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Abstract This paper combines copula functions with GARCH-type models to construct the
conditional joint distribution, which is used to estimate Value-at-Risk (VaR) of an equally
weighted portfolio comprising crude oil futures and natural gas futures in energy market.
Both constant and time-varying copulas are applied to fit the dependence structure of the
two assets returns. The findings show that the constant Student t copula is a good compro-
mise for effectively fitting the dependence structure between crude oil futures and natural
gas futures. Moreover, the skewed Student t distribution has a better fit than Normal and
Student t distribution to the marginal distribution of each asset. Asymmetries and excess
kurtosis are found in marginal distributions as well as in dependence. We estimate VaR of
the underlying portfolio to be 95% and 99%, by using the Monte Carlo simulation. Then us-
ing backtesting, we compare the out-of-sample forecasting performances of VaR estimated
by different models.
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1 Introduction

Value at Risk (VaR) model is one of the most widely used risk measure and has become a
standard measure to aggregate risks across different factors. VaR reduces the (market) risk
associated with any portfolio to just one monetary amount, i.e. the loss associated to a given
probability. The key issue for VaR is to construct an estimation model which can provide
accurate VaR of financial assets. The existing estimation models can be categorized into
two broad groups: non-parametric and parametric (also including semi-parametric) meth-
ods. The former group mainly includes historical simulation method. The main advantage of
this method is that it makes no assumptions about risk factor changes being from a particular
distribution. The latter group usually makes specific distributional assumptions on returns,
such as a normal distribution, and therefore calculates (analytically or by simulation) the
corresponding VaR. The methods in this group assume that an adequately parametric distri-
bution assumption can achieve accurate VaR (for a survey of VaR methodologies, please see
Jorion 2007). In this study, we focus on the latter group only.

However, in reality, financial assets’ returns usually exhibit non-normality (Ang and
Chen 2002). Hence, many studies in empirical finance literature have found that the multi-
variate normal distribution does not provide adequate estimation of VaR, and often under-
estimates VaR of portfolios of financial assets. Bastianin (2009) summarized that the data
of financial assets’ returns show at least two kinds of non-normal features. The first is that
the joint distribution of financial assets’ returns includes two types of asymmetries (Patton
2004). Distribution of individual stock returns exhibits skewness or asymmetry (Harvey
and Siddique 2000) and the dependence between financial assets’ returns is also asym-
metric (Patton 2006a). The second non-normal feature of financial assets’ returns is ex-
cess kurtosis, which means probability distributions for assets’ returns often exhibit fatter
tails than the standard normal distribution. As defined, VaR concentrates on tails of the
distribution. It will be underestimated on the assumption of multivariate normal distribu-
tion. Then, alternative distributions, such as Student t distribution focusing fat tails (Jo-
rion 2007), or skewed Student t distribution focusing skewness and fat tails (Hansen 1994;
Hull and White 1998), have been proposed and applied to build risk models of financial
returns.

To sum up, when VaR is calculated using parametric models, the assumption of joint
multivariate modeling is crucial. In order to overcome these problems resulting from the as-
sumption of normal distribution, and allowing for the increasing body of empirical evidence
of the non-normality of financial assets’ returns and successful applications of the copula
theory in finance and other disciplines in recent decades, we resort to the copula theory to
improve VaR forecasts.

The copula theory has seen rapid development in recent times. This is first due to Sklar
(1959), who showed that any n-dimensional joint distribution function may be decomposed
into its n marginal distributions, which completely describe the location, scale and shape
parameters of the n variables, and a copula, which completely describes the dependence
between the n variables, and proves the well-known Sklar theorem. Based on the Sklar
theorem, Nelsen (1998), and Joe (1997) further developed the copula theory. Embrechts et
al. (1999) first introduced this concept to the finance literature. Copulas have already been
widely applied in various fields of finance, such as risk management, derivative asset pric-
ing, option valuation and so on. However, the copula methodology used in initial researches
only dealt with unconditional distributions. In other words, the earlier applications using the
copula methodology just focus on constant scenarios and do not include time-varying fea-
tures. Patton (2001) expanded the constant copula into the conditional copula by allowing
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the first and second conditional moments to vary on time. After the methodological expan-
sion of Patton (2001), the conditional copula began to be used in finance, e.g., Jondeau and
Rockinger (2006). For further applications of the copula theory, readers can refer to McNeil
et al. (2005), and Stoyanov et al. (2010), which provide the basic concept, detailed analysis
and varied perspectives of copula’s usage within the field of financial risk management.

In this paper, we focus on using copula functions to estimate VaR of a portfolio com-
prising crude oil futures and natural gas futures. The futures of energy commodities have
also become an important financial instrument. In these energy commodities, crude oil and
natural gas are the most important products. The relationship between prices of crude oil
and natural gas is complex due to their constant interactions. Therefore, it is very useful and
interesting to investigate the relationship between crude oil prices and natural gas prices for
participants in energy market. In this paper, we have investigated the diversification ben-
efits of a portfolio comprising crude oil and natural gas futures traded on the New York
Mercantile Exchange (NYMEX), using VaR measure based on copula.

Copula has also been used in portfolio risk management, including estimation of VaR.
For example, Embrechts et al. (2003), and Cherubini et al. (2004) have explicitly used con-
stant copulas to measure portfolio VaR under unconditional distributions. Afterward, Fan-
tazzini (2008) expanded the constant copula to time-varying copula for estimating VaR un-
der conditional distributions. However, few researchers have considered applying copulas
to estimate VaR in energy market. Therefore, it is necessary to find more appropriate mul-
tivariate distributions to fit the time-series data of energy market. Copula can be a solution
to this problem. For example, Bastianin (2009) has explicitly used copulas to estimate VaR
in energy market. The results find that asymmetric copula models such as symmetrized Joe-
Clayton (also called SJC by Patton 2006a) copula with Student t marginals deliver the best
VaR forecasts. His findings also confirm the importance of non-normalities and asymmetries
of log-returns distributions in energy market.

What we do in this paper is to estimate and compare the conditional portfolio VaR using
Copula-GARCH models with different innovation distributions in energy market. Firstly, we
use models that can capture empirically observed time-varying mean values and variances of
energy returns, such as GARCH-type models, which have been successfully used to fit the
time-series data in financial markets, and to effectively capture the main observed charac-
teristics in financial markets, e.g. autoregression in mean, volatility clustering in variances,
and leverage effects from exogenous information (Bollerslev et al. 1994), in the presence of
skewness and kurtosis (Jondeau and Rockinger 2006). Then, we use copulas to describe the
dependence structure between crude oil and natural gas futures. Also, we allow copula pa-
rameters to be time-varying, but do not apply different copulas during bear markets and bull
markets, and during in-sample dataset and out-of-sample dataset. After constructing joint
bivariate distributions of both (crude oil and natural gas) assets’ returns using in-sample
dataset and combining copulas and GARCH-type models, we employ the selected appropri-
ate models to forecast one-day-ahead rolling-over VaR of the portfolio using Monte Carlo
simulation. Finally, backtests and loss functions are used to test which model provides better
forecasts of VaR.

The contribution of this paper is threefold. First, we use time-varying copula-GARCH
models to estimate portfolio VaR in energy markets. The results show that non-normality
and asymmetry are significant in crude oil and natural gas returns, and the dependence
structure is time-varying. Time-varying copula-GARCH models do have important impli-
cations for improving portfolio VaR forecasts. However, forecasting performances of time-
varying copula-GARCH models are, at best, limited in comparison with the constant copula-
GARCH models. We find that the constant Student t copula-GARCH model can better fit
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the time series in energy market, which is consistent with the usual findings that the Stu-
dent t copula often provides a much better fit to multivariate financial return data. Second,
there exists significant skewness in marginal distribution, as well as in dependence struc-
ture. Therefore, the skewed Student t distribution is better fitted to selected dataset than the
normal or Student t distribution. Lastly, leverage effect is also found in crude oil returns, but
not in natural gas returns. This implies that bad news can cause larger volatilities than good
news in crude oil returns.

The rest of this paper is organized as follows. Section 2 introduces the theory of copulas
and marginal distribution modeling. Section 3 illustrates how to use copulas to forecast VaR
by Monte Carlo simulation. Empirical results are presented in Sect. 4. Section 5 concludes.

2 Multivariate modeling using copulas

Copulas can be very useful to model risk assets in financial markets, because they can help
users flexibly construct many multivariate distributions to fit financial assets, without being
subject to the curse of dimensionality. Additionally, copulas can easily capture extreme de-
pendencies, such as tail dependence, while the normal distribution assumes zero extreme
dependence. For example, extreme co-movement events are often observed (Mendes and
Souza 2004). This means that good and bad extreme events will have some relationship and
are not completely independent. However, the correlation coefficient based on multivariate
normal distribution cannot capture this type of dependence. Another important property of
copulas is that the copula of the underlying random variables is invariant under non-linear
strictly increasing transformations, such as transforming assets returns into log-returns in
financial time series. However, linear correlation based on multivariate elliptical, especially
normal distribution most frequently used in practice, cannot remain invariant under non-
linear strictly increasing transformations. Therefore, as Embrechts et al. (2003) said, linear
correlation is often a misunderstood measure of dependence even though it is used popularly.

The following sub-section introduces the concepts and properties of copulas in brief.
For exact depiction, we must first define the notations. The variables of interest are X

and Y and the conditioning variable is W , which may be vector. According to Patton
(2006a), FXYW is the joint distribution of (X,Y,W),FXY |W is the conditional distribu-
tion of (X,Y ) given W and let the conditional marginal distributions of X|W and Y |W
be denoted by FX|W and FY |W , respectively. Recall that FX|W(x|w) = FXY |W (x,∞|w)

and FY |W (y|w) = FXY |W (∞, y|w). In this paper distribution function FXYW is sufficiently
smooth for all required derivatives to exist, and FX|W ,FY |W , and FXY |W are continuous. For
unconditional distribution, the notation is similar. In this case we simply ignore the condi-
tioning variable. Throughout the paper, we adopt the usual convention of denoting cumu-
lative distribution function (c.d.f.) of a random variable using an uppercase letter, and the
corresponding density (p.d.f.) using the lowercase letter. Also, we denote the extended real
line as �̄ = � ∪ {±∞}, random variable in upper case, Xt , and Yt , and the corresponding
realizations in lower case, xt , and yt .

2.1 Copula theory

For simplicity purposes, throughout this paper we limit the copulas to being only
2-dimensional. According to Nelsen (1998) and Joe (1997), a 2-dimensional unconditional
copula can be defined as follows.



Ann Oper Res (2014) 219:333–357 337

Definition 2.1 A two-dimensional copula is a bivariate cumulative distribution function
(c.d.f.), C, with uniform distribution margins in I = [0,1], and the following properties:

1. Dom C = I 2 = [0,1]2

2. For every u,v in I ,

C(u,0) = C(0, v) = 0, C(u,1) = u, and C(1, v) = v;

3. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

Following the above definition, if FX and FY are univariate c.d.f.s of X and Y,U and
V are the “probability integral transforms (PIT)1” of X and Y , that is, U = FX(X) and
V = FY (Y ), then C(FX(x),FY (y)) is a bivariate c.d.f. with margins FX and FY . Sklar’s
(1959) theorem provides the theoretical proof and interprets why the margins and the de-
pendence structure can be separated. Because this paper focuses on the conditional copula,
now we move on to extension of the Sklar’s theorem (1959) for conditional distribution
(Patton 2006a).

Theorem 1 Sklar’s theorem for conditional distributions: Let FX|W(·|w) and FY |W(·|w)

be the conditional distributions of X|W = w and Y |W = w, respectively, FXY |W(·, ·|w) be
the joint conditional distribution of (X,Y )|W = w, and � be the support of conditioning
variable W . Assume that FX|W(·|w) and FY |W (·|w) are continuous in x and y for all w ∈ �.
Then there exists a unique conditional copula C(·, ·|w) such that

FXY |W (x, y|w) = C(FX|W(x|w),FY |W (y|w)|w)

∀(x, y) ∈ �̄ × �̄ and each w ∈ � (1)

Conversely, if we let FX|W(·|w) be the conditional distribution of X|W = w,FY |W (·|w)

be the conditional distribution of Y |W = w, and {C(·, ·|w)} be a family of conditional copu-
las measurable in w, then the function FXY |W (·, ·|w) defined by (1) is a conditional bivariate
distribution with conditional marginal distributions FX|W(·|w)and FY |W(·|w).

As Patton (2006a) indicated, converse of Sklar’s theorem is the most interesting for mul-
tivariate density modeling. It implies that any two univariate distributions, of any type (not
necessarily from the same family), may be linked together via any copula to define a valid
bivariate distribution as long as the information set used is unchanged. With Sklar’s theorem,
the set of parametric bivariate distributions available in econometric modeling is increased
substantially. Therefore, we can flexibly use many other multivariate distributions different
from the multivariate normal distribution for modeling financial series.

As found by Patton (2006b), the multi-stage maximum likelihood estimator (MSMLE)
for copula parameters in conditional distributions is asymptotically not less efficient than

1Fisher (1932) and Rosenblatt (1952) showed that random variables of PIT have the Unif(0,1) distribution,
regardless of original distributions. In other words, a random variable X with c.d.f. FX can be transformed
into a variable with Unif(0,1) distribution, viz. U = FX(X). Conversely, if U is uniformly distributed over
the interval [0, 1], then X = F−1

X
(U) has c.d.f. FX . The PIT is also usually used to generate random variables

given their distribution functions (Embrechts et al. 2003) and to test the goodness-of-fit of hypothesized model
(Dias 2004). For extension of the PIT theory to the time series case see Diebold et al. (1998).
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the usual one-stage maximum likelihood estimator under standard conditions, but the multi-
stage likelihood estimator is easier to implement and to overcome the problem of heavy
computational burden caused by the large number of parameters. The multi-stage max-
imum likelihood method is also known as the Inference Functions for Margins (IMF)
method. We denote the conditional joint distribution as FXY |W(xt , yt ; θ |wt−1), the condi-
tional marginal distributions as FX|W(xt ;ϕ|wt−1) and FY |W (yt ;γ |wt−1), and the copula
as C(ut , vt ;κ|wt−1). The same pattern is followed for different densities. According to
Sklar’s theorem, FXY |W (xt , yt ; θ |wt−1) = C(FX|W(xt ;ϕ|wt−1),FY |W (yt ;γ |wt−1);κ|wt−1),
where θ ≡ [ϕ′, γ ′, κ ′]′ is the set of all parameters of both marginal distributions and copula
to be estimated, and wt−1 is the information set until time t − 1. To simplify the notation,
we suppress the conditioning variable(s). Therefore, (A.3) can be rewritten as follows:

LXY (θ) = LX(ϕ) + LY (γ ) + LC(κ)

=
T∑

t=1

logfX(xt ;ϕ) +
T∑

t=1

logfY (yt ;γ ) +
T∑

t=1

log c(FX(xt ;ϕ),FY (yt ;γ );κ) (2)

where ϕ ∈ int(�) ⊆ �p, γ ∈ int(�) ⊆ �q , κ ∈ int(K) ⊆ �r and so θ ≡ [ϕ′, γ ′, κ ′]′ ∈
int(	) ≡ int(�) × int(�) × int(K) ⊆ �p+q+r ≡ �s , where int(A) is the interior of set A.

Now we introduce some important properties of copula. The first is the tail dependence
of copula, which measures the probability of having a high (low) extreme value of random
variable Y , given that a high (low) extreme value of random variable X has occurred. In
portfolio risk management, investors will select assets having lower correlations, especially
in extreme values, to hedge the relationship risk and to get diversification benefits. Tail
dependence can help investors select assets for a portfolio. According to Nelsen (1998), the
lower and upper tail dependence coefficients are defined as follows.

λL = lim
α→0+ P (Y < F−1

Y (α)|X < F−1
X (α)) = lim

α→0+
C(α,α)

α
(3)

λU = lim
x→1− P (Y > F−1

Y (α)|X > F−1
X (α)) = lim

x→1−
1 − 2α + C(α,α)

1 − α
(4)

where α is the probability and F−1
X (α) and F−1

Y are 100α-th percentiles of FX and FY ,
respectively, λL and λU ∈ [0,1] are lower tail dependence coefficient and upper tail de-
pendence coefficient, respectively. For unification of notations, we substitute τL (τU ) for
λL (λU). Another key property of copula is that copula of the underlying random variables
is invariant under non-linear strictly increasing transformations. Financial data usually ex-
hibit autoregression and volatility clustering. The second property makes sure that the copula
of underlying assets does not change when we filter the financial assets’ returns using some
models, like GARCH models.

2.2 Copula selection: goodness-of-fit tests

As noted by Durrleman et al. (2000), the obtained results might be very different if the cop-
ula selected is not suitable. Thus, the choice of copula that is going to fit the data is very
important. The initial approach to select the copula was proposed by Deheuvels (1979), who
constructed the so-called “empirical copula”, though it is neither a copula nor exactly the
same (except asymptotically), and considered that the best copula is the one that minimizes
the distance between the empirical copula and the hypothesized copula. The discrete L2
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norm was chosen by him to measure the distance. Another suggestion is to use a criterion
like Akaike’s information criterion (AIC) (Akaike 1973) and Schwarz’s Bayesian informa-
tion criterion (SBIC) (1978), which are defined as:

AIC(M) = −2LL

n
+ 2M

n
(5)

SBIC(M) = −2LL

n
+ M log(n)

n
(6)

where M is the number of parameters being estimated and LL is the value of maximum
likelihood function when parameters are optimal, and n is the number of observations. When
we select the optimal copula function, M is the number of copula parameters if models for
marginal distributions are considered, as known, and LL can be obtained from log c(u, v;κ).
Similarly, when we select marginal distributions, M is the number of marginal parameters,
and LL can be obtained from logfX(x;ϕ) or logfY (y;γ ). These approaches to select the
underlying true copula are helpful to identify the appropriate copula, but they are not able
to provide any understanding about the power of the decision rule employed. On the other
hand, Goodness-of-fit (GOF) tests are proposed by many academics. These tests are able to
either reject or fail to reject a parametric copula and are thus preferred (Berg and Bakken
2006). Genest et al. (2009) briefly reviewed GOF tests of copula models. According to their
findings, a good combination of power and conceptual simplicity is provided by the Cramér-
von Mises (CVM) statistic:

Sn =
n∑

t=1

{Cκ(ut , vt ; κ̂) − Cn(ut , vt )}2 (7)

This statistic measures how close the fitted copula Cκ(ut , vt ; κ̂) is from the empirical
copula Cn, as modified by Fermanian (2005). Because the definition of Sn involves κ̂ , the
distribution of this statistic depends on the unknown value of copula parameter κ under the
null hypothesis that C is from the class Cκ . Thus the P -value of the test must be computed
using a parametric bootstrap procedure described by Genest et al. (2009).

2.3 Marginal distribution modelling

GARCH-type models have been applied by many authors to fit univariate variables, to ana-
lyze and forecast volatility of financial time series data, because they can effectively capture
the main observed characteristics in financial markets. Taking into account characteristics of
return series in energy futures market, we use the classical GARCH model and the Threshold
GARCH (TGARCH, also called GJR by Glosten et al. 1993) model to model univariate vari-
ables. Let the log-returns of a given asset be given by rt = log(Pt )− log(Pt−1), t = 1, . . . , T .
Pt denotes the price of a given asset at time t . We model each marginal time series by the
general AR(1)-TGARCH(1,1) model and AR(1)-GARCH(1,1) model.

rt = μ + φrt−1 + εt (8)

ht = ω + αε2
t−1 + ψε2

t−1It−1 + βht−1 (9)

εt = ηt

√
ht , ηt

i.i.d∼ f (0,1) (10)

where ht denotes the conditional variance. εt is the innovation, or the residual, and ηt is
the standard residual with zero mean and unit variance. It = 1 if εt−1 < 0, and 0 otherwise.
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Good news εt−1 > 0 and bad news εt−1 < 0 have different effects on conditional variance in
TGARCH model. That is, good news has an impact of α, while bad news has an impact of
α + ψ . If ψ �= 0, we say that the leverage effect exists, while if ψ = 0, the TGARCH model
degenerates into GARCH model.

We also try other autoregression models to fit the mean model, such as ARMA(p, q),
using the pre-estimation analysis. The results show that AR(1) is sufficient to filter autore-
gression of the target time series. We estimate the AR(1)-TGARCH(1,1) model and the
AR(1)-GARCH(1,1) model assuming three different density functions f (0,1) for ηt : Nor-
mal, Student t and skewed Student t (Skew-T). The density function of the skewed Student t

distribution, which is generalized by Hansen (1994) to contemporarily capture excess kur-
tosis and excess skewness, is given by:

Skew-T f (z;υ,λ) =
{

bc(1 + 1
υ−2 ( bz+a

1−λ
)2)−(υ+1)/2 if z < −a/b

bc(1 + 1
υ−2 ( bz+a

1+λ
)2)−(υ+1)/2 if z ≥ −a/b

(11)

where 2 < υ < ∞ and −1 < λ < 1 denote the degree of freedom parameter and the asym-
metry parameter, respectively. The constants a, b and c are given by a = 4λc( υ−2

υ−1 ),

b =
√

1 + 3λ2 − a2, c = �(υ+1
2 )

√
π(υ − 2)�( υ

2 )
, respectively.

By construction, Skew-T density has zero mean and one variance. Moreover, it encompasses
a large set of conventional densities. For instance, if λ = 0, the Skew-T distribution reduces
to the traditional Student t distribution, which is not skewed. While if λ = 0 and υ → ∞,
it reduces to the normal density. Similar to the Student t , given the restriction υ > 2, this
distribution is well defined and its second moment exists, while the skewness exists only for
υ > 3 and the kurtosis exists only for υ > 4. The parameter λ controls the skewness of the
density, which has a single mode at −a/b. If λ > 0, the distribution has a positive skewness,
viz., skewed to the right, while if λ < 0, the distribution has negative skewness, viz., skewed
to the left.

3 VaR forecasting with copula-GARCH models

3.1 Introduction: value at risk

VaR is defined as the maximum expected loss which may be incurred by a portfolio over a
target horizon and at a given level of confidence under normal financial market conditions.
Let q denote the confidence level, and L the expected profit and loss. We define VaR as a
positive number (negative loss). Then, the VaR of a given portfolio at time t (return from
t − �t to t ), with confidence level 1 − q , is defined as:

VaRt (q) = − inf{x|Ft(x) ≥ q} (12)

where Ft(x) is the c.d.f. of the portfolio P&L at time t . From (12), it can be seen that
the choice of the distribution function is paramount to VaR calculation. Traditionally, the
distribution is usually assumed to be normal distribution. However, it underestimates the
probability in the tail. Furthermore, it underestimates the VaR. Therefore, we use a fat-tailed
distribution, such as Student t and skewed Student t , in order to capture fat-tailness and
skewness, to model the distribution of P&L.
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3.2 VaR estimation

Our objective is to estimate one-day-ahead VaR of an equally weighted portfolio composed
of two assets, crude oil futures and natural gas futures. We denote rX

t and rY
t as the time

series of daily log-returns for futures of crude oil and natural gas, respectively. Then, the
portfolio returns are approximately equal to 0.5rX

t + 0.5rY
t . To estimate the portfolio VaR,

we need to investigate the joint distribution of the vector (rX
t , rY

t ). In this paper, we use the
copula-GARCH model constructed by the aforementioned procedures to fit the time series
(rX

t , rY
t ). Because there are no analytic and easy-to-use formulae to switch from conditional

mean and volatility to VaR of the portfolio, Monte Carlo simulation is employed to forecast
VaR based on copulas (Fantazzini 2008; Bastianin 2009). We denote Lt as the P&L function
of this portfolio, expressed as:

Lt = 1

2
P X

t + 1

2
P Y

t −
(

1

2
P X

t−1 + 1

2
P Y

t−1

)

= 1

2
P X

t−1(exp(rX
t ) − 1) + 1

2
P Y

t−1(exp(rY
t ) − 1) (13)

The procedures we use to forecast one-day-ahead VaR based on copulas at 95% and 99%
confidence level are the following:

1. AR-GARCH-type models are fitted, and marginal distributions are estimated for each
return series using T observations in Sect. 2.3;

2. One-step return means and variances are forecasted in time T + 1, and denoted as r̂ i
T +1

and ĥi
T +1, for i = X,Y ;

3. We simulate N = 10,000 Monte Carlo scenarios over the time horizon [T ,T + 1], using
the conditional bivariate distribution modeled by copula-GARCH models.
(a) Estimate copula parameters κ̂ by PITs ut and vt of standardized residuals ηX

t and ηY
t

of AR-GARCH-type models.
(b) Simulate j random variables (u

j

T +1, v
j

T +1), where j = 1, . . . ,N , from the copula
function estimated in step (a). See Cherubini et al. (2004), for a discussion about
copula simulation.

(c) Obtain the (simulated) standardized residuals η
i,j

T +1 by using the inverse functions of
the estimated marginals.

(
η

X,j

T +1, η
Y,j

T +1

) = (
F−1

X,T +1(u
j

T +1; ϕ̂),F−1
Y,T +1(v

j

T +1; γ̂ )
)

(d) Get the (simulated) asset log-returns by using standardized residuals in step (c) and
the forecasted means and variances from step 2.

(
r

X,j

T +1, r
Y,j

T +1

) = (
r̂X
T +1 + η

X,j

T +1 ·
√

ĥX
T +1, r̂

Y
T +1 + η

Y,j

T +1 ·
√

ĥY
T +1

)

(e) Repeat steps (b)–(d) for N times, and calculate the values of L
j

T +1 using (13) for
j = 1, . . . ,N .

(f) Sort the 10,000 values of L
j

T +1 in increasing order, and the 95%, 99% VaR is simply
calculated as:
(i) 95% VaR is the absolute value of 10,000 × (1 − 95%) = 500th ordered scenario

of LT +1;
(ii) 99% VaR is the absolute value of 10,000 × (1 − 99%) = 100th ordered scenario

of LT +1.
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4. We repeat steps 1–3 M times by rolling over the daily returns for 2 year periods starting
from Jan 2, 2008 to Dec 31, 2009 with one day increment. For example, we use the
dataset from Jan 2, 1998 to Dec 31, 2007 to forecast the next trading day VaR (Jan 2,
2008). Then we add the price in Jan 2, 2008 to the dataset and delete the price on Jan 2,
1998, so that we assure that the dataset always has T observations. M is the number of
out-of-sample instances. The results of this step are used for backtesting VaR.

Note that the simulation times N is a critical variable when using this procedure. Ob-
viously, the larger N is, the more accurate the VaR will be. However, the simulation can
be very time-consuming, especially when conducted in a recursive or rolling forecasting
scheme (Bastianin 2009). Fantazzini (2008) suggests a choice of 100,000 simulations, while
Bastianin (2009) suggests only 5,000. Considering the accuracy of VaR and CPU time, we
select 10,000 simulations, which represent a good compromise between accuracy and speed.

3.3 VaR evaluation: backtesting

After forecasting VaR of each day in the out-of-sample (from the 2494 to 2999 observations)
using the procedure described in Sect. 3.2, we compare these forecasted VaRs with the real
observed portfolio P&L and then evaluate the performance of the constructed models using
backtesting techniques. In this paper, we apply two statistical tests and three loss functions
to backtest the performance of different VaR models.

3.3.1 Statistical tests

We first define {It }T
t=1 as the hit series. It = 1 when the value of observed P&L function is

less than the negative forecasted VaR threshold, and 0 otherwise. q is defined as the true
probability coverage. Let Z = ∑T

t=1 It be the number of exceptions in a sample of size T .
The first statistical test is the Kupiec’s unconditional coverage test. This test, proposed

by Kupiec (1995), tests the difference between the observed and the expected number of
VaR exceptions of the effective portfolio profits and losses. The test of the null hypothesis
that the observed exception frequency Z is equal to the expected exceptions is given by a
likelihood ratio (LR) test statistic:

LRUC = −2 log
[
(1 − q)T −ZqZ

] + 2 log
[
(1 − Z/T )T −Z(Z/T )Z

]
(14)

which, when T is large enough, is asymptotically distributed as χ2(1) under H0. This test
can reject a model for both high and low failures. However, it ignores conditioning, or time
variation in the data, and cannot cope with the case where observed exceptions cluster to-
gether in time (Jorion 2007).

To overcome the shortcomings of Kupiec’s unconditional coverage test, Christoffersen
(1998) developed the conditional coverage test, which tests the joint assumption of uncon-
ditional coverage and independence of failures. His statistic can be expressed as:

LRCC = LRUC + LRIND

= −2 log
[
(1 − q)T −ZqZ

] + 2 log
[
(1 − π01)

n00π
n01
01 (1 − π11)

n10π
n11
11

]
(15)

where nij is the number of observations with value i followed by j for i, j = 0,1 and
πij = nij /

∑
j nij are corresponding probabilities. This test is distributed as χ2(2) under H0.
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3.3.2 Loss functions

All statistical tests discussed above have focused on examining the behavior of the hit func-
tion. These tests choose acceptable models on the basis of number of exceptions, while
information contained in the number of exceptions is limited. For example, one might be
interested in the magnitude of the exception rather than simply whether or not an exception
occurred (Campbell 2006). Moreover, previous statistical tests do not show any power in
distinguishing among different, but close, alternatives. These problems in previous statisti-
cal tests result in construction of a general loss function. The first loss function, suggested
by Lopez (1998) as an alternative to the approach that focuses exclusively on the hit series,
can be written as:

CL
t =

{
1 + (|Lt | − VaRt )

2 if Lt < −VaRt

0 if Lt ≥ −VaRt
(16)

This measure includes an additional term based on the magnitude of an exception, except
for the score of one when an exception occurs. A backtest using this loss function would
typically be based on the sample average loss,

ĈL = 1

T

T∑

t=1

CL
t

Blanco and Ihle (1999) proposed an alternative loss function by focusing on the average
size of exceptions:

CBI
t =

{ |Lt |−VaRt

VaRt
if Lt < −VaRt

0 if Lt ≥ −VaRt

(17)

The backtest using this loss function is similar to Lopez’s loss function.
The third loss function is based on the quantile estimation by González-Rivera et al.

(2004):

Q = T −1
T∑

t=1

(q − It )(Lt − VaRt ) (18)

The criterion (using these three loss functions) to evaluate the performance of different VaR
models is that a smaller Ĉ or Q indicates a better goodness-of-fit. When we backtest the
performance of different VaR models using all of tests mentioned above, there is a general
strategy to choose the best VaR model: first, we use the statistical tests to choose the best
models; second, we apply the loss functions to compare the costs of different admissible
choices.

4 Empirical application

In this section we apply the theory presented to forecast VaR of an equally weighted port-
folio comprising crude oil futures and natural gas futures. By comparing performances of
different models, we focus on influences of marginal distributions and copulas on VaR.
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Table 1 Descriptive statistics

Full sample Estimation sample Forecasting sample

Crude oil Natural gas Crude oil Natural gas Crude oil Natural gas

Mean 0.000505 0.000317 0.000684 0.000500 −0.000377 −0.000584

Std. Dev. 0.026397 0.038411 0.023749 0.038193 0.036797 0.039497

5% VaR 0.040970 0.058684 0.037274 0.058373 0.059956 0.059962

1% VaR 0.076821 0.094051 0.057966 0.096303 0.103435 0.088520

Skewness −0.123276 0.593258 −0.319427 0.479783 0.196153 1.105355

Kurtosis 6.817222 8.192984 6.170075 8.199213 5.476272 8.205871

Jarque-Bera 1828.387 3545.681 1086.710 2904.739 132.2643 673.0879

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ADF −41.2367 −59.0726 −49.9049 −52.9548 −23.7606 −26.2611

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

PP −55.9781 −59.1067 −50.1489 −53.0229 −23.9058 −26.1164

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Correlation 0.283192 0.287260 0.287763

4.1 Data description

We examine VaR of an equally weighted portfolio comprising crude oil and natural gas
futures traded on the NYMEX. We collected closing futures prices covering the period from
January 5, 1998 to December 31, 2009, with 3000 daily observations. Actually, contracts
with different maturities are traded on the NYMEX. Here, we selected one-month maturity
contracts (marked Contract 1 on the NYMEX; it is a futures contract specifying the earliest
delivery date) as the target dataset. In what follows, returns are classically represented by
changes in logarithms of price values, with T = 2999 log-returns. We use 2494 observations
(from January 5, 1998 to December 31, 2007) to estimate the models, and reserve the last
505 observation (from January 2, 2008 to December 31, 2009) for out-of-sample evaluation
of the models. The descriptive statistics of the two return series are presented in Table 1.

First, we can note that average returns of crude oil futures contracts are slightly higher
than natural gas futures contracts over three periods, while volatilities are the opposite. But
they are very close. This is different from the usual phenomenon that assets with high returns
are accompanied by high risk. This somewhat implies that crude oil futures offer returns that
are superior to natural gas futures. In this study, we focus on the relationship between these
two assets. Meanwhile, notice that average returns in the full sample and the estimation
sample are positive, while they are negative in the forecasting sample. The changes in com-
parative average returns of in-sample and out-of-sample periods suggest that allowing for
structural breaks in the returns-generating process may improve portfolio decisions (Patton
2004). Due to computational constraints, we allow for no structural breaks in average re-
turns. The skewness of crude oil in full sample and estimation sample is negative, while
skewness is positive in the forecasting sample. Natural gas futures exhibit positive skew-
ness in three periods. Both time series exhibit excess kurtosis. The Jarque-Bera statistic
significantly rejects the null hypothesis of unconditional normality. Also, the unconditional
correlation coefficient shows a positive degree of linear dependence. The empirical 5% and
1% VaRs are defined as the negative of the fifth and first empirical percentile of returns, that
is, VaR(X;0.05 or 0.01) ≡ −F̂−1

n (0.05 or 0.01), where F̂n is the empirical distribution of
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Table 2 Empirical exceedance correlation

F-test(1) P-value F-test(2) P-value ρ̂(c)− − ρ̂(c)+
c1 = 0.0 c2 = 0.5 c3 = 1.0 c4 = 1.5

Full-sample 135.1631 0.0000 130.8226 0.0000 −0.010319 0.027300 0.033873 0.081916

In-sample 115.8545 0.0000 113.7120 0.0000 −0.344999 0.069498 0.058760 0.097934

Out-of-sample 23.8898 0.0000 23.1966 0.0000 −0.197679 0.003777 0.065353

Notes: Columns (Rows) 1–4 display F-tests and the associated P-values based on the following regressions:

(1)rX
t = α0 + α1rY

t · I
(rY

t >0)
+ α2rY

t · I
(rY

t ≤0)
+ ξt ;H0 : α̂1 = α̂2

(2)rY
t = β0 + β1rX

t · I
(rX

t >0)
+ β2rX

t · I
(rX

t ≤0)
+ εt ;H0 : β̂1 = β̂2

returns using n observations. The ADF (Augmented Dickey-Fuller) and PP (Philips-Perron)
are unit root tests used to test the null hypothesis of non-stationarity of time series. That
P-values for all time series are less than 0.05 indicates that every series is stationary.

To examine the existence of this asymmetric dependence between crude oil futures and
natural gas futures, we use the measures of Hong et al. (2007), called “exceedance correla-
tion”, which is defined to be between random variables X and Y as ρe(q):

ρe(q) =
{

ρ− = corr(X,Y |X ≤ Qx(q) ∩ Y ≤ Qy(q)) for q ≤ 0.5

ρ+ = corr(X,Y |X > Qx(q) ∩ Y > Qy(q)) for q ≥ 0.5

where Qx(q) and Qy(q) are q-th quantiles of X and Y . If X and Y are standardized re-
turns, we can examine the degree of asymmetry in their unconditional copula using the ex-
ceedance correlation after having removed all asymmetries in marginal distributions. Then,
the exceedance correlation is defined as:

ρe(c) =
{

ρ− = corr(X,Y |X ≤ c ∩ Y ≤ c) for c ≤ 0

ρ+ = corr(X,Y |X > c ∩ Y > c) for c ≥ 0

Additionally, we use some regression equations to test the null hypothesis of symmetric
correlation. Results are shown in Table 2. Obviously, both F-tests based on raw log-returns
reject the null hypothesis of symmetric correlation. Also, exceedance correlations based
on transformed standardized residuals for two indices are not equal at exceedance levels
c = 0,0.5,1.0,1.5. These results confirm that the asymmetry in the dependence exists even
after removing all asymmetries in marginal distributions.

4.2 Marginal distributions modelling

In what follows, we multiply log-returns by 100 in order to get larger variances and parame-
ters. As shown in Table 1, each series is stationary at 0.05 significance level. This implies that
these series are appropriate to be fitted by AR-GARCH-type models. Using the correlogram
analysis, it is found that autocorrelation and partial autocorrelation exist in both in-sample
series. The Q-statistic of Ljung-Box test of crude oil futures on the 34th lag is about 47,
with corresponding p-value 0.075. This implies that the null hypothesis is rejected at 0.1
level of significance and confirms the existence of autocorrelation. The Q-statistic of natu-
ral gas futures on the 1st lag is about 8.7, with corresponding p-value 0.003. This implies
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the autocorrelation coefficient is non-zero at the 0.05 level of significance. To fit the auto-
correlation of both time series, we use the first order autoregressive model (AR(1)) for the
conditional mean of log-returns of each series. Model test shows that the AR(1) model is
sufficient to fit the mean of each series. After fitting the mean model, we use the Lagrange
multiplier (LM) test of Engle (1982) to examine whether residuals of both in-sample series
have heteroscedasticity. Obviously, ARCH effects of higher lags exist in both in-sample se-
ries. This implies that we can use GARCH-type models to capture the heteroscedasticity of
the residuals of mean equations of the two in-sample series.

Models employed for marginal distributions are the AR(1)-TGARCH(1,1) model and
the AR(1)-GARCH(1,1) model, assuming three different density functions f (0,1): Nor-
mal, Student T and Skew-T, given by (8), (9) and (10).

First, we allow for determining whether AR(1)-TGARCH(1,1) or AR(1)-GARCH(1,1)

is more appropriate to both univariate time series under the same density functions of inno-
vations. Results are listed in Table 3.

The KS tests reject the null hypothesis of normality, but do not reject the null hypothesis
of Student t , and Skew-T distribution of either of the returns. This implies that the filtered
standardized residuals are also non-normal. The LR tests show that the null hypothesis of
no significance of restriction is rejected in case of the same innovation in crude oil. This
implies that TGARCH models are superior to GARCH models with the same innovation.
Therefore, we use TGARCH models to fit crude oil returns. The results are opposite in
natural gas, where the null hypothesis of no significance of restriction can’t be rejected in
the same innovation case. Considering the no significance of leverage effect in natural gas,
we use GARCH models to fit its returns. Also, the results of log-likelihood values AIC and
SBIC show that the TGARCH model with Skew-T innovation is always superior to other
models in crude oil, while GARCH model with Skew-T innovation performs the best in case
of natural gas. Therefore, we select the AR(1)-TGARCH(1,1) with Skew-T innovation to
fit the marginal distribution of crude oil futures, and the AR(1)-GARCH(1,1) with Skew-
T innovation to fit the marginal distribution of natural gas futures. Parameter estimates for
both marginal distributions are listed in Table 4.

Table 4 shows that the Ljung-Box test used to examine autocorrelation of standardized
residuals of four GARCH models does not reject the null hypothesis of autocorrelation at
lags 1, 5 and 10 at 5% significance level. The Engle-test, or LM test, is applied to the square
of standardized residuals of all models. The p-values show that these models do not reject
the null hypothesis of ARCH effects at lags 1, 5 and 10 at 5% significance level, except the
TGARCH model with skewed-t innovations for crude oil futures. Although the TGARCH
model with skewed-t innovations for crude oil futures rejects the null hypothesis of ARCH
effects at lag 5 at 5% significance level, it does not reject the null hypothesis of ARCH effects
at lag 5 at 1% significance level and at lag 10 at 5% significance level. Also, allowing for
degrees of freedom ν and skewness λ is significant at 5% significance level, we consider
the model to be adequate. The leverage effect is statistically significant in crude oil, but not
in natural gas. This implies that bad news will cause larger volatility in crude oil, but news,
bad or good, will bring an asymptotically symmetric effect on natural gas. In a word, we
consider all the models are adequately fitted to marginal distributions of both time series.

4.3 Copulas modelling

After having estimated parameters of marginal distributions {FX,t ,FY,t }, using (A.4) and
(A.5) in the first step, the following step estimates copula parameters using (A.6).

First, we use the seven constant copulas, Gaussian copula, Student t copula, Clayton
copula, Rotated-Clayton copula, Gumbel copula, Rotated Gumbel copula, and SJC copula,
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Table 4 Parameter estimates for marginal distributions and statistic tests

Parameter Crude oil: TGARCH-Skewed-T Natural gas: GARCH-Skewed-T

Value P-value Value P-value

μ 0.069705 0.131480 0.051831 0.196417

φ −0.000191 0.498680 −0.059041 0.010578

ω 0.128463 0.004673 0.320922 0.000127

α 0.003943 0.291981 0.069986 0.000000

γ 0.043079 0.001197 / /

β 0.949914 0.000000 0.908848 0.000000

υ 8.005057 0.000000 6.196872 0.000000

λ −0.089351 0.001049 0.070105 0.003692

Ljung-Box test

Lags Q-stats. P-value Q-stats. P-value

1 0.112582 0.737223 1.194217 0.274481

5 3.056530 0.691271 3.132940 0.679499

10 5.989665 0.816131 6.750912 0.748732

Engle test

LM(1) 2.130321 0.144410 0.988648 0.320073

LM(5) 12.598090 0.027451 3.538283 0.617603

LM(10) 15.849887 0.104011 7.785774 0.649753

Notes: The Ljung-Box test is used to examine the autocorrelation of the standardized residuals of GARCH
models. The Engle test is used to examine the ARCH effects of the square of standardized residuals series for
all models

Table 5 Constant copula specification and estimation

Model Parameter LL AIC SBIC Upper tail Lower tail

Normal 0.330215 143.8992 −0.114640 −0.112305 0 0

Student’s t : Corr. 0.334497 145.6411 −0.115236 −0.110565 0.000521 0.000521

Degree of freedom 29.2376

Clayton 0.379802 102.5989 −0.081507 −0.079172 0 0.161055

Rotated Clayton 0.387761 107.1606 −0.085167 −0.082832 0.167226 0

Gumbel 1.239475 122.6218 −0.097571 −0.095236 0.250689 0

Rotated Gumbel 1.238084 121.5453 −0.096707 −0.094372 0 0.249589

SJC—Upper Tail 0.146384 131.0582 −0.102526 −0.098866 0.146384 0.130251

SJC—Lower Tail 0.130251

Notes: The table shows the estimators of constant parameters of seven copulas, based on Skew-t marginals for
crude oil and natural gas futures. LL is the copula log-likelihood at the optimum. Also presented are values of
the Akaike information criteria (AIC) and the Schwarz’s Bayesian information criteria (SBIC) at the optima

to fit standardized residuals of the best pair of marginal distributions obtained in Sect. 4.2
(in Table 5). For the functional forms of these seven copulas, readers can refer to Nelsen
(1998), Patton (2006a, 2006b), and references therein.
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Recall from Table 2 that most empirical lower exceedance correlations are slightly larger
than the empirical upper exceedance correlations at exceedance levels c = 0,0.5,1.0,1.5.
However, to our surprise, the SJC copula tells something different, the coefficient of upper
tail dependence is slightly larger than the coefficient of lower tail dependence. This is not
consistent with common findings in equities markets that stock returns are more correlated
with market downturns than market upturns. This may be determined by the unique charac-
teristics of energy market. For instance, both crude oil and natural gas are used to generate
electricity and for heating. Interestingly, it is found that copulas with larger upper tail de-
pendence or symmetric tail dependence are always superior to those with larger lower tail
dependence according to the maximized log-likelihood values, AIC and SBIC. The first cop-
ula is Student t copula, which is consistent with the usual findings that the Student t copula
often provides a much better fit of multivariate financial return data (Grégoire et al. 2008).
The Normal copula ranks the second order, followed by SJC and Gumbel copulas. The worst
copulas are Clayton copula, ranked the last one, rotated Clayton copula, and rotated Gumbel
copula. Based on these results, we select the four best copulas, Student t , Normal, SJC, and
Gumbel copula, to forecast VaR of the portfolio composed of crude oil futures and natural
gas futures.

As found by Patton (2006a), the dependencies among assets are usually time-varying. He
assumes that the parameters of copulas can be modeled as the ARMA(1,10) process, that
is copula parameters are determined by past information such as previous parameters and
historical asset log-returns. Therefore, the time-varying parameters of Normal copula and
Student t copula are given by:

ρt = �̃

(
ωN + βNρt−1 + αN

1

10

10∑

j=1

�−1(ut−j ) · �−1(vt−j )

)
(19)

ρt = �̃

(
ωT + βT ρt−1 + αT

1

10

10∑

j=1

T −1(ut−j ;υ) · T −1(vt−j ;υ)

)
(20)

where �̃(x) ≡ (1 − e−x)(1 + e−x)−1 = tanh(x/2) is the modified logistic transformation,
designed to keep ρt in (−1,1) at all times (Patton 2006b). �−1 is the inverse c.d.f. of a
standard normal distribution. T −1

ν is the inverse c.d.f. of a Student t distribution. The degrees
of freedom parameter υ in the Student t copula was assumed to be constant for simplicity,
like the degrees of freedom were estimated in constant Student t copula.

For the Gumbel copula, the time-varying dependence processes are described as:

δt = 1 +
(

ωG + βGδt−1 + αG

1

10

10∑

j=1

|ut−j − vt−j |
)2

(21)

It is similar to time-varying parameters of the Normal copula, and Student t copula, while
the forcing variable is the mean absolute difference between ut and vt over the previous 10
observations.

For SJC copula, the time-varying upper and lower tail dependencies are defined as:

τU
t = �

(
ωU + βUτU

t−1 + αU

1

10

10∑

j=1

|ut−j + vt−j |
)

(22)
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τL
t = �

(
ωL + βLτL

t−1 + αL

1

10

10∑

j=1

|ut−j + vt−j |
)

(23)

where �(x) = (1 + e−x)−1 is the logistic transformation to keep τU and τL in (0, 1).
We fit these four time-varying copulas to standardized residuals of AR(1)-TGARCH(1,1)

for crude oil futures, and AR(1)-GARCH(1,1) for natural gas futures, both with skewed
Student t innovations. The results are listed in Table 6.

According to the maximized log-likelihood values, AIC and SBIC, the best copula is
the time-varying Student t copula. The time-varying Normal copula ranks No. 2. The third
best copula is the time-varying SJC copula according to LL and AIC, while it is the fourth
best according to SBIC. Comparing Table 5 with Table 6, it can be found that time-varying
copulas always do better than their corresponding constant copulas. This implies that dy-
namics of copula parameters do exist and have important effects on the GOF of copulas to
the two energy commodities. To see clearly this dynamics of copula parameters, we calcu-
late the implied time path of conditional dependence between these two assets, and present
the results in Figs. 1–4.

The four figures show that copula parameters significantly change over time. In Figs. 1
and 2, time paths of conditional linear correlation of Normal copula and Student t copula are
very similar. Parameter δ of Gumbel copula also changes from 1.0001 to 1.5939 in Fig. 3.
Figure 4 confirms that the change in linear correlation also takes place in tail dependence.
This figure also shows that the upper tail dependence is mostly larger than the lower tail
dependence. The difference between the upper and lower conditional tail dependence ranges
from −0.0617 to 0.2854. Overall, the dynamics of copula parameters need to be considered
when modeling portfolio risk in energy markets.

As noted above, the maximized log-likelihood values, AIC and SBIC, are helpful to
identify the optimal copula, but they are not able to provide any understanding about the
power of the decision rule employed. Therefore, we further use the GOF tests to identify
the optimal copula. The Cramér-von Mises (CVM) statistic and its P-value are presented in
Table 7.

In Table 7, the one-sided P-values show that all of these copula models are rejected at
0.05 significance level, but three models, constant Student t , and Normal, and time-varying
Student t copulas, pass the goodness-of-fit tests at 0.01 significance level. In summary, the
student t copulas, constant and time-varying, usually provide an adequate description of
the dependence between crude oil and natural gas, which is consistent with results obtained
from maximized log-likelihood values, AIC and SBIC. However, the differences among

Table 6 Time-varying copula specification and estimation

Model ω β α LL AIC SBIC

Normal 0.020695 1.947384 0.085363 154.7869 −0.113036 −0.106031

Student’s t 0.021954 1.947513 0.082844 156.0728 −0.114433 −0.107428

Gumbel 1.017148 −0.096158 −1.547898 136.9449 −0.095966 −0.088961

SJC—Upper Tail 1.588172 −0.791271 −13.207845 146.8771 −1.003275 −0.086317

SJC—Lower Tail 0.752615 −1.856498 −9.381605

Notes: The table shows the estimators of time-varying parameters of four copulas, based on skewed-t
marginals for crude oil and natural gas futures
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Fig. 1 Conditional correlation
estimates from the Normal
copula

Fig. 2 Conditional correlation
estimates from the Student t

copula

Fig. 3 Conditional Delt
estimates from the Gumbel
copula

these models are still limited, because the CVM statistics are very similar. Therefore, we
take all of these copulas into account, and compare their performances in forecasting VaR
of the portfolio concerned in the following section.
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Fig. 4 Conditional lower and
upper tail dependence estimates
from the SJC copula

Table 7 The goodness-of-fit tests for different copula models

Constant copulas Normal Student’s t Gumbel SJC

CVM stat. 0.053620 0.056076 0.143249 0.138600

P-value 0.014310 0.038246 0.000000 0.000000

Time-varying copulas Normal Student’s t Gumbel SJC

CVM stat. 0.167089 0.173276 0.349284 0.352775

P-value 0.002567 0.012931 0.000000 0.000573

4.4 Estimation of VaR

Tables 8 and 9 exhibit forecasting performances of different copula-GARCH models with
Skew-T innovations using the out-of-sample dataset at 95% and 99% confidence levels. Ta-
ble 8 shows the ratio of VaR exceedances Z/T , and two statistical tests. It first can be seen
that the ratios of VaR exceedances are very close. Obviously, constant and time-varying
Gumbel copula models fail to pass the unconditional coverage at 95% confidence level, al-
though they pass all other statistical tests. This means Gumbel is not appropriate to fit the
dependence structure between crude oil futures and natural gas futures. This finding is con-
sistent with results obtained in Sect. 4.3. The remaining copula models pass all statistical
tests. Using these statistical tests, it is difficult to determine which copula is better than other
copula models. Thus we allow for loss functions listed in Table 9. Using the general strategy
to choose the better VaR model mentioned in Sect. 3, we first omit Gumbel copula mod-
els. However, the results are not robust enough to choose the best copula model using the
loss functions. We calculate the average score of each model based on rankings to evaluate
forecasting performances of different models. That is, if a model ranks No. 1 using a certain
loss function, we give it a score of 8; if it ranks No. 2, we give it a score of 7, and so on.
Then the best model is the one that has the highest average scores. According to the average
scores, the best model is the constant Normal copula, followed by the constant SJC cop-
ula and constant Student t copula. Notice that time-varying copulas usually perform worse
than constant copulas. These results are opposite to those of GOF tests where time-varying
copulas fit better than constant copulas to the dependence structure between crude oil and
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Table 8 Backtesting of VaR forecasts: statistical test

Copulas 95% 99%

Z/T LRUC LRCC Z/T LRUC LRCC

Constant:

Normal 0.063366 1.757644 2.355868 0.005941 0.983739 1.031595

P-value 0.184919 0.307914 0.321278 0.597024

Student’s t 0.065347 2.292848 2.442138 0.003960 2.413605 2.437486

P-value 0.129971 0.294915 0.120285 0.295602

Gumbel 0.073267 5.064949 5.250837 0.007921 0.237453 0.317374

P-value 0.024414 0.072409 0.626052 0.853263

SJC 0.065347 2.292848 2.442138 0.003960 2.413605 2.437486

P-value 0.129971 0.294915 0.120285 0.295602

Time-varying:

Normal 0.063366 1.757644 2.355868 0.005941 0.983739 1.031595

P-value 0.184919 0.307914 0.321278 0.597024

Student’s t 0.067327 2.892905 3.263401 0.007921 0.237454 0.317374

P-value 0.088970 0.195597 0.626052 0.853263

Gumbel 0.069307 3.556040 3.844677 0.007921 0.237453 0.317374

P-value 0.059329 0.146265 0.626052 0.853263

SJC 0.067327 2.892905 3.263401 0.005941 0.983739 1.031595

P-value 0.088970 0.195597 0.321278 0.597024

Notes: The table shows results of three statistical tests, based on skewed-t marginals for crude oil futures and
natural gas futures, at 95% and 99% confidence level. Z/T denotes the ratio of VaR exceedances

natural gas futures. This implies that the time-varying parameters of copulas have, at best,
limited effects on forecasting of portfolio VaR in energy market, although the dynamics of
copula parameters do exist, and affect the choice of copulas by GOF tests. The constant SJC
copula provides a better performance, as reported in many previous research results (Patton
2006a). This may be because it embodies symmetric as well as asymmetric dependencies.
Additionally, results show that symmetric copulas perform better than asymmetric copulas.
This means that asymmetry in the dependence has few effects on forecasting of portfolio
VaR in energy market, although asymmetry exists even after removing all asymmetries in
marginal distributions.

Considering the forecasting performances of copulas and their GOF tests, we conclude
that the constant Student t copula should be a good compromise for effectively fitting the
dependence structure between crude oil and natural gas futures. Also, the parameters of Stu-
dent t copula can be time-varying, but the dynamics of parameters improve few forecasting
performances.

5 Conclusions

In this paper we have presented a new approach to estimate the VaR of an equally weighted
portfolio comprising crude oil and natural gas futures in energy market that combines con-
stant or time-varying copulas with GARCH-type models to construct the joint conditional
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Table 9 Backtesting of VaR forecasts: loss functions

Copulas 95% 99% Average scores

Lopez BI Q Lopez BI Q

Constant:

Normal 0.119969 0.016113 0.130246 0.016089 0.001003 0.148758 6.666667

Student’s t 0.124711 0.016307 0.130518 0.014053 0.001019 0.148656 5.500000

Gumbel 0.127889 0.016880 0.130635 0.017465 0.001059 0.147099 3.500000

SJC 0.123731 0.016269 0.130139 0.013825 0.001005 0.149270 6.333333

Time-varying:

Normal 0.122718 0.016645 0.131094 0.015782 0.001015 0.148523 4.833333

Student t 0.125990 0.016403 0.130489 0.019181 0.001137 0.148929 3.333333

Gumbel 0.129191 0.016883 0.130548 0.018359 0.001082 0.147423 2.833333

SJC 0.126905 0.016550 0.130791 0.016119 0.001032 0.149326 3.000000

Notes: The table shows three loss functions, based on skewed-t marginals for crude oil futures and natural
gas futures, at 95% and 99% confidence level. The average score of each model is calculated according to
rankings

multivariate distributions. A distinguishing feature of our model is that it allows us to simul-
taneously take into account two kinds of non-normal features of financial data: asymmetry,
such as skewness, and excess kurtosis, such as fat tails. The asymmetry and excess kurtosis
in the marginals can be fitted by GARCH-type models, while the asymmetry and excess
kurtosis in the dependence can be captured by copulas. Additionally, copulas provide the
flexibility to estimate the parameters of joint multivariate distribution, because dependence
structure is separated from modeling of marginal distributions. Therefore, parameters in the
marginals and copulas can be estimated separately, without being subject to the curse of
dimensionality.

One of our main findings is that the constant Student t copula is a good compromise for
effectively fitting the dependence structure between crude oil and natural gas futures. The
parameters of Student t copula can be time-varying, but the dynamics of parameters improve
few forecasting performance. Although asymmetry is found in the dependence structure, it
has few effects on performances in forecasting of portfolio VaR in energy market. Therefore,
asymmetric copulas provide worse fitting performance to the dependence structure between
crude oil and natural gas futures, and furthermore, worse performances in forecasting of
VaR. As expected, the SJC copula provides a better performance in forecasting VaR. This
is because it embodies symmetric and asymmetric dependencies. However, the GOF test of
SJC copula shows that it fits the dependence structure between crude oil futures and natural
gas futures worse than Student t and Normal copulas.

The empirical results affirm the importance of specifying correct marginals. Particularly,
GARCH(1,1)-type models with Skew-T innovation better fit the univariate returns of both
time series. The skewness parameter of Skew-T distribution shows that asymmetry is sig-
nificant in univariate returns. The degree of freedom parameter of Skew-T distribution also
indicates the significant kurtosis in univariate returns. These imply that traditional models
based on the normal assumption are not appropriate to fit the univariate returns of both crude
oil futures and natural gas futures. Therefore, the GARCH(1,1) with Normal innovation is
rejected. Although the GARCH(1,1) with Student t innovation is not rejected, it provides
worse fitting performance to the univariate returns than the GARCH(1,1) with Skew-T
innovation according to the log-likelihood values, AIC and SBIC. More specifically, the
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AR(1)-TGARCH(1,1) with Skew-T innovation is selected to fit the marginal distribution
for crude oil futures, because there exists significant leverage effect in crude oil futures, and
the AR(1)-GARCH(1,1) with Skew-T innovation is selected to fit the marginal distribution
for natural gas futures.

This paper leaves possible extensions for future research. An interesting extension would
be that the skewness parameters and the degrees of freedom of Skew-T marginal den-
sity can be modeled by conditional time-varying models (Jondeau and Rockinger 2006;
Fantazzini 2008). We believe the dynamic model for skewness parameters and the degrees
of freedom of Skew-T density can provide better fitting to the marginal distribution. There-
fore, this can improve forecasting performances. Secondly, alternative techniques, such as
the Bayesian method, can be considered to choose the most probable copula among a given
set (Huard et al. 2006). Finally, using the conditional multivariate, beyond bivariate, copu-
las to model joint multivariate distributions is promising to evaluate VaR with multi-asset
portfolios composed of commodities, exchange rates and equities.

Appendix: Estimation of multi-stage maximum likelihood

Provided FX|W(·|w) and FY |W (·|w) are differentiable and FXY |W (·, ·|w) and C(·, ·|w) are
twice differentiable, the bivariate copula density c(·, ·|w) can be obtained by differentiat-
ing (1).

fXY |W(x,y|w) ≡ ∂2FXY |W (x, y|w)

∂x∂y

= ∂FX|W(x|w)

∂x
· ∂FY |W (y|w)

∂y
· ∂2C(FX|W(x|w),FY |W (y|w)|w)

∂u∂v

= fX|W(x|w) · fY |W(y|w) · c(u, v|w), ∀(x, y,w) ∈ �̄ × �̄ × � (A.1)

where u = FX|W(x|w) and v = FY |W(y|w). Then,

c(u, v|w) = fXY |W(x,y|w)

fX|W(x|w) · fY |W(y|w)
(A.2)

This procedure is very important to implement the maximum likelihood estimation. Let
LXY ≡ logfXY |W(x,y|w),LX ≡ fX|W(x|w),LY = fY |W(y|w) and LC = log c(u, v|w). So we
can obtain the log-likelihood function of (A.1).

LXY = LX + LY + LC (A.3)

Especially, we denote the conditional joint distribution as FXY |W(xt , yt ; θ |wt−1), the con-
ditional marginal distributions as FX|W(xt ;ϕ|wt−1) and FY |W(yt ;γ |wt−1), and the copula
as C(ut , vt ;κ|wt−1). The same pattern is followed for different densities. According to
Sklar’s theorem, FXY |W (xt , yt ; θ |wt−1) = C(FX|W(xt ;ϕ|wt−1),FY |W (yt ;γ |wt−1);κ|wt−1),
where θ ≡ [ϕ′, γ ′, κ ′]′ is the set of all parameters of both marginal distributions and cop-
ula to be estimated, and wt−1 is the information set until time t − 1. Let MSMLE of θ

be denoted as θ̂ . Then it can be estimated using IFM method by the following successive
procedures:
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1. Parameters ϕ and γ of univariate marginal distributions are estimated in the first stage by
the following maximization:

ϕ̂ = arg max
ϕ∈�

T∑

t=1

logfX(xt ;ϕ) (A.4)

γ̂ = arg max
γ∈�

T∑

t=1

logfY (yt ;γ ) (A.5)

2. Given ϕ̂ and γ̂ in Stage I , copula parameters κ can be estimated as:

κ̂ = arg max
κ∈K

T∑

t=1

log c(FX(xt ; ϕ̂),FY (yt ; γ̂ );κ) (A.6)

Then, the IFM estimator is defined as:

θ̂ = [ϕ̂′, γ̂ ′, κ̂ ′]′ (A.7)
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