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Abstract A novel nurse rostering model is developed to represent real world problem in-
stances more accurately. The proposed model is generic in the sense that it allows modelling
of essentially different problem instances. Novel local search neighbourhoods are imple-
mented to take advantage of the problem properties represented by the model. These neigh-
bourhoods are used in a variable neighbourhood search and in an adaptive large neighbour-
hood search algorithm. The performance of the solution method is evaluated empirically on
real world data. The proposed model is open to further extensions for covering personnel
planning problems in different sectors and countries.

Keywords Nurse rostering · Hospital personnel planning · Variable neighbourhood search

1 Introduction

The nurse rostering problem, which constitutes the assignment of shifts to nurses accord-
ing to several criteria, is a complex personnel planning problem (Burke et al. 2004b). The
problem becomes more complicated in Belgian hospitals, where the planning periods are
flexible, problem elements like shift types and skill types are user defined, legal restrictions
and contractual agreements impose complex constraints and where cyclic assignments are
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not the standard practice (Burke et al. 2001a, 2004a; De Causmaecker and Vanden Berghe
2003). Furthermore, the problem has a dynamic nature due to the ever changing labour leg-
islation, contractual agreements, and nurse preferences. New aspects and constraint types
are introduced in the course of time. The models and solution methods of the automation
tools have to comply with the latest state of the problem.

1.1 Literature review

Nurse rostering problems from several countries such as Belgium (Burke et al. 2001a,
2001b), the Netherlands (Brucker et al. 2005; Burke et al. 2008), the United Kingdom (Aick-
elin and Li 2007; Burke et al. 2003), the United States (Bard and Purnomo 2007), Norway
(Frøyseth et al. 2008), and Italy (Bellanti et al. 2004) have been introduced in the scientific
literature. For investigating the problem systematically, synthetic nurse rostering data have
been created and examined in the nurse rostering literature (Maenhout and Vanhoucke 2008;
Özcan 2007). The properties of the problems reported in the nurse rostering literature vary.
De Causmaecker and Vanden Berghe (2009) have proposed a reference model to categorise
the timetabling and rostering problems according to their properties such as the person-
nel environment, work characteristics, and optimisation objective. The categorisation of the
problems will help researchers to study the complexity and hardness of the problem in-
stances and the efficiency of the corresponding algorithms.

Numerous artificial intelligence and operations research approaches have been applied to
the nurse rostering problem. These approaches include integer programming by Glass and
Knight (2010), scatter search by Burke et al. (2009), a tabu search hyperheuristic by Burke et
al. (2003), several hybrid methods by Bellanti et al. (2004), Brucker et al. (2005) and Burke
et al. (2008), problem specific cross-over methods in a genetic algorithm by Maenhout and
Vanhoucke (2008), and a population based metaheuristic inspired by electromagnetism by
Maenhout and Vanhoucke (2007). In order to compare the solution methods from the litera-
ture, Petrovic and Vanden Berghe (2008) have proposed seven comparison criteria: “expres-
sive power, flexibility, algorithmic power, learning capabilities, maintenance, rescheduling
capabilities, and parameter tuning.”

A real world nurse rostering data set is maintained online by the ASAP group of the Uni-
versity of Nottingham (the Nottingham benchmarks for short) (Curtois 2009). The problem
instances in the benchmark data set have been subject of the nurse rostering literature and
they were gathered from different countries. The idea behind the maintenance of a public
benchmark library is to allow researchers to test their solution methods on problems with
different properties, and compare their results to the state of the art (Brucker et al. 2010).

Burke et al. (2009) have applied a scatter search algorithm to the nurse rostering prob-
lem. The parameters of the algorithm have been selected in a way to keep the execution
time under 15 minutes on a desktop computer in order to satisfy the preferences of the end
users. The algorithm has been tested on 20 problem instances from the Nottingham bench-
marks. Experimental results have indicated that the scatter search variant that deploys time
predefined variable depth search for improvement performs efficiently considering the short
execution time.

Glass and Knight (2010) have solved four instances from the Nottingham benchmarks
to optimality. They have used integer programming and search space reduction based on
the properties of the problem instances. Glass and Knight (2010) have also pointed out the
differences between the formulation of the problems in the Nottingham benchmarks and
the real world practice. The difference concerns continuity handling between two planning
periods in the formulation of the Nottingham benchmarks.
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Bourdais et al. (2003) have grouped the constraints in the nurse rostering problem into
rule categories. The fact that coverage constraints and the maximum number of assignments
per nurse per planning period constraint are considered hard, enables the reduction of the
solution space by inference prior to search. Another constraint programming approach has
been introduced by Pesant (2008). It softens the constraints and at the same time performs
inference on them. Constraint-centered search heuristics are introduced in the same paper.
These heuristics direct the search procedure to the areas of the search space with higher
probabilities of being intensely populated by solutions (Pesant 2008).

The nurse rostering problem in Belgian hospitals has been the subject of many research
papers. The problem has been tackled with a variable neighbourhood search (VNS) that
takes advantage of the synergy between simple and greedy neighbourhoods by Burke et al.
(2004a) and a hybridisation of this algorithm with a memetic approach deploying a steepest
descent heuristic by Burke et al. (2001a). The contribution of coverage constraint relax-
ation to the production of higher quality schedules is investigated by De Causmaecker and
Vanden Berghe (2003). Beliën and Demeulemeester (2007) compare and discuss the perfor-
mance and modelling capabilities of two different problem decomposition strategies within
a branch-and-price algorithm. The problem instance tackled is a trainee scheduling problem,
which differs from the nurse rostering problem.

1.2 Contribution

The motivation for this study is twofold. (1) We aim at developing a generic nurse roster-
ing model for allowing a broad range of real world problems to be defined accurately. The
proposed model has an increased ability to reflect extra soft constraints in different hospi-
tals, sectors and countries. (2) We develop an associated solution method, which includes
neighbourhoods that take advantage of different properties of the problem model. These
neighbourhoods, when deployed among other traditional neighbourhoods in VNS, have per-
formed better than the traditional neighbourhoods alone.

(1) Nurses belong to different skill categories according to their job descriptions, qualifica-
tions, experience, and responsibilities. Every nurse has a primary skill type. Some of the
nurses have secondary skill types, which means they can work as substitutes in order to
fulfill other skill requirements. The coverage constraints restrict the number of nurses
with a specific skill type that should be present at a given date and a given shift type
(Aickelin and Li 2007; Burke et al. 2004a). A new hard constraint imposes that only
the assignments that are defined in the coverage constraints can be added to or deleted
from the roster by the solution method (see Sect. 2.4.5). However, exceeding the min-
imum and maximum thresholds of the coverage constraints is allowed but penalised in
the objective function as a soft constraint violation.

The time related constraints, considered as soft constraints in the model, restrict the
assignments to a specific nurse (Burke et al. 2004b). Constraints defined by the em-
ployment contracts of the nurses, called horizontal constraints, are a subset of the time
related constraints. The horizontal constraints are organised in three general types in
this model. These are counters, series, and successive series, each with their own sub-
jects and parameter sets. This organization is more flexible than the approach in (Burke
et al. 2004a), where soft constraints were predefined with all or most of their parameters
and then applied to all problem instances. Counter constraints restrict the number of
occurrences of a subject over a counter period, such as hours worked, days worked, and
shift types worked. Series is a general term for describing the constraints that restrict the
number of consecutive subjects, like days worked, days idle, and weekends worked. In
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this context, successive series is a new formulation. Successive series restrict the suc-
cession of two series. An early example of a successive series constraint is assign two
free days after night shifts constraint in (Burke et al. 2004a). Another novel aspect of
the model is the compatible shift types concept. Some of the soft constraints involving
shift types are defined for a set of compatible shift types instead of for a single shift type
as in (Burke et al. 2004a).

(2) The second part of the study is the investigation of associated solution methods. VNS
is a metaheuristic that systematically switches between the neighbourhoods of a pre-
defined neighbourhood set during the local search (Hansen and Mladenović 2003).
Adaptive Length Neighbourhood Search (ALNS) is an iterative method that operates
on a feasible solution. At each iteration, a destroy and a repair neighbourhood is se-
lected according to a roulette wheel selection. The probabilities of the selection of a
neighbourhood depend on the previous performance of the neighbourhood (Pisinger
and Ropke 2007). Neighbourhoods based on the proposed model are developed for ap-
plication within the VNS and ALNS algorithms. The proposed neighbourhoods make
use of problem properties like compatible shift types and secondary skill types.

In the remainder of the paper, we describe the empirical investigation of the solution
methods. The experimental setup and the processing of the results are aimed to be carried
out according to the principles given by Schaerf and Di Gaspero (2007). The experiments
are carried out on two sets of benchmark data. The instances in the first benchmark set,
the KaHo nurse rostering benchmarks, are gathered from six wards in two Belgian hos-
pitals through our industrial partner. For each problem instance of the KaHo nurse roster-
ing benchmarks (KaHo benchmarks for short), the input data and a sample solution with
penalty details are published online (Bilgin 2008). The differences between the problem
definitions of the KaHo and Nottingham benchmarks make an experimental evaluation of
our algorithms on the Nottingham benchmarks impractical. Four problem instances from
the Nottingham benchmarks are studied to present the differences between both problem
definitions (see Sect. 4.1). Experimental results are also provided on these instances. Differ-
ent algorithm settings are experimentally evaluated on the benchmarks and the results are
statistically tested.

The research is carried out with an industry partner1 producing a nurse rostering assis-
tance system.2 This is a computer aided nurse rostering tool for the hospital planners that
keeps track of the constraint violations. The implementations of the system are utilised in
many Belgian hospitals. The automation tool developed within this research project is inte-
grated in the nurse rostering assistance software of our industry partner. The resulting system
is being deployed in Belgian hospitals.

The problem definition and the model are described in Sect. 2. The solution method is
presented in Sect. 3. The experiments and the experimental results are discussed in Sect. 4.
The paper is concluded in Sect. 5.

2 Problem definition and model

The objective of the nurse rostering problem is to assign shifts to nurses in accordance
with workforce requirements, legal and contractual restrictions, personal preferences, and

1SAGA Consulting NV.
2HCPS: Health Care Personnel Scheduling.
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further criteria (Burke et al. 2004b). The problem that is addressed in this paper can be
categorised as ASBI|RVNO|PLR using the notation introduced by De Causmaecker and
Vanden Berghe (2009). We present the problem model by the search space, schedule, hard
and soft constraints. The set of all possible solutions is represented by the search space,
which contains all possible mappings from the shift types and skill types set to the set of
nurses within the planning period. Any candidate solution in the search space corresponds
to a schedule. A schedule is feasible only if it fulfills all the hard constraints. The degree of
soft constraint satisfaction determines the quality of the schedules.

2.1 Search space

The search space of the problem is represented by the planning period, skill types, shift
types, and nurses (Burke et al. 2004a).

2.1.1 Planning period

The planning period is defined by a start date and a variable period length given as a number
of days. This definition makes the model more complicated than the approach that is based
on fixed planning periods (Aickelin and Li 2007; Brucker et al. 2005; Burke et al. 2008).
The planning period length differs between wards. Among the real world response groups,
the most common planning periods are one month and four weeks. In some periods of the
year, like Christmas holidays, shorter planning periods like two weeks can be considered.
The bank holidays within the planning periods are also part of the problem parameters.

2.1.2 Skill types

In hospitals, tasks are distributed among nurses according to their job descriptions, quali-
fications, experience, and responsibilities. This division is formalised by skill types. In our
model, each nurse has a single primary skill. Occasionally, a nurse can have enough ex-
perience or education for carrying out tasks that are not associated with her primary skill
but with another skill type. The other skills are considered as the secondary skill types of
the nurse in consideration. In practice an assignment to a secondary skill type of a nurse is
accepted but not preferred. However, a nurse cannot be assigned with a skill type that she
does not have as a primary or secondary skill type. The second rule about the skill types is
considered as a hard constraint.

As an example, consider a regular nurse who is experienced enough to substitute a head
nurse in case of absence. That means, she can work as a head nurse as the secondary skill
type (soft constraint). However, a head nurse who is not a regular nurse as a secondary skill
type is not allowed to be assigned as a regular nurse (hard constraint).

The skill categories are not fixed in the problem definition. Instead they are defined by
the users for each problem instance. The hierarchical substitution, which means nurses of a
higher rank can substitute nurses of a lower rank, are not implicitly foreseen in the model. In
Belgian hospitals, nurses do not prefer to carry out the tasks defined for a lower skill type.
Therefore only user defined secondary skill types are considered by the solution method.

2.1.3 Shift types

The daily assignments are made in terms of shifts. Shifts are time periods defined with
specific start and end times, rest periods before the start and after the end time, and a net
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job time. The rest periods before the start and after the end time ensure that the nurses have
enough rest times between two working days. The rest periods are especially necessary in
the wards that work around the clock to avoid assignment sequences such as a night shift
followed by an early shift the next day. The definition and number of shift types are taken
as parameters. This property makes the model more complex than usual problem definitions
with a fixed number of shift types having predetermined definitions (Bard and Purnomo
2007; Bellanti et al. 2004; Brucker et al. 2005; Burke et al. 2008).

2.1.4 Nurses

The set of nurses is a user-defined parameter. The nurse definition is generic in the model. It
allows the user to represent the properties of each nurse accurately. An employment contract
is defined with a start and end date, and a constraint set. The fact that each nurse can have her
own employment contract increases the individuality of nurses and therefore the complexity
of the model.

2.2 Schedule

The schedule is composed of a set of assignments that are defined as quadruples of (nurse,
day, shift type, skill type). The skill type has to be specified explicitly in an assignment,
because a shift type is not necessarily associated to a skill type and a nurse can have more
than one skill type. An empty, full or partially full schedule can be input to the solution
method.

2.3 Soft constraints

The satisfaction of the soft constraints is not necessary for the feasibility but for the quality
of the solution. The quality of a schedule is measured by an objective function that is the
linear combination of the number of violations of each soft constraint, similar to (Burke et
al. 2001b). Coverage constraints, rest times, assignment to the primary skill constraints are
global, meaning that they apply to the whole schedule. Requests and horizontal constraints
are specific to nurses. Nurses with similar contracts have similar horizontal constraints.

The threshold values of the coverage constraints and horizontal constraints can be either a
minimum, a maximum, or a range defined by a minimum and a maximum value. The weight
set used in the objective functions are specific for each problem instance. In a problem
instance, the weights for the coverage constraints and horizontal constraints are specific to
each constraint, but they are global for the rest times and assignment to the primary skill
constraints. The weights can be any positive integer value.

The composition of the most suitable weight set is a complex task for the planner because
of the high number of possible combinations. Nevertheless it is crucial to get satisfactory
rosters (Burke et al. 2008). The planners will have to experiment with different weight set-
tings and build up experience over time in order to produce weight sets that result in rosters
that satisfy their priorities. The weight sets of the KaHo benchmarks are composed accord-
ing to the feedback received from the planners of each ward in the hospitals during demo
sessions. This weight sets are unique to each problem instance and available in the respective
XML files in the project web site (Bilgin 2008).
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Table 1 Compatible shift types
set of early shift types Short early [08:00 12:00] Assigned to part timers

Regular early [08:00 14:36] Assigned to 70% time working nurses

Long early [08:00 17:00] Assigned to full timers

Table 2 Compatible shift types
set of undesired shift types Early morning [05:00 11:00] Starts too early

Day [11:00 20:36] Covers the whole day

Late [17:00 02:00] Ends too late

2.3.1 Compatible shift types

A new concept introduced in this research paper is called compatible shift types. The nurse
rostering problems that we received from our industry partner and from the hospitals involve
coverage constraints and horizontal constraints that are defined on a set of shift types instead
of a single shift type. The shift type sets that are used as a parameter in constraints are called
compatible shift type sets. As a hypothetical example, consider the coverage constraint that
is defined for early shift types. Any of the different shift types given in Table 1 is counted by
this coverage constraint. However, the shift types in this compatible shift type set differ from
each other in duration and in the corresponding contract. Another example is the maximum
shift types worked counter that is defined on the undesired shift types given in Table 2.
The objective of this counter is to minimise the number of shift types that are generally not
desired by the nurses. A shift type can belong to more than one compatible shift type set in
a problem instance. The compatible shift types sets may differ among constraints.

2.3.2 Coverage constraints

The number of nurses needed for each day, skill type and a compatible shift types set are
called coverage constraints (Burke et al. 2004b). Coverage constraints are considered as
hard constraints in many problem instances (Aickelin and Li 2007; Brucker et al. 2005;
Burke et al. 2008, 2004a). However, the over-constrained nature of the problem in Belgium
makes relaxations to coverage constraints necessary. The relaxation methods were investi-
gated and implemented in automated nurse rostering tools (De Causmaecker and Vanden
Berghe 2003). The coverage constraints are considered to be soft constraints by the real
world response groups.

Although compatible shift types sets increase the accuracy of modelling the real life
problem, they should be handled with care. In some situations errors may occur, if the do-
mains of two different soft constraint instances overlap. If the compatible shift types sets of
two coverage constraints at the same day and for the same skill type have common elements,
any assignment of such elements contributes to both coverage constraints. The compatible
shift types sets should be disjoint in such cases to avoid errors.

2.3.3 Assignment to the primary skill

An assignment to one of the secondary skills of a nurse is considered a soft constraint vio-
lation.
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2.3.4 Rest times

For each shift type a period of rest time is defined before the start and after the end time. An
assignment of a shift that overlaps with the rest period of another assignment is considered
a soft constraint violation.

2.3.5 Requests

In nurse rostering models, nurses are allowed to request specific assignments of free days
or periods (Bellanti et al. 2004; Burke et al. 2004a). In this model, two types are defined:
assignment and absence requests. Assignment requests are defined with a preferred shift
type to be assigned to a specific nurse on a specific day. Absence requests are defined by a
specific day and a specific period where any assignment is to be avoided for a specific nurse.
Absence requests also have a job time field. The job time of the absence request is added to
the hours worked counters of the nurse in case the absence request is granted.

2.3.6 Horizontal constraints

The soft constraints imposed by the employment contracts of the nurses are called horizontal
constraints. Various instances of horizontal constraints are present in nurse rostering prob-
lems in different countries (Bellanti et al. 2004; Brucker et al. 2005; Burke et al. 2004a). In
the proposed model, horizontal constraints are generalised in three categories, being coun-
ters, series and successive series. This is a generic approach that allows users to define
horizontal constraints, with specific subjects and parameters.

2.3.6.1 Counters The horizontal constraints that restrict the number of specific instances
over a period are called counters. The counter period is defined by a start time and a length,
which is given as a number of days. It does not necessarily match the planning period. If
the counter period starts before the planning period, the counter value at the start of the
planning period is given as an input to the solution method. Minimum thresholds cannot
induce violations if the counter period exceeds the planning period, because they can be met
in the upcoming planning period (Burke et al. 2004a). There are six subjects for counters:
hours worked, shift types worked, days worked, days idle, weekends worked and weekends
idle. Shift types worked counters are defined for a compatible shift types set. Apart from
weekends worked and weekends idle, all counters have the day types parameter. The day
types parameter can have the value of either any, holidays or a set of week and weekend
days.

2.3.6.2 Series The number of consecutive occurrences of specific instances are restricted
by series. There are five subjects for series: shift types worked, days worked, days idle, week-
ends worked and weekends idle. Shift types worked series are also defined for a compatible
shift types set. The algorithm not only checks the series that start and end within the plan-
ning period but also the series that start in the previous planning period and extend to the
current planning period. Similar to the counters, the minimum threshold violations by series
that can be compensated in the next planning period are not penalised (Burke et al. 2004a).
The problem model also considers the previous planning period when series have started
but not finished. Therefore, the schedule information of the associated parts of the previous
planning period are taken as a part of the input by the solution method.
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2.3.6.3 Successive series Another type of horizontal constraint is the restriction of the
succession of two series, each with their own threshold values. Any occurrence of the first
series implies the second series to follow. Deviations from the second series are penalised.
Possible orders of series are days worked—days idle, days idle—days worked, shift types
worked—days idle, days idle—shift types worked and shift types worked—shift types worked.
Similar to the series and counters, successive series involving shift types are defined for a
compatible shift types set. Again, the minimum threshold violations that can be covered
in the next planning period are not penalised (Burke et al. 2004a). Similar to the series,
successive series that have been started but not ended in the previous planning period are
considered within the problem model and the associated schedule information is taken as
input by the solution method.

2.3.6.4 Example constraint set The work presented in this paper does not focus on a prob-
lem instance encountered in a ward in a hospital. It presents a generic problem model and a
solution method that enables addressing several problem instances from different wards in
different hospitals. We experimented with several real world problem instances to assess the
capabilities of the proposed model and solution method. The working time regulations and
agreements are different in each problem instance of the KaHo benchmarks. In addition to
that, the regulations and agreements vary between the nurses in the same department. There-
fore it is not feasible to specify the constraint set of each nurse in each problem instance of
the KaHo benchmarks. However, an example constraint set from a nurse in one of the input
data instances from the KaHo benchmarks is presented in Table 3. The other constraint sets
can be found in the XML files that we provide online (Bilgin 2008).

Table 3 The soft constraints that apply to the schedule of the nurse with ID 855 from the input file Hospital1-
Emergency-Normal.xml

ID Type Weight Details

37 series 100 subject: shift types worked/
shift types: 927, 928, 930, 931/
min: 6/max: 8

35 successive series 500 series 1—subject: shift types worked/
shift types: 922, 923, 924, 925, 926/min: 1
series 2—subject: shift types worked/
shift types: 915, 916, 917, 918, 919/max: 0

36 successive series 500 series 1—subject: shift types worked/
shift types: 927, 928, 930, 931/Min: 1
series 2—subject: shift types worked/
shift types: 915, 916, 917, 918, 919/max: 0

−1000855 counter 100 subject: hours worked/
start date: 2007-12-03/period: 28 days/
min: 547200 sec/max: 547200 sec

No ID absence request 500 date: 2007-12-03/start time: 08:00/
end time: 16:06/job time: 27360 sec

No ID absence request 500 date: 2007-12-04/start time: 08:00/
end time: 16:06/job time: 27360 sec
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2.4 Hard constraints

The schedule needs to satisfy all the hard constraints in order to be feasible.

2.4.1 Single assignment start per nurse per day

For each nurse only one assignment start per day is allowed, similar to (Brucker et al. 2005;
Burke et al. 2008).

2.4.2 No overlap between assignments

The assignment of two shifts with an overlap in the work periods to one nurse is not allowed,
as opposed to the model in (Burke et al. 2001a). In some cases, a dummy shift type, called
free shift, is assigned to a nurse in order to balance the extra hours worked. The nurses do
not actually work during free shifts and therefore these shifts are the only exception to the
No Overlap between Assignments constraint.

2.4.3 Honour skill types

An assignment is allowed only if the skill type matches one of the skill types of the nurse,
either primary or secondary.

2.4.4 Schedule locks

In some real life situations the automation tool is prevented from making alterations to some
specific parts of the input schedule. These can be simple cases like granting an absence re-
quest or more complicated situations like partial rescheduling due to an unforeseen absence
of a nurse. In the latter case, the assignments of the absent nurse need to be redistributed
among other nurses. However, due to the time related constraints, this operation may mod-
ify the unaffected parts of the planning period as well. On the other hand, for several reasons,
alterations to an announced roster are avoided to the extent possible. To meet this criterion,
the unaffected parts of the schedule are locked before it is given as an input to the algorithm.
Schedule locks are defined with (nurse, day) pairs. The objective function always evaluates
the complete schedule regardless of schedule locks.

2.4.5 Operations on defined assignments only

The shift types are not always relevant to all skill types. For example, in many wards, night
shifts are not assigned to head nurses. Therefore coverage constraints are given with asso-
ciated skill types (Sect. 2.3.2). The assignments are only allowed if they are defined in the
coverage constraints. On the other hand, some input schedules contain assignments that are
not mentioned in the coverage constraints. These are preassigned schedule parts which the
solution method is not allowed to modify or delete, even if they are not locked. Suppose that
a nurse is assigned a shift that is not relevant to the ward under study, but to another ward
in the same hospital. This specific assignment is not defined in the coverage constraints of
the current ward and is not allowed to be deleted. These restrictions are called Operations
on Defined Assignments Only. They reduce the size of the feasible search space and prevent
the solution method from searching the irrelevant parts of the search space.
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3 Solution method

The solution method consists of an iterative improvement step preceded by a preprocessing
step. We have experimented with two algorithms as the iterative improvement step: VNS and
ALNS. The solution method does not schedule nurses with different skill types separately
as in (Burke et al. 2004a). This allows exploiting the advantages offered by secondary skill
types. The solution method is not allowed to make modifications that result in an infeasible
schedule. The termination criterion involves the maximum execution time of the algorithm,
without taking the preprocessing step into account. The pseudocode of the algorithm utilis-
ing VNS is presented in Algorithm 1.

Algorithm 1 Pseudocode of the solution method utilising VNS
S = Initial Schedule
Preprocessing
Add assignments randomly to S in order to meet the minimum coverage constraints
Variable Neighbourhood Search
CQ = Circular Queue of the Neighbourhoods
N = First Neighbourhood in CQ
BS = S
while Termination criterion not met do

S∗ = Search (N(S)) with respect to the tabu search strategy
if cost(S∗) < cost(BS) then

Decrement tabu length
BS = S∗

else
Increment tabu length
if cost(S∗) ≥ cost(S) then

N = next neighbourhood in CQ
end if

end if
S = S∗

end while
return BS

3.1 Preprocessing

The solution method accepts an input schedule from the user. The input schedule can be
an empty, a partial or a complete schedule. The preprocessing method tries to fulfill the
minimum coverage constraints. A roster that satisfies the minimum coverage constraints
is perceived as a complete roster by the planners. The aim of the preprocessing step is
to provide a complete roster in a minimum amount of time. The roster can be improved
iteratively in the following steps of the search algorithm. This way the planner will receive
a complete roster no matter how short the execution time is. The execution time will only
influence the quality of the roster.
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3.2 Variable neighbourhood search

The VNS algorithm utilises several neighbourhoods and holds the parameters of the exe-
cuted moves in a tabu list. At each iteration of the algorithm, a single neighbourhood is
searched. The best move in the neighbourhood that complies with the hard constraints and
is not tabu is executed. The schedule remains feasible throughout the execution of the algo-
rithm. The exceptions to the strict steepest descent practice are discussed in the correspond-
ing paragraphs about each neighbourhood.

Token-ring search (Gaspero and Schaerf 2002) is used to switch between the neighbour-
hoods in the VNS algorithm. In token-ring search, the neighbourhoods are held in a circular
queue that determines their application sequence (Gaspero and Schaerf 2002). If the applied
neighbourhood does not result in an improving move, the algorithm switches to the next
neighbourhood in the queue.

3.3 Adaptive large neighbourhood search

Similar to VNS, ALNS utilises a set of neighbourhoods and explores one neighbourhood at
each iteration. The neighbourhood is selected in a stochastic way using the roulette wheel
method. The scores of the neighbourhoods are increased in three cases: if an overall best so-
lution is found, if a solution is found that is better than the current solution, or if the solution
found is feasible and not tabu. The scores of the neighbourhoods are updated regularly by
putting more emphasis on the performance in recent iterations (Pisinger and Ropke 2007).

3.4 Tabu list

A tabu list is maintained in both iterative improvement algorithms: VNS and ALNS. The
function of the tabu list is to avoid cycles of the algorithm around local optima. The parame-
ters of the executed moves (nurse, day, shift type, and skill type) are kept in the tabu list in
a hashed way. Prime numbers are used as values for the tabu tenures, in order to avoid hash
collusions and cycling. The tabu tenure is variable during the execution. It is increased to
the next prime number at each non-improving iteration and decreased to the previous prime
number if there is an improvement. The tabu tenure varies between a lower and an upper
bound. The lower bound is equal to seven and the upper bound is a parameter of the algo-
rithm. Based on our preliminary experiments, we have decided to experiment further with
two values, 97 and 199, as the upper limit. The aspiration criterion holds so that tabu moves
that result in overall best candidate solutions are allowed.

3.5 Assign shift

Since an assignment is defined as a quadruple of (nurse, day, shift type, skill type) (Sect. 2.2),
the Assign Shift neighbourhood operates on these quadruples. When an assignment is made,
not only a shift type is assigned, but also the associated skill type for that assignment. High
numbers of shift types are common in Belgian hospitals, and they result in a large Assign
Shift neighbourhood. The evaluation of each candidate in such a large neighbourhood con-
sumes a high amount of CPU time and results in inefficiencies in the algorithm. For each
(nurse, day, skill type) triple, there is more than one relevant shift type assignment possi-
ble. The size of this neighbourhood is reduced by evaluating one random shift type among
the relevant ones for each (nurse, day, skill type) triple. A move of the Assign Shift neigh-
bourhood is encoded as a hash value of the (nurse, day, shift type, skill type) quadruple and
inserted into the tabu list.
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3.6 Delete shift

The deletion of an assignment is feasible only if two conditions are satisfied. First, the
assignment (day, shift type, skill type) must correspond to a coverage constraint, i.e. a cov-
erage must be required for the shift type, the day, and the skill (see Sect. 2.4.5). Second, the
assignment should not be locked (see Sect. 2.4.4). Since the coverage constraints are not de-
fined as hard constraints, deletions that violate coverage constraints are considered feasible
as well (see Sect. 2.3). The Delete Shift neighbourhood consists of all the feasible deletion
moves. A deletion move not only deletes the assigned shift type at that given timeslot, but
also the skill type, since this is a property of the assignment as well. Similar to the Assign
Shift neighbourhood, a move of the Delete Shift neighbourhood is encoded as a hash value
of the (nurse, day, shift type, skill type) quadruple and inserted into the tabu list.

3.7 Single shift-day

An assignment is removed from a nurse’s schedule and added to another nurse on the same
day, if the second nurse has no assignment on that day and if she has the associated skill
type (Burke et al. 2004a). A move of the Single Shift-Day neighbourhood consists of two
moves: a delete and an assign move. Therefore the parameters of both, the delete and assign
moves, are separately encoded as hash values and inserted into the tabu list. Since the fol-
lowing neighbourhoods are also composed of two moves, a delete and an assign move, their
parameters are encoded and inserted into the tabu list in the same way as single shift-day.

3.8 Change assignment based on compatible shift type

The shift type of an assignment is changed to another compatible shift type defined in the
coverage constraints for the associated day and skill type. One random shift type from the
same compatible shift types set is considered for each assignment according to the same
motivation as for the Assign Shift neighbourhood.

3.9 General assignment change

An assignment is changed to another shift type, while the skill type of the assignment re-
mains the same. This neighbourhood does not necessarily consist of the compatible shift
types from the same coverage constraint, as in Change Assignment based on Compatible
Shift Type neighbourhood. Again a subset of the complete neighbourhood is considered,
like in the Assign Shift neighbourhood. The subset simply consists of a single alternative
random shift type for each assignment.

3.10 Change assignment based on skill type

This neighbourhood operates on the roster of a nurse with at least two different skill types.
It deletes an assignment and adds another assignment to one of the nurse’s other skill types.

4 Experiments

The solution method needs to cope with different situations and scenarios that may occur
in the real world. Hospitals are organised in wards, each with different settings of problem
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variables: planning periods, nurse properties, shift types, skill types, and soft constraints.
Variations and unexpected changes in the workload of hospital wards are not rare. Sample
scenarios are overload of work, for example in case of an epidemic, and unexpected absence
of a nurse in case of an illness. In the latter case, partial rescheduling of the complete roster
is needed. Various solution method settings are tested with different scenarios in order to
measure the performance of the method and to find the best performing algorithm setting.

4.1 Experimental settings

The first data set, the KaHo benchmarks involve the Emergency, Psychiatry, Reception, Meal
Preparation, and Geriatrics wards from Hospital 1 and the Palliative Care ward from Hospi-
tal 2. For each of the wards, three different scenarios are considered. The first scenario has
normal settings with an empty input schedule (normal). The second scenario considers an
overload of work, involving higher values for the coverage constraints (overload). The last
scenario is the unexpected absence of a nurse (absence). In that case the complete schedule
is taken into account but only the affected parts are required and allowed to be modified.

Start dates and period properties of the planning periods per ward are given in Table 4.
In the absence scenarios, the entire schedule is locked except the one week period that start
at the date mentioned in Table 4. The number of shift and skill types for each ward is given
in Table 5. Although some of the shift types in these wards have identical working times,
they have different tasks attached. Therefore, they are treated within different compatible
shift types sets in horizontal constraints and coverage constraints. The number of nurses
with each skill type and the total number of nurses are presented in Table 5. It is clear
from this table that several nurses have secondary skill types. The wards have different
contract types according to their weekly job time. The weekly job time and the number of
nurses for each weekly job time is given in Table 6. Some of the nurses change from one

Table 4 Planning periods and absence start dates

Ward Start date Period Absence start date

Emergency 03/12/2007, Monday 4 weeks 10/12/2007, Monday

Psychiatry 01/12/2007, Saturday 1 month 10/12/2007, Monday

Reception 14/4/2008, Monday 6 weeks 5/5/2008, Monday

Meal Preparation 1/2/2008, Friday 1 month 18/2/2008, Monday

Geriatrics 25/2/2008, Monday 4 weeks 17/3/2008, Monday

Palliative Care 31/12/2007, Monday 13 weeks 4/2/2008, Monday

Table 5 Number of shift types and number of nurses with each skill type

Ward Shift types Skill 1 Skill 2 Skill 3 Skill 4 Total employees

Emergency 27 1 15 4 26 27

Psychiatry 14 1 17 1 – 19

Reception 19 1 1 3 15 19

Meal P. 9 1 31 – – 32

Geriatrics 9 4 20 – – 21

P. Care 23 1 21 4 1 27
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Table 6 The weekly job time and the corresponding number of nurses

Ward 38 hours 34.2 hours 30.4 hours 28.5 hours 22.8 hours 19 hours

(100%) (90%) (80%) (75%) (60%) (50%)

Emergency 24 – – 3 – –

Psychiatry 13 – – 2 – 4

Reception 5 – – 7 – 7

Meal P. 3 2 – 1 – 28

Geriatrics 9 – – 9 1 3

P. Care 13 – 2 4 1 7

employment contract to another within the given planning period. Consequently, when that
happens within one planning period, the contracts are considered serially. The second data
set consists of four problem instances from the Nottingham benchmarks.

We want to point at one important difference with the KaHo instances, in which the as-
signments and the idle days in the previous planning period are considered. The relevant
elements that determine the border conditions are included in the input files of the KaHo
benchmarks. The problem definition of the KaHo benchmarks penalises the unresolved con-
straint violations at the end of the previous planning period in case they could be solved by
the assignments or idle days in the current planning period.

Similarly, the assignments and idle days at the beginning of the current planning period
are evaluated together with the relevant parts of the previous planning period. Some of the
valid constructs at the beginning of the current planning period would be considered con-
straint violations if the planning period was handled in an isolated way. The evaluation of a
roster according to the Nottingham benchmarks does not cover the real world requirements
that we collected for the KaHo benchmarks. In the following paragraphs, we discuss some
examples of differences between the evaluation methods of both problem definitions.

4.1.1 Valouxis-1

The definition of the problem instance Valouxis-1 involves the no isolated working days
constraint with a penalty of 1000. The optimal solution published on the website of the
Nottingham benchmarks contains three isolated assignments at the beginning of the cur-
rent planning period but a fitness value of 20. The fitness value of this solution is greater
than 3000 in our evaluation function. Our solution methods attempt to avoid such isolated
assignments, even at the beginning of the current planning period.

4.1.2 BCV-3.46.2

The max five consecutive working days constraint is defined as the exclusion of the follow-
ing pattern: six days worked in a row followed by an idle day. According to this definition,
any number of consecutive working days greater than five is penalised by a fixed penalty.
Suppose that there are eight working days scheduled in a row, followed by an idle day. This
construction satisfies the pattern only once and it is penalised only once in the evaluation
function. However, our evaluation function counts three violations in this construction and
penalises it three times. The weight of this constraint is 5. According to the pattern defin-
ition, the series of 6, 10, and 20 assignments in a row all have the same penalty: 5. In the
real world examples that we consider, it was necessary to distinguish between small and
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large violations. Consequently, our evaluation method penalises these series by 5, 25, and
75 respectively. Similar pattern definitions occur in BCV-4.13.1 as well, such as the max
three consecutive D shifts, max three consecutive V shifts, and max two consecutive L shifts
constraints.

Since no previous planning period information is provided in the Nottingham bench-
marks, our algorithms consider the previous planning period to be empty and try to correct
the violations to the max seven consecutive free days constraint by assigning shifts at the
beginning of the current planning period. Consequently, this practice is balanced by the vio-
lations to other constraints. Similar pattern definitions occur in BCV-4.13.1 as well, such as
the max 3 consecutive free days.

4.1.3 BCV-4.13.1

The pattern definitions of the min two consecutive working days and min two consecutive
free days conflict at the beginning of the current planning period. The pattern definition of
the first penalises a worked day followed by an idle day at the beginning of the current
planning period. This practice presumes the last day of the previous planning period to be
an idle day. The pattern definition of the second constraint penalises an idle day followed
by a worked day at the beginning of the current planning period. In contrast to the first one,
the second practice presumes the last day of the previous planning period to be a worked
day. The definition of the latter constraint also differs from our evaluation method, which
interprets the lack of the previous planning period information as idle days.

The solution methods studied in this paper have been developed for addressing the prob-
lem definition of the KaHo benchmarks. The differences in the problem definitions makes
our algorithm to carry out the optimisation procedure with different priorities, which results
in different fitness values. Under these circumstances, a comparison of our results on the
Nottingham benchmarks with the results from the literature is not relevant.

The experiments were undertaken with 12 different solution method settings. There are
three decisions to be made for setting the algorithm: the rule to switch between the neigh-
bourhoods, the neighbourhood composition, and the maximum tabu tenure. The neighbour-
hood sets that we applied in the experiments are presented in Table 7. We experiment with
different neighbourhood sets in order to measure the contribution of specific neighbour-
hoods to the search. The assign shift and delete shift neighbourhoods are complementary.
They are utilised consecutively in the VNS algorithm. The remaining neighbourhoods are
special compositions of delete shift and assign shift neighbourhoods, each with a specific
rule to restrict the delete shift-assign shift sequence. In the VNS algorithm, the search starts
with the assign shift and delete shift neighbourhoods, and continues with the single shift-day
neighbourhood and the additional neighbourhoods in the order of appearance in Table 7. The
ALNS algorithm is also tested in order to determine the succession of the neighbourhoods
in an adaptive way. Two different upper bounds for the tabu tenure are 97 and 199.

Table 7 Neighbourhood sets
Set 1 assign shift, delete shift, single shift-day

Set 2 Set 1 + change assignment based on compatible shift type

Set 3 Set 1 + change assignment based on skill type

Set 4 Set 1 + general assignment change

Set 5 Set 1 + general assignment change

+ change assignment based on skill type
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The model and the solution method is implemented in C#. The experiments are carried
out in MS Visual Studio 2005 Professional Edition. The operating system is MS Windows
Server 2003 Enterprise Edition SP 2 running on an Intel Pentium 4 CPU with 2.40 GHz and
2.00 GB of RAM.

Each algorithm setting is executed ten times for each problem instance. The execution
time is 10 minutes for the Nottingham benchmarks, normal and overload scenarios of the
KaHo benchmarks and one minute for the absence scenario of the KaHo benchmarks. For
each problem instance, a group of best performing algorithm settings are identified using
statistical methods. First the best performing setting is identified according to the average
best fitness values of the algorithm settings over 10 runs. Second the results of each re-
maining algorithm setting are compared with the best performing algorithm setting using
the Wilcoxon test with 95% confidence. If the result of a setting does not have a significant
performance difference with the best performing setting, then this setting is also included
in the best performing group for the problem instance under examination. For each prob-
lem instance; the input data, a sample solution obtained from the algorithm, and the penalty
details of this sample solution are published online (Bilgin 2008).

4.2 Experimental results

The experimental results for each algorithm setting, problem instance couple are presented
in Tables 8–17. The values in these tables are the average fitness values of the best solutions
found and their standard deviations. In these tables, the algorithm settings that performed
significantly better than the rest are highlighted with bold characters. Tables 8–13 also de-
pict the best results of the normal scenarios of the KaHo benchmarks achieved by the hu-
man planners using the nurse rostering assistance system (mentioned in Sect. 1). Table 14
presents the results by algorithm settings with 97 as the maximum tabu tenure to give an
overall view.

Table 8 Hospital 1 Emergency Results. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting,
neighbourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 11410.50 386.46 27441.33 332.37 21849.67 88.86

VNS-1 199 14020.66 1566.69 27052.50 138.65 21864.67 45.72

VNS-2 97 11817.33 655.30 29231.67 2461.29 21862.17 38.55

VNS-2 199 13310.66 714.66 27055.33 203.29 21882.17 91.24

VNS-3 97 11295.83 275.42 27813.66 733.73 21412.67 246.77

VNS-3 199 11801.66 376.20 26836.17 227.36 21843.67 38.09

VNS-4 97 11201.17 308.12 27130.00 314.70 21532.67 186.01

VNS-4 199 12014.00 561.92 26699.67 161.17 21711.17 268.75

VNS-5 97 11361.17 239.20 27483.17 370.90 21175.17 20.82

VNS-5 199 11285.50 201.21 26731.84 185.23 21753.84 213.04

ALNS-5 97 11753.33 191.95 27679.17 216.29 21327.67 137.90

ALNS-5 199 11858.83 163.41 27325.17 123.33 24121.33 1598.55

Human Planner 49236.00 –
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Table 9 Hospital 1 Psychiatry Results. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting, neigh-
bourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 9079.00 191.51 12339.00 311.11 13109.00 210.42

VNS-1 199 10236.00 255.13 14687.00 557.77 12906.00 203.26

VNS-2 97 9074.00 223.67 12429.00 234.92 12993.00 99.34

VNS-2 199 10160.00 430.86 14492.00 656.94 12874.00 235.33

VNS-3 97 9041.00 173.36 12207.00 205.32 12946.00 206.30

VNS-3 199 10363.00 218.84 14930.00 570.28 13022.00 124.26

VNS-4 97 8751.00 127.93 10914.00 115.59 13001.00 201.19

VNS-4 199 9184.00 256.31 12166.00 393.62 12888.00 337.96

VNS-5 97 8774.00 146.98 10966.00 215.83 12850.00 172.43

VNS-5 199 9292.00 208.74 12196.00 240.15 13019.00 263.67

ALNS-5 97 8649.00 136.42 10916.00 238.15 13790.00 473.15

ALNS-5 199 9210.00 219.95 11929.00 297.97 14247.00 1653.78

Human Planner 35480.00 –

Table 10 Hospital 1 Reception Results. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting,
neighbourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 22582.17 219.75 56302.17 606.76 28730.67 223.07

VNS-1 199 23786.67 238.13 56348.17 387.77 28821.17 120.93

VNS-2 97 21720.67 173.39 54122.67 378.08 28699.67 233.65

VNS-2 199 22555.67 183.41 53873.67 133.67 28778.17 105.38

VNS-3 97 22525.67 242.67 56336.67 382.11 28838.17 192.46

VNS-3 199 23884.67 289.83 56274.17 179.97 28850.67 205.76

VNS-4 97 21739.67 139.77 53036.17 120.17 28673.67 187.00

VNS-4 199 22698.17 238.81 53605.17 189.69 28768.17 137.22

VNS-5 97 21812.17 136.88 53122.67 145.43 28729.17 128.80

VNS-5 199 22624.67 215.23 53563.17 226.91 28786.17 117.70

ALNS-5 97 21774.17 199.63 52975.17 120.72 28786.17 364.21

ALNS-5 199 22534.67 264.43 53536.67 199.51 28658.67 372.63

Human Planner 48358.00 –

4.2.1 The KaHo benchmarks

The experimental results indicate that the solution methods with 97 as the maximum tabu
tenure perform better than the ones with 199 on the KaHo benchmarks. The solution meth-
ods with 97 as the maximum tabu tenure were among the best performers for 17 problem
instances, while the ones with 199 were among the best performers only for seven of the
KaHo benchmarks. The only exception to this observation is the Emergency Overload sce-
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Table 11 Hospital 1 Meal Preparation Results. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting,
neighbourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 2904.10 25.40 10949.10 22.49 5342.83 185.31

VNS-1 199 3048.80 31.76 11238.20 72.98 5408.50 157.95

VNS-2 97 2894.67 21.82 10942.30 36.74 5348.67 157.48

VNS-2 199 3064.63 53.68 11245.60 68.49 5401.33 177.21

VNS-3 97 2896.33 14.08 10944.80 37.97 5346.33 186.36

VNS-3 199 3049.70 40.02 11230.90 64.73 5425.00 157.11

VNS-4 97 3162.60 37.78 10867.90 29.75 5326.33 99.71

VNS-4 199 3121.50 51.75 10978.30 68.29 5516.17 133.61

VNS-5 97 3133.33 19.07 10881.60 25.54 5350.17 82.24

VNS-5 199 3104.83 59.53 10987.00 46.31 5405.00 155.49

ALNS-5 97 3107.87 28.20 11058.00 49.10 5338.33 52.90

ALNS-5 199 3124.27 39.96 11120.60 42.98 7193.17 460.98

Human Planner 22100.00 –

Table 12 Hospital 1 Geriatrics Results. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting, neigh-
bourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 4301.00 134.88 10898.50 303.58 9194.83 260.34

VNS-1 199 5295.33 633.63 12659.67 935.36 9035.67 447.74

VNS-2 97 4208.67 117.93 10914.33 285.87 9138.83 204.83

VNS-2 199 5170.67 364.91 13539.67 643.76 9286.83 299.59

VNS-3 97 4612.67 175.90 11417.00 414.39 9451.33 247.29

VNS-3 199 6177.50 1212.17 15225.50 1202.69 9425.67 395.41

VNS-4 97 4343.67 110.91 10705.50 146.81 9180.17 358.61

VNS-4 199 5647.67 381.44 12192.83 510.15 9153.17 410.28

VNS-5 97 4788.33 209.88 11131.17 257.38 9400.17 390.50

VNS-5 199 6038.00 642.87 13302.67 889.10 9300.17 320.23

ALNS-5 97 4657.67 199.62 10897.00 330.73 9984.33 554.00

ALNS-5 199 6945.50 805.99 13685.83 871.46 10282.00 706.24

Human Planner 28594.00 –

nario. The VNS variants with neighbourhood sets three, four, and five and the maximum tabu
tenure 199 are the best performing solution methods for the Emergency Overload scenario.

Among the algorithm settings with 97 as the maximum tabu tenure, VNS with neighbour-
hood set four is among the best performers for 13 instances, and neighbourhood set five for
12 instances. The remaining algorithm settings cannot compete with this performance. The
exceptions to this observation are the experiments for the normal scenarios of the psychia-
try, meal preparation, and geriatrics wards. ALNS is the best performing algorithm for the
psychiatry normal scenario. The best performing algorithm settings for geriatrics and meal
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Table 13 Hospital 2 Palliative Care. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm setting, neigh-
bourhood set, upper bound for the tabu list length, and standard deviation respectively

A. Setting Normal Overload Absence

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 44392.50 1090.53 55675.00 1169.25 56388.00 363.93

VNS-1 199 46348.25 1053.51 54399.00 1632.47 56481.50 438.73

VNS-2 97 44515.75 973.50 55553.25 965.17 56957.50 351.71

VNS-2 199 46539.25 721.09 55346.75 1711.53 57139.00 444.82

VNS-3 97 44555.75 967.81 55916.25 1828.05 56659.50 642.87

VNS-3 199 46662.25 856.09 54812.50 1198.47 56355.00 323.37

VNS-4 97 44951.50 791.85 50632.25 647.25 56356.50 445.51

VNS-4 199 46325.50 1004.18 51638.75 858.53 56676.00 420.49

VNS-5 97 44952.75 725.61 50177.75 528.20 56655.50 443.67

VNS-5 199 46145.25 917.36 51736.75 816.13 56658.50 420.48

ALNS-5 97 44155.25 840.44 51612.25 829.23 57713.75 721.77

ALNS-5 199 45646.75 607.29 52746.00 1032.53 61334.25 2523.93

Human Planner 183859.00 –

preparation normal scenarios are similar: VNS with neighbourhood set one and two for the
geriatrics, and VNS with neighbourhood set one, two, and three for the meal preparation.

VNS with neighbourhood set five outperforms VNS with neighbourhood set four only
for the Emergency Absence. This result can be explained by the fact that the nurse rostering
problem in the Emergency ward involves numerous nurses with secondary skill types and
neighbourhood set five involves the change assignment based on skill type neighbourhood.
As a conclusion, VNS with neighbourhood set four and maximum tabu tenure 97 is the most
suitable one among the algorithms settings tested on the KaHo benchmarks.

The basic neighbourhood set (set one) is among the best performing neighbourhood sets
on eight out of 18 problem instances. For these instances, the basic neighbourhood is not the
unique best performer. The contribution of the problem specific neighbourhoods that take
advantage of the problem properties like secondary skill types and compatible shift types
are emphasised by this result.

4.2.2 The Nottingham benchmarks

We provide the fitness values obtained from our evaluation method as well as from the eval-
uator provided by the University of Nottingham (Curtois 2009) obtained in Tables 15–17.
Since the statistical analysis is carried out on the results from the Nottingham evaluator, the
best performing group is not indicated for the results from the evaluation method of KaHo.

The algorithm settings with 199 as the maximum tabu tenure are not among the best
performing group for any of the problem instances of the Nottingham benchmarks. The
algorithm settings with 97 as the maximum tabu tenure are more suitable for the Nottingham
benchmarks.

There are no performance variances between the algorithm settings with 97 as the max-
imum tabu tenure. In this group, all algorithm settings were in the best performing group
on two problem instances, except VNS with neighbourhood set three. The latter algorithm
setting was among the best performing group only for the SINTEF instance.
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Table 14 Overall Results on the KaHo benchmarks. The first row for each problem instance setting is the
average fitness value of the solutions, the second row the standard deviation

VNS-1-97 VNS-2-97 VNS-3-97 VNS-4-97 VNS-5-97 ALNS-5-97

E
m

er
ge

nc
y

Normal
11410.50 11817.33 11295.83 11201.17 11361.17 11753.33

386.46 655.30 275.42 308.12 239.20 191.95

Overload
27441.33 29231.67 27813.66 27130.00 27483.17 27679.17

332.37 2461.29 733.73 314.70 370.90 216.29

Absence
21849.67 21862.17 21412.67 21532.67 21175.17 21327.67

88.86 38.55 246.77 186.01 20.82 137.90

Ps
yc

hi
at

ry

Normal
9079.00 9074.00 9041.00 8751.00 8774.00 8649.00

191.51 223.67 173.36 127.93 146.98 136.42

Overload
12339.00 12429.00 12207.00 10914.00 10966.00 10916.00

311.11 234.92 205.32 115.59 215.83 238.15

Absence
13109.00 12993.00 12946.00 13001.00 12850.00 13790.00

210.42 99.34 206.30 201.19 172.43 473.15

R
ec

ep
tio

n

Normal
22582.17 21720.67 22525.67 21739.67 21812.17 21774.17

219.75 173.39 242.67 139.77 136.88 199.63

Overload
56302.17 54122.67 56336.67 53036.17 53122.67 52975.17

606.76 378.08 382.11 120.17 145.43 120.72

Absence
28730.67 28699.67 28838.17 28673.67 28729.17 28786.17

223.07 233.65 192.46 187.00 128.80 364.21

M
ea

lP
.

Normal
2904.10 2894.67 2896.33 3162.60 3133.33 3107.87

25.40 21.82 14.08 37.78 19.07 28.20

Overload
10949.10 10942.30 10944.80 10867.90 10881.60 11058.00

22.49 36.74 37.97 29.75 25.54 49.10

Absence
5342.83 5348.67 5346.33 5326.33 5350.17 5338.33

185.31 157.48 186.36 99.71 82.24 52.90

G
er

ia
tr

ic
s

Normal
4301.00 4208.67 4612.67 4343.67 4788.33 4657.67

134.88 117.93 175.90 110.91 209.88 199.62

Overload
10898.50 10914.33 11417.00 10705.50 11131.17 10897.00

303.58 285.87 414.39 146.81 257.38 330.73

Absence
9194.83 9138.83 9451.33 9180.17 9400.17 9984.33

260.34 204.83 247.29 358.61 390.50 554.00

P.
C

ar
e

Normal
44392.50 44515.75 44555.75 44951.50 44952.75 44155.25

1090.53 973.50 967.81 791.85 725.61 840.44

Overload
55675.00 55553.25 55916.25 50632.25 50177.75 51612.25

1169.25 965.17 1828.05 647.25 528.20 829.23

Absence
56388.00 56957.50 56659.50 56356.50 56655.50 57713.75

363.93 351.71 642.87 445.51 443.67 721.77
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Table 15 The Nottingham benchmarks: SINTEF, BCV-3.46.2. A. Setting, N. Set, T. Limit, St. Dev. denote
algorithm setting, neighbourhood set, upper bound for the tabu list length, and standard deviation respectively.
The columns with (N) denote the results calculated using the evaluation method of Nottingham, and (K) the
results calculated using the evaluation method of KaHo

A. Setting SINTEF BCV-3.46.2 (N) BCV-3.46.2 (K)

N. Set T. Limit Average St. Dev. Average St. Dev. Average St. Dev.

VNS-1 97 17.5 1.6 946.2 16.8 947.3 17.2

VNS-1 199 106.1 94.0 1008.2 26.7 1009.8 26.3

VNS-2 97 16.4 1.5 967.2 21.1 967.6 21.2

VNS-2 199 125.7 94.5 1016.3 44.8 1017.3 44.8

VNS-3 97 16.8 1.8 962.0 33.3 962.5 32.6

VNS-3 199 93.1 91.3 996.9 41.6 998.5 41.5

VNS-4 97 21.2 2.3 1001.0 28.5 1001.7 28.2

VNS-4 199 35.8 6.6 1027.3 43.1 1029.0 43.2

VNS-5 97 22.4 2.5 995.5 29.3 996.2 30.0

VNS-5 199 37.0 4.6 1010.2 32.9 1011.7 32.9

ALNS-5 97 23.1 2.2 930.6 8.7 930.7 8.5

ALNS-5 199 127.6 120.2 950.0 14.3 949.8 14.0

Optimal Solution 0.0 894.0

Table 16 The Nottingham benchmarks: BCV-4.13.1. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm
setting, neighbourhood set, upper bound for the tabu list length, and standard deviation respectively. The
columns with (N) denote the results calculated using the evaluation method of Nottingham, and (K) the
results calculated using the evaluation method of KaHo

A. Setting BCV-4.13.1 (N) BCV-4.13.1 (K)

N. Set T. Limit Average St. Dev. Average St. Dev.

VNS-1 97 75.4 27.33 73.8 27.3

VNS-1 199 237.4 92.95 235.8 92.8

VNS-2 97 68.7 21.63 67.5 21.6

VNS-2 199 162.8 82.15 163.5 82.5

VNS-3 97 76.3 19.84 75.6 20.0

VNS-3 199 158.1 57.26 157.4 57.3

VNS-4 97 66.2 14.79 66.4 15.7

VNS-4 199 1168.8 3130.76 1170.8 3129.8

VNS-5 97 62.1 24.37 64.8 28.0

VNS-5 199 157.3 46.08 157.7 44.8

ALNS-5 97 52.2 16.92 50.9 17.9

ALNS-5 199 165.9 28.17 164.8 29.0

Optimal Solution 10.0
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Table 17 The Nottingham benchmarks: Valouxis-1. A. Setting, N. Set, T. Limit, St. Dev. denote algorithm
setting, neighbourhood set, upper bound for the tabu list length, and standard deviation respectively. The
columns with (N) denote the results calculated using the evaluation method of Nottingham, and (K) the
results calculated using the evaluation method of KaHo

A. Setting Valouxis-1 (N) Valouxis-1 (K)

N. Set T. Limit Average St. Dev. Average St. Dev.

VNS-1 97 2796.0 1085.5 3586.0 880.7

VNS-1 199 6872.0 875.3 7946.0 1165.3

VNS-2 97 3226.0 710.7 3726.0 458.0

VNS-2 199 7052.0 1839.8 7590.0 1543.5

VNS-3 97 2892.0 671.1 3494.0 708.9

VNS-3 199 8186.0 938.3 8618.0 1091.2

VNS-4 97 1718.0 597.4 2618.0 437.4

VNS-4 199 4910.0 995.5 5778.0 786.6

VNS-5 97 1604.0 640.2 2516.0 454.3

VNS-5 199 4420.0 1198.8 5338.0 615.2

ALNS-5 97 2766.0 977.8 3638.0 492.1

ALNS-5 199 6110.0 1159.8 6928.0 1064.2

Optimal Solution 20.0

5 Conclusions

A new nurse rostering model is proposed to accurately represent the current situation of
the problem in real world environments. This model is also open to extensions with extra
soft constraints encountered in different hospitals, other sectors and different countries. To
cope with the new properties of the problem, associated neighbourhoods are defined and
utilised within a VNS algorithm. These neighbourhoods exploit the problem properties like
compatible shift types and secondary skill types.

The experimental results show that the algorithm settings that deploy problem specific
neighbourhoods in addition to the basic neighbourhood set perform significantly better than
the algorithm settings with the basic neighbourhood set only. The experiments are also car-
ried out on four instances from the Nottingham benchmarks. The differences in the problem
definitions between the KaHo and Nottingham benchmarks make a meaningful comparison
between our results and the results from the Nottingham website impractical. The differ-
ences between the problem definitions offer opportunities to study the modelling aspects of
the nurse rostering problem in a greater depth.

The exploitation of the extendibility of the model by adding extra soft constraints and
other properties to cover real world problems encountered in other hospitals, sectors and
different countries, is a natural future research direction. The application of other optimisa-
tion techniques, like hyperheuristics, can also be investigated. In this case heuristics that are
specialised to tackle different aspects of the scenarios can be studied and deployed within
hyperheuristics.
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