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Abstract This paper is a contribution to the robustness analysis for stochastic programs
whose set of feasible solutions depends on the probability distribution P . For various rea-
sons, probability distribution P may not be precisely specified and we study robustness of
results with respect to perturbations of P . The main tool is the contamination technique. For
the optimal value, local contamination bounds are derived and applied to robustness analysis
of the optimal value of a portfolio performance under risk-shaping CVaR constraints. A new
robust portfolio efficiency test with respect to the second order stochastic dominance crite-
rion is suggested and the contamination methodology is exploited to analyze its resistance
with respect to additional scenarios.

Keywords Expectation type constraints · Robustness analysis · Contamination technique ·
Risk-shaping with CVaR · Second order stochastic dominance · Robust SSD portfolio
efficiency test

1 Introduction

In this paper we shall deal with robustness properties of risk constrained stochastic programs
of the form

min
x∈X

F0(x,P )

subject to

Fj (x,P ) ≤ 0, j = 1, . . . , J, (1)

where
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– P is the probability distribution of a random vector ω with range � ⊂ R
M ,

– X ⊂ R
N is a fixed nonempty convex set,

– functions Fj (x,P ), j = 0, . . . , J may depend on P.

We shall denote X (P ) the set of feasible solutions, X ∗(P ) the set of optimal solutions and
ϕ(P ) the optimal value of the objective function in (1).

Probably the first paper formulating and analyzing risk constrained stochastic programs
is due to Prékopa (1973) which includes joint probability constraints and constraints in the
form of conditional expectations; see also Wets (1989) for the problem formulation and for
properties of expectation functionals. Notice that chance or probability constraints are a
special case of (1), however the set of feasible solutions X (P ) is then convex only under
special distributional and structural assumptions; consult Prékopa (2003).

Due to the tendency of an adequate treatment of risk, a growing interest in the risk con-
strained problems can be observed since 2000. It turns out that among others, the Sample
Average Approximation technique, see e.g. Shapiro (2003), Pagoncelli et al. (2009), Wang
and Ahmed (2008), and its asymptotics can be applied. This assumes that i.i.d. samples are
drawn from a fixed (known, preselected) probability distribution P.

The wish is to apply reliable, robust or efficient decisions of (1) even in situations when
the true probability distribution P has been approximated or when it is known only partly.
Partial knowledge of P can be included into the model formulation, see e.g. Dentcheva
and Ruszczyński (2010) for robust stochastic dominance constraints or Pflug and Wozabal
(2007) for an inclusion of ambiguity of P into the model. In a similar vein a robust portfolio
efficiency test will be developed in Sect. 3.2. A special case of robust portfolio efficiency
was analyzed in Kopa (2010). Contrary to that, our new test allows probability distributions
with nonequiprobable scenarios.

Another possibility is to rely on general quantitative stability results valid under suitable
continuity assumptions for Fj (x,P ), j = 0, . . . , J. Such results were proved by Römisch
(2003) without convexity requirements and were detailed e.g. for chance constraints of a
special structure and formulated also for risk measures nonlinear in P. Under modest as-
sumptions they apply to the convex problem (1).

In Sect. 2, we shall follow the relatively simple ideas of output analysis based on the
contamination technique, cf. Dupačová (1996, 2006), Dupačová and Polívka (2007). The
considered special type of perturbations gets on with needs for what-if-analysis or stress
testing. Robustness results with respect to contamination of P by another fixed probability
distribution have been mainly developed for convex stochastic programs whose set of fea-
sible decisions does not depend on P, an assumption which does not apply to problem (1),
and for the objective function F0(x,P ) convex in x and linear or concave in P. To elaborate
special techniques for stress testing and robustness analysis for problem (1) it is necessary
to relax the assumption of a fixed set of feasible decisions and to allow its dependence on P.

To this purpose, it is convenient if the constraints are linear in P being expectations of
random convex functions. Even with the expectation type constraints the problem formula-
tion (1) covers various known examples, e.g. CVaR constraints from Rockafellar and Urya-
sev (2002), Krokhmal et al. (2002) or the second order stochastic dominance constraints.
This is the class of problems for which we shall detail our robustness analysis and provide
numerical illustrations. The next example introduces the prototype form of the problem.

Example 1 (Risk-shaping with CVaR; Rockafellar and Uryasev 2002) Let f (x,ω) denote
the random loss caused by the decision x ∈ X and α ∈ (0,1) the selected confidence level.
The Conditional Value at Risk at the confidence level α, CVaRα, is defined as the mean
of the α-tail distribution of f (x,ω). According to the fundamental minimization formula
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by Rockafellar and Uryasev (2002) it can be evaluated by minimization of the auxiliary
function

�α(x, v,P ) := v + 1

1 − α
EP (f (x,ω) − v)+

with respect to v ∈ R.

The auxiliary function �α(x, v,P ) is evidently linear in P and convex in v. Moreover,
if f (x,ω) is a convex function of x, �α(x, v,P ) is convex jointly in (v,x).

If P is a discrete probability distribution concentrated on ω1, . . . ,ωS, with probabil-
ities ps > 0, s = 1, . . . , S, and x a fixed element of X , then the optimization problem
CVaRα(x,P ) = minv �α(x, v,P ) has the form

CVaRα(x,P ) = min
v

{
v + 1

1 − α

S∑
s=1

ps(f (x,ωs) − v)+
}

(2)

and can be written as

CVaRα(x,P ) = min
v,z1,...,zS

{
v + 1

1 − α

S∑
s=1

pszs | zs ≥ 0, zs + v ≥ f (x,ωs) ∀s

}
. (3)

Risk-shaping with CVaR handles several probability thresholds α1, . . . , αJ and loss toler-
ances bj , j = 1, . . . , J. The problem is to minimize a performance function F(x) subject
to x ∈ X and constraints CVaRαj

(x,P ) ≤ bj , j = 1, . . . , J. According to Theorem 16 of
Rockafellar and Uryasev (2002), this problem is equivalent to

min
x,v1,...,vJ

{F(x) |x ∈ X , �αj
(x, vj ,P ) ≤ bj , j = 1, . . . , J },

i.e. it is a problem of the form (1) with expectation type constraints.

2 Contamination bounds

Contamination means to model the perturbations of P by its contamination by another fixed
probability distribution Q, i.e. to use Pt := (1 − t)P + tQ, t ∈ [0,1] in stochastic program
(1) at the place of P. Then the set of feasible solutions of (1) for the contaminated probability
distribution Pt equals

X (Pt ) = X ∩ {x |Fj (x,Pt ) ≤ 0, j = 1, . . . , J }. (4)

We denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value ϕ(Pt ) and the
set of optimal solutions X ∗(Pt ) of the contaminated problem

minimize F0(x,Pt ) on the set X (Pt ). (5)

This is a nonlinear parametric program with a scalar parameter t ∈ [0,1] and a parameter
dependent set of feasible solutions X (t) := {x ∈ X |Fj (x, t) ≤ 0, j = 1, . . . , J }.

The task is to construct computable lower and upper bounds for ϕ(t). Such bounds were
obtained for X fixed, independent of P and for objective function F0(x,P ) linear or con-
cave in P, cf. Dupačová (1996, 1998). In this case, one can exploit the fact that the optimal
value function ϕ(t) is a concave function of the contamination parameter t. The derived
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bounds proved to be useful for testing the resistance with respect to a sample for scenario-
based stochastic programs, e.g. Dupačová (1996), in stress testing of CVaR optimization
problems, cf. Dupačová (2006), Dupačová and Polívka (2007), or for problems with poly-
hedral risk objectives, cf. Dupačová (2008). For the parameter dependent sets of feasible
solutions the optimal value function ϕ(t) is concave only under rather strict assumptions
such as Fj (x, t), j = 1, . . . , J jointly concave on X × [0,1] (cf. Corollary 3.2 of Kyparisis
and Fiacco 1987) which is not in agreement with our problem formulation.

We shall examine how to construct contamination bounds for SP of the type (5) whose
constraints depend on the probability distribution. These bounds will be then applied in ro-
bustness analysis for risk-shaping with CVaR or for a stochastic dominance test with respect
to inclusion of additional scenarios. We shall see that thanks to the assumed structure of per-
turbations the lower bound can be derived for Fj (x,P ), j = 0, . . . , J linear or concave with
respect to P without any smoothness or convexity assumptions with respect to x. Convexity
of the stochastic program (1) is essential for directional differentiability of the optimal value
function, and further assumptions are needed for derivation of an upper bound.

2.1 Lower bound

Consider first only one constraint dependent on probability distribution P and an objective
F0 independent of P , i.e. the problem is

min
x∈X

F0(x) subject to F(x,P ) ≤ 0. (6)

For probability distribution P contaminated by another fixed probability distribution Q,

i.e. for Pt := (1 − t)P + tQ, t ∈ (0,1) we get

min
x∈X

F0(x) subject to F(x, t) := F(x,Pt ) ≤ 0. (7)

Theorem 1 Let F(x, t) be a concave function of t ∈ [0,1]. Then the optimal value function
of (7)

ϕ(t) := min
x∈X

F0(x) subject to F(x, t) ≤ 0

is quasiconcave in t ∈ [0,1] with the lower bound

ϕ(t) ≥ min{ϕ(0), ϕ(1)}. (8)

Proof For arbitrary t1, t2 ∈ [0,1] and 0 ≤ λ ≤ 1 we have

X ((1 − λ)t1 + λt2) ⊂ {x ∈ X | (1 − λ)F (x, t1) + λF(x, t2) ≤ 0} ⊂ X (t1) ∪ X (t2). (9)

Hence, similarly as in Proposition 3.11 of Kyparisis and Fiacco (1987), the optimal value
ϕ(t) of (7) is quasiconcave which results in the lower bound (8). �

When also the objective function depends on the probability distribution, i.e. on the con-
tamination parameter t, the problem is

min
x∈X

F0(x, t) := F0(x,Pt ) subject to F(x, t) ≤ 0. (10)
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For F0(x,P ) linear or concave in P , a lower bound can be obtained by application of the
bound (8) separately to F0(x,P ) and F0(x,Q):

ϕ(t) = min
x∈X (t)

F0(x, (1 − t)P + tQ) ≥ min
x∈X (t)

[(1 − t)F0(x,P ) + tF0(x,Q)]

≥ (1 − t)min
{
ϕ(0), min

X (Q)
F0(x,P )

}
+ t min

{
ϕ(1), min

X (P )
F0(x,Q)

}
. (11)

The bound is more complicated but still computable. It requires solution of 4 problems two
of which are the non-contaminated programs for probability distributions P,Q and the other
ones use both P and Q alternating in the objective function and constraints.

2.1.1 Comment

Of course, the lower bounds (8), (11) are loose, but for small values of t, say t ≤ t0 they can
be improved to ϕ(t) ≥ min{ϕ(0), ϕ(t0)} when applied to P and to Q̃ := (1 − t0)P + t0Q.

Notice that no convexity assumption with respect to x is needed.
For multiple constraints and contaminated probability distribution it would be necessary

to prove first the inclusion X (t) ⊂ X (0)∪ X (1) and then the lower bound (8) for the optimal
value ϕ(t) = minx∈X (t) F0(x,Pt ) can be obtained as in the case of one constraint. As we shall
see in Sect. 3.3, such inclusion holds true under special circumstances, otherwise we get only
the following:

Denote Xj (t) = {xF |Fj (x,Pt ) ≤ 0}. Then according to (9), Xj (t) ⊂ Xj (0) ∪ Xj (1),
hence

X (t) ⊂ X ∩
⋂
j

[Xj (P ) ∪ Xj (Q)] := X0.

To evaluate the corresponding lower bound minx∈X0 F0(x) would mean to solve a facial
disjunctive program.

2.2 Directional derivative

Assume now that Fj (x,P ), j = 0,1, . . . , J in (1) are convex functions of x. The directional
derivative of the optimal value function can be obtained by the formula of Gol’shtein (1970),
Theorem 17 applied to the Lagrange function

L(x,u, t) = F0(x, t) +
∑

j

ujFj (x, t)

provided that both the set of optimal solutions X ∗(P ) = X ∗(0) and the set of Lagrange
multipliers U ∗(P ) = U ∗(0) are nonempty and bounded. If the functions Fj are linear in P ,
i.e. functions Fj (x, t) ∀j are linear in the contamination parameter t, then

ϕ′(0+) = min
x∈X ∗(0)

max
u∈U ∗(0)

∂

∂t
L(x,u,0) = min

x∈X ∗(0)
max

u∈U ∗(0)
(L(x,u,Q) − L(x,u,P )). (12)

Formula (12) simplifies substantially when U ∗(0) is a singleton. When the constraints do
not depend on P we get

ϕ′(0+) = min
x∈X ∗(0)

∂

∂t
F0(x,0+) = min

x∈X ∗(0)
(F0(x,Q) − F0(x,P ))

= min
x∈X ∗(0)

F0(x,Q) − ϕ(0). (13)
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These formulas can be exploited to construct an upper bound for the optimal value function
ϕ(t) of the form

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0,1] (14)

provided that ϕ(t) is concave; see e.g. Dupačová (1996, 2006), Dupačová and Polívka
(2007). The contaminated probability distribution Pt may also be understood as a result
of contaminating Q by P and an alternative upper bound may be constructed in a similar
way.

Under additional assumptions, Theorem 17 of Gol’shtein (1970) provides a formula for
derivative of the optimal value function also in case of nonlinear dependence of functions
Fj on t. See Dupačová (1990, 1996, 1998) for details and applications for problems with a
fixed set X of feasible solutions. The general nonconvex case is treated e.g. in Theorems 4.25
and 4.26 of Bonnans and Shapiro (2000).

Example 2 (Upper contamination bound for CVaR) With reference to Rockafellar and Urya-
sev (2002), Example 1 and Dupačová (2006), Dupačová and Polívka (2007) we shall use the
formula

CVaRα(x,P ) = min
v

�α(x, v,P ) := v + 1

1 − α
EP (f (x,ω) − v)+

and apply the contamination technique to get an upper bound. It is an unconstrained opti-
mization problem, the set V ∗(x,P ) of its optimal solutions is a nonempty compact interval
of R, for a fixed x the objective function is convex in v and linear in P. Formula (13) for
CVaRα(x, (1 − t)P + tQ) reduces to

∂

∂t
CVaRα(x,0+) = min

v∈V ∗(x,P )
�α(x, v,Q) − CVaRα(x,P ). (15)

The optimal value function, now CVaRα(x, t) := CVaRα(x, (1 − t)P + tQ) is a concave
function of t, hence, its lower bound is (1 − t)CVaRα(x,P ) + tCVaRα(x,Q). For an ar-
bitrary optimal solution v∗(x,P ) ∈ V ∗(x,P ), the upper bound for the contaminated CVaR
value at x follows by substitution to (14):

CVaRα(x, (1 − t)P + tQ) ≤ (1 − t)CVaRα(x,P ) + t�α(x, v∗(x,P ),Q). (16)

2.3 Upper bound

To derive an upper bound for the optimal value of the contaminated problem with proba-
bility dependent constraints we shall confine ourselves mostly to the expectation type of the
objective function and constraints. Hence, all functions Fj (x, t), j = 0, . . . , J, are linear in
t on the interval [0,1]. Denote F(x,Pt ) = F(x, t) := maxj Fj (x, t). For convex Fj (•,P ) ∀j

the “max” function F(•,P ) is convex as well. This allows to rewrite the set X (t) of feasible
solutions of (5) in the form

X (t) = X ∩ {x : F(x, t) ≤ 0}

with one linearly perturbed convex constraint.
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Assume first that F(x∗(0),P ) = 0 for an optimal solution x∗(0) := x∗(P ) of (1) and
F(x∗(0),Q) ≤ 0. Then at least one of the constraints is active at the optimal solution. More-
over, x∗(0) ∈ X (t),∀t ∈ [0,1]:

F(x∗(0), t) = max
j

[(1 − t)Fj (x∗(0),P ) + tFj (x∗(0),Q)]

≤ (1 − t)F (x∗(0),P ) + tF (x∗(0),Q) ≤ 0.

It means that there is a trivial global upper bound

ϕ(t) ≤ F0(x∗(0), t) ∀t ∈ [0,1]. (17)

When F0(x,•) is linear, a more convenient form of (17) follows:

ϕ(t) ≤ F0(x∗(0), t) = (1 − t)ϕ(0) + tF0(x∗(0),Q) ∀t ∈ [0,1] (18)

otherwise one may apply suitable numerically tractable upper bounds for F0(x∗(0), t); see
Example 3.

If the above assumption F(x∗(0),P ) = 0 and F(x∗(0),Q) ≤ 0 is not fulfilled, to get at
least a local upper bound for ϕ(t) valid for small t we shall switch to stability results for
nonlinear parametric programming. Let J0 := {j : Fj (x∗(0),P ) = 0} be the set of indexes
of active constraints of (1) at x∗(0).

In the convex case, it is possible to analyze the optimal value function by the first or-
der methods. Various results in this direction can be mentioned: For example, according to
Robinson (1987) the perturbed problem with a fixed convex polyhedral set X in (4) reduces
locally to a problem with a parameter independent set of feasible solutions if x∗(0) is a non-
degenerate point and the strict complementarity conditions hold true. In particular, x∗(0) is
a nondegenerate point of (1) iff gradients ∇xFj (x∗(0),P ), j ∈ J0 are linearly independent,
i.e. under the linear independence condition; cf. Bonnans and Shapiro (2000), Example 4.78.
Then for t small enough, t ≤ t0, t0 > 0, the optimal value function ϕ(t) is concave and its
upper bound equals

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (19)

A more detailed insight can be obtained if there is a continuous trajectory [x∗(t),u∗(t)] of
optimal solutions and Lagrange multipliers of the perturbed problem (5) emanating from the
unique optimal solution x∗(0) and unique Lagrange multipliers u∗

j (0), j = 1, . . . , J of (1).
Such result follows usually by the implicit function theorem applied to the first order neces-
sary conditions. In addition to the nondegeneracy and the strict complementarity conditions
it requires also nonsingularity of the Hessian matrix of the Lagrange function on the tangent
space to the active constraints, i.e. the second order sufficient condition valid at x∗(0),u∗(0);
see e.g. Bonnans and Shapiro (2000) or Fiacco (1983). At this point, convexity with respect
to x is not needed and the trajectory [x∗(t),u∗(t)] satisfies the first order optimality condi-
tions also for 0 < t ≤ t0:

Fj (x∗(t),Pt ) ≤ 0, u∗
j (t) ≥ 0, Fj (x∗(t),Pt )u

∗
j (t) = 0, j = 1,2, . . . , J

∇xF0(x∗(t),Pt ) +
∑

j

u∗
j (t)∇xFj (x∗(t),Pt ) = 0.



62 Ann Oper Res (2012) 200:55–74

Moreover, for convex expectation type functionals Fj , j = 0, . . . , J, the derivative (12) of
the optimal value function reduces to

ϕ′(0+) = ∂

∂t
L(x∗(0),u∗(0),0) = L(x∗(0),u∗(0),Q) − L(x∗(0),u∗(0),P )

= F0(x∗(0),Q) +
∑

j

u∗
j (0)Fj (x∗(0),Q) − F0(x∗(0),P ). (20)

If no constraint is active at x∗(0), we face a locally unconstrained optimization problem
and the optimal value function ϕ(t) is concave on a right neighborhood of 0, say for t ∈
[0, t0], t0 > 0, hence, for t ≤ t0, the upper bound (19) applies.

In the opposite case, the strict complementarity conditions imply that for small t ∈ [0, t0],
t0 > 0 the set J0 of indexes of active constraints remains fixed and for a local analysis,
constraints Fj (x,P ) ≤ 0 with j /∈ J0 need not be considered. Then X (t) reduces locally to
the set of solutions of the system of equations Fj (x, t) = 0, j ∈ J0 which can be replaced
locally by a parameter independent set.

To summarize – there exists t0 > 0 such that for 0 ≤ t ≤ t0 the optimal value ϕ(t) of
the contaminated problem (5) can be obtained as ϕ(t) = minx∈X0 F0(x, t) where the set of
feasible solutions X0 does not depend on t. Hence, ϕ(t) is concave on [0, t0], t0 > 0 which
opens the possibility of constructing local upper contamination bounds (19). Accordingly,
the following theorem holds true:

Theorem 2 Let (1) be a twice differentiable program, x∗(P ) = x∗(0) its optimal solution
and ϕ(P ) = ϕ(0) its optimal value. Assume that at x∗(0) linear independence, the strict
complementarity and the second order sufficient conditions are satisfied. Then there exists
t0 > 0 such that for all t ∈ [0, t0] the optimal value function ϕ(t) is concave and the local
upper contamination bound is given by

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (21)

Moreover, for convex expectation type problems (1) the directional derivative is given by
(20).

2.3.1 Comment

Except for the form of the directional derivative, Theorem 2 applies also to problems with
nonconvex functions Fj (•,P ) ∀j.

2.4 Illustrative examples

Consider S = 50 equiprobable scenarios of monthly returns � of N = 9 assets (8 European
stock market indexes: AEX, ATX, FCHI, GDAXI, OSEAX, OMXSPI, SSMI, FTSE and
a risk free asset) in period June 2004–August 2008. The scenarios can be collected in the
matrix

R =

⎛
⎜⎜⎜⎝

r1

r2

...

rS

⎞
⎟⎟⎟⎠
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Table 1 Descriptive statistics and the additional scenario of returns of 8 European stock indexes and of the
risk free asset

Index Country Mean Max Min A.S.

AEX Netherlands 0.00456 0.07488 −0.14433 −0.19715

ATX Austria 0.01358 0.13247 −0.14869 −0.23401

FCHI France 0.0044 0.0615 −0.13258 −0.1005

GDAXI Germany 0.01014 0.07111 −0.15068 −0.09207

OSEAX Norway 0.01872 0.12176 −0.19505 −0.23934

OMXSPI Sweden 0.00651 0.08225 −0.14154 −0.12459

SSMI Switzerland 0.00563 0.05857 −0.09595 −0.08065

FTSE England 0.00512 0.06755 −0.08938 −0.13024

Risk free 0.002 0.002 0.002 0.002

where rs = (rs
1, r

s
2, . . . , r

s
N ) is the s-th scenario. We will use λ = (λ1, λ2, . . . , λN)′ for the

vector of portfolio weights and the portfolio possibilities are given by

	 = {λ ∈ R
N |1′λ = 1, λn ≥ 0, n = 1,2, . . . ,N},

that is, the short sales are not allowed. The historical data comes from pre-crisis period. The
data is contaminated by a scenario rS+1 from September 2008 when all indexes strongly
fell down. The additional scenario can be understood as a stress scenario or the worst-case
scenario. It can be seen in Table 1 presenting basic descriptive statistics of the original data
and the additional scenario (A.S.).

We will apply the contamination bounds to mean-risk models with CVaR as a measure
of risk. Two formulations are considered: In the first one, we are searching for a portfolio
with minimal CVaR and at least the prescribed expected return, see e.g. Dupačová (2006) or
Kilianová and Pflug (2009). Secondly, we minimize the expected loss of the portfolio under
the condition that CVaR is below a given level, a special case of Example 1.

Example 3 (Minimizing CVaR) Mean-CVaR model with CVaR minimization is a spe-
cial case of the general formulation (1) when F0(x,P ) = CVaR(−�′λ) and F1(x,P ) =
EP (−�′λ) − μ(P ); μ(P ) is the maximal allowable expected loss. We choose

μ(P ) = −EP �′
(

1

9
,

1

9
, . . . ,

1

9

)′
= 1

50

50∑
s=1

−rs

(
1

9
,

1

9
, . . . ,

1

9

)′
.

It means that the minimal required expected return is equal to the average return of the
equally diversified portfolio. The significance level α = 0.95 and 	 is a fixed convex poly-
hedral set representing constraints that do not depend on P . Since P is a discrete distribution
with equiprobable scenarios r1, r2, . . . , r50, using (3), the mean-CVaR model can be formu-
lated as the following linear program:

ϕ(0) = min
λ∈	,v∈R,zs∈R+ v + 1

50 ∗ 0.05

50∑
s=1

zs

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,50

1

50

50∑
s=1

−rsλ − μ(P ) ≤ 0. (22)



64 Ann Oper Res (2012) 200:55–74

By analogy, for the additional scenario we have:

ϕ(1) = min
λ∈	,v∈R,z∈R+ v + 1

0.05
z

s.t. z ≥ −r51λ − v, −r51λ − μ(Q) ≤ 0 (23)

or, equivalently:

ϕ(1) = min
λ∈	

{−r51λ | − r51λ − μ(Q) ≤ 0} (24)

where μ(Q) = −r51( 1
9 , 1

9 , . . . , 1
9 )′.

First, we compute for t ∈ [0,1] the optimal value function of the contaminated problem.

ϕ(t) = min
λ∈	,v∈R,zs∈R+ v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,51

−
50∑

s=1

1

50
(1 − t)rsλ − tr51λ − μ((1 − t)P + tQ) ≤ 0 (25)

where μ((1 − t)P + tQ) = −∑50
s=1

1
50 (1 − t)rs( 1

9 , 1
9 , . . . , 1

9 )′ − tr51( 1
9 , 1

9 , . . . , 1
9 )′.

Secondly, applying (11), we derive a lower bound for ϕ(t). Note that now

min
X (Q)

F0(x,P ) = min
λ∈	,v∈R,zs∈R+ v + 1

50 ∗ 0.05

50∑
s=1

zs

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,50

− r51λ − μ(Q) ≤ 0

and

min
X (P )

F0(x,Q) = min
λ∈	

{
−r51λ | 1

50

50∑
s=1

−rsλ − μ(P ) ≤ 0

}
.

Finally, we construct an upper bound for ϕ(t). Since the optimal solution λ∗ of (22) is a
feasible solution of (23) we can apply (17) with x∗(0) = λ∗ as a trivial upper bound for all
t ∈ [0,1]:

ϕ(t) ≤ F0(x∗(0), t) = min
v∈R,zs∈R+ v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)

s.t. zs ≥ −rsλ∗ − v, s = 1,2, . . . ,51.

The disadvantage of this trivial bound is the fact, that it would require evaluation of the
CVaR for λ∗ for each t . Linearity with respect to t does not hold true, but we may apply the
bound (16). This yields an upper estimate for F0(x∗(0), t) which is a convex combination of
ϕ(0) and �α(x∗(0), v∗(x∗(0),P ),Q). The optimal value ϕ(0) is given by (22) and

�α(x∗(0), v∗(x∗(0),P ),Q) = v∗ + 1

0.05
(−r51λ∗ − v∗)+
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Fig. 1 Comparison of minimal
(CVaR(t)) value of mean-CVaR
model with lower bound (LB),
upper bound (UB) and the
estimated upper bound (EUB)

where v∗ and λ∗ are optimal solutions of (22). The graphs of ϕ(t), its lower bound and two
upper bounds (trivial one and its upper estimate) for small contamination t ∈ [0,0.1] are
presented in Fig. 1. Since all original scenarios have probability 0.02, the performance for
t > 0.1 is not of much interest. For t > 0.04, ϕ(t) in (25) coincides with its lower bound
because the optimal portfolios consist only of risk free asset. The upper bound is piecewise
linear in t and for small values of t it coincides with the estimated upper bound.

Example 4 (Minimizing expected loss) As the second example, consider the mean-CVaR
model minimizing the expected loss subject to a constraint on CVaR. This corresponds to (1)
with F0(x,P ) = EP (−�′λ) and F1(x,P ) = CVaR(−�′λ) − c where c = 0.19 is the max-
imal accepted level of CVaR. For simplicity, this level does not depend on the probability
distribution. Similarly to the previous example, we compute the optimal value ϕ(t) and its
lower and upper bound. Using Theorem 16 of Rockafellar and Uryasev (2002), the minimal
CVaR-constrained expected loss is obtained for t ∈ [0,1] as

ϕ(t) = min
λ∈	,v∈R

−
50∑

s=1

1

50
(1 − t)rsλ − tr51λ (26)

s.t. v + 1

0.05

(
−

50∑
s=1

1

50
(1 − t)rsλ − tr51λ − v

)+
− c ≤ 0 (27)

and equals thus the optimal value function of the parametric linear program

ϕ(t) = min
λ∈	,v∈R,zs∈R+ −

50∑
s=1

1

50
(1 − t)rsλ − tr51λ

s.t. v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)
− c ≤ 0

zs ≥ −rsλ − v, s = 1,2, . . . ,51 (28)

for t ∈ [0,1]. In particular, for t = 1 we have

ϕ(1) = min
λ∈	,v∈R,zs∈R+ −r51λ

s.t. v + 1

0.05
z51 − c ≤ 0, z51 + v ≥ −r51λ,
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Fig. 2 Comparison of minimal
mean loss value with its lower
bound (LB) and upper bound
(UB)

what is equivalent to

ϕ(1) = min
λ∈	

{−r51λ | − r51λ − c ≤ 0};
compare with (24). Using (11), we can evaluate the lower bound for ϕ(t) with

min
X (Q)

F0(x,P ) = min
λ∈	

{
−

50∑
s=1

1

50
rsλ | − r51λ − c ≤ 0

}

and

min
X (P )

F0(x,Q) = min
λ∈	,v∈R,zs∈R+ −r51λ

s.t. v + 1

0.05

50∑
s=1

1

50
zs − c ≤ 0, zs ≥ −rsλ − v, s = 1,2, . . . ,50.

Finally, we compute an upper bound for ϕ(t). Contrary to the previous example, the opti-
mal solution x∗(0) of the noncontaminated problem is not a feasible solution of the fully
contaminated problem. Therefore, the trivial global upper bound (17) cannot be used. We
apply instead the local upper bound (21) with the directional derivative (20). In this exam-
ple, the value of multiplier u∗(0) corresponding to (27) for t = 0 is equal to zero, the CVaR
constraint (27) is not active and for sufficiently small t, the upper bound reduces to:

ϕ(t) ≤ (1 − t)ϕ(0) + tF0(x∗(0),Q). (29)

Figure 2 depicts the graph of ϕ(t) given by (28) and its lower and upper bound. The upper
bound coincides with ϕ(t) for t ≤ 0.02. It illustrates the fact that the local upper bound is
meaningful if the probability of the additional scenario is not too large, i.e. no more than
probabilities of the original scenarios for our example.

3 Robustness in portfolio efficiency testing

3.1 Portfolio efficiency test

In this section, we shall study robustness of portfolio efficiency tests with respect to the
second-order stochastic dominance relation. Consider N assets and a random vector of
their returns �. Since all existing portfolio efficiency tests have been derived for a discrete
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probability distribution P of returns we assume that � takes S values rs = (rs
1, r

s
2, . . . , r

s
N ),

called scenarios, with probabilities p1,p2, . . . , pS . Contrary to all former tests, e.g. Kopa
and Chovanec (2008) or Kopa (2010), we do not assume equiprobable scenarios. Again, the
scenarios are collected in the matrix

R =

⎛
⎜⎜⎜⎝

r1

r2

...

rS

⎞
⎟⎟⎟⎠

and the portfolio possibilities are given by

	 = {λ ∈ R
N |1′λ = 1, λn ≥ 0, n = 1,2, . . . ,N}.

Alternatively, one can consider any bounded polytope: 	′ = {λ ∈ RN |Aλ ≥ b}.
For any portfolio λ ∈ 	, let (−Rλ)[k] be the k-th smallest element of (−Rλ) , i.e.

(−Rλ)[1] ≤ (−Rλ)[2] ≤ · · · ≤ (−Rλ)[S] and let I (λ) be a permutation of the index set
I = {1,2, . . . , S} such that −ri(λ)λ = (−Rλ)[i]. Accordingly, we can order the correspond-
ing probabilities and we denote pλ

i = pi(λ). Hence, pλ
i = P (−�λ = (−Rλ)[i]). The same

notation is applied for the tested portfolio τ = (τ1, τ2, . . . , τN)′.
Let F�′λ(x) denote the cumulative probability distribution function of returns of portfolio

λ. The twice cumulative probability distribution function of returns of portfolio λ is defined
as

F
(2)

�′λ(y) =
∫ y

−∞
F�′λ(x) dx. (30)

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec
(2008) and Kopa (2010), we define the second-order stochastic dominance relation in the
strict form in the context of SSD portfolio efficiency.

Definition 1 Portfolio λ ∈ 	 dominates portfolio τ ∈ 	 by the second-order stochastic
dominance (�′λ SSD �′τ ) if and only if

F
(2)

�′λ(y) ≤ F
(2)

�′τ (y) ∀y ∈ R

with strict inequality1 for at least one y ∈ R.

As in Ogryczak and Ruszczyński (2002) or Kopa and Chovanec (2008), we express the
SSD relation using the conditional value at risk (CVaR).

Lemma 1 Let λ,τ ∈ 	. Then �′λ SSD �′τ if and only if

CVaRα(−�′λ) ≤ CVaRα(−�′τ ) for all α ∈ [0,1] (31)

with strict inequality for at least one α.

1This type of SSD relation is sometimes referred to as the strict second-order stochastic dominance. If no
strict inequality is required then the relation can be called the weak second-order stochastic dominance.
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Since we limit our attention to a discrete probability distribution of returns, the inequality
of CVaRs need not be verified in all α ∈ [0,1], but only in at most S + 1 particular points.

Theorem 3 Let qλ
s = ∑s

i=1 pλ
i and qτ

s = ∑s

i=1 pτ
i , s = 1,2, . . . , S. Let qλ

0 = qτ
0 = 0. Then

�′λ SSD �′τ if and only if CVaRqλ
s
(−�′λ) ≤ CVaRqλ

s
(−�′τ ) for all s = 0,1,2, . . . , S with

strict inequality for at least one qλ
s .

Proof Assume α > 0. Following Rockafellar and Uryasev (2002), Proposition 8, let s(α) be
the unique index such that qλ

s(α) ≥ α > qλ
s(α)−1. Then

CVaRα(−�′λ) = 1

1 − α

[
(qλ

s(α) − α)(−Rλ)[s(α)] +
S∑

i=s(α)+1

pλ
i (−Rλ)[i]

]
.

Consider LCα(−�′λ) := (1 − α)CVaRα(−�′λ). Since 1 − qλ
s(α) = ∑S

i=s(α)+1 pλ
i we have:

LCα(−�′λ) = qλ
s(α)(−Rλ)[s(α)] − α(−Rλ)[s(α)] +

S∑
i=s(α)+1

pλ
i (−Rλ)[i]

= (1 − α)(−Rλ)[s(α)] − (−Rλ)[s(α)](1 − qλ
s(α)) +

S∑
i=s(α)+1

pλ
i (−Rλ)[i]

= (1 − α)(−Rλ)[s(α)] +
S∑

i=s(α)+1

pλ
i

(
(−Rλ)[i] − (−Rλ)[s(α)]).

A similar analysis can be done for portfolio τ . Since both LCα(−�′λ) and LCα(−�′τ ) are
concave piecewise linear functions in α, Lemma 1 implies that �′λ SSD �′τ if and only if
LCα(−�′λ) ≤ LCα(−�′τ ) for all α = qλ

s , s = 0,1, . . . , S, with strict inequality for at least
one qλ

s . Passing back to CVaR expressions completes the proof. �

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec
(2008) and Kopa (2010) we define portfolio efficiency with respect to the second order
stochastic dominance.

Definition 2 A given portfolio τ ∈ 	 is SSD inefficient if there exists portfolio λ ∈ 	 such
that �′λ SSD �′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio τ ∈ 	 as SSD efficient if and only if no other portfolio
is better (in the sense of the SSD relation) for all risk averse and risk neutral decision makers.
Inspired by Kopa and Chovanec (2008) we consider the following measure:

ξ(τ ,R,p) = min
as ,λ

S∑
s=0

as

s.t. CVaRqλ
s
(−�′λ) − CVaRqλ

s
(−�′τ ) ≤ as, s = 0,1, . . . , S

as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (32)
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The objective function of (32) represents the sum of differences between CVaRs of a port-
folio λ and CVaRs of the tested portfolio τ . The differences are considered in points qλ

s ,
s = 0,1, . . . , S. All differences must be non-positive and at least one negative to guaran-
tee that portfolio λ dominates portfolio τ . Moreover, minimizing these differences, we find
portfolio λ∗ that cannot be dominated by any other one. On the other hand, if no dominat-
ing portfolio exists, that is, portfolio τ is SSD efficient, then ξ(τ ,R,p) = 0 because the
only feasible solutions of (32) are τ and portfolios λ satisfying Rλ = Rτ . Summarizing,
Theorem 3 implies the following necessary and sufficient SSD portfolio efficiency test:

Theorem 4 A given portfolio τ is SSD efficient if and only if ξ(τ ,R,p) = 0. If
ξ(τ ,R,p) < 0 then the optimal portfolio λ∗ in (32) is SSD efficient and it dominates portfo-
lio τ by SSD.

Until now, perfect information about the probability distribution of returns was assumed
and portfolio τ was tested with respect to this distribution. However, in many practical
applications, the probability distribution of returns is not perfectly known. And therefore,
we will study robust versions of SSD efficiency.

3.2 Portfolio efficiency with respect to ε-SSD relation

Assume that the probability distribution P̄ of random returns �̄ takes again values rs , s =
1,2, . . . , S but with other probabilities p̄ = (p̄1, p̄2, . . . , p̄S). We define the distance between
P and P̄ as d(P̄ ,P ) = maxi |p̄i − pi |.

Definition 3 A given portfolio τ ∈ 	 is ε-SSD inefficient if there exists portfolio λ ∈ 	 and
P̄ such that d(P̄ ,P ) ≤ ε with �̄′λ SSD �̄′τ . Otherwise, portfolio τ is ε-SSD efficient.

The introduced ε-SSD efficiency is a robustification of the classical SSD portfolio ef-
ficiency. It guarantees stability of the SSD efficiency classification with respect to small
changes (prescribed by parameter ε) in probability vector p. A given portfolio τ is ε-SSD
efficient if and only if no portfolio λ SSD dominates τ neither for the original probabilities
p nor for arbitrary probabilities p̄ from ε-neighborhood of the original vector p. For testing
ε-SSD efficiency of a given portfolio τ we modify (32) in order to introduce a new measure
of ε-SSD efficiency:

ξε(τ ,R,p) = min
as ,λ,p̄

S∑
s=0

as

s.t. CVaRq̄λ
s
(−�′λ) − CVaRq̄λ

s
(−�′τ ) ≤ as, s = 0,1, . . . , S

q̄λ
s =

s∑
i=1

p̄λ
i , s = 1, . . . , S

q̄λ
0 = 0

S∑
i=1

p̄i = 1

− ε ≤ p̄i − pi ≤ ε, i = 1,2, . . . , S

p̄i ≥ 0, i = 1,2, . . . , S
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as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (33)

Theorem 5 Portfolio τ ∈ 	 is ε-SSD efficient if and only if ξε(τ ,R,p) given by (33) is
equal to zero.

Proof The proof directly follows from Theorem 4 because (33) is obtained from (32) by an
additional minimization over p̄ from ε-neighborhood of the original probability vector p. �

3.3 Resistance of SSD portfolio efficiency with respect to additional scenarios

In the previous sections, we assumed a fixed set of scenarios. In many practical applica-
tions, an additional scenario may be of interest. Therefore, the aim of this section is to
analyze the robustness of SSD portfolio efficiency with respect to the additional scenario
denoted by rS+1. For a contamination parameter t ∈ [0,1], we assume that the random return
�̃(t) takes values r1, r2, . . . , rS+1 with probabilities p̃(t) = ((1 − t)p1, (1 − t)p2, . . . , (1 −
t)pS, t). The cumulative probabilities for portfolio λ are

q̃λ
s =

s∑
i=1

p̃λ
i =

s∑
i=1

P (−�̃(t)λ = (−R̃λ)[i]), s = 1,2, . . . , S + 1, q̃λ
0 = 0

and the same notation is used for portfolio τ . We denote the extended scenario matrix by R̃,
that is,

R̃ =
(

R

rS+1

)
.

Definition 4 A given portfolio τ ∈ 	 is directionally SSD inefficient with respect to rS+1

if it exists t0 > 0 such that for every t ∈ [0, t0] there is a portfolio λ(t) ∈ 	 satisfying
�̃(t)′λ(t) SSD �̃(t)′τ .

Definition 5 A given portfolio τ ∈ 	 is directionally SSD efficient with respect to rS+1 if
there exists t0 > 0 such that for arbitrary t ∈ [0, t0] there is no portfolio λ(t) ∈ 	 satisfying
�̃(t)′λ(t) SSD �̃(t)′τ .

According to these definitions, a given portfolio is classified as directionally SSD ef-
ficient (inefficient) with respect to scenario rS+1 if it is SSD efficient (inefficient) and a
sufficiently small contamination of the original probability distribution of returns by the
additional scenario does not change the SSD efficiency classification, that is, the SSD
efficient (inefficient) portfolio remains SSD efficient (inefficient). Applying (32) to con-
taminated data, portfolio λ(t) ∈ 	 satisfying �̃(t)′λ(t) SSD �̃(t)′τ exists if and only if
ξ(τ , R̃, p̃(t)) < 0, where

ξ(τ , R̃, p̃(t)) = min
as ,λ

S∑
s=0

as

s.t. CVaRq̃λ
s
(−�̃(t)′λ) − CVaRq̃λ

s
(−�̃(t)′τ ) ≤ as, s = 0,1, . . . , S

as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (34)



Ann Oper Res (2012) 200:55–74 71

Example 5 (a) Consider the following three assets and three scenarios example:

R =
⎛
⎝0 3 2

2 2 2
4 1 2

⎞
⎠ .

Assume that scenarios are equiprobable. It can be shown that portfolio τ = ( 1
3 , 2

3 ,0) is SSD
efficient. Let the additional scenario r4 = (0,0,2) and consider portfolio λ = (0,0,1). Then
�̃(t)′λ SSD �̃(t)′τ for any contamination parameter t > 0. Hence, portfolio τ is SSD effi-
cient but not directionally SSD efficient with respect to scenario r4.

(b) Consider another three assets and three scenarios example:

R =
⎛
⎝0 3 2

2 2 3
4 1 2

⎞
⎠ .

Assume again that scenarios are equiprobable. It can be shown that portfolio τ = ( 1
3 , 2

3 ,0)

is SSD inefficient, because portfolio λ = (0,0,1) SSD dominates portfolio τ . Let the addi-
tional scenario r4 = (2,2,0). Then no portfolio SSD dominates τ = ( 1

3 , 2
3 ,0) for any con-

tamination parameter t > 0. Hence, portfolio τ is SSD inefficient but not directionally SSD
inefficient with respect to scenario r4.

Example 5 shows that there are situations where an arbitrarily small contamination of the
original probability distribution of returns leads to the opposite SSD classification. Using
contamination bounds we will derive a sufficient condition for directional SSD efficiency
and directional SSD inefficiency with respect to additional scenario rS+1.

Theorem 6 Let τ ∈ 	 be an SSD efficient portfolio for the noncontaminated distribution P .
Let

rS+1τ ≥ rS+1λ for all λ ∈ 	. (35)

Then τ ∈ 	 is directionally SSD efficient with respect to rS+1.

Proof The SSD efficiency of τ implies that ξ(τ ,R,p) = 0. Condition (35) gives
ξ(τ , rS+1,1) = 0. Since the objective function of (32) does not depend on probability distri-
bution, verification of (9) for t1 = 0, t2 = 1 will imply the lower bound (8). Consequently,
ξ(τ , R̃, p̃(t)) will necessarily be equal to zero for all t ∈ [0,1] what yields directional SSD
efficiency with respect to rS+1 of τ . Hence, it suffices to show, that any feasible solution
λ of (34) with an arbitrary parameter t ∈ (0,1) is a feasible solution of (32). Let F

(2)

λ,S+1(z)

be a cumulative distribution function of returns of portfolio λ for the contaminated distrib-
ution taking S + 1 scenarios with probabilities p̃ = ((1 − t)p1, (1 − t)p2, . . . , (1 − t)pS, t).
Similarly, let F

(2)
λ,S(z) correspond to the original distribution with S scenarios. Then

F
(2)

λ,S+1(z) =
∫ z

−∞
Fλ(y) dy =

∫ z

−∞

S+1∑
s=1

p̃s1(rsλ≤y) dy

=
S+1∑
s=1

p̃s(z − rsλ)1(rsλ≤z) =
S+1∑
s=1

p̃s(z − rsλ)+. (36)

The same notation and analysis is applied to portfolio τ .
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Since λ is a feasible solution of (34), Theorem 3 implies that �(t)′λ SSD �(t)′τ . Hence,
directly from Definition 1, one obtains

F
(2)

λ,S+1(z) ≤ F
(2)

τ ,S+1(z) ∀z ∈ R. (37)

Applying (36) to (37)

S∑
s=1

(1 − t)ps(z − rsλ)+ + t (z − rS+1λ)+ ≤
S∑

s=1

(1 − t)ps(z − rsτ )+ + t (z − rS+1τ )+. (38)

Note that according to (35) (z−rS+1λ)+ ≥ (z−rS+1τ )+. Combining it with (38) implies
that

∑S

s=1 ps(z − rsλ)+ ≤ ∑S

s=1 ps(z − rsτ )+. Therefore

F
(2)
λ,S(z) ≤ F

(2)
τ ,S(z) ∀z ∈ R.

According to Definition 1, �′λ SSD �′τ and the rest of the proof directly follows from
Theorem 3. �

In Example 5(a), ξ(τ , r4,1) = −2 and ξ(τ , R̃(t), p̃(t)) < 0 for all t ∈ (0,1] because
�̃(t)′λ SSD �̃(t)′τ for all t ∈ (0,1].

Theorem 7 Let τ ∈ 	 be an SSD inefficient portfolio for the noncontaminated distribu-
tion P . If there exists a portfolio λ ∈ 	 such that

CVaRqλ
s
(−�′λ) − CVaRqλ

s
(−�′τ ) < 0, s = 0,1, . . . , S (39)

rS+1λ ≥ min((Rτ )[1], rS+1τ ) (40)

then τ is directionally SSD inefficient with respect to rS+1.

Proof Let j (τ ) be such index that (−R̃τ )[j (τ )] = −rS+1τ and similarly let j (λ) be such that
(−R̃λ)[j (λ)] = −rS+1λ. If j (λ) ≥ 2 then continuity of CVaR and assumptions (39) imply that
there exists a sufficiently small t0 such that for all t ∈ [0, t0]

CVaRq̃λ
s (t)(−�̃(t)′λ) − CVaRq̃λ

s (t)(−�̃(t)′τ ) < 0, s = 0,1, . . . , S

CVaRq̃τ
s (t)(−�̃(t)′λ) − CVaRq̃τ

s (t)(−�̃(t)′τ ) < 0, s = 0,1, . . . , S

holds true. Hence, �̃(t)′λ SSD �̃(t)′τ and therefore λ is a feasible solution of (34) for all
t ∈ [0, t0]. The directional SSD inefficiency with respect to rS+1 of τ follows.

If j (λ) = 1 then (40) implies that (R̃λ)[1] ≥ (R̃τ )[1] and the rest of the proof is similar to
the previous case. �

Condition (40) is needed to guarantee that even in the contaminated case the smallest
return of portfolio λ is larger than or equal to that of portfolio τ what is a necessary condition
of SSD relation. For data in Example 5(b), none of the conditions (39)–(40) is fulfilled.
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4 Conclusions

The contamination technique was extended to construction of bounds for the optimal value
function of perturbed stochastic programs whose set of feasible solutions depends on the
probability distribution. In spite of the local character of these bounds their usefulness was
illustrated for analysis of resistance with respect to additional scenarios in stochastic pro-
grams with risk constraints and in a new SSD portfolio efficiency test. Unlike the former
portfolio efficiency tests, neither this test nor its robust version assume equiprobable scenar-
ios.
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