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Abstract This paper considers a new class of stochastic resource allocation problems that
requires simultaneously determining the customers that a capacitated resource must serve
and the stock levels of multiple items that may be used in meeting these customers’ de-
mands. Our model considers a reward (revenue) for serving each assigned customer, a vari-
able cost for allocating each item to the resource, and a shortage cost for each unit of un-
satisfied customer demand in a single-period context. The model maximizes the expected
profit resulting from the assignment of customers and items to the resource while obeying
the resource capacity constraint. We provide an exact solution method for this mixed inte-
ger nonlinear optimization problem using a Generalized Benders Decomposition approach.
This decomposition approach uses Lagrangian relaxation to solve a constrained multi-item
newsvendor subproblem and uses CPLEX to solve a mixed-integer linear master problem.
We generate Benders cuts for the master problem by obtaining a series of subgradients of
the subproblem’s convex objective function. In addition, we present a family of heuristic so-
lution approaches and compare our methods with several MINLP (Mixed-Integer Nonlinear
Programming) commercial solvers in order to benchmark their efficiency and quality.

Keywords Stochastic resource allocation · Generalized Benders decomposition ·
Lagrangian relaxation · Mixed integer nonlinear optimization

1 Introduction

The optimal deployment of constrained resources lies at the heart of nearly all operations
problems. Many operations settings require the assignment of uncertain customer demands
to a resource with limited capacity. One such problem is faced by sales personnel who travel
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to customers with a stock of goods for sale. That is, given a set of customers on whom
a sales force may call, the sales manager must determine how to allocate customer vis-
its to individual sales personnel, and which items each sales person should stock in their
corresponding vehicles prior to making sales calls. Because customers’ purchase prefer-
ences are not known with 100% certainty prior to a visit, the required items to stock are
not known with certainty prior to dispatching the sales person. Although the degree of un-
certainty in demand can be decreased via an initial telephone- or Internet-based pre-sales
screening, the demand uncertainty cannot be completely resolved prior to the sales visit.
Combined demand allocation and multi-item part stocking decisions are therefore required
for each sales vehicle prior to departure on a sequence of sales calls. Similar challenges
arise in determining a subset of customers that a service technician will visit on a given
service call, when the technician carries a stock of spare parts, and missing items needed
for repair either require a special unplanned trip or can be obtained quickly from a high-cost
supplier.1

These customer assignment and part-stock-level decision problems lead to extremely
complex optimization problems. Because of the level of complexity associated with this
problem class, the literature on the exact solution of problems of realistic size is reasonably
limited. In this paper, we consider an important subproblem that arises in this context—the
allocation of customers and items to a single vehicle in a single-period context. As we will
see, this subproblem is both interesting and challenging by itself, and may arise as a stand-
alone problem when only a single resource is available. Moreover, the ability to solve this
class of subproblems exactly will facilitate effective decomposition approaches for handling
the multi-resource planning problem.

Demand allocation problems have been widely studied in the literature in the context
of make-to-order systems under the assumption that demand streams can be split among
the available facilities (resources). In situations where the demand for items from a cus-
tomer cannot be split and the demand from each customer must therefore be assigned
to a single resource, the problem becomes combinatorial in nature and the decision vari-
ables are discrete. The literature on this class of problems under stochastic demand is
limited, as this class of problems is generally quite difficult to solve. For the problem
class we consider, we will assume that a customer cannot be assigned to multiple vehi-
cles, since customers generally prefer a single service visit or a visit by a single sales per-
son. This class of problems will therefore contain a substantial combinatorial component.
From the point of view of allocating a customer subset to a capacity-constrained vehicle,
this problem is closely related to certain classes of stochastic knapsack problems (SKP)
(see, e.g., Barnhart and Cohn 1998; Kleywegt and Papastavrou 2001; Dean et al. 2004;
Merzifonluoğlu et al. 2009, and Ağralı and Geunes 2009; Kosuch and Lisser 2010), with
each customer’s (uncertain) demand quantity corresponding to the typical “item” size in
these knapsack problems. However, our problem generalizes this problem class, as it in-
volves the additional dimension of limited item availability as a result of the item-to-vehicle
stock level decisions. That is, the vehicle’s capacity constrains the allocation of item stock
levels to the vehicle, and the item stock levels within the vehicle constrain the ability to meet
customer requirements during sales visits. As in several of these cited works on stochastic
knapsack problems, we will focus on the case where item sizes (or customer parts require-
ments) are independent but not necessarily identically distributed normal random variables

1As we later discuss, our model applies a penalty cost to each item demanded that is not in stock. Thus,
our model might also apply, for example, to service repair contexts in which each customer owns multiple,
independent pieces of equipment, each of which may require at most a single replacement part or module.
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(the normal distribution parameters we use are such that the probability of negative demand
is negligible).

To determine item stock level decisions for a given vehicle, observe that if we fix
the customer-to-vehicle assignment decisions, we then face a constrained multiple-item
newsvendor problem involving uncertain shortage costs, expected customer revenues from
sales visits, and expected variable operating costs. Newsvendor problems have of course
been well studied in the literature. Hadley and Whitin (1963) discussed the constrained
multi-item newsvendor model in detail. Another class of closely-related problems to the
one we consider is known as the class of repair kit problems (e.g., Smith et al. 1980; Te-
unter and Haneveld 2002a, 2002b, and Gorman and Ahire 2006). Most of these repair kit
problems are aimed at minimizing expected holding costs under given service level require-
ments. In contrast, we consider the maximization of expected profit under an additional
vehicle capacity constraint, using a shortage (penalty) cost in the objective (which, in turn,
can be used to ensure desired service levels). The most closely related repair kit problem
that considers multiple types of items and vehicle capacity is the one proposed by Gorman
and Ahire (2006), who developed a single-pass greedy heuristic approach for the multiple
vehicle planning problem.

Within the single-period context we consider, demand allocation and vehicle stocking
decisions must be determined prior to actual customer demand realizations. Hence, we face
a joint demand assignment and stock level problem with uncertain customer demands. Our
goal is to simultaneously set stock levels for the multiple items (parts) within the vehicle
and determine customer demand assignments in order to maximize expected profit, equal to
the expected revenue from customer visits less expected shortage and variable costs. To the
best of our knowledge, no existing work considers an exact solution for combined demand
allocation and vehicle stocking problems for multiple items under uncertain demand, as
we address in this paper. Thus, our contributions include providing a new model for this
problem class, as well as exact and heuristic solution procedures, which we demonstrate
to be extremely effective when compared with a state-of-the-art mixed integer nonlinear
optimization solver.

Our class of stochastic resource allocation problems has several variants relevant to
various operations planning contexts. If we restrict our attention to only one type of
item, we will have the static stochastic knapsack problem (Barnhart and Cohn 1998;
Kleywegt and Papastavrou 2001; Merzifonluoğlu et al. 2009; Ağralı and Geunes 2009;
Kosuch and Lisser 2010). If there is no shared resource (vehicle) capacity constraint, we
will have a stochastic multidimensional knapsack problem (MKP) (Kellerer et al. 2004;
Vasquez and Vimont 2005; Akçay et al. 2007). The MKP is a well-known NP-hard prob-
lem, which implies the NP-hardness of our problem under general demand distributions as
well. Further, if we consider the multiple vehicle version of our problem with one item type
and no shared resource capacity, the problem takes the form of the joint facility assignment
and capacity acquisition problem (Taaffe et al. 2008), where the optimal stock level for the
part corresponds to the facility capacity. Similarly, if the customer demand assignments are
given, we only need to consider the stock levels for multiple items on the vehicle, which
reduces to a set of constrained multi-item newsvendor problems.

Within the context of make-to-stock queues, Benjaafar et al. (2004) appear to be the first
to consider the joint demand allocation and inventory control problem. They considered the
long-run fraction of demand for each product i (in a set of products) allocated to each facility
(from a set of facilities, analogous to the vehicles in the context we discussed above). They
considered the minimum long-run expected cost per unit time under continuous assignment
variables (the demand allocation problem, or DAP), and the demand partitioning problem
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(DPP) with binary assignment variables. They used convex optimization algorithms to solve
the DAP and a branch and bound algorithm for the DPP.

Federgruen and Zipkin (1984) developed a combined routing and inventory allocation
model for a single item under stochastic customer demands (Federgruen et al. 1986, gen-
eralized this to account for perishable items when “fresh” and “old” stock of the item is
available and out-of-date costs may exist). In their model, customer inventory allocation
decisions are made prior to assignment and routing decisions. Thus, customer-related inven-
tory costs are separable. In our model, however, inventory is not allocated prior to customer
assignment decisions. Therefore, individual demands for customers who share the resource
capacity (i.e., customers visited by the same truck) create a single, pooled demand dis-
tribution for each item, and inventory costs are not separable by customer. Moreover, we
consider a multi-item setting in which resource capacity is shared by different items. We
note, however, that their model considered a multiple vehicle context, whereas we consider
a single-resource problem.

As we later discuss, under a normal demand distribution for each customer’s parts re-
quirements, a generalized Benders decomposition (GBD) approach is quite effective for this
nonlinear mixed integer problem. GBD techniques, developed by Geoffrion (1972), can be
used to efficiently solve nonlinear programming problems with complicating variables by
temporarily fixing these variables and dealing with the remaining problem, which is gen-
erally much easier to solve. To extend the applicability of the GBD approach, Geromel
and Belloni (1986) studied the differentiability of a set of related perturbation functions
and proposed a method to handle problems of a more general class than Geoffrion (1972)
considered. We will employ these generalized methods of Geromel and Belloni (1986) to
generate Benders cuts. Many practical problems, such as multi-commodity network flows,
quadratic assignment problems, and combined location-inventory problems have been ef-
ficiently solved using GBD techniques. In our approach, we first fix the complicating in-
teger variables; that is, for a given feasible demand allocation, we solve the remaining
multi-item constrained newsvendor subproblem using Lagrangian relaxation (Hadley and
Whitin 1963). We then use the solution of this subproblem to add the corresponding sup-
port function (Benders cut) to the so-called master problem and solve a relaxed master
problem. We repeat this process by using the demand allocation decision from the solu-
tion of the relaxed master problem to solve a new version of the newsvendor subproblem.
Benders cuts are then iteratively added to the master problem until an optimal solution is
found.

The remainder of this paper is organized as follows. In Sect. 2 we define and formulate
our stochastic demand allocation and inventory stock-level problem. We then analyze im-
portant properties of optimal solutions for our problem and develop a generalized Benders
decomposition approach in Sect. 3. Section 4 presents a heuristic solution approach for solv-
ing large size problem instances that may preclude the use of exact methods. In Sect. 5 we
discuss the results of a computational study used to validate our solution methods and com-
pare them with the results of three benchmark commercial solvers, GAMS/LINDOGlobal,
GAMS/SBB and GAMS/CoinBonmin. Finally, concluding remarks are provided in Sect. 6.

2 Problem definition and formulation

In this section, we present a single-period model to solve a joint customer demand allocation
and multiple-item stock level problem for a resource that must respond to uncertain customer
demands. For example, the resource may correspond to a vehicle (and corresponding sales
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person) on a given working day, and the items may correspond to items that are potentially
needed on sales calls. We assume that customer demands are statistically independent and
that the demands for items are revealed upon being visited by the sales person. While there
are m potential customers, the supplier must choose which subset of customers to serve using
a capacity constrained resource (e.g., a vehicle) and the optimal resource stock level for
each item. This individual resource level problem may appear as a stand-alone problem for
a manager of a single resource, or as a subproblem for a larger multiple resource assignment
problem with multiple customer/item demands.

We assume that during a given visit, any item requested that is not available results in
an item-specific penalty cost for an inability to complete service (thus, individual item de-
mands are independent of one another). For each item carried on the vehicle, a variable cost
is incurred (e.g., for loading/unloading and/or transporting the item). Because the vehicle
stocking decisions must be determined prior to actual customer demand realizations, it may
be practical in some contexts to consider a salvage value for each unused item carried on
the vehicle (this might correspond to a reduction in future loading/unloading costs; alter-
natively, a negative value would correspond to an opportunity cost of the vehicle capacity
usage). A customer-specific expected revenue is gained for each customer visit. The objec-
tive is to maximize the expected profit, or equivalently, to minimize the expected cost (equal
to the negative of expected profit). Henceforth, we state our objective using this minimiza-
tion form and refer to this objective as the expected cost.

To formalize our model, we define the following notation:

Inputs and Parameters

i: item (part) index, i = 1, . . . ,m.
j: customer index, j = 1, . . . , n.

π̂j : expected revenue gained by serving customer j , i.e., by allocating customer j to the
vehicle.

êi : unit shortage cost incurred for not satisfying a unit of demand for item i.
gi : unit salvage value incurred for an unused item i.
ĉi : unit variable cost for carrying item i in the vehicle, where êi > ĉi > gi .
si : unit size of item i.
V : vehicle capacity.
dij : random variable denoting the demand for item i by customer j , with mean and standard

deviation μij and σij , respectively.

Decision Variables

xj : binary decision variable, equal to 1 if customer j is assigned to the vehicle, 0 otherwise.
The vector (“column”) X = [x1, . . . , xn]T characterizes the assignment of customers to
the vehicle.

yi : nonnegative decision variable equal to the number of units of item i carried in the vehi-
cle. The vector Y = [y1, . . . , ym]T determines the assignment of items to the vehicle.

We define Di =∑n

j=1 dij xj as the random variable for the aggregate demand of item i

by all customers assigned to the vehicle (note that Di is a random variable with distribution
parameters determined by the assignment variable values and the random variables for indi-
vidual customer and item demands). The expected cost as a function of the part stock levels
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and customer assignments can be expressed as:

P (Y,X) =
m∑

i=1
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where [x]+ = max{x,0}, ei = êi − gi , ci = ĉi − gi , and πj = π̂j −∑m

i=1 giμij denote the
net penalty cost, variable cost, and revenue, respectively (êi > ĉi > gi implies that both ei

and ci are nonnegative for all i). Observe that, for any customer j , if the coefficient of the
third term is such that πj = π̂j −∑m

i=1 giμij ≤ 0, it is straightforward to show that we can
set xj = 0 without loss of optimality. We therefore assume without loss of generality that
πj > 0 for all j .

We can now formulate our stochastic resource allocation problem with a resource capac-
ity constraint as:

(P) min P (Y,X)

subject to:
m∑

i=1

siyi ≤ V,

xj ∈ {0,1}, j = 1, . . . , n,

yi ≥ 0, i = 1, . . . ,m.

The constraint ensures that the vehicle’s capacity is not violated. Observe that we permit
the stock levels to take continuous values. For a given vector of customer assignments, X,
however, we can easily determine optimal integer stock levels for the associated multi-item
constrained newsvendor subproblem (see Hadley and Whitin 1963).

3 Generalized Benders decomposition for (P)

For a given vector X of customer assignments, problem (P) becomes a standard multi-item
newsvendor problem with a single constraint:

(MINV) min
m∑

i=1

{
ciyi + eiE

[
(Di − yi)

+]}

subject to:
m∑

i=1

siyi ≤ V,

yi ≥ 0.

(2)

It is straightforward to solve (MINV) using Lagrangian relaxation (Appendix 1 discusses
a solution approach for MINV based on results from Hadley and Whitin 1963). Moreover,
for a given vector of item stock levels Y , we have a 0-1 integer programming problem with-
out explicit constraints. We thus consider a generalized Benders decomposition approach
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for solving this resource allocation problem. We first streamline the notation for problem
(P) by defining:

H(X,Y ) =
m∑

i=1

eiE

⎡

⎣

⎛

⎝
n∑

j=1

dij xj − yi

⎞

⎠
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⎦ ;

G1(Y ) =
m∑

i=1

ciyi;

Q(X) =
n∑

j=1

πjxj ;

G2(Y ) =
m∑

i=1

siyi − V.

Using this notation, problem (P) can be formulated as:

(P′) min H(X,Y ) + G1(Y ) − Q(X) (3)

subject to: G2(Y ) ≤ 0, (4)

X ∈ {0,1}, (5)

Y ≥ 0. (6)

Alternatively, we can formulate problem (P′) in the space of the binary variables as follows:

(P′′) min v(X) − Q(X)

subject to: X ∈ {0,1},
where, for a given vector X, the value function v(X) is determined by solving the subprob-
lem (SP), formulated as

(SP) v(X) = min H(X,Y ) + G1(Y )

subject to: G2(Y ) ≤ 0,

Y ≥ 0.

(7)

Because the subproblem (SP) is convex in Y , a dual representation of v(X) can be for-
mulated, and its optimal dual solution value equals the optimal primal solution value (see
Theorem 2.3 in Geoffrion 1972). Defining the dual variable w ≥ 0 corresponding to the
constraint in (SP), we can write the Lagrangian dual as

v(X) = max
w≥0

{

min
Y≥0

[H(X,Y ) + G1(Y ) + wG2(Y )]

}

. (8)

Problem (P′) is therefore equivalent to the following Master Problem (MP):

(MP) min θ − Q(X)

subject to: θ ≥ minY≥0 [H(X,Y ) + G1(Y ) + wG2(Y )] , ∀w ≥ 0,

X ∈ {0,1}.
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Clearly we cannot enumerate all possible constraints in the above formulation for all
possible values of w. Therefore, we begin with a relaxed formulation of the master problem
and iteratively add violated Benders cuts. In order to find violated Benders cuts, we need to
first characterize the support function of v(X), which we denote by ξ(X). For a given vector
Xk and the optimal dual solution wk of (SP) associated with the given Xk , we know that

v(Xk) = min
Y≥0

[
H(Xk,Y ) + G1(Y ) + wkG2(Y )

]
,

and by the definition of the support function of v(X) at the point Xk ,

ξ(Xk) = v(Xk) and ξ(X) ≤ v(X), ∀X �= Xk.

The following proposition and theorem will aid us in characterizing the support function.

Lemma 1 P (Y,X) in (1) is a jointly convex function on R
+
n × R

+
m.

Proof To show that (1) is a jointly convex function, we only need to show that (
∑n

j=1 dij xj −
yi)

+ is a jointly convex function by limiting our attention to a given realization of the de-
mand dij , because the other terms in (1) are all linear, and the expectation of a convex
function is a convex function. Note that (

∑n

j=1 dij xj − yi)
+ = max(0,

∑n

j=1 dij xj − yi) is
a maximum of two jointly convex functions and is, hence, jointly convex. Then, by the fact
that the summation of jointly convex functions is jointly convex, the proof is complete. �

Theorem 1 v(X) is a convex function, and a linear support function ξk(X) can be readily
calculated as:

ξk(X) = v(Xk) + δ(Xk)(X − Xk),

where δ(Xk) ∈ ∂v(Xk) is any available subgradient of v(.) at Xk . One such subgradient of
v(.) is:

δ(Xk) = ∂

∂X

{
H(X,Y k) + G1(Y

k) + wkG2(Y
k)
}

X=Xk .

Proof Using results from Heyman and Sobel (1984, p. 525), we can show that v(X) in (7)
is convex in x, since H(X,Y ) and G1(Y ) are convex in both x and y. Then, because v(X)

is convex, it is well known that ξk(X) serves as a linear support function at Xk . Details re-
garding the correctness of this support function can be found in Geromel and Belloni (1986)
using Theorem 3 and formulas (31)–(34). We omit the details for the sake of brevity. �

The details of how we compute ξk(X) are provided in Appendix 2. We can now represent
the Relaxed Master Problem (assuming K linear support functions have been generated) as:

(RMP) min θ − Q(X)

subject to: θ ≥ ξk(X), k = 1,2, . . . ,K,

X ∈ {0,1},
θ ∈ R.

Here θ ≥ ξk(X) is a Benders cut for given values of Xk and wk . Observe that the (RMP)
is a mixed 0-1 linear program with a single continuous variable. While such problems are not
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generally considered easy (they are, of course, NP-Hard), they are much more tractable than
our original nonlinear mixed 0-1 program, and problems of reasonable size can be solved
in acceptable time using CPLEX. The generalized Benders decomposition approach (and
variants thereof) can be shown to be convergent when X is a finite discrete set.

We next formalize our algorithm as follows:
Step 1: Choose an initial vector X0 that ensures a feasible solution for the subproblem

and select an optimality tolerance ε. Solve subproblem (SP) at X0, which is a multi-item
constrained newsvendor problem, obtaining Y 0 and a corresponding optimal dual solution
w0 (Appendix 1 discusses the solution approach for the MINV problem). Set the upper
bound UB = v(X0)−Q(X0) and let (X,Y ) = (x0, Y 0) denote the initial solution. Generate
the support function of v(.) at X0 as the Benders cut using Theorem 1 and the results in
Appendix 2.

Step 2: Solve the relaxed master problem with all previously generated cuts. Let (X∗, θ∗)
denote an optimal solution to (RMP) and set the lower bound LB = θ∗ − Q(X∗). If (UB −
LB) < ε, stop; otherwise, go to Step 3.

Step 3: Solve the subproblem at X = X∗, denoting Y ∗ as the optimal solution vector and
v(X∗) as the optimal solution value. If v(X∗) − Q(X∗) < UB, set UB = v(X∗) − Q(X∗)
and update the incumbent solution, i.e., let (X,Y ) = (X∗, Y ∗). If (UB − LB) < ε, stop with
(X,Y ) as an ε-optimal solution. Otherwise, recover the optimal dual multiplier w∗, add the
corresponding Benders cut to the (RMP) formulation, and return to Step 2.

4 Heuristic solution approach for (P)

The Master Problem in our Benders decomposition approach is a mixed 0-1 linear program-
ming problem. As a result, solution via a commercial solver for extremely large problem
instances will likely be impractical. We, therefore, propose a heuristic solution approach for
very large problem sizes. To obtain a fast heuristic for solving this problem, we temporar-
ily ignore the vehicle capacity constraint when identifying which customers to serve. Then,
for a given vector X, the problem is a multi-item capacitated newsvendor problem, which
can be solved efficiently. Thus, our solution approach identifies potential values for the vec-
tor X, and computes the corresponding optimal stock levels Y ∗(X). The resulting solution
(X,Y ∗(X)) is a feasible solution for problem (P).

We begin by expressing problem (P) as a function of the vector X only, when the ca-
pacity constraint (2) is ignored. In the absence of this constraint, for a given vector X,
we can solve the associated multi-item newsvendor problem and obtain the optimal stock
value y∗

i (X) for each item i, given by y∗
i (X) = F−1

X,i (ρi), where ρi = ei−ci

ei
, and F−1

X,i is
the inverse cumulative distribution function (CDF) of the demand distribution for item i

implied by the vector X. Since the demands are normally distributed, we can write the

stock levels as yi(X) =∑j μij xj + z(ρi)
√∑

j σ 2
ij xj , where z(ρi) = 
−1(ρi) is the stan-

dard normal variate value associated with the fractile ρi , and 
−1 is the inverse CDF of
the standard unit normal distribution. In addition, we define �i(yi(X)) as the loss func-
tion for a given stock level yi(X) and customer assignment vector X, i.e., �i(yi(X)) =∫∞

yi (X)
(Di − yi(X))fi(Di)dDi = E[(∑j dij xj − yi(X))+]. Introducing the standard normal

loss function L(z) = ∫∞
z

(u − z)φ(u)du, where φ(u) is the probability density function
(pdf) of the standard normal distribution with CDF 
(u), we can write the loss function

�i(yi(X)) in terms of the standard normal loss function, �i(yi(X)) =
√∑

j σ 2
ij xjL(z(ρi)).
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Substituting these expressions for yi(X) and the loss function into P (Y,X) in (1), with
a slight abuse of notation, the expected cost can be written in the following form:

P (X) = P (Y ∗(X),X) = −
∑

j

[

πj −
∑

i

ciμij

]

xj +
∑

i

[ciz(ρi) + eiL(z(ρi))]
√∑

j

σ 2
ij xj .

(9)
Let Ki = ciz(ρi) + eiL(z(ρi)) represent the i th coefficient value of the square root terms
and denote rj = −πj +∑i ciμij as the negative of the expected net revenue for serving
customer j . We then need to solve the following problem in the case of normally distributed
demands:

(RP) min
∑

j

rj xj +
∑

i

Ki

√∑

j

σ 2
ij xj

subject to: xj ∈ {0,1}, j = 1, . . . , n.

Note that we can, without loss of optimality, set xj = 0 for any j such that rj ≥ 0, i.e.,
any j such that cijμij ≥ πj (which implies that the expected customer cost outweighs the
customer’s associated expected revenue). This relaxed problem RP, obtained by dropping
the capacity constraint and expressing Y in terms of X has some special properties:

Proposition 1 Ki = ciz(ρi) + eiL(z(ρi)) is a nonnegative constant under our assumption
that ei > ci > 0 for all i.

Proof For ease of exposition, we represent the standard normal variate value z(ρi) using
z. To show Ki ≥ 0 when assuming that ei > ci > 0, we only need to show z + L(z) ≥ 0,
because the loss function L(z) is nonnegative for any z. Using L(z) = φ(z) − z(1 − 
(z))

we have

z + L(z) = φ(z) + z
(z)

= φ(−z) − (−z)(1 − 
(−z))

= L(−z)

≥ 0.

The second equality follows from the symmetry of the normal distribution, which completes
the proof. �

Proposition 2 The objective function of RP is concave, and thus for the continuous relax-
ation of RP obtained by replacing each xj ∈ {0,1} with 0 ≤ xj ≤ 1, the linear relaxation
of RP is a concave minimization problem with an optimal solution at one of the integral
extreme points of [0,1]n.

Proof See Geunes, Shen, and Romeijn (2004). �

Proposition 3 The objective function of RP is a submodular function. Minimizing a rational
submodular function is solvable by strongly polynomial combinatorial algorithms.
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Proof Properties B.1 through B.4 and Lemma B.1 of Shen et al. (2003) imply that P (X) is
a submodular function. �

As discussed in Shen et al. (2003), Grotschel et al. (1981) showed that a submodular
function can be minimized in polynomial time. Strongly polynomial time algorithms are
available for this problem class as a result of work by Iwata et al. (2000) and Schrijver
(2000).

We are interested in exploiting the particular special structure of our problem in order
to obtain a fast heuristic approach for problem (P). We first discuss a solution method for
a special case of our problem. This special case arises when either σij = σj , for all j (the
equal-item-variance case) or when only one type of item m = 1 is considered. Because these
special cases are mathematically equivalent, we illustrate the formulation for the former case
below.

(RPS) min
∑

j

rj xj +
∑

i

Ki

√∑

j

σ 2
j xj

subject to: xj ∈ {0,1}, j = 1, . . . , n.

We can solve this special case using a simple sorting scheme as in Taaffe et al. (2008).
We first sort customers in nonincreasing order of the ratio of expected net revenue to the
uncertainty in that customer’s demand. This results in indexing customers such that

− r1

σ 2
1

≥ − r2

σ 2
2

≥ · · · ≥ − rn

σ 2
n

. (10)

Proposition 4 After indexing customers in nonincreasing order of the above ratio, an opti-
mal solution to (RPS) exists such that if x∗

k = 1 for some k ∈ {1, . . . , n}, then x∗
l = 1 for all

l ∈ {1,2, . . . , k − 1}.

Proof See Shen et al. (2003). �

For the general case with unequal item variances, we cannot show that a sorting scheme
as in (10) is directly available. We can, however, utilize the insight from (10) to arrive at
a heuristic ranking scheme for customers. Since we would like to capture the tradeoff be-
tween revenues and variance-related cost, we replace the denominator with a weighted-
average variance across items for each customer. That is, we use a weighted-average vari-
ance value, where customer j ’s product i variance is weighted by a factor γij . We then

define σ 2
j (γ

j ) =
∑

i γij σ 2
ij∑

i γij
(where γ j is an m-vector of γij values). Our heuristic approach

is motivated by the fact that there exist weight values γij for all i, j such that, after index-
ing items in nonincreasing order of − rj

σ 2
j
(γ j )

, an optimal selection of customers exists of

the form defined in Proposition 4 (this follows because any one of the n! possible ordered
vectors of customer indices can be obtained through an appropriate choice of γij values).
One option is to set γij = μij , in which case each variance value is weighted by the corre-
sponding expected demand value. Another option is to set γij = Ki , weighting the variance
by the corresponding cost coefficient. To account for the influence of both of the above two
factors, we might also set γij = μijKi . Alternatively, when γij = γj for all i, we obtain the

arithmetic average of variance, i.e., σ 2
j =

∑
i σ 2

ij

m
. This approach, therefore, provides a family

of heuristic solutions, with each member of the family defined by the choice of γij values.
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Our heuristic approach therefore sorts customers in nonincreasing order of − rj

σ 2
j
(γ j )

for

some choice of each of the n vectors γ j , and considers each solution containing customers
{1, . . . , k} for k = 1, . . . , n (in our computational tests, we consider the cases with γij = μij ,
γij = Ki and γij = μijKi , as well as the simple arithmetic average case). We summarize our
heuristic solution algorithm as follows.

Step 1: Choose a value for each of the n values of m-vectors γ j . Compute the ratio
value Rj = − rj

σ 2
j
(γ j )

for each customer j . Re-index all customers in nonincreasing order

of Rj values. Define each of the n assignment vectors {1, . . . , k} for k = 1, . . . , n; that is,
assignment Xj is such that x1 = x2 = · · · = xj = 1, xj+1 = · · · = xn = 0. Set p = 1.

Step 2: Solve the multi-item constrained news vendor problem with the assignment vec-
tor Xp to determine Y ∗

p (Xp) and record the optimal objective value v(Xp) − Q(Xp).
Step 3: Let p = p + 1; if v(Xp) − Q(Xp) < v(Xp−1) − Q(Xp−1) and p ≤ n, return to

Step 2. Otherwise, let j ∗ = p − 1; the heuristic solution consists of the assignment vector
Xj∗

and stock levels Y ∗(Xj∗
) with objective function value v(Xj∗

) − Q(Xj∗
).

Note that the heuristic solution is integral and feasible. In addition, in Step 3, instead of
enumerating the n assignment vectors {1, . . . , k} for k = 1, . . . , n, we stop once the objec-
tive value begins increasing in order to speed up the heuristic. We did this because, after
testing instances with the data provided in the next section, we observed that the solutions
obtained using this stopping criterion were the same as those obtained after enumerating and
comparing all n assignments.

5 Computational results

In this section, we present computational results for our generalized Benders decomposition
algorithm and heuristic approach for solving the stochastic resource allocation problem (P).
We will demonstrate the benefits of our solution approach when compared to three commer-
cial nonlinear integer solvers. Another goal is to analyze the effect of different parameters
on the results, such as the total number of served customers and the number of master and
subproblem iterations (which also corresponds to the number of Benders cuts in the relaxed
master problem). We implemented our algorithm in C++, with the 0-1 linear integer relaxed
master problem solved using ILOG’s CPLEX 12.1 solver with Concert Technology. We
performed all tests on a computer with an Intel� Pentium 4 CPU, 3.4 GHz processor with
1.99 GB of RAM. In all of our experiments, we used a relative optimality tolerance of 10−5.
In order to avoid a “divide by zero” error, both in our algorithm and in GAMS, we added a
constraint to ensure

∑n

j=1 xj ≥ 1. Then, if the optimal objective value for the minimization
problem is larger than 0, we know it is better not to deliver items to any customers since
X = 0 and Y = 0 are always feasible to the problem at a total cost of 0.

Table 1 summarizes the common data used in our computational study. For each problem
instance, the demand, revenue and all cost data were generated from uniform distributions.
We let U(�,u) denote the continuous uniform distribution with lower bound � and upper
bound u.

To benchmark the performance of our algorithm against LINDOGlobal, SBB, and Coin-
Bonmin, we tested our solution method for 16 problem sets and computed the running time
and optimality performance (these 16 problem sets use vehicle capacity level 3 and cus-
tomer revenue level 2 shown in Table 2). Each of these problem sets is characterized by a
unique combination of the number of customers and the number of items, (n,m), where
we considered n ∈ {5,10,30,50} and m ∈ {3,10,20,50}. For each combination of (n,m)
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Table 1 Parameter distributions used in computational tests

Resource Data

Unit Shortage Cost, êi Unit Salvage Value, gi Unit Handling Cost, ĉi Capacity, V

U(2.5,3.6) U(0.1,0.5) U(1,1.5) U(5mn,80mn)

Customer Data

Expected Demand, μij Standard Deviation, σij Unit item size, si Fixed Revenue, π̂j

U(50,100) U(14,50) U(0.5,1) U(100m,220m)

Table 2 Levels used for analysis of the impact of capacity level V and customer revenue value π̂j

Level 1 2 3 4

Capacity distribution U(5mn,10mn) U(10mn,20mn) U(20mn,40mn) U(40mn,80mn)

Revenue distribution U(100m,140m) U(140m,180m) U(180m,220m) U(220m,260m)

values, we tested 10 randomly generated problem instances, for a total of 160 test cases. For
comparison purposes, we also solved each problem instance using GAMS/LINDOGlobal,
GAMS/SBB and GAMS/CoinBonmin, three commercial integer nonlinear solvers guaran-
teeing eventual convergence to globally optimal solutions for general nonlinear problems
with continuous and/or discrete variables (assuming memory is not exhausted before con-
vergence). We set the relative optimality tolerance to 10−5, the iteration limit to 200,000,
and the time limit to 5,000 seconds in GAMS.

In addition to the initial set of 160 problem instances described above, we also considered
four levels of resource capacity and customer-specific unit revenue, respectively, (shown in
Table 2) in order to study the impact of different values of these two important parameters.
To this end, we will consider an additional 16 problem sets corresponding to each pair of
distributions used for these two parameters, with the number of customers fixed at 10 and
the number of items fixed at 3. We tested 10 randomly generated problem instances for each
of these problem sets, which constitutes another 160 test cases with n = 10 and m = 3. For
this latter set of 160 test problems, which were used to evaluate the impacts of capacity and
revenue levels, we used our generalized Benders decomposition approach to obtain optimal
solutions (although we did not compare the results of these cases with those using any of
the GAMS solvers). We therefore tested a total of 320 problem instances, of which 160
cases were solved using both our algorithm and the three different GAMS solvers, and an
additional 160 test problems were solved using our algorithm only.

GAMS modeling

In order to solve the full problem (P) using GAMS solvers, we needed to encode the equation
for E[(Di − yi)

+] for each i, where Di ∼ N(Ũi,�
2
i ). For ease of explanation, we suppress

the index i in describing how we did this. We used the errorf (x) function (integral of the
standard normal distribution from −∞ to x) in GAMS modeling, with the equation

E[(D − y)+] = �L(z),

where z = y−Ũ

�
, and Ũ and � are the mean and standard deviation of D, respectively (in

terms of our model, Ũi =∑n

j=1 μijxj and �2
i =∑n

j=1 σ 2
ij x

2
j ). The standard normal loss
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function, L(z), is given by

L(z) =
∫ ∞

z

(u − z)φ(u)du = e− z2
2√

2π
− z(1 − 
(z)),

where φ(.) is the pdf of the standard normal distribution and 
(.) is the associated CDF. In
GAMS, we can express 
(.) using 
(z) = errorf (z).

Comparison with GAMS solvers

To compare our algorithm with the commercial solvers, we consider running time and opti-
mality performance. As discussed previously, we first fixed the resource capacity and cus-
tomer revenue levels to levels 3 and 2, respectively, and then tested the 16 different problem
sets and studied the results. The reason for choosing capacity level 3 and revenue level 2
is that our initial computational testing showed that these settings led to a good balance
between revenues and overflow costs, and the resulting problems were among the more
computationally intensive problems we tested. The results of our tests, averaged over the 10
random problem instances for each given set of parameter levels, are presented in Table 3.
In the table, GBD represents our generalized Benders decomposition approach. The table
shows that our approach is generally at least 30 times faster than GAMS/LINDOGlobal,
and 2 times faster than GAMS/SBB and GAMS/CoinBonmin. All of the problems we tested
were solved within 17 seconds using our algorithm. However, GAMS/LINDOGlobal takes
around 30 seconds for smaller size problems, while the majority of problems were solved in
2 to 10 minutes, with the largest size problem requiring nearly 1 hour.

Table 3 Computational test results for average running time (second) and performance

Data Set GAMS MINLP Solvers Our Approach

LINDOGlobal CoinBonmin SBB GBD

m n Time PR Time∗ Time∗ Time∗

3 5 21.20 100.00% 1.42 4.15 0.53

10 30.20 100.00% 2.16 6.49 0.75

30 86.78 100.00% 3.76 9.66 0.81

50 365.25 100.00% 6.09 17.74 1.35

10 5 28.89 100.00% 2.47 5.85 1.46

10 46.75 100.00% 2.65 6.57 1.79

30 394.75 99.91% 7.05 18.47 3.55

50 697.25 99.96% 9.13 20.94 4.32

20 5 30.90 100.00% 2.98 5.97 2.21

10 74.75 100.00% 3.48 9.36 3.20

30 440.25 99.63% 9.12 19.77 6.67

50 797.29 99.68% 16.39 21.38 7.11

50 5 166.00 99.97% 3.79 6.34 3.57

10 314.44 87.16% 5.30 9.89 9.10

30 547.33 98.95% 23.49 31.17 16.70

50 2916.88 62.14% 45.45 30.73 14.43

∗PR = 100.00%
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To provide a benchmark for the performance of our algorithm, we use the Performance
Ratio (PR) as an index, which corresponds to the average solution value as a percentage of
the optimal solution value. Our algorithm, SBB and CoinBonmin found an optimal solution
for all problems, while LINDOGlobal works well only for smaller size problems (for larger
size problems, LINDOGlobal does not perform quite as well). Much of the time it stops
with only locally optimal solutions as a result of the iteration limit, which accounts for
simplex iterations, barrier iterations, nonlinear iterations and box iterations. For the problem
with (m,n) = (50,50), for 10 randomly generated instances, three of the cases could not
be solved to optimality within the time limit of 5,000 seconds, and in one case it was not
able to return any feasible solutions within the 5,000 seconds. The average PR was as low
as 62.14% for GAMS/LINDOGlobal.

Based on the above comparison, we found that our algorithm significantly outperformed
GAMS MINLP solvers LINDOGlobal, SBB and CoinBonmin across the 160 randomly gen-
erated problem instances under vehicle capacity level 3 and customer revenue level 2.

Parameter analysis

In Table 4, we show how the different levels of two important parameters (capacity and rev-
enues) affected the results for the case of (m,n) = (3,10). The average value (across the 10
randomly generated instances) of expected profit is shown in column 6 of the table. The first
column corresponds to the four levels of the resource capacity V and the second column cor-
responds to levels of customer-specific revenue π̂j . The average computing time is shown in
the third column, and the average number of iterations is shown under the label “Iterations”
in column 4 (representing the number of master/subproblem iterations), which we will dis-
cuss in more detail later in this section. The column labeled “# Customers” is the average
number of customers served by the vehicle in the optimal solution, or equivalently

∑n

j=1 xj .
Not surprisingly, the number of master/subproblem iterations is closely related to the re-

quired CPU time. The greater the number of iterations, the greater the number of Benders

Table 4 Computational test results for various levels of capacity and revenue

V π̂j Time Iterations # Customers Exp Profit

1 1 1.08 9.70 1.50 91.21

2 0.74 6.90 2.00 296.37

3 0.48 4.70 3.30 605.65

4 0.24 2.10 6.80 1159.08

2 1 0.87 7.80 2.80 205.76

2 0.88 7.80 3.50 607.39

3 0.71 6.75 4.88 1081.97

4 0.32 3.00 7.88 1835.30

3 1 1.58 13.50 5.13 386.28

2 1.03 8.50 5.88 1041.90

3 0.73 6.50 6.63 1647.46

4 0.20 1.56 9.78 2981.94

4 1 0.85 7.50 8.50 515.38

2 0.19 1.38 9.88 1764.59

3 0.21 1.75 9.88 2763.69

4 0.19 1.30 9.90 3907.31
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Fig. 1 Number of iterations
required for solving problems
with different parameter levels

cuts added to the relaxed master problem. This implies a greater number of CPLEX solver
calls, and a greater number of lower and upper bounds generated by the Lagrangian relax-
ation, both of which increase the required running time. The impact of different parameter
levels on the running time is illustrated in Fig. 1, again for the case of (m,n) = (3,10).

In Fig. 1, each bar in the chart corresponds to a customer-specific revenue level, and the
results are grouped by vehicle capacity level. The vertical axis shows the average number
of iterations required. We can see that for each vehicle capacity level, the heights of the
four bars in a row are decreasing as the revenue level increases from level 1 to 4 (recall that
the average customer revenue increases in the level number). When all customer revenues
increase (all else being equal), we are more likely to assign a higher number of customers
to a vehicle, and there will be relatively fewer attractive choices for demand allocation,
thus resulting in fewer iterations. At the extreme, for example, when all customers have
very high revenues relative to costs, an optimal solution would assign all customers to the
vehicle and solve the corresponding multi-item constrained newsvendor problem. As the
figure shows, we cannot establish a definite pattern as a function of the capacity level for a
given revenue level (the variation in the average number of iterations is reasonably small,
and can at least partially be attributed to random variation among problem instances). As
we noted previously, the more computationally difficult problems occur when the revenues
are closely matched to the overflow costs. As the capacity level increases (in particular
at capacity level 4), the expected overflow costs tend to decrease for a given number of
customers, leading to less computationally intensive problem instances.

Referring again to Table 4, under each capacity level, the number of customers served
and the value of the expected profit both increase as the customer revenue levels increase;
similarly, for each revenue level, when the vehicle capacity increases, the number of cus-
tomers served increases and the expected profit increases. These effects are all quite intuitive
and are in accordance with what we would expect in real-world practice. We note that most
of the problems were solved with an active vehicle capacity constraint; in the last of the
capacity settings (V at level 4), the vehicle capacity constraint was redundant for about half
of the instances, which is responsible for the decrease in the number of required iterations
at this capacity level.

In order to illustrate the convergence of our generalized Benders decomposition approach
for our problem, we illustrate an instance solved within five iterations with m = 3, n = 10,
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Fig. 2 GBD convergence
illustration when m = 3, n = 10,
V is at level 1, and π̂j is at
level 2

V at level 1 and π̂j at level 2, shown in Fig. 2. We can see that the upper bound (UB)
converges quickly at the beginning, which we found was the case in general. So the number
of iterations required to improve the lower bound (LB) is an important factor with respect to
running time.

To summarize, our numerical results showed that our generalized Benders decomposition
algorithm can solve the multi-item, multi-customer resource allocation problem much faster
than well-known benchmark commercial nonlinear solvers (LINDOGlobal, SBB and Coin-
Bonmin), and typically solved the problems we tested within 17 seconds. The optimality
performance comparison and parameter analysis provided further evidence of the efficiency
and effectiveness of our algorithm.

Heuristic performance

To test the performance of our heuristic approach described in the previous section, we con-
sider four variants of our heuristic approach, one with the simple arithmetic average case,
the second with γij = μij , which we refer to as the demand weighted-average case, the third
with γij = Ki which we refer to as the cost weighted-average case, and the fourth one using
γij = μijKi . We denote these by HS, HD, HC and HDC, respectively, in Table 5. For com-
parison purposes, we use the same 160 test instances shown in Table 3. For these heuristics,
we present the resulting optimality gap in Table 3, equal to one minus the Performance Ratio
(PR).

From Table 5, we observe that the computational requirements are substantially lower
for our heuristic, resulting in computing times around 200–1000 times faster than LIN-
DOGlobal and 4–16 times faster than our Benders decomposition method. The only time-
consuming element of the heuristic is the computation of the expected value term in the
objective function v(X) for multiple assignment vectors Xk , k ∈ {1,2, . . . , n}, while in the
Benders decomposition algorithm, each iteration requires the computation of an expected
value term and the solution of a linear integer programming problem.

The required computation time for HC and HDC is a little longer than for HS and HD
as a result of the need to compute the cost parameter Ki . The optimality gap on average is
2.61% for HS, 2.64% for HD, 2.33% for HC, and 2.31% for HDC. However, the solutions
obtained by HS, HD, HC, and HDC are typically different, and so we recommend running
all of these methods and choosing the best solution among them, since the running time is
very fast when compared to the exact algorithm. As the table shows, the performance of the



50 Ann Oper Res (2013) 203:33–54

Table 5 Computational test results for average running time (second) and performance of the heuristic ap-
proach

Data Set HS HD HC HDC

m n Time GAP Time GAP Time GAP Time GAP

3 5 0.09 1.81% 0.09 1.81% 0.14 1.82% 0.14 1.81%

10 0.15 4.19% 0.15 3.60% 0.19 3.11% 0.18 2.10%

30 0.28 5.50% 0.28 5.30% 0.30 5.12% 0.30 5.15%

50 0.29 6.00% 0.30 6.00% 0.35 3.78% 0.32 3.96%

10 5 0.14 3.20% 0.14 3.20% 0.16 3.20% 0.17 2.25%

10 0.20 2.75% 0.20 3.80% 0.22 2.65% 0.22 2.31%

30 0.43 2.98% 0.42 3.20% 0.46 3.36% 0.47 3.62%

50 0.58 2.59% 0.59 2.40% 0.62 3.34% 0.62 3.00%

20 5 0.20 1.66% 0.20 1.66% 0.22 1.27% 0.22 1.65%

10 0.28 1.33% 0.28 1.20% 0.31 1.01% 0.31 1.01%

30 0.52 3.24% 0.51 3.15% 0.56 3.50% 0.55 3.21%

50 0.91 1.75% 0.90 2.36% 1.09 1.68% 1.12 2.39%

50 5 0.40 1.22% 0.40 1.22% 0.43 0.32% 0.43 1.22%

10 0.55 1.17% 0.56 1.07% 0.61 0.86% 0.60 1.07%

30 1.20 1.25% 1.18 1.12% 1.40 1.20% 1.38 1.20%

50 2.20 1.12% 2.22 1.18% 2.34 1.07% 2.36 1.04%

heuristic approach improves as the number of items increases, as has often been shown to
be the case for knapsack problem heuristics in the literature. Because the heuristic approach
is intended for larger problem instances for which exact approaches are impractical, this is
a promising result for handling problems of large size in reasonable computing times.

6 Conclusion

This study considered a stochastic resource allocation problem with normally distributed
demands for multiple items and a resource capacity constraint. We simultaneously consid-
ered the demand allocation and vehicle stocking problem for multiple items. This problem
has a broad set of applications in practice, although we focused on the sales visit context.
Moreover, our stochastic resource allocation problem arises as a subproblem for solving a
multiple resource allocation problem, which serves as one of our future research directions.

In this study, we provided an exact solution method and a heuristic approach for solving
this problem. The exact method we proposed uses Benders decomposition and transforms
the nonlinear mixed integer problem into two smaller ones, one of which is a nonlinear con-
tinuous problem that can be solved using Lagrangian relaxation relatively easily, and the
other of which is a 0-1 linear integer problem which can be handled effectively using the
CPLEX solver. After solving these two problems iteratively, we converge to a globally op-
timal solution because of the problem’s joint convexity properties. The heuristic approach
expresses the stock level vector Y in terms of the binary X variables and, by sorting cus-
tomers in nonincreasing order of a ratio of expected net revenue to variance (motivated by
the solution for a single-item selective newsvendor problem), we obtain near-optimal solu-
tions (within 2.47% of optimality on average) typically within 1 second.
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Based on our numerical study, our exact algorithm has proven to be quite efficient
when compared with three advanced commercial nonlinear solvers, GAMS/LINDOGlobal,
GAMS/SBB, and GAMS/CoinBonmin. Our heuristic approach performed very well for
larger problem sizes, which constitute the class of problems for which a heuristic approach
would likely be most beneficial in practice.
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Appendix 1: Solving the multi-item newsvendor subproblem

Here we discuss the solution of the multi-item constrained newsvendor problem:

(SP) min H(X,Y ) + G1(Y )

subject to: G2(Y ) ≤ 0,

Y ≥ 0.

The above Subproblem can be written as

(SP) min
m∑

i=1

eiE

⎡

⎣

⎛

⎝
n∑

j=1

dij xj − yi

⎞

⎠

+⎤

⎦+
m∑

i=1

ciyi

subject to:
m∑

i=1

siyi ≤ V,

Y ≥ 0.

For a given Xk , we use the Lagrange multiplier approach to obtain the optimal solution
Y ∗ of this convex program (Hadley and Whitin 1963). We introduce a Lagrange multiplier
w ≥ 0 and form the Lagrangian function Lg(Xk,Y ) (note that in terms of our prior notation,
Lg(Xk,Y ) is equivalent to the Lagrangian relaxation objective of v(Xk) in (8)):

Lg(Xk,Y ) =
m∑

i=1

eiE

⎡

⎣

⎛

⎝
n∑

j=1

dij x
k
j − yi

⎞

⎠

+⎤

⎦+
m∑

i=1

ciyi + w

(
m∑

i=1

siyi − V

)

Then, for a given w, using the necessary and sufficient first-order conditions, the y∗
i values

are determined by solving the set of equations

∂Lg(Xk,Y )

∂yi

= ei(Fi(yi) − 1) + ci + wsi = 0, i = 1, . . . ,m,

or

Fi(yi) = ei − ci − wsi

ei

, i = 1, . . . ,m,

where Fi(.) is the cumulative distribution function of demand Di = ∑n

j=1 dij x
k
j for the

given Xk . Note that we can set a lower bound on w of zero, i.e., LBw = 0, and an upper
bound of UBw = maxi (

ei−ci

si
) without loss of optimality.

An effective computational procedure for determining the value of w that produces a
saddlepoint solution would begin with a value of w between the lower and upper bounds,



52 Ann Oper Res (2013) 203:33–54

e.g., w = LBw+UBw

2 , and then compute the values of yi , i = 1, . . . ,m, from the above equa-

tions; if yi < 0, or (ei − ci − wsi) < 0 for some i, let yi = 0. Then, compute V̂ =∑m

i=1 siyi .
By using binary search, if V̂ > V , we select a larger value of w; that is, let LBw = w. If
V̂ < V , let UBw = w. Repeat this process as needed; normally the procedure is stopped
when |V̂ − V | < ε for some tolerance ε > 0. We will then gain the optimal values w∗ and
Y ∗ for the given Xk .

Appendix 2: Obtaining the subgradient of v(.) at Xk

By Theorem 1,

δ(Xk) = ∂

∂X

{
H(X,Y k) + G1(Y

k) + ukG2(Y
k)
}

X=Xk = ∂

∂X

{
H(X,Y k)

}
X=Xk .

Under the assumption that dij ∼ N(μij , σ
2
ij ), we let Di = ∑n

j=1 dij xj ; thus E(Di) =
∑n

j=1 μijxj = Ũi(X), V ar(Di) =∑n

j=1 σ 2
ij x

2
j = σ 2

i (X), and Di ∼ N(Ũi(X),σ 2
i (X)). We

represent H(X,Y k) using the following equation:

H(X,Y k) =
m∑

i=1

eiE

⎡

⎣

⎛

⎝
n∑

j=1

dij xj − yk
i

⎞

⎠

+⎤

⎦

=
m∑

i=1

ei

σi(X)√
2π

∫ ∞

yk
i

(Di − yk
i )

σ 2
i (X)

exp

{

− (Di − Ũi(X))2

2σ 2
i (X)

}

d(Di)

=
m∑

i=1

ei

σi(X)√
2π

[

− exp

{

− (Di − Ũi(X))2

2σ 2
i (X)

}∣
∣
∣
∣

∞

Di=yk
i

+ (Ũi(X) − yk
i )

σ 2
i (X)

∫ ∞

yk
i

exp

{

− (Di − Ũi(X))2

2σ 2
i (X)

}

d(Di)

]

=
m∑

i=1

ei

σi(X)√
2π

[

exp

{

− (yk
i − Ũi(X))2

2σ 2
i (X)

}

+ (Ũi(X) − yk
i )

σi(X)

√
2
∫ ∞

yk
i
−Ũi (X)√
2σi (X)

exp
{−z2

}
dt

]

(11)

Then,

∂

∂X
{H(X,Y k)}X=Xk =

m∑

i=1

ei

[
1√
2π

∂

∂X

{

σi(X) exp

{

− (yk
i − Ũi(X))2

2σ 2
i (X)

}}

+ 1√
π

∂

∂X

⎧
⎨

⎩
(Ũi(X) − yk

i )

∫ ∞
yk
i
−Ũi (X)√
2σi (X)

exp{−z2}dt

⎫
⎬

⎭

]

X=Xk

(12)



Ann Oper Res (2013) 203:33–54 53

Given X = Xk , define Ai = exp{− (yk
i
−Ũi (X

k))2

2σ 2
i
(Xk)

}, Ũi = Ũi(X
k), and Bi = σi(X

k), and the first

derivative term can be written as:

T i
1 = ∂

∂xj

{

σi(X) exp

{

− (yk
i − Ũi(X))2

2σ 2
i (X)

}}∣
∣
∣
∣
X=Xk

= Aiσ
2
ij x

k
j

Bi

− √
2Ai(y

k
i − Ũi)

(
yk

i − Ũi(X)√
2σi(X)

)′ ∣
∣
∣
∣
X=Xk

. (13)

Here (
yk
i
−Ũi (X)√
2σi (X)

)′|X=Xk is the partial derivative of (
yk
i
−Ũi (X)√
2σi (X)

) with respect to xj at the point

X = Xk .
Similarly, the second derivative term can be obtained:

T i
2 = ∂

∂xj

⎧
⎨

⎩
(Ũi(X) − yk

i )

∫ ∞
yk
i
−Ũi (X)√
2σi (X)

exp{−t2}dt

⎫
⎬

⎭

∣
∣
∣
∣
X=Xk

(14)

= μij (1 − Fi(y
k
i ))

√
π + Ai(y

k
i − Ũi)

(
yk

i − Ũi(X)√
2σi(X)

)′ ∣
∣
∣
∣
X=Xk

.

Here Fi(.) is the cumulative distribution function of the demand Di(X
k) =∑n

j=1 dij x
k
j ∼

N(Ũi,B
2
i ). So

∂

∂xj

{H(X,Y k)}X=Xk =
m∑

i=1

ei

[
1√
2π

T i
1 + 1√

π
T i

2

]

(15)

=
m∑

i=1

ei

[
Aiσ

2
ij x

k
j√

2πBi

+ μij (1 − Fi(y
k
i ))

]

.

Note that above equations are based on the assumption Xk �= 0. If Xk = 0, then Bi = 0 and

∂

∂xj

{H(X,Y k)}X=Xk=0 =
m∑

i=1

eiμij . (16)
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Ağralı, S., & Geunes, J. (2009). A single-resource allocation problem with Poisson resource requirements.
Optimization Letters, 3(4), 559–571.

Akçay, H., Li, H., & Xu, S. H. (2007). Greedy algorithm for the general multidimensional knapsack problem.
Annals of Operation Research, 150(1), 17–29.

Barnhart, C., & Cohn, A. M. (1998). The stochastic knapsack problem with random weights: a heuristic
approach to robust transportation planning. In Proceedings of Tristan III, Puerto Rico, 17–23 June.

Benjaafar, S., Elhafsi, M., & Vericourt, F. D. (2004). Demand allocation in multiple-product, multiple-facility,
make-to-stock systems. Management Science, 50(10), 1431–1448.



54 Ann Oper Res (2013) 203:33–54

Dean, B. C., Goemans, M. X., & Vondrak, J. (2004). Approximating the stochastic knapsack problem: the
benefit of adaptivity. In Proceedings of the 45th annual IEEE symposium on foundations of computer
science.

Federgruen, A., & Zipkin, P. H. (1984). A combined vehicle routing and inventory allocation problem. Oper-
ations Research, 32(5), 1019–1037.

Federgruen, A., Prastacos, G., & Zipkin, P. H. (1986). An allocation and distribution model for perishable
products. Operations Research, 34(1), 75–82.

Geoffrion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applica-
tions, 10(4), 237–260.

Geromel, J. C., & Belloni, M. R. (1986). Nonlinear programs with complicating variables: theoretical analysis
and numerical experience. IEEE Transactions on Systems, Man, and Cybernetics, 16(2), 231–239.

Geunes, J., Shen, Z.-J., & Romeijn, H. E. (2004). Economic ordering decisions with market choice flexibility.
Naval Research Logistics, 51(1), 117–136.

Gorman, M. F., & Ahire, S. (2006). A major appliance manufacturer rethinks its inventory policies for service
vehicles. Interfaces, 36(5), 407–419.

Grotschel, M. L., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combina-
torial optimization. Combinatorica, 1, 169–197.

Hadley, G., & Whitin, T. M. (1963). Analysis of inventory systems. Prentice-Hall: Englewood Cliffs.
Heyman, D. P., & Sobel, M. J. (1984). Stochastic models in operations research, vol. 2: stochastic optimiza-

tion. New York: McGraw-Hill.
Iwata, S. L., Fleischer, L., & Fujishige, S. (2000). A combinatorial, strongly polynomial-time algorithm for

minimizing submodular functions. In Proceedings of the 32nd annual ACM symposium on theory of
computing, Portland, Oregon (pp. 97–106).

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.
Kleywegt, A., & Papastavrou, J. D. (2001). The dynamic and stochastic knapsack problem with random sized

items. Operations Research, 49(1), 26–41.
Kosuch, S., & Lisser, A. (2010). Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm.

Annals of Operation Research, 176(1), 77–93.
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