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Abstract In this paper, we introduce a variant of the orienteering problem in which travel
and service times are stochastic. If a delivery commitment is made to a customer and is
completed by the end of the day, a reward is received, but if a commitment is made and
not completed, a penalty is incurred. This problem reflects the challenges of a company
who, on a given day, may have more customers than it can serve. In this paper, we discuss
special cases of the problem that we can solve exactly and heuristics for general problem
instances. We present computational results for a variety of parameter settings and discuss
characteristics of the solution structure.

Keywords Orienteering · Stochastic travel times · Variable neighborhood search ·
Dynamic programming

1 Introduction

This paper considers a new variant of the orienteering problem where travel and service
times are stochastic. For this problem, from a given set of customers, we want to select a
subset, and for this subset, determine an ordering of the subset that maximizes expected
profit given a known deadline D. For all customers in the ordering that are reached before
the deadline, a customer specific reward is received, and for those not reached before the

This work was partially supported by the National Science Foundation through grant number 0237726
(Campbell).

A.M. Campbell · B.W. Thomas (�)
Dept. of Management Sciences, Tippie College of Business, The University of Iowa, Iowa City, USA
e-mail: barrett-thomas@uiowa.edu

A.M. Campbell
e-mail: ann-campbell@uiowa.edu

M. Gendreau
CIRRELT and MAGI, École Polytechnique de Montréal, Montreal, Canada
e-mail: michel.gendreau@cirrelt.ca

mailto:barrett-thomas@uiowa.edu
mailto:ann-campbell@uiowa.edu
mailto:michel.gendreau@cirrelt.ca


62 Ann Oper Res (2011) 186:61–81

deadline, a customer specific penalty is incurred. We call this the orienteering problem with
stochastic travel and service times (OPSTS).

There are many applications where the OPSTS is relevant. Consider any business that
involves deliveries or service at its customers’ locations. The payments that the customers
make for these deliveries or services can be considered a reward. If the number of deliveries
or service requests is more than can be accomplished within available business hours, only a
subset of customers can be served, at least on that day. The service provider must determine
which ones to schedule, and we propose that they should do so in a way that maximizes
profit. This requires carefully accounting for how long it takes to travel to and service each
customer. However, in most urban environments, the travel and service times between cus-
tomers can vary greatly and can reasonably be modeled stochastically. Thus, it is generally
impossible to know with certainty which of even the scheduled customers can be visited
before the deadline. For those customers who are scheduled but who cannot be served, the
provider pays a penalty. This penalty may represent a direct payment to the customer, similar
to payments made by cable companies when they miss their service appointments, or a loss
of goodwill. It is important to recognize there is a cost associated with a failure to make a
delivery, and deterministic models cannot consider such a cost. For many technicians, there
is no need to return to a depot, or whatever the point of origin is, at the end of the day, so an
orienteering, rather than a traveling salesman, model is appropriate.

Formally, let N = {1, . . . , n} be a set of customers. Node 0 represents the depot. We
assume there is an arc (i, j) between all i and j in N . Associated with each i ∈ N is a
reward ri and penalty ei . This reward ri is earned by visiting customer i at or before a
known deadline D if i is selected to be served. The penalty ei is incurred if the visit to
customer i would occur after a known deadline D if i is selected to be served.

Let Xij be a non-negative random variable representing the time required to traverse
arc (i, j). We assume that the distribution on Xij is known for all i and j . Let Si be a
non-negative random variable representing the service time at customer i. We assume that
the distribution of Si is known for all i. Let the random variable Ai be the arrival time at
customer i. For a realization of Ai , Āi , we let R(Āi) be a function representing the reward
earned at customer i when arriving to i at time Āi . We assume that R(Āi) = ri for Āi ≤ D

and ei otherwise.
Let τ be an order or tour of the customers in the selected set M ⊆ N which begins at the

depot 0. Then, the expected profit of the tour is v(τ) = ∑
i∈τ [P (Ai ≤ D)ri − (1 − P (Ai ≤

D))ei]. We seek a tour τ � such that v(τ �) ≥ v(τ) for every τ .
In this paper, we study the OPSTS in detail. We will begin by reviewing the related

literature in Sect. 2. In Sect. 3, we identify versions of the problem that can be solved exactly,
and we show how existing variable neighborhood search heuristics can be used to solve
general versions of the problem in Sect. 4. Section 5 discusses the datasets we generated for
the OPSTS. In Sect. 6, we examine how different problem parameters affect the solutions
and develop a good understanding of how deterministic and stochastic solution approaches
differ in terms of the solutions they yield. Finally, Sect. 7 suggests future work.

2 Literature review

The orienteering problem (OP) has a long history in the literature. However, the research
focuses on deterministic variants of the problem. Feillet et al. (2005) present a classification
of orienteering literature. A broad overview of the orienteering problem, it variants, and
associated solution methods can be found in Vansteenwegen et al. (2011).
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Literature on stochastic variants of the OP is limited. The most closely related problem
to the OPSTS is the time-constrained traveling salesman problem with stochastic travel and
service times (TCTSP). Teng et al. (2004) introduce and solve the TCTSP. Unlike the prob-
lem discussed in this paper, their model is limited to discrete travel and service time distri-
butions. The problem only uses a single penalty parameter as a mechanism for maintaining
the feasibility of the solution. Teng et al. use the L-shaped algorithm to solve problems of up
to 35 customers. Their experiments focus on demonstrating algorithmic performance only
and do not examine solution structure.

Related to the TCTSP is the stochastic selective travelling salesperson problem (SSTSP)
introduced by Tang and Miller-Hooks (2005). With the SSTSP, the travel times and ser-
vice times are stochastic. The key difference between the OPSTS and the SSTSP is that the
SSTSP incorporates deadlines via a chance constraint rather than modeling the economic
cost of their violation as we do in this paper. The authors propose both exact and heuristic
methods for solving SSTSP. Their experiments focus on demonstrating algorithmic perfor-
mance and consider only tight delivery deadlines.

To the best of our knowledge, this paper, Tang and Miller-Hooks (2005), and Teng et
al. (2004) are the only papers that address the selective traveling salesman or orienteering
problem with stochasticity in service or travel times. Ilhan et al. (2008) examine a stochastic
version of the orienteering problem, but the stochastic component is the profits associated
with individual customers. The objective is to maximize the probability of collecting a target
profit level within the time constraint or deadline. The authors propose an exact method for
solving small instances and genetic algorithms for solving larger problem instances.

While only a few papers address stochastic variants of the OP, many papers address the
vehicle routing problem (VRP) with random travel times and time constraints. Because of
the key differences in the objectives of the problems, solution techniques for the VRP with
stochastic travel times cannot be used to solve the OPSTS. Recent work includes Kenyon
and Morton (2003) who consider a capacitated vehicle routing problem with stochastic travel
times in which the objective is to maximize the probability that all vehicle tours are com-
pleted by a given time. The authors propose a Monte Carlo procedure that allows for the
creation of a population of solutions from which a best solution can be chosen. The authors
test their algorithm on a single 28 customer problem with two vehicles. Wong et al. (2003)
introduce a 2-stage stochastic integer program with recourse for a problem where customers
have time windows and travel times are discrete random variables. In the problem, the vehi-
cle incurs a penalty if a customer is visited outside of its time window. Ando and Taniguchi
(2006) present a case study which illustrates the value of accounting for travel-time variabil-
ity in the construction of capacitated vehicle routes when customers visits are constrained
by time windows. Jula et al. (2006) discuss a vehicle routing problem with stochastic travel
times and time windows. To overcome difficulties in computing arrival time distributions,
the authors demonstrate how to compute the first and second moments of the arrival time
distribution. They propose a dynamic-programming-based solution approach that is capa-
ble of solving problems of up to 80 customers with tight time windows. Russell and Urban
(2007) consider a problem with stochastic travel times in which violation of the time win-
dows is penalized. The authors focus on the shifted Gamma distribution and use the Taguchi
loss function to compute the penalties for violating the time windows. With considerable
computational effort, problems of 100 customers are solved using a tabu search algorithm.

In addition to stochastic travel times, stochastic presence also affects the likelihood that
time constraints can be satisfied in vehicle routing problems. Campbell and Thomas (2008a)
provide a review of the related literature.
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3 Exact solution methods for three problem variants

In this section, we present three special cases of the general model that can be solved ex-
actly. For the first case, we can characterize the structure of the optimal tour. In the second
case, we use a partial characterization of the optimal policy to develop a simple dynamic
programming approach. The third case also involves a dynamic programming approach, but
it applies to a broader class of instances than the second case.

3.1 Straight line distance and negligible service times

In this case, we assume that we can order the customers such that, for i < j < k, P (Xik ≤
x) = P (Xij + Xjk ≤ x) for every x and assume P (Xik ≤ x) ≥ P (Xij + Xjk ≤ x) for ev-
ery x when i < j < k does not hold. That is, when i < j < k does not hold, Xij + Xjk

stochastically dominates Xik . We assume that the service times are 0 for all customers. For
this special case, we provide results analogous to those in Gendreau et al. (1995) and Camp-
bell and Thomas (2008b), but modify them to account for rewards and penalties. This result
holds for general penalty and reward structures. With these assumptions, for any subset of
customers C, the optimal order of the customers in C is the identity order, c1, . . . , c|C|. The
result follows from considering any other order of the customers in C. Let this alternative
order be τ . Let i be the first customer in C not in topological order in τ . Create τ ′ from τ by
removing i from τ and inserting i back into the tour in topological order. Let m be the last
customer in τ before i, and n be the first customer in τ after i. Let h be the last customer in
τ ′ before i and j be the first customer in τ ′ after i. Thus, in creating τ ′ from τ , we no longer
travel from h to j , from m to i, or from i to n and instead travel from h to i, from i to j ,
and from m to n. Because of our choice of i, we know h < i < j and hence, by assumption,
P (Xhj ≤ x) = P (Xhi + Xij ≤ x). Thus, by inserting i between h and j , the arrival-time
distribution at j and consequently all succeeding customers through m is unchanged in τ ′

from τ . Further, the likelihood of reaching i in τ ′ before the deadline D is greater than in
τ , increasing the expected value of the reward earned at i. From our assumptions, we also
know that, by removing i from between m and n, P (Xmn ≤ x) ≥ P (Xmi + Xin ≤ x) for
every x. Thus, the expected value of the reward at n increases in τ ′ from τ .

Thus, we are left to determine an optimal subset of customers to visit. Because we know
that we will visit the customers in topological order, we can characterize the arrival distribu-
tion for each customer 1, . . . , n a priori, regardless of which customers are included on the
tour. The optimal subset is then those customers who have a positive expected profit.

3.2 Independent homogeneous travel and service time distributions

For this solvable case, we assume that P (Xij ≤ x) = P (Xkl ≤ x) for i, j, k, l and for every
x. We also assume that P (Si ≤ s) = P (Sj ≤ s) for all i and j and for all s. Thus, the
arrival time distribution at the qth customer is the same regardless of who the (q − 1)st
customers are and of their order. This result holds for general penalty and reward structures.
For simplicity, we write P (Aq ≤ D) as pq . Then, customer i in the qth position has a
positive profit if pqri − (1 − pq)ei = pq(ri + ei) − ei > 0.

Consider an optimal tour τ � and an alternate tour τ in which the qth and (q + 1)st
positions in τ � have been interchanged. In τ �, let the customer in the qth position be i and
the customer in the (q + 1)st be j . Then,
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v(τ �) − v(τ) = pq(ri + ei) − ei + pq+1(rj + ej ) − ej − (pq(rj + ej ) − ej

+ pq+1(ri + ei) − ei).

It follows from the optimality of τ � that

pq(ri + ei) − ei + pq+1(rj + ej ) − ej ≥ pq(rj + ej ) − ej + pq+1(ri + ei) − ei,

implying

ri + ei ≥ rj + ej .

Unfortunately, the optimal solution is not found by simply ordering the customers on
the tour in nonincreasing order of ri + ei and then dropping any customers whose expected
contribution is negative. Consider the following two customer example. Let r1 = 1 and e1 =
10 while r2 = 5 and e2 = 3. Assume that the probability of reaching the first customer in
the tour before the deadline is 1 and the probability of reaching the second is 0.5. The
expected profit from ordering the customers in nonincreasing order of ri + ei is 1+0.5(5)−
0.5(3) = 2. Yet, including only customer 2 in the tour yields an expected profit of 5.

Our result, though, does suggest a simple dynamic programming solution approach.
Since we know that ri + ei ≥ rj + ej if i is visited before j on the tour, we begin
by ordering the customers in nonincreasing order of ri + ei . Define (i, k) as the state
where i is the current customer being considered and k is the number of customers al-
ready included on the tour including i. The correctness of the state follows from the fact
that our assumptions result in arrival time distributions depending on only the number
of customers in the tour up to customer i and not on their order. Then, letting f (i, k)

be the expected profit up to customer i when k customers are on the tour, we initial-
ize f (i, k) = 0 for every i and k. Next, letting f (0,0) = 0, we can use the recursion
f (i, k) = max{f (i−1, k), f (i−1, k−1)+pkri −(1−pk)ei}. The optimal value is then ob-
tained by maxk{f (|N |, k)}. Overall, the complexity is O(|N |2), which follows from noting
that there are O(|N |2) states. A dynamic programming approach analogous to that presented
in the next subsection would result in a complexity of O(|N |3).
3.3 A restricted set of travel and service time distributions

Next, we discuss an exact solution approach for the case in which the travel and service time
distributions differ only in a single characterizing parameter, the sum of which characterizes
the convolution of the arrival time distributions. Our approach is motivated by the discus-
sion in Kao (1978) that develops a dynamic programming solution approach for the traveling
salesman problem with stochastic travel times. In particular, for Poisson, gamma (with com-
mon scale parameter λ), binomial and negative binomial (with common parameter p), and
the normal (when the variance is a constant multiple of the mean) distributions, we can com-
pletely characterize the arrival-time distribution with a single distinguishing parameter. For
each arc (i, j), we denote this distinguishing parameter as mij . For each customer, we denote
the service time parameter as mi . For the named distributions, the convolution of the travel
time and service time distributions is then characterized by the sum of the distinguishing
parameters.

Assuming travel and service time distributions are independent but follow identical dis-
tributions differing in their parameters as noted above, we formulate the dynamic program
for this model as follows. Let i ∈ N represent the last node visited. We let the set K rep-
resent the nodes visited prior to and including i. We also let m represent the value of the
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distinguishing parameter for the arrival time distribution at the last node visited. The triple
(i,K,m) then characterizes the state of the dynamic program.

For a given state (i,K,m), the available actions are to travel to a node in the set N \ K

or to end the tour. The action to travel from i to j results in a transition to state (j,K ∪
j,m + mij + mi). We note that the transition of the distinguishing parameter follows from
the restriction to the particular set of distributions mentioned previously. Further, because
m characterizes the arrival time distribution, the computation of the expected profit earned
for traveling to a customer j is straightforward. Choosing to visit j from state (i,K,m)

results in the expected profit R(i,K,m, j) = Fm′(D)rj + (1 − Fm′(D))ej , where Fm′ is the
cumulative distribution function with parameter m′ = m + mij + mi . Choosing to end the
tour yields no profit.

Another feature of our set of available actions for each state (i,K,m) is that it clearly
demonstrates that there exists an acyclic order of the states. Given this acyclic order and our
objective, we have the following functional equation:

f (j,K ′,m′) = max
(i,K,m):K=K ′\j,m′=m+mij +mi

{f (i,K,m) + R(i,K,m, j)}. (1)

As noted in Fox and Denardo (1979), (1) can be solved recursively. To take advantage
of pruning opportunities (described subsequently), we look to solve this described problem
using the well known reaching algorithm for dynamic programming (see Denardo 2003).
To initialize the algorithm, we set the functional value for each state f (i,K,m) = −∞. For
each successor of a state (i,K,m), we “reach” out from (i,K,m) to each of its successors
(j,K ∪ j,m + mij + mi) such that j /∈ K . For each successor (j,K ∪ j,m + mij + mi),
we update f (j,K ∪ j,m + mij + mi) = max{f (j,K ∪ j,m + mij + mi), f (i,K,m) +
R(i,K,m, j)}. We begin the algorithm by reaching from the state (0,∅,0).

We note that, for two states (i,K,m) and (i,K,m′) such that m ≤ m′ and for any set and
sequence of nodes chosen to complete the tour, say τ , we have P (Aj ≤ D) ≥ P (A′

j ≤ D)

for every j ∈ τ and Aj and A′
j (the random variables representing the arrival time to node j

starting from states (i,K,m) and (i,K,m′), respectively). Thus, E[R(Aj )] ≥ E[R(A′
j )] for

all j ∈ τ (see Puterman 1994, p. 106). Thus, if, for states (i,K,m) and (i,K,m′) such that
m ≤ m′, f (i,K,m) ≥ f (i,K,m′), then (i,K,m) dominates (i,K,m′) and we can prune
(i,K,m′) from the states which need to be considered for expansion in our dynamic pro-
gram. To make the comparison of states more efficient, as in Feillet et al. (2004), we aug-
ment our state space with l which is the cardinality of the set of visited nodes K . Further,
we note that, when reaching from a state (i,K,m) to a state (j,K ∪ j,m + mij + mi), if
R(i, k,m, j) ≤ 0, then we never travel to node j from state (i,K,m).

4 Variable neighborhood search heuristic

While the proposed dominance relations in Sect. 3.3 improve the computational efficiency
of the proposed dynamic program, the state space still grows exponentially in the size of
the node set N , limiting the size of the problem that can be solved. To be able to explore
problem characteristics of the OPSTS on realistically sized problems for distributions with
a single characterizing parameter as well as to be able to consider other distributions, we
need a heuristic capable of generating high quality solutions in a reasonable time. Inspired
by the success in Sevkli and Sevilgen (2006) who use a variable neighborhood search (VNS)
metaheuristic for the deterministic orienteering problem, we develop a variant of this well
known metaheuristic that works well for the OPSTS.
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4.1 Our implementation of VNS

The general concept of the VNS was first introduced by Mladenović and Hansen (1997), and
an extensive review of the literature is available in Hansen et al. (2010). VNS operates by
changing search neighborhoods to escape local minima. VNS has two components: a shak-
ing phase and a local-search phase. In the shaking phase, a given solution is perturbed. The
local-search phase improves the perturbed solution returned by the shaking phase. A general
outline of the procedure can be found in Algorithm 1.

In our implementation, through experimentation, we determined a tmax value of 100 was
robust enough to return good solutions across the various datasets and parameter settings.
The shaking phase simply chooses a random solution from the neighborhood k ∈ Ns , where
Ns is an ordered set of neighborhoods used in the shake phase. We use five neighborhoods in
the set Ns . The first four neighborhoods are the neighborhoods that Feillet et al. (2005) iden-
tifies as being most commonly used in local-search heuristics for orienteering-type prob-
lems. The operations are: resequencing the route, replacing a customer on the route with
one not on the route, adding a customer to the route, and deleting a customer from the route.
To resequence the route, we use the well known 1-shift neighborhood. The other three neigh-
borhoods are implemented exactly as their names imply. To create even larger changes in the
current solution, we include a fifth neighborhood inspired by the ruin and recreate heuristic
introduced in Schrimpf et al. (2000). Our particular implementation is adapted from Good-
son (2008). Each time the ruin and recreate neighborhood is called, we remove from the tour

 nk

10 � customers, where n is the number of customers served by the current tour and k is the
current iteration of the VNS algorithm. We then add a random selection of customers who
were not previously on the tour.

Algorithm 1 Variable Neighborhood Search
Input:

Data for an OPSTS Instance including a function v for determining the cost of an
OPSTS solution

Ordered set of OPSTS neighborhoods Ns

Output: OPSTS solution, τ �

Initialization:
Determine initial feasible OPSTS solution τ

t = 1, k = 1
repeat

τ ′ ← Shake(τ, k).
τ ′′ ← LocalSearch(τ ′)
if v(τ) > v(τ ′′) then

if k < |Ns | then
k ← k + 1

else
k ← 1

end if
else

τ ← τ ′′
end if
t ← t + 1

until t > tmax
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Algorithm 2 Variable Neighborhood Descent
Input:

Data for an OPSTS Instance including a function v for determining the cost of an
OPSTS solution

Ordered set of OPSTS neighborhoods Nd

Output: OPSTS solution, τ �

Initialization:
Feasible OPSTS solution τ

repeat
τ ′ ← τ

k ← 1
repeat

τ ′′ ← BestImproving(τ, k)

if v(τ) > v(τ ′′) then
k ← k + 1

else
τ ← τ ′′

end if
until k > |Nd |

until τ ′ = τ

For our local-search phase, we implement a form of the method known as variable neigh-
borhood descent (VND). For our VND, we search a particular neighborhood of a current
solution until no improving solution can be found and then the process is repeated with a
different neighborhood. Typically, and in our implementation, the search is done using a
steepest descent criteria. A description of our VND is given in Algorithm 2. The function
BestImproving returns the best solution in the neighborhood k of a given solution τ . Of
note, we increment the search neighborhood only when the search of the neighborhood does
not return an improving solution. For our neighborhood set, we use the four neighborhoods
suggested by Feillet et al. (2005).

4.2 Comparing an exact solution approach with VNS

To demonstrate that the VNS can return high quality solutions for the OPSTS, we com-
pare its performance to that of the dynamic program introduced in Sect. 3.3. Details of the
datasets and implementation can be found in the next section.

The results of our tests are found in Table 1. Because of the time-consuming nature
of the dynamic programming approach for large problem sizes, only a subset of problems
were tested using both approaches. In our 18 tests, both approaches yield solutions with
the exact same objective values, indicating our VNS heuristic is capable of finding good, if
not optimal, solutions for these types of problems. Because both approaches yield identical
objective values, we do not report these in Table 1, but instead provide details about the
runtimes of each approach and details about the solution process of the dynamic program.
We see in Table 1 that the dynamic program is quite fast with low deadlines, but grows
exponentially in runtime with increasing deadlines. This increased runtime is a reflection of
the number of nodes being considered, even though our approach clearly prunes a significant
number of them. Based on these results, the value of a VNS approach becomes quite clear
for deadlines as low as 20.
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Table 1 Comparison of dynamic programming and heuristic (VNS) approaches

Dataset Deadline Scale Penalty-reward Nodes Nodes pruned DP runtime VNS runtime

ratio

221 15 1 0.1 1699710 1459782 62 13

221 20 1 0.1 9053007 7669717 4192 16

221 23 1 0.1 21473490 17701719 46890 17

221 25 1 0.1 33962690 27082892 129566 19

333 15 1 0.1 7402721 7010963 545 48

333 20 1 0.1 79018109 74064133 76012 57

432 10 1 0.1 177737 170127 0 28

432 15 1 0.1 3834790 3643130 124 38

432 20 1 0.1 54497662 51280727 37070 66

221 15 1 0.5 556584 487106 0 13

221 20 1 0.5 2455483 2098135 299 14

221 23 1 0.5 6054943 5132692 2097 15

221 25 1 0.5 10632274 8917989 6599 17

333 15 1 0.5 1264812 1201753 4 42

333 20 1 0.5 13333799 12588779 1359 57

432 10 1 0.5 29079 27917 0 28

432 15 1 0.5 556088 530573 1 36

432 20 1 0.5 7460384 7062242 416 54

5 Dataset generation and implementation details

As the problem explored in this paper is new, no datasets exist. We generate datasets based
on five datasets from the deterministic orienteering literature. Two of the sets first appear
in Tsiligirides (1984). These sets contain 21 and 33 customers, respectively, and 11 and 20
different deadlines, respectively. Using the convention of Sevkli and Sevilgen (2006), we
label these sets 221 and 333.

The other three sets are introduced in Chao et al. (1996). The sets contain 32, 66, and
64 customers, respectively, and 18, 26, and 14 different deadlines, respectively. Again using
the convention of Sevkli and Sevilgen (2006), we label these sets 432, 566, and 664.

For all of the datasets, we assume that the customers are fully connected and that the
travel times on the arcs are gamma distributed. As noted in Russell and Urban (2007), distri-
butions of this form are good approximations of travel time distributions. For these empirical
tests, we ignore the service times as they can be accounted for by setting the travel time dis-
tributions for outgoing arcs to the convolution of the service time and arc distributions. For
each arc, we set the mean travel time to the Euclidean distance between the two customers
constituting the end nodes of the arc. For each instance, we fix the scale parameter of the
gamma distribution to the same value for every arc. The effect of fixing the scale parameter
to the same value for every arc is that the arrival time distributions can be characterized by
the sum of the shape parameters for the arcs traversed. With the mean and scale determined,
it follows that the shape parameters are found by dividing the mean by the scale parameter.
To see the impact of increasing travel time variance, we consider scale parameter values of
1, 2, 3, and 4. Larger scale parameters correspond with larger travel time variances.

While the original datasets contain rewards, they do not have penalty data. Traditionally,
orienteering problems are solved assuming deterministic travel and service times. In the so-
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lution of such problems, the size of the reward associated with each customer is important
because only a limited number of customers can be served before the deadline. There is no
need to consider the economic cost of violating a time constraint as any such violation ren-
ders the deterministic problem infeasible. Thus, we explore how a stochastic approach that
incorporates both penalties and rewards improves solution quality and changes the structure
of the solutions. To generate penalty values, we set the penalty to a fraction of the reward.
We consider fractions of 0.1, 0.2, 0.5, and 1.0.

Because of the stochastic nature of the VNS algorithm, we run the VNS 10 times on each
instance. For the presented results, we seed the VNS with deterministic solutions (produced
by modifying the code used in Sevkli and Sevilgen (2006) to account for the fact that a return
to the depot is not required in the OPSTS). The deterministic solutions use the Euclidean
distance between any two customers as the deterministic travel time. In general, random
seeds produce comparable solution values, but require greater computation time. For brevity,
we omit the results of the random seeded runs.

Tables 2, 3, 4, 5, 6 in the Appendix present important experimental data that is not re-
flected in Sect. 6. Each table presents the runtimes required by the VNS to create the solu-
tions discussed below. The runtime value reflects the total for the 10 runs. Each table also
provides the standard deviation of the objective values from the 10 solutions. Tables 2–6
show that, across all datasets, runtimes initially increase with deadlines but stabilize once
deadlines reach 35 for all scale parameters and penalty-reward ratios. The increase in run-
times occurs because more solutions offer a positive expected profit as deadlines increase.
For a similar reason, with low deadlines and increasing scale parameters, lower penalty-
reward ratios, or both, runtimes increase. Across all instances, the tables indicate that the
standard deviations in solutions values are usually low. This low value is a reflection that the
heuristic tends to converge to the same value for each run of an instance. Such behavior sug-
gests that computation time might be reduced by reducing the number of runs and without
affecting solution quality.

We implement our solution methods in C++ and run the instances on 2.40 GHz Intel
Core 2 Quad processors using SuSE Linux 10.3. While memory consumption was never a
bottleneck, four processors shared 3077 MB of RAM.

6 Computational experiments

This section presents the results of computational experiments. We designed our computa-
tional experiments with two purposes in mind. First, we want to determine the effect that
problem parameters have on the objective value of the problem. The second goal of our ex-
periments is to understand the changes in the routes that result from modeling the problem
stochastically.

6.1 Examining the impact of scale parameters on objective values

Figure 1 examines how changing the scale parameter impacts the objective value in each
of the different datasets using our VNS solution approach. In Fig. 1, we see that all scale
parameters yield very similar expected profits for short deadlines across all datasets. As
deadlines increase, though, scale values tend to make more difference, with lower scale
values yielding larger rewards and higher scale values yielding lower rewards. The outcome
is expected as higher scale values correspond with a higher variance in arc travel times,
which we would expect to create lower objective values. We note that the unexpected dip
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Fig. 1 Deadline vs. objective value for different scale parameters and datasets

in Fig. 1(b) which reflects a lower objective at a deadline of 90 than at 85. This case is an
example of one of the rare occurrences where starting from the solution to the deterministic
problem and using our VNS approach clearly led us to a suboptimal solution. When we
solved this problem with a random seed, we found a problem with a better objective value
but a significantly longer runtime.

Figure 2 compares the expected profit of the seed solution (the solution generated using
deterministic data evaluated with the stochastic objective function) with the expected profit
of the best solution found by VNS. We express the difference relative to the stochastic so-
lution value by a percentage and graph these percentages for the different scale parameters.
These graphs reflect that including stochastic information in the model can dramatically
improve the objective value. We observe that the higher the scale, the higher the percent-
age difference in objective values. As noted earlier, higher scale values are associated with
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Fig. 2 Percentage difference in expected reward from solving stochastic vs. deterministic problem versions
for different scale parameters and datasets

higher variances in the travel time distributions. Thus, the increase in the percentage differ-
ences is a reflection of the value of including stochastic information in the model as problem
variance increases. We also see that these percentages decrease for all scale parameters as
the deadline increases, with a convergence across all scale parameters for the highest dead-
lines. The latter results because, as the deadlines increase, it is more likely that all customers
will be on the tours, and thus the penalties will have less impact on the objectives.

6.2 Examining the impact of penalty-reward ratios on objective values

Next, we examine how changing the penalty-reward ratio impacts the objective value in
each of the different datasets. Figure 3 shows the results of the experiments. As expected,
the figure shows that the lowest penalty-reward ratio yields the highest expected profits, and
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Fig. 3 Deadline vs. objective value for different penalty-reward ratios and datasets

expected profit decreases as the penalty increases. We can also observe that the amount of
impact that the penalty ratio has on the objective seems to be somewhat dataset specific.
Across datasets, the objective values increase with deadlines, but, unlike with scale param-
eters, the values tend to converge rather than diverge with increasing deadlines. This trend
reflects the fact that higher deadlines create smaller penalties since customers are more likely
to be served. We again see the unexpected dip in Fig. 3(b) which is a reflection of the starting
solution.

6.3 Examining the impact on solution structure

To gain further insight into the effect of modeling the problem with stochastic information,
we examine the final tours created by deterministic and stochastic approaches to understand
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Fig. 4 Comparing stochastic and deterministic routes

Fig. 5 Routes for different
penalty-reward ratios

how they differ in structure. Because the tours for the deterministic version of the problem
must be feasible, these deterministic tours are generally smaller in terms of the number
of customers. The stochastic tour includes customers that may not necessarily be reached,
but the probability is high enough that the expected profit from the additional customers is
positive. For example, for Dataset 333, scale of 4, and penalty-reward ratio of 1, we find
with a deadline of 15 that the deterministic tour has 8 customers where the stochastic one
has 12. With a deadline of 60, the difference is 22 versus 28 customers. With a deadline of
110, the routes have the same number of customers, all of them in fact, because the large
deadline is not constraining. In terms of which customers appear on the shorter tours, across
most examples, the deterministic tour contains customers that are a subset of the customers
on the stochastic ones, and the customers that are excluded are ones from near the end of the
stochastic tour. For example, see Figs. 4(a) and 4(b) which represent Dataset 333, scale of 4,
ratio of 1, and deadline of 60. The routes begin the same, but the deterministic route skips 6
of the last 9 customers on the tour. We also see that on the last part of the stochastic tour, the
tour crosses itself which would never happen on a deterministic tour. The customers near
the end of the stochastic tours are typically ones with low rewards, and thus not a priority,
so they are placed at the end of the tour where there is a low chance of them being reached.
This type of ordering would not occur with the deterministic counterpart.

We also explore the impact of the penalty-reward ratios on the actual structure of the
routes. As the penalty gets larger, it is not surprising that the number of customers on
the stochastic tours tends to get smaller. This is because each additional customer on the
longer routes has a very low probability of being reached by the deadline and thus a high
probability of causing a penalty. Here, we found that the customers on the shorter routes
(with higher penalties) are usually a subset of the larger routes (with lower penalties) except
for a few exchanges in order to make the routes with the higher penalties more likely to be
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feasible. This type of result is best portrayed through an illustrative example. In Fig. 5, we
will examine Dataset 333 with a deadline of 15, scale of 10, and the different penalty-reward
ratios. The results for this dataset are very similar to the results found for the other datasets.
Here, the ratios of 0.1 and 0.2 yield the longest tours, and the ratio of 0.2 yields a tour that
is identical except for the last customer. The last customer on the tour with ratio of 0.2 can
be reached with a slightly higher probability than the last customer on the tour with ratio
of 0.1, creating a lower expected penalty. The reduction in penalty is sufficient to cause a
customer to be selected with a lower potential reward to end the tour than the tour with ratio
of 0.1. The tour of ratio of 0.2 has one more customer at the end than the tour with ratio of
0.5. With a higher penalty, it is not worth the added risk to include this last customer. The
tour with ratio of 1 has one fewer customer than the tour with ratio of 0.5, but the customers
that are different are early on the tour. The fourth and fifth customers on the other tours are
replaced by a different single customer on the tour with ratio of 1. This one customer can be
reached in much shorter time than the two customers, thus decreasing the expected penalty
for this customer and for all subsequent customers.

7 Future work

A number of directions exist for future work. For one, this paper is limited to a single tour
of the customers. A multiple tour version is relevant in many real-world situations where
there exists a fleet of vehicles to serve customers and/or make deliveries. Also, many real-
world implementations are likely to include individual time windows for the customers. It
also may be interesting to incorporate stochastic rewards, because for service companies,
the actual service that must be completed and its associated “reward” are often not known
until the service is completed. Finally, in this paper, we have ignored the fact that customers
not served today must be served in the near future. Including this consideration would make
for an interesting extension and could make a big impact on which customers are selected
on a given day.

From a computational standpoint, there are opportunities to improve the runtime of the
VNS heuristic for instances of this problem with discrete travel and service time distri-
butions. Applying approximation ideas such as those discussed in Campbell and Thomas
(2009) offers a direction for future research. In addition, our solution approach is an adapta-
tion of a well known heuristic. A more tailored approach may yield improved solutions.
To promote such work, our datasets and corresponding solution values are available at
http://myweb.uiowa.edu/bthoa/Research.htm.
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Appendix

Table 2 Comparison of runtimes and standard deviation of solution values across different scale and penalty-
reward ratios for dataset 221

Scale Penalty-reward ratio

1 2 3 4 1 2 3 4 1 0.50 0.2 0.1 1 0.50 0.2 0.1

Deadline Runtime Std dev Runtime Std dev

15 13.19 14.55 15.86 19.02 0.13 0.00 0.00 0.00 13.36 13.17 13.74 13.19 0.00 0.31 0.20 0.13

20 15.89 16.17 18.74 23.21 0.00 0.00 0.00 0.00 14.06 13.65 13.77 15.89 0.00 0.00 0.00 0.00

23 17.46 18.82 21.04 26.43 0.00 0.00 0.00 0.00 14.53 15.40 16.00 17.46 0.00 0.00 0.00 0.00

25 19.27 18.94 22.43 28.50 0.33 0.02 0.01 0.00 14.87 16.76 17.89 19.27 0.00 0.00 0.00 0.33

27 20.01 22.10 27.63 25.74 0.00 0.00 0.00 0.00 16.17 18.25 19.28 20.01 0.00 0.00 0.00 0.00

30 23.64 28.01 21.02 23.54 2.64 0.00 0.00 0.00 18.44 20.92 22.62 23.64 1.92 1.30 3.66 2.64

32 19.59 20.10 26.53 17.99 0.00 0.53 0.47 0.09 17.40 18.19 18.60 19.59 0.00 0.00 0.00 0.00

35 24.48 28.23 19.73 19.99 0.58 0.00 0.00 0.00 21.27 22.38 23.23 24.48 0.00 0.00 1.38 0.58

38 29.73 21.08 22.07 22.47 1.48 1.18 0.68 0.70 23.04 24.50 25.06 29.73 0.00 0.00 0.92 1.48

40 20.97 19.79 18.94 19.43 0.00 0.00 0.00 0.00 24.77 25.36 25.91 20.97 0.00 0.00 1.43 0.00

45 23.49 22.59 20.12 21.58 0.00 0.00 0.00 0.00 23.62 23.59 23.67 23.49 0.00 0.00 0.00 0.00
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