. We note that model
(1)–(9) can be seen as a strip-packing formulation for the container loading problem with
multi-drop constraints.

In case there is not enough space to pack all boxes of all destinations inside the container
(i.e., the container length L is not sufficiently large and some boxes may be left out of the
loading), model (1)–(9) can be simply modified to maximize the total volume (or value) of
the boxes packed. To this end, the objective function (1) should be replaced by:

max
m∑

i=1

n∑

k=1

∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

vi · aikxyz (1a)

where vi is the value of a box of type i (if vi = (li · wi · hi), then (1a) maximizes the total
volume of the boxes), constraints (3) should be rewritten as the inequality:

∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

aikxyz ≤ bik, i = 1, . . . ,m, k = 1, . . . , n (3a)

and constraints (8) should be changed to:

0 ≤ L′
k ≤ L, k = 1, . . . , n (8a)

We note in this model that L′
k becomes the length to load not necessarily all boxes of

destinations 1,2, . . . , k, but the most valuable boxes of these destinations, as boxes of one
or more destinations may be left out of the loading. Therefore, this formulation based on
(1a), (3a) and (8a) models the single container loading problem with multi-drop constraints.
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As pointed out in Christofides and Whitlock (1977) and Beasley (1985), for a given cut-
ting or packing pattern, each packed box could be moved down and/or forward and/or to the
left, until its bottom, front and left-hand face are adjacent to other boxes or to the container.
Without loss of generality in different cutting and packing problems, these patterns, called
normal patterns, enabled us to restrict the sets X,Y and Z to:

X =
{

x|x =
m∑

i=1

εi · li , 0 ≤ x ≤ L − min
i

(li ),0 ≤ εi ≤ bi and integer, i = 1, . . . ,m

}

(10)

Y =
{

y|y =
m∑

i=1

εi · wi, 0 ≤ y ≤ W − min
i

(wi), 0 ≤ εi ≤ bi and integer, i = 1, . . . ,m

}

(11)

Z =
{

z|z =
m∑

i=1

εi · hi, 0 ≤ z ≤ H − min
i

(hi), 0 ≤ εi ≤ bi and integer, i = 1, . . . ,m

}

(12)

However, this is not the case for the present packing problem. It can be shown that there
is loss of generality if 0 < δik < L and if the original sets X,Y and Z of model (1)–(9) are
reduced as in (10)–(12) (normal patterns). Firstly, we must remember that the use of the
normal patterns “tries to pull” the boxes as much as possible towards the left (the rear) in
the container. On the other hand, the use of a positive value for parameter δik “prevents”
the boxes from being pulled as much as possible towards the left in the container, and we
cannot ensure that there will be a coordinate along axis x where a box can be placed, which
violates the basic assumption of using normal patterns.

One way to overcome this problem is to define parameter δik as a multiple of the length li ,
for all i, i.e., δik = η · li , with η integer. Note that this assumption will produce conservative
solutions, as it is always sure that the boxes will be promptly available when each drop-
off point is reached. Additionally, we need to rewrite the possible positions along axis x

subtracting the normal patterns from the last coordinate originally generated, i.e., to consider
that one box could be moved to the right in the container, until its right-hand face is adjacent
to the last coordinate along axis x. The possible positions along axes y and z need not be
changed. Therefore, the set X in (10) should be redefined as:

X =
{

x|0 ≤ x = x ′ −
m∑

i=1

εi · li , 0 ≤ εi ≤ bi and integer, i = 1, . . . ,m

}

(13)

where x ′ = max{x|x = ∑m

i=1 εi · li ≤ L,0 ≤ εi ≤ bi and integer, i = 1, . . . ,m} and the sub-
sets Xi,Yi,Zi are now defined as a function of sets X,Y and Z in (11)–(13). Note that
rewriting (10) as (13) is always necessary when 0 < δik < L, but it is not necessary when
δik = 0. Figure 4 shows an illustrative example of this situation for a container with size
(L,W,H) = (12,1,2) and two types of boxes (l1,w1, h1) = (9,1,1) (from destination 1)
with b11 = 1, and (l2,w2, h2) = (4,1,1) (from destination 2) with b22 = 1. Here we are in-
terested in showing that there is a lack of normal patterns along the x axis for a given δik = 4,
for all i and all k. Note that if set X were used as in (10) (i.e., X = {0,4}) (Fig. 4, left), there
would not be any coordinates along the x axis where the box of destination 2 could be
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Fig. 4 Solutions produced using sets X,Y and Z as in (10)–(12) and as in (11)–(13), respectively

placed. It means that this box will be placed after box of destination 1, i.e., it should be
placed out of the container, since it does not fit inside the container. Note, however, that
using set X as in (13) (i.e., X = {0,5}) (Fig. 4, right), we can overcome this problem.

Note that model (1)–(9), or its modified version using (1a), (3a) and (8a), consists
of

∑m

i=1

∑n

k=1 |Xi | · |Yi | · |Zi | binary variables plus n continuous variables, besides |X| ·
|Y | · |Z| + m · n + ∑m

i=1

∑n

k=1 |Xi | · |Yi | · (|Zi | − 1) + ∑m

i=1

∑n

k=1 |Xi | · |Yi | · |Zi | +∑m

i=1

∑n

k=2 |Xi | · |Yi | · |Zi | + n − 1 constraints. It is worth mentioning that these models
could be easily adapted to also consider the horizontal stability of the cargo (by means of
additional constraints very related to (4); Junqueira et al. (2012) and other constraints, such
as the weight limit of the cargo.

3 Solution approaches considering multi-dropping

Based on the models presented in Sect. 2 (with X,Y and Z defined as in (11)–(13)), we de-
velop two approaches to address the container loading problem considering multi-dropping.
The first approach assumes that parameter δik , relative to the reach of the worker responsible
for arranging the boxes of destination k into a container, is equal to 0, whereas the second
approach assumes that 0 < δik < L. In both approaches, first we minimize the length L′ of
a hypothetical container (L′,W,H) necessary to pack all the boxes from all destinations. If
the minimum necessary length L′ is larger than L, then we apply a simple greedy heuristic
to maximize the total volume (or value) of the boxes packed inside the container (L,W,H).
It is worth mentioning that there is no motivation for developing an approach for the case
where δik = L, as the resulting loading pattern would not take into account the different
destinations of the boxes.

3.1 Case in which δik = 0: approach 1

This situation represents a more conservative case, where the worker is not allowed to go in-
ward of the “border” between the boxes of different destinations, i.e., the worker cannot take
advantage of any empty spaces fortuitously produced by the boxes of the earlier destinations
to pack the boxes of a coming destination (see Fig. 3). This allows us to decompose, without
loss of generality, the strip-packing model (1)–(9) of minimizing the necessary container
length L′ of the hypothetical container (L′,W,H) to pack all boxes of all n destinations,
into n independent submodels. Each one of these submodels consists of minimizing the nec-
essary length to pack all boxes of each destination k, and the final solution of the problem
is a composition of the n solutions of the corresponding submodels. Note that although this
approach does not take advantage of the empty spaces fortuitously produced, it makes cargo
handling easier when each drop-off point is reached. Indeed, there are Brazilian carriers



Ann Oper Res (2012) 199:51–75 59

that use special devices (mobile subdivisions like “curtains”) in their containers or trucks to
physically separate the cargo loaded in each container by its destination.

Since the problem can be decomposed, it is possible to redefine the possible coor-
dinates where the front-left-bottom corner of a box can be placed. For each destina-
tion k, the possible positions along axes x, y and z of the container, respectively, be-
long to the sets Xk = {0,1,2, . . . ,L′ − mini (li )}, Yk = {0,1,2, . . . ,W − mini (wi)} and
Zk = {0,1,2, . . . ,H − mini (hi)}, i ∈ Mk , where Mk = {i = 1, . . . ,m|bik > 0}, i.e., the sub-
set of box types i that must be unloaded in destination k. Since δik = 0, without loss of
generality, we can restrict the sets X,Y and Z to the normal patterns:

Xk =
{

x|x =
∑

i∈Mk

εi · li , 0 ≤ x ≤ L′ − min
i

(li ), 0 ≤ εi ≤ bi and integer, i ∈ Mk

}

,

k = 1, . . . , n (14)

Yk =
{

y|y =
∑

i∈Mk

εi · wi, 0 ≤ y ≤ W − min
i

(wi), 0 ≤ εi ≤ bi and integer, i ∈ Mk

}

,

k = 1, . . . , n (15)

Zk =
{

z|z =
∑

i∈Mk

εi · hi, 0 ≤ z ≤ H − min
i

(hi), 0 ≤ εi ≤ bi and integer, i ∈ Mk

}

k = 1, . . . , n (16)

i.e., we do not need to rewrite the possible positions along axis x, subtracting the original
coordinates from the last coordinate originally generated, as we did at the end of Sect. 2.
Defining Xik = {x ∈ Xk|0 ≤ x ≤ L′ − li}, Yik = {y ∈ Yk|0 ≤ y ≤ W − wi} and Zik = {z ∈
Zk|0 ≤ z ≤ H − hi}, i ∈ Mk and k = 1, . . . , n, as subsets of Xk,Yk and Zk in (14)–(16),
respectively, and based on model (1)–(9) and its modified version with (1a), (3a) and (8a),
we propose the following two-part iterative procedure in k (Approach 1):

Part A
For k = 1, . . . , n, solve the strip-packing formulation (17)–(23):

min L′
k (17)

m∑

i=1

∑

{x∈Xik |x′−li+1≤x≤x′}

∑

{y∈Yik |y′−wi+1≤y≤y′}

∑

{z∈Zik |z′−hi+1≤z≤z′}
aikxyz ≤ 1,

x ′ ∈ Xk, y ′ ∈ Yk, z′ ∈ Zk (18)
∑

x∈Xik

∑

y∈Yik

∑

z∈Zik

aikxyz = bik i = 1, . . . ,m (19)

∑

{j=1,...,m|z−hj ≥0}

∑

{x′′∈Xjk |x−lj +1≤x′′≤x+li−1}

∑

{y′′∈Yjk |y−wj +1≤y′′≤y+wi−1}
L[1]

ij · W[1]
ij · ajkx′′y′′(z−hj )

≥ li · wi · aikxyz

where

{
L[1]

ij = min(x + li , x
′′ + lj ) − max(x, x ′′), i = 1, . . . ,m

W[1]
ij = min(y + wi, y

′′ + wj) − max(y, y ′′), x ∈ Xik, y ∈ Yik, z ∈ Zik\{0}

(20)
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(x + li ) · aikxyz ≤ L′
k, i = 1, . . . ,m

x ∈ Xik, y ∈ Yik, z ∈ Zik (21)

L′
k ≥ 0, i = 1, . . . ,m (22)

aikxyz ∈ {0,1}, i = 1, . . . ,m

x ∈ Xik, y ∈ Yik, z ∈ Zik (23)

Return L′∗
1 ,L′∗

2 , . . . ,L′∗
n (i.e., the minimum lengths from iterations 1,2, . . . , n).

If L′ = ∑n

k=1 L′∗
k ≤ L, then the solution packs all the required boxes in (L,W,H). Oth-

erwise,

Part B
For k = 1, . . . , n, subtract the difference L′ − L from L′∗

k (provided that L′∗
k > L′ − L) and

solve n additional single container loading models (24)–(28) with container sizes (L′∗
k −

(L′ − L),W,H):

max
m∑

i=1

∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

vi · aikxyz (24)

m∑

i=1

∑

{x∈Xik |x′−li+1≤x≤x′}

∑

{y∈Yik |y′−wi+1≤y≤y′}

∑

{z∈Zik |z′−hi+1≤z≤z′}
aikxyz ≤ 1,

x ′ ∈ Xk, y ′ ∈ Yk, z′ ∈ Zk (25)
∑

x∈Xik

∑

y∈Yik

∑

z∈Zik

aikxyz ≤ bik, i = 1, . . . ,m (26)

∑

{j=1,...,m|z−hj ≥0}

∑

{x′′∈Xjk |x−lj +1≤x′′≤x+li−1}

∑

{y′′∈Yjk |y−wj +1≤y′′≤y+wi−1}
L[1]

ij · W[1]
ij · ajkx′′y′′(z−hj )

≥ li · wi · aikxyz

where

{
L[1]

ij = min(x + li , x
′′ + lj ) − max(x, x ′′), i = 1, . . . ,m

W[1]
ij = min(y + wi, y

′′ + wj) − max(y, y ′′), x ∈ Xik, y ∈ Yik, z ∈ Zik\{0}

(27)

aikxyz ∈ {0,1}, i = 1, . . . ,m,

x ∈ Xik, y ∈ Yik, z ∈ Zik

(28)

where sets Xk and Xik are properly redefined to consider the possible positions along axis x

using L′∗
k − (L′ − L) and not L′ anymore.

Then choose the “combined solution” (composed of the kth solution of Part B and the
remaining n − 1 solutions of Part A) that results in the maximum total value (or volume) of
the boxes packed inside container (L,W,H).

If L′∗
k ≤ L′ − L for all k, then solve the 0–1 knapsack model (29)–(31):

max
n∑

k=1

vk · ek (29)
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n∑

k=1

L′∗
k · ek ≤ L (30)

ek ∈ {0,1}, k = 1, . . . , n (31)

i.e., exclude all boxes of the destination(s) that contribute(s) with the lowest volume (or
value).

This is the (greedy heuristic) solution returned by this procedure to the original problem.

Note in Part A that index k is fixed in each iteration and, therefore, the objective function
(17) aims to minimize the necessary length L′

k to pack all boxes from destination k only (and
not from all destinations 1,2, . . . , n, as in model (1)–(9)). Therefore, constraints (6) and (7)
of model (1)–(9) do not appear in model (17)–(23). In other words, each model (17)–(23)
in k is independent from the others in 1,2, . . . , k − 1, k + 1, . . . , n. Thus, it is expected that
model (17)–(23) in Part A becomes easier to solve than model (1)–(9), which has greater
dimensions in terms of the number of variables and constraints. In Part B, we solve single
container loading models to maximize the total volume (or value) of the boxes packed of
each destination at once (i.e., boxes of only one destination may be left out of the loading).
Note that this combined solution is composed of the solutions of n − 1 models (17)–(23)
solved in Part A, plus the solution of either one of the n additional models (24)–(28) (when
L′∗

k > L′ − L) or one additional model (29)–(31) (when L′∗
k ≤ L′ − L for all k) solved in

Part B.
Figure 5 shows a possible loading pattern, using this procedure, with boxes from three

different destinations. Note that a kind of (imaginary) boundary curtain is created between
the boxes of two consecutive destinations inside the container. As mentioned before, the
existence of mobile subdivisions (producing compartments of variable sizes) when loading
a container or truck is common practice in some Brazilian delivery companies.

Note that the strip-packing model (17)–(23) in Part A consists, for each destination k, of
|Mk| · |Xik| · |Yik| · |Zik| binary variables plus 1 continuous variable, besides |Xk| · |Yk| · |Zk|+
|Mk|+|Mk| · |Xik| · |Yik| ·(|Zik|−1)+|Mk| · |Xik| · |Yik| · |Zik| constraints. In Part B, the single
container loading model (24)–(28) consists, for each destination k, of |Mk| · |Xik| · |Yik| · |Zik|
binary variables plus |Xk| · |Yk| · |Zk| + |Mk| + |Mk| · |Xik| · |Yik| · (|Zik| − 1) constraints,
and the 0–1 knapsack model (29)–(31) consists of n binary variables plus 1 constraint.

3.2 Case in which 0 < δik < L: approach 2

This is the more general case, where the worker is allowed to go only partially inward of
the “border” between the boxes of different destinations, i.e., the worker can take advantage
of some empty spaces fortuitously produced by the boxes of earlier destinations to pack
the boxes of a coming destination (see Fig. 3). Note that in this approach, we aim to take
advantage of the empty spaces fortuitously produced without compromising cargo handling
when each drop-off point is reached.

In this case, as 0 < δik < L, we shall use sets X,Y and Z as defined in (11)–(13), i.e.,
we need to rewrite the possible positions along axis x subtracting the original coordinates
from the last coordinate originally generated. Based on model (1)–(9) and its modified ver-
sion with (1a), (3a) and (8a), we propose the following two-part iterative procedure in k

(Approach 2):
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Fig. 5 Example of a loading pattern obtained by approach 1 with δik = 0

Part A
Set k = 1, and solve the strip-packing formulation (32)–(39):

min L′
k (32)

m∑

i=1

k∑

k′=1

∑

{x∈Xi |x′−li+1≤x≤x′}

∑

{y∈Yi |y′−wi+1≤y≤y′}

∑

{z∈Zi |z′−hi+1≤z≤z′}
aik′xyz ≤ 1,

x ′ ∈ X, y ′ ∈ Y, z′ ∈ Z (33)
∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

aikxyz = bik, i = 1, . . . ,m (34)

∑

{j=1,...,m|z−hj ≥0}

k∑

k′=1

∑

{x′′∈Xj |x−lj +1≤x′′≤x+li−1}

∑

{y′′∈Yj |y−wj +1≤y′′≤y+wi−1}
L[1]

ij · W[1]
ij · ajk′x′′y′′(z−hj )

≥ li · wi · aikxyz

where

{
L[1]

ij = min(x + li , x
′′ + lj ) − max(x, x ′′), i = 1, . . . ,m,

W[1]
ij = min(y + wi, y

′′ + wj) − max(y, y ′′), x ∈ Xi, y ∈ Yi, z ∈ Zi\{0}

(35)
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(x + li ) · aikxyz ≤ L′
k, i = 1, . . . ,m,

x ∈ Xi, y ∈ Yi, z ∈ Zi (36)

L′
k−1 − δik ≤ x · aikxyz + (1 − aikxyz) · M, i = 1, . . . ,m,

x ∈ Xi, y ∈ Yi, z ∈ Zi (37)

L′
k ≥ 0 (38)

aikxyz ∈ {0,1}, i = 1, . . . ,m,

x ∈ Xi, y ∈ Yi, z ∈ Zi (39)

Fix variables a∗
ikxyz = 1 and L′∗

k relative to the solution of model (32)–(39) for destina-
tion k.

Set k = k + 1 and solve the model above in k, with the variables aikxyz and L′
k above

fixed, for k′ = 1,2, . . . , k − 1.
Repeat this procedure for all n destinations.
Return the last L′∗

n obtained.
If L′ = L′∗

n ≤ L, then the solution packs all the required boxes in (L,W,H). Otherwise,

Part B
Maintain fixed the variables a∗

ikxyz = 1 relative to the boxes of destinations k′ = 1,2, . . . , k in
which L′∗

k < L, and solve for the boxes of the remaining destinations k′′ = k+1, k+2, . . . , n

the additional single container loading model (40)–(49) with container size (L,W,H):

max
m∑

i=1

n∑

k′′=k+1

∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

vi · aik′′xyz (40)

m∑

i=1

n∑

k=1

∑

{x∈Xi |x′−li+1≤x≤x′}

∑

{y∈Yi |y′−wi+1≤y≤y′}

∑

{z∈Zi |z′−hi+1≤z≤z′}
aikxyz ≤ 1,

x ′ ∈ X, y ′ ∈ Y, z′ ∈ Z (41)
∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

aik′xyz = bik′ , i = 1, . . . ,m, k′ = 1, . . . , k (42)

∑

x∈Xi

∑

y∈Yi

∑

z∈Zi

aik′′xyz ≤ bik′′ , i = 1, . . . ,m, k′′ = k + 1, . . . , n (43)

∑

{j=1,...,m|z−hj ≥0}

k′′
∑

k′=1

∑

{x′′∈Xj |x−lj +1≤x′′≤x+li−1}

∑

{y′′∈Yj |y−wj +1≤y′′≤y+wi−1}
L[1]

ij · W[1]
ij · ajk′x′′y′′(z−hj )

≥ li · wi · aik′′xyz

where

{
L[1]

ij = min(x + li , x
′′ + lj ) − max(x, x ′′), i = 1, . . . ,m, k′′ = k + 1, . . . , n

W[1]
ij = min(y + wi, y

′′ + wj) − max(y, y ′′), x ∈ Xi, y ∈ Yi, z ∈ Zi\{0}

(44)

(x + li ) · aik′′xyz ≤ L′
k′′ , i = 1, . . . ,m, k′′ = k + 1, . . . , n,

x ∈ Xi, y ∈ Yi, z ∈ Zi (45)
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L′
k′′−1 − δik′′ ≤ x · aik′′xyz + (1 − aik′′xyz) · M, i = 1, . . . ,m, k′′ = k + 1, . . . , n

x ∈ Xi, y ∈ Yi, z ∈ Zi (46)

L′
k′′−1 ≤ L′

k′′ , k′′ = k + 1, . . . , n (47)

0 ≤ L′
k′′ ≤ L, k′′ = k + 1, . . . , n (48)

aikxyz ∈ {0,1}, i = 1, . . . ,m, k = 1, . . . , n

x ∈ Xi, y ∈ Yi, z ∈ Zi (49)

This is the (greedy heuristic) solution returned by this procedure to the original
problem.

Note in Part A that index k is fixed in each iteration, and, therefore, the objective function
(32) aims to minimize the necessary length L′

k to pack all boxes of destinations 1,2, . . . , k,
in which the solutions from model (32)–(39) for the earlier iterations k′ = 1,2, . . . , k − 1
are fixed in a∗

ikxyz = 1 and L′∗
k in iteration k. Note also that constraints (7) of model (1)–(9)

do not appear in model (32)–(39), since the procedure is iterative (therefore, L′
1 ≤ L′

2 ≤
· · · ≤ L′

n). It is worth noting that this procedure is different from the procedure where δik =
0 (Approach 1), since each model (32)–(39) fixed in k depends on the earlier models in
k − 1, k − 2, . . . ,1. This procedure performs a myopic optimization for the boxes of each
destination k, as the boxes of each destination, once fixed, cannot be rearranged later, which
could lead to a loss of the optimal solution, instead of considering the optimization of all
boxes of all n destinations at once.

In Part B, we solve a single container loading model (40)–(49) to maximize the total
volume (or value) of the boxes packed of the destinations in which L′∗

k > L (i.e., boxes of
one or more of these destinations may be left out of the loading). We observe that constraints
(42) refer to the boxes (with the related variables fixed) of the destinations k′ = 1, . . . , k in
which L′∗

k′ < L (solved in Part A), and constraints (43) refer to the boxes of destinations
k′′ = k + 1, . . . , n in which L′∗

k′′ > L. The combined solution is composed of the solution of
one model solved in Part A plus the solution of one additional model solved in Part B.

Figure 6 shows a possible loading pattern, using this procedure with δik = li , with boxes
from three different destinations. Note that the loading pattern is like a three-dimensional
version of the game Tetris (2009), developed in the eighties, where the objective is to fit two-
dimensional pieces (polyominoes) of different shapes that fall from the top of a computer
screen. When a line on the screen is complete, this line disappears and extra points are given
to the player. The game ends when the incomplete lines are heaped up until the top of the
screen. In fact, a disadvantage of the procedure described above, with respect to model (1)–
(9), is that the former ignores which are the coming boxes that must be loaded inside the
container, and, therefore, it adopts a greedy posture with respect to the boxes of the present
destination.

Note that the strip-packing model (32)–(39) in Part A consists, for each destination k, of∑m

i=1 |Xi | · |Yi | · |Zi | binary variables plus 1 continuous variable, besides |X| · |Y | · |Z| +
m + ∑m

i=1 |Xi | · |Yi | · (|Zi | − 1) + 2
∑m

i=1 |Xi | · |Yi | · |Zi | constraints. In Part B, the sin-
gle container loading model (40)–(49) consists of

∑m

i=1

∑n

k=1 |Xi | · |Yi | · |Zi | binary vari-
ables and

∑n

k′′=k+1 1 continuous variables, plus |X| · |Y | · |Z| + ∑k

k′=1 m + ∑n

k′′=k+1 m +∑m

i=1

∑n

k′′=k+1 |Xi | · |Yi | · (|Zi | − 1) + 2
∑m

i=1

∑n

k′′=k+1 |Xi | · |Yi | · |Zi | + ∑n

k′′=k+1 1 con-
straints.

As previously noted, Part A of this procedure performs a myopic optimization for the
boxes of each destination k. However, we can “aid” this procedure to produce more acces-
sible empty spaces where boxes of coming destinations may be placed, respecting the limit
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Fig. 6 Example of a loading pattern obtained by approach 2 with δik = li

imposed by parameter δik , relative to the reach of the worker. The idea consists of adding a
“breaking tie” term to the objective function (32), with a fractionary value between 0 and 1,
in such a way that the resulting loading pattern favors loadings where the boxes of a des-
tination are placed as far back as possible inside the container. In such a way, the boxes
of the coming destinations can be easily arranged, without hindering cargo handling. Note,
however, that the modified objective function (50) is not integral anymore.

min L′
k +

∑m

i=1

∑k

k′=1

∑
x∈Xi

∑
y∈Yi

∑
z∈Zi

x · aik′xyz

(
∑m

i=1

∑k

k′=1

∑
x∈Xi

∑
y∈Yi

∑
z∈Zi

x) + 1
(50)

Figure 7 shows a possible loading pattern, using this procedure with δik = li and the
breaking tie function, with boxes of three different destinations.

4 Computational results

Model (1)–(9) and its modified version with (1a), (3a) and (8a) of Sect. 2 and approaches
1 and 2 of Sect. 3 were implemented in the modeling language GAMS (version 22.7) and
the solver CPLEX 11.0 (with default parameters) was used to solve them. All computational
tests were performed in a PC Core i7 (2.8 GHz, 8.0 GB). To evaluate their performances,
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Fig. 7 Example of a loading pattern obtained by approach 2 with δik = li and the breaking tie function

the models and the approaches were tested with randomly generated instances and instances
from the literature.

4.1 Results with randomly generated instances

The following parameters were used in the randomly generated instances:

• Four types of boxes: m = 1 (in this case, the boxes can rotate around all axes), m = 5,
m = 10 and m = 20 (in these three cases, the boxes have fixed orientation).

• Boxes dimensions generated in two different ways: (Am, m = 1,5,10 and 20) with box
dimensions varying between 25% and 75% of the dimensions of the container, i.e., li ∈
[0.25L,0.75L], wi ∈ [0.25W,0.75W ] and hi ∈ [0.25H,0.75H ]; (Bm, m = 1,5,10 and
20) with box dimensions varying between 10% and 50% of the container dimensions, i.e,
li ∈ [0.10L,0.50L],wi ∈ [0.10W,0.50W ] and hi ∈ [0.10H,0.50H ]. The values vi of the
boxes were considered as their respective volumes li · wi · hi . For the sake of simplicity,
in all examples we consider cubic containers, i.e., with dimensions L = W = H .

When m = 1, an additional decision variable for each possible box orientation was de-
fined, resulting in a total of six decision variables, and the MIP-based approaches were prop-
erly modified to consider these new variables. An alternative to handle this case would be to
consider each of the six possible rotations of a box as a different box type, i.e., m = 6, and to
limit the maximum number of boxes loaded in constraints (3), (19), (26), (34), (42) and (43).



Ann Oper Res (2012) 199:51–75 67

Table 1 Number of boxes, number of elements of the normal pattern sets and number of constraints and
variables of model (1)–(9) and approaches 1 and 2 (Part A only) in examples Am and Bm

No No normal patterns No var. No con.

boxes |X| |Y | |Z| Model Approach where Model Approach where

(1)–(9) δik = 0 δik = li (1)–(9) δik = 0 δik = li

A1 20 8 6 6 1648 550 550 4139 1131 1679

A5 41 14 10 10 7493 2563 3093 19804 5806 9879

A10 99 8 6 10 2349 1494 1494 6138 3043 4535

A20 89 15 6 6 2674 3814 4147 6909 7083 11814

B1 500 16 11 11 24604 8202 8202 64556 17052 25252

B5 813 16 11 11 10048 4937 4937 27150 10807 15742

B10 1000 16 11 11 9004 10004 10004 24609 20379 30381

B20 674 16 11 11 22384 20352 20352 58866 39845 60195

For the sake of simplicity, and only for the generation of the box dimensions and its avail-
able amount bi , we have considered containers with L = W = H = 10. However, the con-
tainer dimensions considered in the computational tests were either L = 15 or L = 12 and
W = H = 10. The number n of destinations was set to 3. The amount bi of available boxes
of type i was defined as bi = �(L ·W ·H)/(li ·wi ·hi)� for instances with m = 1, and it was
randomly generated by a uniform distribution in the interval [1, �L/li� · �W/wi� · �H/hi�],
for instances with m = 5,10 and 20, i = 1, . . . ,m. For the generation of the available amount
bik of boxes of type i required by each destination k, the number of boxes reported in
the optimal solution obtained with the base model presented in Junqueira et al. (2012)
was randomly generated by a uniform distribution between the n destinations, such that∑n

k=1 bik = bi, i = 1, . . . ,m. The value of the maximum reach of the worker δik was arbi-
trarily set as 0 and li for each destination k. Note that, in cases where δik = 0 and δik = li ,
respectively, the approaches used were the ones described in Sects. 3.1 and 3.2.

Table 1 presents, for each instance, the total amount of boxes that must be loaded for
all n destinations. In order to illustrate the size of the models generated using instances of
groups Am and Bm, this table also presents the size of sets X,Y and Z as in (11)–(13), and
the number of constraints and binary variables, for each of the eight randomly generated
instances. These numbers correspond to the values reported by CPLEX after pre-processing
model (1)–(9) and approaches 1 and 2 (Part A only). It is worth noting that this number of
variables and constraints presented in this table corresponds to the maximum value obtained
among the n destinations. Note also that, as the cardinality of setsX,Y and Z increases, the
number of variables and constraints also increases, and the solution of the models becomes
significantly more difficult.

In the experiments that follow, the computational time spent to solve each model was
limited to 1 hour (3600 seconds) and the optimality gaps were computed as:

Gap = (best solution obtained—best bound obtained)

(best bound obtained)
100%

Therefore, four possible cases, with respect to the quality of the solution obtained by
GAMS/CPLEX, can occur: (i) optimal solution, with Gap equal to zero; (ii) integer solu-
tion, with Gap greater than zero and with CPLEX exceeding the time limit; (iii) no solution,
without Gap and with CPLEX exceeding the time limit; (iv) insufficient computer mem-
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Table 2 Results obtained with model (1)–(9) (and its modified version with (1a), (3a) and (8a), when neces-
sary) with δik = 0

L L′∗
1 L′∗

2 L′∗
3 L′∗

n Gap Time Vol. No. boxes

(%) (s) (%) left out

A1 15 4 8 14 14 0.000 3183.22 100.00 0

12 2 6 12 12 5.000 3600.00 95.00 1

A5 15 – – – – – 3600.00 – –

A10 15 4 8 12 12 0.000 2.27 100.00 0

A20 15 – – – – – 3600.00 – –

B1 15 – – – – – 3600.00 – –

B5 15 7 11 15 15 49.573 3600.00 100.00 0

12 4 8 12 12 0.000 1759.06 100.00 0

B10 15 4 8 12 12 0.000 208.52 100.00 0

B20 15 6 10 15 15 49.671 3600.00 100.00 0

12 5 8 12 12 0.800 3600.00 99.20 2

ory to compile the model in GAMS, no Gap and no relevant information concerning the
computational time. The last two cases are represented in the tables by the symbol “–”.

The following tables show, for model (1)–(9) (and its modified version with (1a), (3a)
and (8a), when necessary) and approaches 1 and 2 (Part A always, Part B when necessary),
the length considered of the container and the minimum necessary length L′∗

k to pack the
boxes of each destination k. Note that, for approach 2 with δik = li , these values are the sum
of the minimum necessary length L′∗

k to pack all boxes of destination k, plus the boxes of the
earlier destinations 1,2, . . . , k − 1. Next, the tables show the values for the optimality Gap
(in %), the runtime (in seconds) spent to solve each of the instances, the fraction of volume
(in %) occupied by the boxes loaded in the container and the number of boxes left out of the
container are also presented. For approach 1 with δik = 0, these values refer to the sum of
the necessary values to solve the models for all n destinations. Remember that these models
can be independently solved for each destination k (see Sect. 3.1).

The results obtained with model (1)–(9) (and its modified version with (1a), (3a) and (8a),
when necessary) with δik = 0 and li for the randomly generated instances of groups Am and
Bm are presented in Tables 2 and 3. Note that, as expected, the total necessary length to
pack all boxes of all destinations decreases as δik increases from 0 to li . In particular, the
model was able to solve to optimality instance B1 with δik = li (see Table 3), despite the
great number of variables of this instance (see Table 1). Instances A1, A10 and B10 were
solved to optimality by the model with δik = 0 and li , while the model could not find any
solution within the time limit in case of instance A5. It is worth remembering that the related
variables and constraints are all dependent among all n destinations. The modified version of
the model with (1a), (3a) and (8a) was necessary for solving instances A1, B5 and B20 with
δik = 0 (see Table 2), and instances B5 and B20 with δik = li (see Table 3). It is interesting to
note that, for instance B5 with δik = 0 and li , the modified version was able to find a solution
that is optimal for both the modified version and for model (1)–(9), since no box was left out
of the loading and all the boxes were packed considering the container length L = 12 (note
that the solutions found by model (1)–(9) for this instance are suboptimal).

The results obtained for instances of groups Am and Bm with the MIP-based approaches 1
and 2 with δik = 0 and li (Part A always, Part B when necessary), respectively, are presented
in Tables 4, 5 and 6. Note that, unlike the results in Table 2, all solutions of approach 1
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Table 3 Results obtained with model (1)–(9) (and its modified version with (1a), (3a) and (8a), when neces-
sary) with δik = li

L L′∗
1 L′∗

2 L′∗
3 L′∗

n Gap Time Vol. No. boxes

(%) (s) (%) left out

A1 15 4 6 10 10 0.000 49.24 100.00 0

A5 15 – – – – – 3600.00 – –

A10 15 4 8 10 10 0.000 4.46 100.00 0

A20 15 5 8 10 10 0.000 1778.97 100.00 0

B1 15 4 7 10 10 0.000 2555.49 100.00 0

B5 15 7 11 15 15 50.000 3600.00 100.00 0

12 4 8 12 12 0.000 1182.07 100.00 0

B10 15 4 7 10 10 0.000 117.14 100.00 0

B20 15 8 12 15 15 50.000 3600.00 100.00 0

12 3 6 12 12 6.000 3600.00 94.00 21

Table 4 Results obtained with approach 1 with δik = 0

L L′∗
1 L′∗

2 L′∗
3 L′∗

n Gap Time Vol. No. boxes

(%) (s) (%) left out

A1 15 4 4 6 14 0.000 0.81 100.00 0

12 2 4 6 12 0.000 0.283 95.00 1

A5 15 5 5 5 15 0.000 349.14 100.00 0

12 5 5 0 10 0.000 0.51 77.90 10

A10 15 4 4 4 12 0.000 0.23 100.00 0

A20 15 5 5 4 14 0.000 3.38 100.00 0

12 5 5 2 12 0.000 0.271 92.80 3

B1 15 4 4 4 12 0.000 35.74 100.00 0

B5 15 4 4 4 12 0.000 11.88 100.00 0

B10 15 4 4 4 12 0.000 1.23 100.00 0

B20 15 4 4 4 12 0.000 66.82 100.00 0

were proved to be optimal. It is worth remembering that only the solution of Part A of
approach 1 ensures an exact solution of the problem, while Part B of approach 1 and Parts A
and B of approach 2 are heuristic. Furthermore, note that the objective function (50) (with
the breaking tie term), when used in Part A of approach 2 with δik = li , helps to decrease
the total necessary length to pack all boxes from all destinations (see Tables 5 and 6 for
instances A20, B1, B5, B10 and B20). The solutions for instances A1 in Tables 5 and 6, and
for instances B1 and B10 in Table 6, are optimal based on the results of Table 3, and the
solutions for instances B5 and B20 in Tables 5 and 6 are better than the ones in Table 2.
Applying Part B of approach 1 with δik = 0 was necessary for solving instances A1, A5 and
A20 (see Table 4), and applying Part B of approach 2 with δik = li was necessary for solving
instance A5 with (32) and (50) (see Tables 5 and 6, respectively). In the later case, it is
interesting to note that the objective function (50) was not able to produce better results than
the objective function (32) in Part A of approach 2, but it helped Part B of this approach,
when applied, to pack a higher volume of boxes.
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Table 5 Results obtained with approach 2 with δik = li with (32)

L L′∗
1 L′∗

2 L′∗
3 L′∗

n Gap Time Vol. No. boxes

(%) (s) (%) left out

A1 15 4 6 10 10 0.000 1.05 100.00 0

A5 15 5 10 15 15 0.000 248.88 100.00 0

12 5 10 10 10 0.000 0.21 83.90 7

A10 15 4 8 12 12 20.000 0.48 100.00 0

A20 15 5 9 12 12 20.000 4.90 100.00 0

B1 15 4 8 11 11 10.000 82.04 100.00 0

B5 15 4 8 11 11 10.000 12.94 100.00 0

B10 15 4 8 11 11 10.000 5.88 100.00 0

B20 15 4 8 12 12 20.000 318.72 100.00 0

Table 6 Results obtained with approach 2 with δik = li with (50)

L L′∗
1 L′∗

2 L′∗
3 L′∗

n Gap Time Vol. No. boxes

(%) (s) (%) left out

A1 15 4 6 10 10 0.000 1.40 100.00 0

A5 15 5 10 15 15 0.000 348.75 100.00 0

12 5 10 12 12 0.000 0.24 90.00 5

A10 15 4 8 12 12 20.000 1.70 100.00 0

A20 15 5 9 11 11 10.000 3.00 100.00 0

B1 15 4 7 10 10 0.000 3613.32 100.00 0

B5 15 4 7 10 10 0.000 18.05 100.00 0

B10 15 4 7 10 10 0.000 5.89 100.00 0

B20 15 4 7 11 11 10.000 3778.74 100.00 0

For the sake of illustration, Figs. 8 and 9 present the loading patterns for instance
B10 obtained from model (1)–(9) with δik = 0 and li , and the ones obtained from the
two approaches 1 and 2 with δik = 0 and li (with and without the breaking tie func-
tion), respectively. Note that approach 2 with δik = li (with the breaking tie func-
tion) was able to find the same solution found by model (1)–(9), for the same value
of δik .

4.2 Results with instances from the literature

We have also performed computational tests with approaches 1 and 2 with δik = 0 and li
(with and without the breaking tie function) and the eight instances from Christensen and
Rousøe (2009), based on real-world data from a Danish company distributing construction
products. Table 7 shows the number of destinations and boxes for each of these eight in-
stances, the length of the container and the minimum necessary length L′∗

k to pack all boxes
from all destinations, the runtime (in seconds) spent to solve each of the instances, the frac-
tion of volume (in %) occupied by the boxes loaded in the container and the number of
boxes left out of the container. The container dimensions considered in these computational
tests were either L = 1440 or L = 720 (the study in Christensen and Rousøe 2009 considers
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Fig. 8 Solutions of model (1)–(9) with δik = 0 and li for instance B10

this dimension for the length), W = 250 and H = 280. We also limited the size of sets X,Y

and Z, by excluding the smaller dimensions along each axis, at a time, until no more that 20
positions were set. Therewith, we note that all approaches (including Part A of approach 1)
are now heuristic.

Note in Table 7 that only for instance 7, approach 1 with δik = 0 was not able to find
a feasible solution. For instances 2, 3 and 6, this approach was able to find solutions that
packed all boxes inside the given length of the container, while for instances 1, 4, 5 and 8,
to pack all boxes a container with a greater length L would be necessary. For solving these
instances, Part B of the approach was applied to produce solutions that fit in the container
length L = 720. It is worth noting that these results were achieved with our most conser-
vative approach, that is, with δik = 0. Approach 2 with (32) was unable to find feasible
solutions for instances 4, 6 and 8, while Part B of the approach was applied to instances
3, 5 and 7. Approach 2 with (50) was unable to find feasible solutions only for instances 6
and 8, while Part B of the approach was applied to instances 3, 4, 5 and 7. We note that,
for instance 5 and approach 2, the use of the objective function (50) had an inverse effect in
both Parts A and B of the approach, since it worsened the total necessary length to load all
boxes of all destinations (in case of Part A) and the fraction of volume of the boxes loaded
(in case of Part B). It should be observed that the approach proposed in Christensen and
Rousøe (2009) is not strictly comparable to ours, since their definition of multi-dropping is
different from ours. In their approach, a certain box can occupy any empty space inside the
container, if there is some access to the box at every drop-off point, regardless of the value
of parameter δik .
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Fig. 9 Solutions of approaches 1 and 2 with δik = 0 and li (with and without the raking tie function) for
instance B10

5 Conclusion

In this paper, we present approaches based on a mixed integer linear programming model for
packing problems of rectangular boxes into a container or truck considering multi-dropping,
as well as the vertical stability of the cargo. The model and the approaches can be easily
extended to take into account other practical considerations, such as horizontal stability of
the cargo, load bearing (including fragility) of the boxes and weight limit of the cargo. We
assume that the delivery route of the container is already known in advance and that the
volume of the cargo of all destinations is less than or equal to the container volume. The
objective is to determine the loading pattern that packs the maximum volume (or value) of
boxes, taking into account the sequence in which the boxes are unloaded from (or are loaded
into) the container, without additional handling requirements when each drop-off point of
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the route is reached. Computational tests using the proposed model and the approaches were
performed with randomly generated instances and instances from the literature, using the
GAMS/CPLEX software. The results show that the model and the approaches are consistent
and properly represent the situations, although only problems of moderate size can be solved
optimally. The proposed model and approaches can be useful to motivate future research in
order to solve more realistic container loading problems, so as to deal with the integrated
vehicle routing and container loading problem.
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