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Abstract Adoption of environment-preserving production technique plays a key role to
effectively solving the continual worsening global industrial pollution problem. Due to the
global nature of environmental effects and trade, unilateral response on the part of one nation
is often ineffective. Cooperation in environmental management holds out the best promise
of effective action. For cooperation over time to be credible, a dynamic consistency condi-
tion which requires the agreed-upon optimality principle to remain in effect throughout the
collaboration duration has to hold. In this paper, we present a cooperative dynamic game of
collaborative environmental management with production technique choices. A dynamically
consistent cooperative scheme is derived. It is the first time that dynamically consistent so-
lution is obtained for dynamic games in collaborative environmental management with pro-
duction technique choices. The analysis widens the scope of study in global environmental
management.

Keywords Cooperative dynamic games · Time consistency · Production technique
choices · Environmental management

1 Introduction

After several decades of rapid technological advancement and economic growth, alarming
levels of pollutions and environmental degradation are emerging all over the world. Even
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substantial reduction in industrial output using conventional production technique would
only slow down the rate of increase and not reverse the trend of continual pollution accu-
mulation. Adoption of environment-preserving technique plays a central role to solving the
problem effectively. Due to the geographical diffusion of pollutants and the globalization
of trade, unilateral response on the part of one nation or region is often ineffective. Though
cooperation in environmental control holds out the best promise of effective action, limited
success has been observed. Conventional multinational joint initiatives like the Kyoto Proto-
col or the Copenhagen Accord can hardly be expected to offer a long-term solution because
(i) the plans focus only on emissions reduction which is unlikely be able to offer an effec-
tive mean to halt the accelerating trend of environmental deterioration, and (ii) there is no
guarantee that agreed-upon optimality principle could be maintained throughout the entire
duration of cooperation.

Dynamic game theory provides an effective tool to study pollution control problems and
to analyze the interactions between the participants’ strategic behaviors and dynamic evolu-
tion of pollution. Applications of noncooperative differential games in environmental stud-
ies can be found in Yeung (1992), Dockner and Long (1993), Tahvonen (1994), Stimming
(1999), Feenstra et al. (2001) and Dockner and Leitmann (2001). Dockner and Nishimura
(1999) and Rubio and Ulph (2007) presented discrete-time dynamic game for pollution man-
agement and Dutta and Radner (2006) presented a discrete-time dynamic game to study
global warming. Cooperative differential games in environmental control are studied by
Dockner and Long (1993), Jørgensen and Zaccour (2001), Fredj et al. (2004), Breton et al.
(2005, 2006), Petrosyan and Zaccour (2003), Yeung (2007, 2008) and Yeung and Petrosyan
(2008).

In dynamic cooperative games, a credible cooperative agreement has to be dynamically
consistent. For dynamic consistency to hold, a stringent condition on the cooperative agree-
ment is required: The specific optimality principle chosen at the outset must remain in effect
at any instant of time throughout the game along the optimal state trajectory. This condition
is commonly known as time consistency. Cooperative differential games that have identified
dynamically consistent solutions can be found in Jørgensen and Zaccour (2001), Petrosyan
and Zaccour (2003), Yeung (2007), and Yeung and Petrosyan (2004, 2005, 2006a, 2006b,
2008).

In the case when discrete choices of production techniques are available, an analysis in
discrete-time framework would in general be more effective. In this paper, we present a co-
operative (discrete-time) dynamic game of collaborative environmental management with
production technique choices. The policy instruments available include taxes and abatement
efforts. The industrial sectors select the production technique and the amount of output to
be produced. Under collaboration, nations will come up with a commonly agreed optimality
principle which governs their policy instruments and ways to distribute their joint coop-
erative payoff among themselves. To ensure that the cooperative solution is dynamically
consistent, this optimality principle has to be maintained throughout the period of coopera-
tion. Crucial to the analysis is the formulation of a dynamically consistent solution so that
the agreed-upon optimality principle will be maintained in the entire collaboration duration.
In this paper a time consistent solution is derived. This analysis widens the application of
cooperative dynamic cooperative game theory to environmental problems with technique
selection.

The paper is organized as follows. Section 2 presents a dynamic game model with pro-
duction technique choices. Noncooperative outcomes are characterized in Sect. 3. Cooper-
ative arrangements, group optimal actions, solution state trajectories, and time consistent
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solution are examined in Sect. 4. A payment distribution mechanism bringing about the pro-
posed time-consistent solution is derived and scrutinized in Sect. 5. A numerical illustration
is provided in Sect. 6. Concluding remarks are given in Sect. 7.

2 A game model with production technique choices

In this section we present a dynamic game model of transboundary pollution with produc-
tion technique choices. The game involves T -stages and n asymmetric nations (regions or
jurisdictions).

2.1 The industrial sector

The industrial sectors of the n asymmetric nations form an international economy. The de-
mand function for the output of nation i ∈ {1,2, . . . , n} ≡ N at stage t ∈ {1,2, . . . , T } ≡ κ

is

P i
t = αi

t −
n∑

j=1

βi
jQ

j
t , (2.1)

where P i
t is the price of the output of nation i, Q

j
t is the output of nation j,αi

t and βi
j for

i ∈ N and j ∈ N are positive parameters. The quantity of output Q
j
t (s) ∈ [0, Q̄j ] is nonneg-

ative and bounded by a maximum capacity constraint Q̄j . Output price equals zero if the
right-hand-side of (2.1) becomes negative. The demand system (2.1) shows that the econ-
omy is a form of differentiated products oligopoly. In the case when αi

t = α
j
t and βi

j = β
j

i

for all i ∈ N and j ∈ N , the industrial output is a homogeneous good. This type of model
was first introduced by Dixit (1979) and later used in analyses in industrial organizations
(see for example, Singh and Vives 1984) and environmental games (see for examples, Ye-
ung 2007, 2008 and Yeung and Petrosyan 2008). Moreover, in this analysis αi

t for i ∈ N is
allowed to change over time to reflect different growth rates in different nations.

There are two types of production techniques available to each nation’s industrial sec-
tor: conventional technique and environment-preserving technique. Industrial sectors pay
more for using environment-preserving technique. The amount of pollutants emitted by
environment-preserving technique is less than that emitted by conventional technique.

We use q
j
t to denote the output of nation j if it uses conventional technique and q̂

j
t to

denote the output of nation j if it uses environment-preserving technique. The average cost
of producing a unit of output with conventional technique in nation j is cj while that of
producing a unit of output with environment-preserving technique is ĉj .

Let vi
t denote the tax rate imposed by nation i on industrial output produced by

conventional technique in stage t , and v̂i
t denote the tax rate imposed on output pro-

duced by environment-preserving technique. Nation i’s industrial sector will choose to use
environment-preserving technique if ci + vi

t > ĉi + v̂i
t , otherwise it would choose to use

conventional technique. In stage t , let the set of nations using conventional technique be
denoted by S1

t and the set of nations using environment-preserving technique by S2
t . The

industrial sectors can switch their production techniques in any stage.
To reflect an industrial sector with a collection of heterogeneous firms which responds to

current market signals, output is taken as an aggregate measure. In stage t , these firms react
to the current market conditions and maximize their profits. Industry profit is an aggregate
measure of the firms’ profit. Profit maximization in this context is used to mimic the market
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outcome in the industrial sectors. The profit of industrial sector it ∈ S1
t and that of industrial

sector �t ∈ S1
t in stage t can be expressed respectively as

πit
t =

[
αit

t −
∑

j∈S1
t

β
it
j q

j
t −

∑

ζ∈S2
t

β
it
ζ q̂

ζ
t

]
qit

t − cit qit
t − vit

t qit
t , for it ∈ S1

t , (2.2)

and

π̂ �t
t =

[
α�t

t −
∑

j∈S1
t

β
�t

j q
j
t −

∑

ζ∈S2
t

β
�t
ζ q̂

ζ
t

]
q̂�t

t − ĉ�t q̂�t
t − v̂�t

t q̂�t
t , for �t ∈ S2

t . (2.3)

In each stage t the industrial sector of nation it ∈ S1
t seeks to maximize (2.2) and the

industrial sector of nation �t ∈ S1
t seeks to maximize (2.3). The first order condition for a

Nash equilibrium in stage t yields

αit
t −

∑

j∈S1
t

β
it
j q

j
t −

∑

ζ∈S2
t

β
it
ζ q̂

ζ
t − β

it
it
qit

t = cit + vit
t , for it ∈ S1

t ; and

α�t
t −

∑

j∈S1
t

β
�t

j q
j
t −

∑

ζ∈S2
t

β
�t
ζ q̂

ζ
t − β

�t

�t
q̂�t

t = ĉ�t + v̂�t
t , for �t ∈ S2

t .

(2.4)

Condition (2.4) shows that the industrial sectors will produce up to a point where marginal
revenue (the left-hand side of the equations) equals the cost plus tax of a unit of output
produced (the right-hand-side of the equations).

2.2 Pollution dynamics

Industrial output creates long-term environmental impacts by building up existing pollution
stocks like green-house-gas, CFC and atmospheric particulates. Each nation adopts its own
pollution abatement policy to reduce pollutants in the environment. At the initial stage 1,
the level of pollution is x1 = x0. The dynamics of pollution accumulation is governed by the
difference equation:

xt+1 = xt +
∑

it∈S1
t

ait qit
t +

∑

�t ∈S2
t

â�t q̂�t
t −

n∑

j=1

bju
j
t (xt )

1/2 − δxt , x1 = x0, (2.5)

where ait is the amount of pollution created by a unit of nation ii ’s output using conven-
tional technique, â�t is the amount of pollution created by a unit of nation �i ’s output using
environment-preserving technique, uj

t is the pollution abatement effort of nation j at stage t ,
bju

j
t (xt )

1/2 is the amount of pollution removed by u
j
t units of abatement effort of nation

j, δ is the natural rate of decay of the pollutants.
The damage (cost) of xt amount of pollution to nation is hjxt . The cost of u

j
t units of

abatement effort is ca
i (u

j
t )

2.
The use of a discrete-time framework does not only provide an effective analytical device

for discrete choices techniques study but also facilitates application of real data in empirical
study and simulation in operations research analysis. Moreover, dynamics (2.5) is a discrete-
time analogue of the continuous-time pollution dynamics in Yeung (2007) and Yeung and
Petrosyan (2008). Similar theoretical underpinnings are shared by both the continuous sys-
tem and the discrete system in the present analysis. Discrete dynamics in environmental
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analysis can also be found in Dockner and Nishimura (1999), Dutta and Radner (2006) and
Rubio and Ulph (2007).

2.3 The nations’ objectives

The nations have to promote business interests and at the same time bear the costs brought
about by pollution. In particular, each nation maximizes the net gains in the industrial sector
plus tax revenues minus the sum of expenditures on pollution abatement and damages from
pollution. The payoff of nation it ∈ S1

t at stage t can be expressed as:
[
αit

t −
∑

j∈S1
t

β
it
j q

j
t −

∑

ζ∈S2
t

β
it
ζ q̂

ζ
t

]
qit

t − cit qit
t − ca

it
(uit

t )2 − hit xt ; (2.6)

and the payoff of nation �t ∈ S2
t at stage t can be expressed as:

[
α�t

t −
∑

j∈S1
t

β
�t

j q
j
t −

∑

ζ∈S2
t

β
�t
ζ q̂

ζ
t

]
q̂�t

t − c�t q̂�t
t − ca

�t

(
u�t

t

)2 − h�t xt . (2.7)

The nations’ planning horizon is from stage 1 to stage T . It is possible that T may be
very large. The discount rate is r . A terminal appraisal of pollution damage is gi(x̄i − xT +1)

will be given to nation i at stage T + 1, where gi ≥ 0. In particular, if the level of pollution
at stage T + 1 is higher (lower) than x̄i , nation i will receive a bonus (penalty) equaling
gi(x̄i − xT +1). Each one of the n nations seeks to maximize the sum of the discounted
payoffs over the T stages plus the terminal appraisal. In particular, nation i would seek to
maximize the objective

T∑

t=1

[[
αi

t −
∑

j∈S1
t

j �=i

βi
j q

j
t −

∑

ζ∈S2
t

j �=i

βi
ζ q̂

ζ
t − βi

i q̄
i
t

]
q̄ i

t − c̄i q̄ i
t − ca

i (u
i
t )

2 − hixt

](
1

1 + r

)t−1

+ gi(x̄i − xT +1)

(
1

1 + r

)T

; i ∈ N (2.8)

where q̄ i
t = qi

t and c̄i
t = ci

t if industrial sector i uses conventional technique; and q̄ i
t = q̂ i

t and
c̄i
t = ĉi

t if industrial sector i uses environment-preserving technique.
Besides designing an optimal abatement policy, each of the nations also has to design

a tax scheme which would lead to the level of output that maximizes its objective. The
problem of maximizing objectives (2.8) subject to pollution dynamics (2.5) is a dynamic
game between these n nations.

3 Noncooperative outcomes

In this section we discuss the solution to the noncooperative dynamic game (2.5) and (2.8).
Since industrial output is in the objective of the nation in (2.8), each nation has to determine
its preferred level of industrial output and use a tax scheme to motivate the industrial sector
to produce the desired outputs. Hence output levels and abatement efforts become policy
choices facing the nations. Under a noncooperative framework, pre-commitment is not pos-
sible, a feedback Nash equilibrium solution is sought. Such a solution can be characterized
as follows.
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Theorem 3.1 A set of policies {qit∗
t = φ

it
t (x), q̂

ît∗
t = φ̂

ît
t (x), u

it∗
t = υ

it
t (x), u

ît∗
t = υ̂

ît
t (x), for

t ∈ κ and it ∈ S1
t and ît ∈ S2

t } provides a feedback Nash equilibrium solution to the game

(2.5) and (2.8) if there exist functions V it (t, x) : R → R and V ît (t, x) : R → R, for t ∈ κ

and it ∈ S1
t and ît ∈ S2

t , such that the following recursive relations are satisfied:

V it (t, x) = max
q

it
t ,ut

{[[
αit

t −
∑

j∈S1
t

j �=it

β
it
j φ

j
t (x) −

∑

ζ∈S2
t

β
it
ζ φ̂

ζ
t (x) − β

it
it
qit

t

]
qit

t − cit qit
t

− ca
it
(uit

t )2 − hit x

](
1

1 + r

)t−1

+ V it

[
t + 1, x +

∑

j∈S1
t

j �=it

ajφ
j
t (x) +

∑

ζ∈S2
t

âζ φ̂
ζ
t (x) + ait qit

t

−
∑

j∈S1
t

j �=it

bjυ
j
t (x)x1/2 −

n∑

j∈S2
t

bj υ̂
j
t (x)x1/2 − bit u

it
t x1/2 − δx

]}
, for t ∈ κ,

V it (T + 1, x) = git (x̄it − x)

(
1

1 + r

)T

, if it ∈ S1
t ; and

V ît (t, x) = max
q̂

ît
t ,u

ît
t

{[[
αît

t −
∑

j∈S1
t

β
ît
j φ

j
t (x) −

∑

ζ∈S2
t

ζ �=ît

β
ît
ζ φ̂

ζ
t (x) − β

ît

ît
q̂ ît

t

]
q̂ ît

t

− ĉît q̂ ît
t − ca

ît
(uît

t )2 − hît x

](
1

1 + r

)t−1

+ V ît

[
t + 1, x +

∑

j∈S1
t

ajφ
j
t (x) +

∑

ζ∈S2
t

ζ �=ît

âζ φ̂
ζ
t (x) + âît q̂ ît

t

−
∑

j∈S1
t

bjυ
j
t (x)x1/2 −

n∑

j∈S2
t

j �=ît

bjυ
j
t (x)x1/2 − bît

uît
t x1/2 − δx

]}
, for t ∈ κ,

V ît (T + 1, x) = gît (x̄ ît − x)

(
1

1 + r

)T

, if ît ∈ S2
t ; (3.1)

V it
xt+1

(t + 1, xt+1) >
(ĉit − cit )

(âit − ait )(1 + r)t−1
, for it ∈ S1

t and

V ît
xt+1

(t + 1, xt+1) ≤ (ĉît − cît )

(âît − ait )(1 + r)t−1
for ît ∈ S2

t ;
(3.2)
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where V it
xt+1

(t + 1, xt+1) is the short form for

V it
xt+1

[
t + 1, x +

∑

j∈S1
t

ajφ
j
t (x) +

∑

ζ∈S2
t

âζ φ̂
ζ
t (x)

−
∑

j∈S1
t

bjυ
j
t (x)x1/2 −

n∑

j∈S2
t

bj υ̂
j
t (x)x1/2 − δx

]
, and

V ît
xt+1

(t + 1, xt+1) is the short form for

V ît
xt+1

[
t + 1, x +

∑

j∈S1
t

ajφ
j
t (x) +

∑

ζ∈S2
t

âζ φ̂
ζ
t (x)

−
∑

j∈S1
t

bjυ
j
t (x)x1/2 −

n∑

j∈S2
t

bj υ̂
j
t (x)x1/2 − δx

]
.

Proof If nation it ∈ S1
t adopts conventional technique and nation ît ∈ S2

t adopts environment-
preserving technique, the results in (3.1) satisfy the optimality conditions in dynamic pro-
gramming and the Nash equilibrium. Hence a feedback Nash equilibrium is characterized.
See Theorem 6.6 in Basar and Olsder (1999).

The inequalities in (3.2) yield the conditions justifying why nation it ∈ S1
t adopts con-

ventional technique and nation ît ∈ S2
t adopts environment-preserving technique. To prove

this we perform the indicated maximization in (3.1) and obtain:

αit
t −

∑

j∈S1
t

β
it
j φ

j
t (x) −

∑

ζ∈S2
t

β
it
ζ φ̂

ζ
t (x) − β

it
it
φit

t (x) = cit − ait V it
xt+1

(t + 1, xt+1)(1 + r)t−1,

for it ∈ S1
t ; (3.3)

and

αît
t −

∑

j∈S1
t

β
ît
j φ

j
t (x) −

∑

ζ∈S2
t

β
ît
ζ φ

ζ
t (x) − β

ît

ît
φ̂ît

t (x) = ĉît − âît V ît
xt=1

(t + 1, xt+1)(1 + r)t−1,

for ît ∈ S2
t . (3.4)

In view of (2.4), the left-hand-side of (3.3) and that of (3.4) reflect the marginal revenues
to the industrial sectors. To motivate the industrial sectors to produce outputs as given in
(3.3) nation it has to impose a tax v

it
t equaling −ait V it

xt+1
(t + 1, xt+1)(1 + r)t−1 on a unit

of output produced with conventional technique. Similarly, nation ît has to impose a tax v̂
ît
t

equaling −âît V ît
xt+1

(t + 1, xt+1)(1 + r)t−1 on a unit of output produced with environment-
preserving technique to arrive at (3.4).

To illustrate that (3.2) is indeed the criteria for technique choice, we consider the case
where industrial sector it uses environment-preserving technique instead of conventional
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technique, condition (3.3) becomes

αit
t −

∑

j∈S1
t

β
it
j φ

j
t (x) −

∑

ζ∈S2
t

β
it
ζ φ̂

ζ
t (x) − β

it
it
φ̂it

t (x) = ĉit − âit V
it ∈S2

t
xt+1 (t + 1, xt+1)(1 + r)t−1,

(3.5)

where V
it∈S2

t
xt+1 (t + 1, xt+1) is the short form for

V it
xt+1

[
t + 1, x +

∑

j∈S1
t

j �=it

ajφ
j
t (x) +

∑

ζ∈S2
t

âζ φ̂
ζ
t (x) + âit φ̂it

t (x)

−
∑

j∈S1
t

j �=it

bjυ
j
t (x)x1/2 −

n∑

j∈S2
t

bj υ̂
j
t (x)x1/2 − bît

υ̂it
t − δx

]
.

To motivate the industrial sectors to produce outputs as given in (3.5) nation it has to impose

a tax v̂
it
t equaling −âit V

it∈S2
t

xt+1 (t + 1, xt+1)(1 + r)t−1.
The cost plus tax for a unit of output produced with conventional technique is cit + v

it
t

and that for a unit of output produced with environment-preserving technique is ĉit + v̂
it
t .

Industrial sector it will choose to use conventional technique if ci + vi
t < ĉi + v̂i

t , otherwise
it would choose to use environment-preserving technique. Using these terms one can show
that if

cit − ait V it
xt+1

(t + 1, xt+1)(1 + r)t−1 < ĉit − âit V
it ∈S2

t
xt+1 (t + 1, xt+1)(1 + r)t−1, (3.6)

industrial sector it will use conventional technique, otherwise it will use environment-
preserving technique. Using the value functions in Proposition 3.1 below one can readily

show that V
it∈S2

t
xt+1 (t + 1, xt+1) = V it

xt+1
(t + 1, xt+1). Therefore the condition reflected in (3.6)

collapses to condition (3.2). Hence Theorem 3.1 follows. �

The term −ait V it
xt+1

(t + 1, xt+1)(1 + r)t−1 reflects the marginal social cost to nation
it brought about by a unit of output produced with conventional technique. The term
−âit V ît

xt+1
(t + 1, xt+1)(1 + r)t−1 reflects the marginal social cost to nation ît brought about

by a unit of output produced with environment-preserving technique.
Rearranging (3.3) and (3.4) we obtain the system

∑

j∈S1
t

β
it
j φ

j
t (x) +

∑

ζ∈S2
t

β
it
ζ φ̂

ζ
t (x) + β

it
it
φit

t (x)

= αit
t − cit + ait V it

xt+1
(t + 1, xt+1)(1 + r)t−1, for it ∈ S1

t ; (3.7)
∑

j∈S1
t

β
ît
j φ

j
t (x) +

∑

ζ∈S2
t

β
ît
ζ φ̂

ζ
t (x) + β

ît

ît
φ̂ît

t (x)

= αît
t − ĉît + âît V ît

xt+1
(t + 1, xt+1)(1 + r)t−1, for ît ∈ S2

t . (3.8)

System (3.7)–(3.8) can be viewed as a set of equations linear in φ
it
t (x) for it ∈ S1

t and φ̂
ît
t (x)

for ît ∈ S2
t , with V it

xt+1
(t + 1, xt+1)(1 + r)t−1 for it ∈ S1

t and V ît
xt+1

(t + 1, xt+1)(1 + r)t−1 for
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ît ∈ S2
t being taken as a set of parameters. Solving (3.7)–(3.8) yields:

φit
t (x) = ᾱit

t +
∑

j∈S1
t

β̄
(it )j
t V j

xt+1
(t + 1, xt+1)(1 + r)t−1

+
∑

j∈S2
t

β̄
(it )j
t V j

xt+1
(t + 1, xt+1)(1 + r)t−1, for it ∈ S1

t ;

φ̂ît
t (x) = ˆ̄αît

t +
∑

j∈S1
t

ˆ̄β(ît )j
t V j

xt+1
(t + 1, xt+1)(1 + r)t−1

+
∑

j∈S2
t

ˆ̄β(ît )j
t V j

xt+1
(t + 1, xt+1)(1 + r)t−1, for ît ∈ S2

t ;

(3.9)

where ᾱ
it
t and β̄

(it )j
t for it ∈ S1

t , and ˆ̄αît
t and ˆ̄β(ît )j

t , ît ∈ S2
t , are constants involving the model

parameters.

In addition, performing the maximization operator in (3.1) with respect to u
it
t and u

ît
t

yields

υit
t (x) = − bit

2ca
it

V it
xt+1

(t + 1, xt+1)(1 + r)t−1x1/2, for it ∈ S1
t ; and

υ̂ ît
t (x) = − bît

2ca

ît

V ît
xt+1

(t + 1, xt+1)(1 + r)t−1x1/2, for ît ∈ S2
t .

(3.10)

Proposition 3.1 System (3.1)–(3.2) admits a unique solution

V i(t, x) =
{

V it (t, x)

V ît (t, x)
if

i ∈ S1
t ,

i ∈ S2
t ,

where

V it (t, x) = (A
ii
t x + Cit

t )

(
1

1 + r

)t−1

and V ît (t, x) = (Â
îi
t x + Ĉît

t )

(
1

1 + r

)t−1

,

for t ∈ κ; (3.11)

with A
it
t ,C

it
t , Â

ît
t and Ĉ

ît
t being constants involving the model parameters.

Proof See Appendix A. �

Though conventional technique emits higher level of pollutants, nations have no incentive
to switch to environment-preserving technique if the sum of marginal cost of producing the
output and the nation’s social cost resulted from using conventional technique is lower than
that resulted from using environment-preserving technique.

Note that the nations’ abatement efforts in (3.10) are direct policy strategies obtained
from the equilibrium of the game. However, the nations’ tax rules

vit
t = −ait V it

xt+1
(t + 1, xt+1)(1 + r)t−1 on conventional output and

v̂ît
t = −âît V ît

xt+1
(t + 1, xt+1)(1 + r)t−1 on environment-preserving
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are derived to motivate the industrial sectors to produce with the preferred techniques up to
the desired output levels. Moreover, a desirable feature of feedback dynamic games is that
nations can revise their policy as time goes by and the state changes to avoid the pitfalls of
time inconsistent rigid tax rules and abatement schemes.

4 Cooperative arrangements in climate change control

Now consider the case when all the nations want to collaborate and tackle the pollution
problem together. Cooperation suggests the possibility of socially optimal and group ef-
ficient solutions to decision problems involving interactive strategic actions. Formulation
of optimal behavior for individual participants and imputations for sharing the joint pay-
offs constitute the most fundamental element in cooperative schemes. Two essential factors
for collaborative scheme are group optimality and individual rationality. Group optimality
ensures that all potential gains from cooperation are captured. Failure to fulfill group opti-
mality leads to the condition where the participants prefer to deviate from the agreed-upon
solution plan in order to extract the unexploited gains. Individual rationality is required to
hold so that the payoff allocated to an economic agent under cooperation will be no less
than its noncooperative payoff. Failure to guarantee individual rationality leads to the con-
dition where the concerned participants would reject the agreed-upon solution plan and play
noncooperatively.

On top of group optimality and individual rationality the solution has to be time consis-
tent in the sense that the specific optimality principle chosen at the outset must remain in
effect at any instant of time throughout the game along the optimal state trajectory. Hence
none of the participating nations would have an incentive to depart from the collaborative
scheme. Cooperation will cease if any of the nations refuses to act accordingly at any time
within the game horizon.

To ensure group optimality, the nations would seek to maximize their joint payoff un-
der cooperation. Since nations are asymmetric and the number of nations may be large, a
reasonable optimality principle for gain distribution is to share the gain from cooperation
proportional to the nations’ relative sizes of noncooperative payoffs. Such sharing principle
fulfills individual rationality.

4.1 Group optimality and cooperative state trajectory

Consider the case when all the nations agree to act cooperatively so that the joint payoff
will be maximized. Since two technique choices are available they have to determine which
nations would use which type of techniques over the T stages. Let Mγ be a matrix reflecting
the pattern of technique choices by the n nations over the T stages. In particular, according
to pattern Mγ , the set of nations that use conventional technique is S

Mγ [1]
t and the set of

nations that use environment-preserving technique is S
Mγ [2]
t in stage t ∈ κ . To select the

controls which would maximize joint payoff under pattern Mγ the nations have to solve the
following optimal control problem:

max
u
�t
t ,q

�t
t ,�t ∈S

Mγ [1]
t ;û�̂t

t q̂
�̂t
t ,�̂t ∈S

Mλ[2]
t ;t∈κ

{
T∑

t=1

∑

i∈S
Mγ [1]
t

[[
αi

t −
∑

j∈S
Mγ [1]
t

βi
j q

j
t −

∑

ζ∈S
Mγ [2]
t

βi
ζ q̂

ζ
t

]
qi

t

− ciqi
t − ca

i (u
i
t )

2 − hixt

](
1

1 + r

)t−1



Ann Oper Res (2014) 220:181–204 191

+
T∑

t=1

∑

i∈S
Mγ [2]
t

[[
αi

t −
∑

j∈S
Mγ [1]
t

βi
j q

j
t −

∑

ζ∈S
Mγ [2]
t

βi
ζ q̂

ζ
t

]
q̂ i

t

− ĉi(S
Mγ [2]
t )q̂ i

t − ca
i (u

i
t )

2 − hixt

](
1

1 + r

)t−1

+
n∑

i=1

gi(x̄i − xT +1)

(
1

1 + r

)T
}

, (4.1)

subject to

xt+1 = xt +
∑

�t ∈S
Mγ [1]
t

a�t q�t
t +

∑

�̂t ∈S
Mγ [2]
t

â�̂t q̂ �̂t
t −

∑

�t ∈S
Mγ [1]
t

b�t u
�t
t (xt )

1/2

−
∑

�̂t ∈S
Mγ [1]
t

b�̂t
u�̂t

t (xt )
1/2 − δxt , (4.2)

x1 = x0.

The solution to the optimal control problem (4.1)–(4.2) can be characterized as follows.

Theorem 4.1 A set of strategies {q�t∗
t = ψ

(Mγ )�t
t (x), q̂

�̂t∗
t = ψ̂

(Mγ )�̂t
t (x), u

�t ∗
t = �

(Mγ )�t
t (x),

u
�̂t ∗
t = �̂

(Mγ )�̂t
t (x), for t ∈ κ and �t ∈ S

Mγ [1]
t and �̂t ∈ S

Mγ [2]
t } constitutes an optimal solution

to the control problem (4.1) and (4.2) if there exist functions WMγ
(t, x) : R → R, for t ∈ κ ,

such that the following recursive relations are satisfied:

WMγ

(t, x) = max
u
�t
t ,q

�t
t ,�t ∈S

Mγ [1]
t ;û�̂t

t q̂
�̂t
t ,�̂t ∈S

Mλ[2]
t

{ ∑

i∈S
Mγ [1]
t

[[
αi

t −
∑

j∈S
Mγ [1]
t

βi
j q

j
t −

∑

ζ∈S
Mγ [2]
t

βi
ζ q̂

ζ
t

]
qi

t

− ciqi
t − ca

i (u
i
t )

2 − hixt

](
1

1 + r

)t−1

+
∑

i∈S
Mγ [2]
t

[[
αi

t −
∑

j∈S
Mγ [1]
t

βi
j q

j
t −

∑

ζ∈S
Mγ [2]
t

βi
ζ q̂

ζ
t

]
q̂ i

t

− ĉi(S
Mγ [2]
t )q̂ i

t − ca
i (u

i
t )

2 − hixt

](
1

1 + r

)t−1

(4.3)

+ WMγ

[
t + 1, x +

∑

�t ∈S
Mγ [1]
t

a�t q�t
t +

∑

�̂t ∈S
Mγ [2]
t

â�̂t q̂ �̂t
t −

∑

�t ∈S
Mγ [1]
t

b�t u
�t
t (xt )

1/2

−
∑

�̂t ∈S
Mγ [1]
t

b�̂t
u�̂t

t (x)1/2 − δx

]}
, for t ∈ κ;

WMγ

(T + 1, x) =
n∑

i=1

gi(x̄i − x)

(
1

1 + r

)T

.

Proof The results in (4.3) satisfy the standard optimality conditions in discrete-time dy-
namic programming. �
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Performing the indicated maximization in (4.3) yields the optimal controls under coop-
eration as:

�
(Mγ )�t
t (x) = − b̂�t

2ca
�t

WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1x1/2, for �t ∈ SMγ [1]

t , and

�̂
(Mγ )�̂t
t (x) = − b̂�̂t

2ca

�̂t

WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1x1/2, for �̂t ∈ SMγ [2]

t ;
(4.4)

α�t
t −

∑

j∈S
Mγ [1]
t

β
�t

j ψ
(Mγ )j
t (x) −

∑

j∈S
Mγ [2]
t

β
�t

j ψ̂
(Mγ )j
t (x) −

∑

ζ∈S
Mγ [1]
t

β
ζ

�t
ψ

(Mγ )ζ
t (x)

−
∑

ζ∈S
Mγ [2]
t

β
ζ

�t
ψ̂

(Mγ )ζ
t (x) = c�t − a�t WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1,

for �t ∈ SMγ [1]
t ; (4.5)

α�̂t
t −

∑

j∈S
Mγ [1]
t

β
�̂t

j ψ
(Mγ )j
t (x) −

∑

j∈S
Mγ [2]
t

β
�̂t

j ψ̂
(Mγ )j
t (x) −

∑

ζ∈S
Mγ [1]
t

β
ζ

�̂t
ψ

(Mγ )ζ
t (x)

−
∑

ζ∈S
Mγ [2]
t

β
ζ

�̂t
ψ̂

(Mγ )ζ
t (x) = c�̂t (S

Mγ [2]
t ) − a�̂t WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1,

for �̂t ∈ SMγ [2]
t , (4.6)

where WMγ

xt+1
(t + 1, xt+1) is the short form for

WMγ

xt+1

[
t + 1, x +

∑

j∈S
Mγ [1]
t

ajψ
(Mγ )j
t (x) +

∑

j∈S
Mγ [2]
t

âj ψ̂
(Mγ )j
t (x)

−
∑

j∈S
Mγ [1]
t

bj�
(Mγ )j
t (x) −

∑

j∈S
Mγ [2]
t

bj �̂
(Mγ )j
t (x) − δx

]
.

System (4.5)–(4.6) can be viewed as a set of equations linear in ψ
�t
t (x) and ψ̂

�̂t
t (x) for

�t ∈ S
Mγ [1]
t and �̂t ∈ S

Mγ [2]
t with WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1 being taken a parameter. Solv-

ing (4.5)–(4.6) yields:

ψ
(Mγ )�t
t (x) = α̃

(Mγ )�t
t + β̃

(Mγ )�t
t WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1, for �t ∈ SMγ [1]

t ;

ψ̂
(Mγ )�̂t
t (x) = ˆ̃α(Mγ )�̂t

t + ˆ̃
β

(Mγ )�̂t
t WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1, for �̂t ∈ SMγ [2]

t ;
(4.7)

where α̃
�t
t and β̃

�t

j for �t ∈ S
Mγ [1]
t , and ˆ̃α�̂t

t and ˆ̃
β

�̂t

j , �̂t ∈ S
Mγ [2]
t , are constants involving the

model parameters.

Proposition 4.1 System (4.3) admits a solution

WMγ

(t, x) = (AMγ

t x + CMγ

t )

(
1

1 + r

)t−1

, t ∈ κ, (4.8)
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where AMγ

t and CMγ

t are constants involving the model parameters.

Proof See Appendix B. �

The technique pattern Mγ which yields the highest joint payoff WMγ
(t, x) will be

adopted in the cooperative scheme. Let us denote the technique pattern that yields the high-
est joint payoff by M∗. If the marginal joint social cost of pollution is sufficiently higher
complete switching to environment-preserving technique would be realized.

Using (4.4), (4.7) and (4.8), the control strategy under cooperation with technique pattern
M∗ can be obtained accordingly. To induce the industrial sector to produce the socially
optimal levels of output with the desired technique, we first substitute the social optimally
outputs into (2.4) to obtain the optimal tax rates

v
(M∗)it
t = αit

t −
∑

j∈S1
t

β
it
j ψ

(M∗)j
t −

∑

ζ∈S2
t

β
it
ζ ψ̂

(M∗)ζ
t − β

it
it
ψ

(M∗)it
t − cit , for it ∈ S1

t ; and

v̂
(M∗)�t
t = α�t

t −
∑

j∈S1
t

β
�t

j ψ
(M∗)j
t −

∑

ζ∈S2
t

β
�t
ζ ψ̂

(M∗)ζ
t − β

�t

�t
ψ̂

(M∗)�t
t − ĉ�t , for �t ∈ S2

t .

A salient feature of the optimal scheme is that each nation’s optimal tax rate reflects the
marginal social cost of its output. The tax rate on output produced with conventional tech-
niques can be easily shown to be higher than that with environment-preserving technique for
each nation. Since even environment-preserving techniques emit pollution the socially opti-
mal tax rate cannot be zero. However, the tax rate differential acts as an indication for tech-
nique switching or technology transfer to nations (especially developing nations). Guided
by the tax rates each industrial sector will adopt techniques leading to a social optimum.
Finally a lump-sum levy/subsidy will be given to each industrial sector to guarantee that the
same profit level as that under a noncooperative equilibrium is maintained.

Substituting the optimal control strategy into (4.2) yields the dynamics of pollution ac-
cumulation under cooperation as:

xt+1 =
∑

j∈S
M∗[1]
t

aj [α̃(M∗)j
t + β̃

(M∗)j
t AM∗

t+1(1 + r)−1]

+
∑

j∈S
M∗[2]
t

âj [ ˆ̃α(M∗)j
t + ˆ̃

β
(M∗)j
t AM∗

t+1(1 + r)−1]

+
[

1 +
n∑

j=1

(bj )
2

2ca
j

AM∗
t+1(1 + r)−1 − δ

]
xt , x1 = x0. (4.9)

Equation (4.9) is a linear difference equation with time varying coefficients. We use
{x∗

1 , x∗
2 , . . . , x∗

n} to denote the solution path satisfying (4.9). Solving (4.9) gives

x∗
t =

(
t∏

ζ=1

S1
ζ

)
x0 +

t∑

k=1

(
t∏

ζ=k+1

S1
ζ

)
S2

k , (4.10)
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where

S1
ζ = 1 +

n∑

j=1

(b̂j )
2

2ca
j

AM∗
ζ+1(1 + r)−1 − δ, and

S2
ζ =

∑

j∈S
M∗[1]
t

aj [α̃(M∗)j

ζ + β̃
(M∗)j

ζ AM∗
ζ+1(1 + r)−1]

+
∑

j∈S
M∗[2]
t

âj [ ˆ̃α(M∗)j
t + ˆ̃

β
(M∗)j
t AM∗

t+1(1 + r)−1].

4.2 Time consistent collaborative solution

To achieve dynamic consistency the agreed-upon optimality principle must be maintained
at every stage of collaboration. The agreed-upon optimality principle requires the nations to
share the gain from cooperation proportional to the nations’ relative sizes of noncooperative
payoffs. In a dynamic framework this condition has to be maintained at every stage. Let
ξ�(t, x∗

t ) denote nation �’s imputation (payoff under cooperation) covering the stages t to T

under the agreed-upon optimality principle along the cooperative trajectory {x∗
k }T

k=t . Hence
the solution imputation scheme has to satisfy:

Condition 4.1

ξ�(t, x∗
t ) = V �(t, x∗

t )∑n

j=1 V j (t, x∗
t )

WM∗
(t, x∗

t ), (4.11)

for all � ∈ N and all t ∈ κ , where V �(t, x∗
t ) = V �t (t, x∗

t ) in Proposition 3.1 if � ∈ S1
t and

V �(t, x∗
t ) = V �̂t (t, x∗

t ) if � ∈ S2
t .

Hence a time-consistent solution has to satisfy Condition 4.1. Crucial to the derivation
of a time-consistent solution is the formulation of a payment distribution mechanism that
would lead to the realization of Condition 4.1. This will be done in the next section.

5 Payment distribution mechanism

To design a payment distribution scheme over time so that the agreed-upon imputation in
Condition 4.1 can be realized we apply the techniques developed in Petrosyan and Zenke-
vich (1996) and Yeung and Petrosyan (2010). In formulating a Payoff Distribution Proce-
dure (PDP) we let B�

t (x
∗
t ) denote the payment that nation � will received at stage t under the

cooperative agreement given the state x∗
t at stage t ∈ κ .

The payment scheme involving B�
t (x

∗
t ) constitutes a PDP in the sense that along the

optimal state trajectory {x∗
t }T

t=1 the imputation to nation � over the stages from t to T can be
expressed as:

ξ�(t, x∗
t ) =

T∑

ζ=t

B�
ζ (x

∗
ζ )

(
1

1 + r

)ζ−1

+ g�(x̄� − xT +1)

(
1

1 + r

)T

, (5.1)

for � ∈ N and t ∈ κ .
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Theorem 5.1 A payment

B�
t (x

∗
t ) = (1 + r)t−1[ξ�(t, x∗

t ) − ξ�(t + 1, x∗
t+1)], for � ∈ N,

given to nation � ∈ N at stage t ∈ {1,2, . . . , T − 1}, and a payment

B�
T (x∗

T ) = (1 + r)T −1

[
ξ�(T , x∗

T ) − g�(x̄� − x∗
T +1)

(
1

1 + r

)T ]
, (5.2)

given to nation � ∈ N at stage T would lead to the realization of the imputation {ξ�(t, x∗
t ),

for t ∈ κ and � ∈ N}.

Proof Making use of (5.1), one can arrive at:

ξ�(t, x∗
t ) =

h−1∑

ζ=t

B�
ζ (x

∗
ζ )

(
1

1 + r

)ζ−1

+ ξ�(h, x∗
h), (5.3)

for � ∈ N and t ∈ κ and h ∈ {t + 1, t + 2, . . . , T }.
From (5.3) one can obtain

B�
t (x

∗
t )

(
1

1 + r

)t−1

= ξ�(t, x∗
t ) − ξ�(t + 1, x∗

t+1),

for � ∈ N and t ∈ κ .
Note that B�

t (x
∗
t )(

1
1+r

)t−1 is the present value (as from initial stage 1) of a payment
B�

t (x
∗
t ) that will be given nation � at stage t . Hence if a payment as specified in (5.2) is

given to nation � at stage t ∈ κ , the imputation {ξ�(t, x∗
t ), for t ∈ κ and � ∈ N} can be

realized by showing that

T∑

ζ=t

B�
ζ (x

∗
ζ )

(
1

1 + r

)ζ−1

+ g�(x̄� − xT +1)

(
1

1 + r

)T

=
T∑

ζ=t

[ξ�(ζ, x∗
ζ ) − ξ�(ζ + 1, x∗

ζ+1)] = ξ�(t, x∗
t ), (5.4)

for � ∈ N and t ∈ κ , given that ξ�(T + 1, x∗
T +1) = g�(x̄� − x∗

T +1)(
1

1+r
)T . �

Theorem 5.1 yields a payoff distribution mechanism which leads to a time-consistent
solution. In particular, given a set of agreed-upon imputations ξ�(t, x∗

t ), a payment B�
t (x

∗
t )

in (5.2) would lead to the realization of the imputation {ξ�(t, x∗
t ), for t ∈ κ and � ∈ N}. As

demonstrated in (5.4),

T∑

ζ=t

B�
ζ (x

∗
ζ )

(
1

1 + r

)ζ−1

+ g�(x̄� − xT +1)

(
1

1 + r

)T

= ξ�(t, x∗
t ),

which is the set of agreed-upon imputations.
According to Condition 4.1,

ξ�(t, x∗
t ) = V �(t, x∗

t )∑n

j=1 V j (t, x∗
t )

WM∗
(t, x∗

t ).
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Invoking Theorem 5.1 the payment (in present value terms) to nation � in stage t ∈ κ can be
obtained as:

B�
t (x

∗
t )

(
1

1 + r

)t−1

= ξ�(t, x∗
t ) − ξ�(t + 1, x∗

t+1)

= V �(t, x∗
t )∑n

j=1 V j (t, x∗
t )

WM∗
(t, x∗

t )

− V �(t + 1, x∗
t+1)∑n

j=1 V j (t + 1, x∗
t+1)

WM∗
(t + 1, x∗

t+1), (5.5)

for � ∈ N , t ∈ κ , where V �(t, x∗
t ) = V �t (t, x∗

t ) if � ∈ S1
t and V �(t, x∗

t ) = V �̂t (t, x∗
t ) if � ∈ S2

t .
Thus the agreed-upon imputations are realized as the game proceeds. Hence the agreed-

upon optimality principle is maintained at every stage of collaboration and a time-consistent
solution results. Formula (5.5) indeed provides a payoff distribution procedure leading to
the satisfaction of Condition 4.1 and hence a time-consistent solution will be obtained.

Under cooperation, nations would use the optimal cooperative strategies (4.4) and (4.7).
Substituting the state x∗

t and these strategies into the nations’ payoff at stage t in (2.6) and
(2.7) with reference to the chosen technique pattern M∗, one can obtain the payoffs that
these nations receive in stage t . We use ζ i

t (x
∗
t ) to denote payoff at stage t that nations �

receives when nations are using the optimal cooperative strategies.
According to Theorem 5.1, the payoff that nation � should receive under the agreed-upon

optimality principle is B�
t (x

∗
t ). Hence a transfer payment

χ�
t (x∗

t ) = B�
t (x

∗
t ) − ζ i

t (x
∗
t )

has to be given to nation � in stage t , for � ∈ N and t ∈ κ .
Moreover, note that there can be other optimality principles for gain distribution besides

sharing the gain from cooperation other than sharing proportionally the nations’ relative
sizes of noncooperative payoffs. For instance, the nations may agree to share the gain from
cooperation equally among themselves. The corresponding solution imputation scheme be-
comes:

Condition 5.1

ξ�(t, x∗
t ) = V �(t, x∗

t ) + 1

n

[
WM∗

(t, x∗
t ) −

n∑

j=1

V j (t, x∗
t )

]
, (5.6)

for all � ∈ N and all t ∈ κ , where V �(t, x∗
t ) = V �t (t, x∗

t ) in Proposition 3.1 if � ∈ S1
t and

V �(t, x∗
t ) = V �̂t (t, x∗

t ) if � ∈ S2
t .

The nations may also agree to share the gain as various linear combinations of the impu-
tations in Condition 4.1 and Condition 5.1. Applying Theorem 5.1 one can readily derive a
payoff distribution procedure satisfying any agreed-upon imputation scheme1 {ξ�(t, x∗

t ), for
t ∈ κ and � ∈ N} and obtain a time-consistent solution.

1The Shapley value is also an imputation scheme, but in a dynamic context, the super-addivity property of the
corresponding characteristic functions does not hold in general, including in the case of the present analysis.
Therefore nations would not choose the Shapley value as the imputation in an optimality principle.
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6 Numerical illustration

As a numerical illustration we consider the case where there are 3 nations which have 3
stages of actions.

The demand functions of these nations are P 1
t = 50 − 2Q1

t − Q2
t − Q3

t , P 2
t = 72 − Q1

t −
4Q2

t − 2Q3
t and P 3

t = 60 − 2Q1
t − Q2

t − 3Q3
t . The costs of producing output with con-

ventional technique are c1 = 1, c2 = 0.5, c3 = 1; and those of using environment-preserving
technique are ĉ1 = 2.5, ĉ2 = 2, ĉ3 = 2. The abatement costs are ca

1 = 2, ca
2 = 2, ca

3 = 2.5; and
the abatement parameters are b1 = 1, b2 = 1, b3 = 1.5. The pollution dynamics parameters
are a1 = 2, â1 = 0.5, a2 = 2, â2 = 0.5, a3 = 2, â3 = 1. The pollution decay rate δ = 0.05
and the pollution damage parameters are h1 = 0.7, h1 = 0.8, h3 = 1.8. The initial pollution
stock is x1 = 4 and the discount rate is r = 0.04. The terminal bonus (penalty) parameters
are g1 = 0.5, g2 = 0.4, g3 = 1.7; x̄1 = 200, x̄2 = 500, x̄3 = 100.

We first compute the outcome under non-cooperation. At stage T + 1 = 4, invoking
Proposition 3.1 we have

A1
4 = −0.5, A2

4 = −0.4, A3 = −1.7;
C1

4 = 100, C2
4 = 200 and C3

4 = 170.

Using condition (3.2), one can show that industrial sectors 1 and 2 will use conventional
technique and sector 3 will use environment-preserving technique in stage 3. Industrial out-
puts can be obtained as:

q1
3 = 9.1169, q2

3 = 6.3787, q̂3
3 = 5.2921.

Invoking (A.4) and (A.5) in Appendix A we obtain:

A1
3 = −0.727968, A2

3 = −0.817751, Â3
3 = −2.398049,

C1
3 = 252.8004, C2

3 = 346.0104 and Ĉ3
3 = 194.6502.

Using condition (3.2), one can show that industrial sectors 1 and 2 will use conventional
technique and sector 3 will use environment-preserving technique in stage 2. Industrial out-
puts can be obtained as:

q1
2 = 9.0168, q2

2 = 6.3074, q̂3
2 = 5.2255.

Invoking (A.4) and (A.5) we obtain:

A1
2 = −0.43983, A2

2 = −0.516227, Â3
2 = −1.937482,

C1
2 = 393.1945, C2

2 = 473.5493 and Ĉ3
2 = 196.2488.

According to condition (3.2), industrial sectors 1 and 2 will use conventional technique
and sector 3 will use environment-preserving technique in stage 1. Industrial outputs can be
obtained as:

q1
1 = 9.1361, q2

1 = 6.3587, q3
1 = 5.2510.

Invoking (A.4) and (A.5) we obtain:

A1
1 = −0.672388, A2

1 = −0.772149, Â3
1 = −2.360774,

C1
1 = 537.4093, C2

1 = 605.3887 and Ĉ3
1 = 211.4722.
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The noncooperative state path can be obtained as:

x1 = 4, x2 = 42.0106, x3 = 27.0039, x4 = 41.0968.

Now consider the case that the 3 nations agree to collaborate so that they would maximize
their joint payoff and share the gain from cooperation proportional to the nations’ relative
sizes of noncooperative payoffs. The joint payoff maximizing pattern of technique choices
is that all 3 nations will adopt environment-preserving technique.

First consider stage 4, from (B.2) in Appendix B we obtain

AM∗
T +1 = −2.6 and CM∗

4 = 470.

Invoking (B.3) we obtain:

AM∗
3 = −2.70625, AM∗

2 = −2.555709 and AM∗
1 = −2.766075.

The nations’ outputs in the 3 stages under cooperation are

q̂1
3 = 6.2344, q̂2

3 = 5.8281, q̂3
3 = 3.2186; q̂1

2 = 6.2325, q̂2
2 = 5.8275,

q̂3
2 = 3.2050; q̂1

1 = 6.2363, q̂2
1 = 5.8288, q̂3

1 = 3.2225.

Invoking (B.3) again we obtain:

CM∗
3 = 885.7551, CM∗

2 = 1284.575 and CM∗
1 = 1684.066.

Solving the optimal cooperative trajectory yields:

x∗
1 = 4, x∗

2 = 3.7169, x∗
3 = 3.5777, x∗

4 = 4.1516.

The joint payoffs in stages 1 to 4 along the optimal cooperative trajectory can be obtained
as:

WM∗(1, x∗
1 ) = 1673.002, WM∗(2, x∗

2 ) = 1226.035,

WM∗(3, x∗
3 ) = 809.9787 and WM∗(4, x∗

4 ) = 408.2323.

The individual payoffs for the 3 nations along the optimal cooperative trajectory are

V 1(1, x∗
1 ) = 534.7198, V 2(1, x∗

1 ) = 602.3001, V 3(1, x∗
1 ) = 202.0292,

V 1(2, x∗
2 ) = 376.4998, V 2(2, x∗

2 ) = 453.4909, V 3(2, x∗
2 ) = 182.0357,

V 1(3, x∗
3 ) = 231.3202, V 2(3, x∗

3 ) = 317.2011, V 3(3, x∗
3 ) = 172.0328,

V 1(4, x∗
4 ) = 87.0542, V 2(4, x∗

4 ) = 176.323, V 3(4, x∗
4 ) = 144.8551.

To summarize the results we first present the technology patterns, national outputs and
levels of pollution stock under non-cooperation and collaboration in Table 1. The technique
pattern under noncooperation involves nation 3 adopting environment-preserving techniques
in stages 2 and 3. While under cooperation all 3 nations adopt environment-preserving tech-
niques in all the 3 stages. The levels of pollution under collaboration are below those with
no cooperation.
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Table 1 Technology patterns, national outputs and levels of pollution stock under non-cooperation and col-
laboration

Stage Non-cooperation Collaboration

t Nation 1 Nation 2 Nation 3 xt Nation 1 Nation 2 Nation 3 x∗
t

1 q1
1 q2

1 q3
1 4 q̂1

1 q̂2
1 q̂3

1 4

9.1361 6.3587 5.2510 6.2363 5.8288 3.2225

2 q1
2 q2

2 q̂3
2 42.0106 q̂1

2 q̂2
2 q̂3

2 3.7169

9.0168 6.3074 5.2255 6.2325 5.8275 3.2050

3 q1
3 q2

3 q̂3
3 27.0039 q̂1

3 q̂2
3 q̂3

3 3.5777

9.1169 6.3787 5.2921 6.2344 5.8281 3.2186

4 41.0968 4.1516

Table 2 Total collaborative payoff and nations’ imputations

t Total
collaborative
payment

Nation 1’s
imputation

Nation 2’s
imputation

Nation 3’s
imputation

WM∗
(t, x∗

t ) ξ1(t, x∗
t ) ξ2(t, x∗

t ) ξ3(t, x∗
t )

1 1673.002 668.0765 752.5111 252.4143

2 1226.035 456.1164 549.3885 220.5299

3 809.9787 260.0283 356.5674 193.383

4 408.2323 87.0542 176.323 144.8551

Table 3 Payments incurred to nations in each stage—present value and current value

t Stage cooperative payment
(in current value)

Stage cooperative payment
(in present value)

B1
t (x∗

t ) B2
t (x∗

t ) B3
t (x∗

t ) RtB
1
t (x∗

t ) RtB
2
t (x∗

t ) RtB
3
t (x∗

t )

1 211.9601 203.1226 31.8844 211.9601 203.1226 31.8844

2 203.9317 200.5339 28.2327 196.0882 192.8211 27.1469

3 187.0887 194.9524 52.4879 172.974 180.2445 48.528

4 97.9242 198.3393 162.9422 87.0542 176.323 144.8551

Note: Rt = (1 + r)−(t−1)

Then we proceed to compute the imputations to the nations under collaboration using
Condition 4.1 and these figure are given in Table 2 along with the joint payoff under coop-
eration.

Finally, payoff distribution procedures leading the realization of the imputations in Ta-
ble 2 are derived using Theorem 5.1 and displayed in Table 3. Note that both the current
value and present values of these payment in various stages are provided.
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7 Concluding remarks

Adoption of environment-preserving production technique plays a key role to effectively
solving the continual worsening global industrial pollution problem. In this analysis, we
present a dynamic game of collaborative pollution management with production technique
choices. This is the first time that technique choices are allowed in cooperative dynamic
game analysis. In dynamic cooperation, a credible cooperative agreement has to be time
consistent. Time consistent cooperative solution and analytically tractable payoff distribu-
tion procedures are derived in the analysis. This approach widens the application of cooper-
ative differential game theory to environmental problems with technique choice.

Various extensions can be incorporated into the analysis readily. First, there could be
more than two choices of techniques leading to different degrees of pollution. Second, the
natural rate of decay may be related to the pattern of technique choice. Thirdly, the number
of industrial products produced by a nation could be more than one. Moreover, one may
introduce costs of technique switching. Sufficiently high costs for switching new techniques
back to conventional techniques would yield the outcome of irreversibility of the new tech-
niques once they have been installed. Using the optimal technique pattern searching method
in Sect. 4.1, one can determine when a nation will switch to new technologies permanently.

Finally, a research project involving large-scale computer simulation to generate a practi-
cable multi-national collaborative scheme based on this analysis by the author is under way.
Since this is the first time dynamically consistent cooperative dynamic games are applied in
collaborative environmental management, further research along this line is expected.

Appendix A: Proof of Proposition 3.1

From (3.11) we can obtain V it
xt+1

(t + 1, xt+1)(1 + r)t−1 as A
it
t+1(1 + r)−1 and V ît

xt+1
(t +

1, xt+1)(1 + r)t−1 as Â
ît
t+1(1 + r)−1. Substituting these results into the game equilibrium

strategies (3.9) and (3.10), and then into (3.1) yield:

Ait
t x + Cit

t =
[(

αit
t −

∑

j∈S1
t

β
it
j φ

j
t (x) −

∑

j∈S2
t

β
it
j φ̂

j
t (x)

)
φit

t (x)

− cit φit
t (x) − (bit )

2

4ca
it

[Ait
t+1(1 + r)−1]2x − hit x

]

+ (1 + r)−1

[
A

it
t+1

(
x +

∑

j∈S1
t

ajφ
j
t (x) +

∑

j∈S2
t

âj φ̂
j
t (x)

+
∑

j∈S1
t

(bj )
2

2ca
j

A
j

t+1(1 + r)−1x +
∑

j∈S2
t

(bj )
2

2ca
j

Â
j

t+1(1 + r)−1x − δx

)
+ C

it
t+1

]
,

for t ∈ κ and it ∈ S1
t ,

A
it
t+1x + C

it
t+1 = git (x̄it − x), it ∈ S1

t ;
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Âît
t x + Ĉît

t =
[(

αît
t −

∑

j∈S1
t

β
ît
j φ

j
t (x) −

∑

j∈S2
t

β
ît
j φ̂

j
t (x)

)
φ̂ît

t (x)

− ĉît φ̂ît
t (x) − (bît

)2

4ca

ît

[Âît
t+1(1 + r)−1]2x − hît x

]

+ (1 + r)−1

[
Â

ît
t+1

(
x +

∑

j∈S1
t

ajφ
j
t (x) +

∑

j∈S2
t

âj φ̂
j
t (x)

+
∑

j∈S1
t

(bj )
2

2ca
j

A
j

t+1(1 + r)−1x +
∑

j∈S2
t

(bj )
2

2ca
j

Â
j

t+1(1 + r)−1x − δx

)
+ Ĉ

ît
t+1

]
,

for t ∈ κ and ît ∈ S2
t ,

Â
ît
t+1x + Ĉ

ît
t+1 = gît (x̄ ît − x), ît ∈ S2

t ; (A.1)

A
it
t+1(1 + r)−1 >

(ĉit − cit )

(âit − ait )
, for it ∈ S1

t and

Â
ît
t+1(1 + r)−1 ≤ (ĉît − cît )

(âît − aît )
, for ît ∈ S2

t . (A.2)

where

φ
j
t (x) =

[
ᾱ

j
t +

∑

ζ∈S1
t

β̄
(j)ζ
t A

ζ

t+1(1 + r)−1 +
∑

ζ∈S2
t

β̄
(j)ζ
t Â

ζ

t+1(1 + r)−1

]
and

φ̂k
t (x) =

[
ˆ̄αk
t +

∑

ζ∈S1
t

ˆ̄β(k)ζ
t A

ζ

t+1(1 + r)−1 +
∑

ζ∈S2
t

ˆ̄β(k)ζ
t Â

ζ

t+1(1 + r)−1

]
.

First consider the stage T + 1, from (A.1) we obtain

A
iT
T +1 = −giT , C

iT
T +1 = giT x̄iT , Â

îT
T +1 = −gîT and Ĉ

îT
T +1 = gîT x̄ îT ,

for iT ∈ S1
T and îT ∈ S2

T . (A.3)

At stage T , invoking (A.2), industrial sector i which has Ai
xT +1

(1+ r)−1 > (ĉi−ci )

(âi−ai )
would use

conventional technique, otherwise it would use environment-preserving technique.

Note that on the left-hand-side of (A.1) the expressions are A
it
t x +C

it
t and Â

ît
t x + Ĉ

ît
t . On

the right-hand-side there are expressions which are linear in x with coefficients involving

the terms A
it
t+1,C

it
t+1, Â

ît
t+1 and Ĉ

ît
t+1. The values of A

iT
T ,C

iT
T , Â

îT
T and Ĉ

îT
T for it ∈ S1

t and

ît ∈ S2
t can be obtained using the values of A

iT
T +1,C

i
T +1, Â

îT
T +1 and Ĉ

îT
T +1 in (A.3). Moreover,

the linearity structures guarantee that this set of values is unique.
For industrial sector iT ∈ S1

T which chooses to adopt conventional technique at stage T ,
one can invoke (A.1) to obtain the explicit solutions of A

it
t and C

it
t for t = T as:

Cit
t =

(
αit

t −
∑

j∈S1
t

β
it
j φ

j
t (x) −

∑

j∈S2
t

β
it
j φ̂

j
t (x)

)
φit

t (x) − cit φit
t (x)
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+ (1 + r)−1

[
A

it
t+1

(∑

j∈S1
t

ajφ
j
t (x) +

∑

j∈S2
t

âj φ̂
j
t (x)

)
+ C

it
t+1

]
, and

(A.4)

Ait
t = − (bit )

2

4ca
it

[Ait
t+1(1 + r)−1]2 − hit

+ (1 + r)−1A
it
t+1

(
1 +

∑

j∈S1
t

(bj )
2

2ca
j

A
j

t+1(1 + r)−1 +
∑

j∈S2
t

(bj )
2

2ca
j

Â
j

t+1(1 + r)−1 − δ

)
.

For industrial sector îT ∈ S2
T which chooses to adopt environment-preserving technique

at stage T , one can invoke (A.1) to obtain the explicit solutions of Â
ît
t and Ĉ

ît
t for t = T as:

Ĉît
t =

(
αît

t −
∑

j∈S1
t

β
ît
j φ

j
t (x) −

∑

j∈S2
t

β
ît
j φ̂

j
t

)
φ̂it

t (x) − ĉît φ̂it
t (x)

+ (1 + r)−1

[
A

ît
t+1

(∑

j∈S1
t

ajφ
j
t (x) +

∑

j∈S2
t

âj φ̂
j
t (x)

)
+ Ĉ

ît
t+1

]
, and

(A.5)

Âît
t = − (bît

)2

4ca

ît

[Âît
t+1(1 + r)−1]2 − hît

+ (1 + r)−1Â
ît
t+1

(
1 +

∑

j∈S1
t

(bj )
2

2ca
j

A
j

t+1(1 + r)−1 +
∑

j∈S2
t

(bj )
2

2ca
j

Â
j

t+1(1 + r)−1 − δ

)
.

Now consider the situation at stage T − 1. At stage T − 1, the industrial sector i

which has Ai
xT

(1 + r)−1 > (ĉi−ci )

(âi−ai )
would use conventional technique, otherwise it would

use environment-preserving technique. A unique set of values of A
iT
T −1, Ci

T −1, Â
îT
T −1 and

Ĉ
îT
T −1 can be obtained using (A.4) and (A.5).

Repeating the process, A
it
t , C

it
t , Â

ît
t and Ĉ

ît
t . Ai

t and Ci
t , for it ∈ S1

t and ît ∈ S2
t and

t ∈ {1,2, . . . , T − 2}, can be explicitly obtained from (A.4) and (A.5). �

Appendix B: Proof of Proposition 4.1

From (4.8) we can obtain WMγ

xt+1
(t + 1, xt+1)(1 + r)t−1 as AMγ

t+1(1 + r)−1. Substituting this
result into the optimal controls in (4.4) and (4.7), and then into (4.3) yields

AMγ

t x + CMγ

t =
∑

i∈S
Mγ [1]
t

[(
αi

t −
∑

j∈S
Mγ [1]
t

βi
jψ

(Mγ )j
t (x) −

∑

ζ∈S
Mγ [2]
t

βi
ζ ψ̂

(Mγ )ζ
t

)
ψ

(Mγ )i
t (x)

− ciψ
(Mγ )i
t (x) − (b̂i)

2

4ca
i

[AMγ

t+1(1 + r)−1]2x − hix

]

+
∑

i∈S
Mγ [2]
t

[(
αi

t −
∑

j∈S
Mγ [1]
t

βi
jψ

(Mγ )j
t (x) −

∑

ζ∈S
Mγ [2]
t

βi
ζ ψ̂

(Mγ )ζ
t (x)

)
ψ̂

(Mγ )i
t (x)
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− ĉi(S
Mγ [2]
t )ψ̂

(Mγ )i
t (x) − (b̂i)

2

4ca
i

[AMγ

t+1(1 + r)−1]2x − hix

]
(B.1)

+ (1 + r)−1

[
AMγ

t+1

(
x +

∑

j∈S
Mγ [1]
t

ajψ
(Mγ )j
t (x) +

∑

j∈S
Mγ [2]
t

âj ψ̂
(Mγ )j
t (x)

+
n∑

j=1

(b̂i)
2

2ca
i

AMγ

t+1(1 + r)−1x − δx

)
+ CMγ

t+1

]
, for t ∈ κ;

AMγ

T +1x + CMγ

T +1 =
n∑

i=1

gi(x̄i − x),

where

ψ
(Mγ )j
t (x) = α̃

(Mγ )j
t + β̃

(Mγ )j
t AMγ

t+1(1 + r)−1 and

ψ̂
(Mγ )ζ
t (x) = ˆ̃α(Mγ )j

t + ˆ̃
β

(Mγ )j
t AMγ

t+1(1 + r)−1.

First consider the stage T + 1, from (B.1) we obtain

AMγ

T +1 =
n∑

i=1

−gi and CMγ

T +1 =
n∑

i=1

gi x̄i . (B.2)

Now we consider the stage T . Note that the left-hand-side of (B.1) consists of the expres-
sion AMγ

T x + CMγ

T . On the right-hand-side there is an expression which is linear in x with
coefficients involving AMγ

T +1 and CMγ

T +1. The values of AMγ

T and CMγ

T can be obtained using
AMγ

T +1 and CMγ

T +1 in (B.2). Using (B.1) yields the explicit solution of CMγ

t and AMγ

t for t = T

as:

CMγ

t =
∑

i∈S
Mγ [1]
t

[(
αi

t −
∑

j∈S
Mγ [1]
t

βi
jψ

(Mγ )j
t (x) −

∑

ζ∈S
Mγ [2]
t

βi
ζ ψ̂

(Mγ )ζ
t

)
ψ

(Mγ )i
t (x)

− ciψ
(Mγ )i
t (x)

]
+

∑

i∈S
Mγ [2]
t

[(
αi

t −
∑

j∈S
Mγ [1]
t

βi
jψ

(Mγ )j
t (x)

−
∑

ζ∈S
Mγ [2]
t

βi
ζ ψ̂

(Mγ )ζ
t (x)

)
ψ̂

(Mγ )i
t (x) − ĉi(S

Mγ [2]
t )ψ̂

(Mγ )i
t (x)

]

+ (1 + r)−1

[
AMγ

t+1

( ∑

j∈S
Mγ [1]
t

ajψ
(Mγ )j
t (x) +

∑

j∈S
Mγ [2]
t

âj ψ̂
(Mγ )j
t (x)

)
+ CMγ

t+1

]
,

and

AMγ

t =
n∑

i=1

[
− (bi)

2

4ca
i

[AMγ

t+1(1 + r)−1]2 − hi

]

+ (1 + r)−1

[
AMγ

t+1

(
1 +

n∑

j=1

(bi)
2

2ca
i

AMγ

t+1(1 + r)−1 − δ

)]
. (B.3)
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Now consider stage T − 1. One can obtain AMγ

T −1 and CMγ

T −1 as in (B.3) by setting t =
T − 1. Repeating the process, AMγ

t and CMγ

t for t ∈ {1,2, . . . , T − 2} can be explicitly
obtained. �
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