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Abstract In many applications of manufacturing and service industries, the quality of a
process is characterized by the functional relationship between a response variable and one
or more explanatory variables. Profile monitoring is for checking the stability of this rela-
tionship over time. In some situations, multiple profiles are required in order to model the
quality of a product or process effectively. General multivariate linear profile monitoring
is particularly useful in practice due to its simplicity and flexibility. However, in such sit-
uations, the existing parametric profile monitoring methods suffer from a drawback in that
when the profile parameter dimensionality is large, the detection ability of the procedures
commonly used T 2-type charting statistics is likely to decline substantially. Moreover, it is
also challenging to isolate the type of profile parameter change in such high-dimensional cir-
cumstances. These issues actually inherit from those of the conventional multivariate control
charts. To resolve these issues, this paper develops a new methodology for monitoring gen-
eral multivariate linear profiles, including the regression coefficients and profile variation.
After examining the connection between the parametric profile monitoring and multivari-
ate statistical process control, we propose to apply a variable-selection-based multivariate
control scheme to the transformations of estimated profile parameters. Our proposed control
chart is capable of determining the shift direction automatically based on observed profile
data. Thus, it offers a balanced protection against various profile shifts. Moreover, the pro-
posed control chart provides an easy but quite effective diagnostic aid. A real-data example
from the logistics service shows that it performs quite well in the application.
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1 Introduction

Because of recent progress in sensing and information technologies, automatic data acqui-
sition is commonly used in manufacturing and service industries. Consequently, a large
amount of quality-related data of certain processes has become available. Statistical process
control (SPC) of such data-rich processes is an important component for monitoring their
performance. In many applications, quality of a process is characterized by the relation-
ship between a response variable and one or more explanatory variables. At each sampling
stage, one observes a collection of data points of these variables that can be represented by a
curve (or profile). In some calibration applications, the profile can be described adequately
by a linear regression model. In other applications, more flexible models are necessary for
describing profiles properly. An extensive discussion of research problems on this topic is
given by Woodall et al. (2004).

Studies focused on simple linear profiles have been particularly prosperous. See, for in-
stance, Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004), Zou et al.
(2006), among several others. Multiple and polynomial regression profile models are con-
sidered by Zou et al. (2007a), Kazemzadeh et al. (2008), Mahmoud (2008) and Jensen et
al. (2008). Nonlinear profile models are investigated by Williams et al. (2007). Recently,
profile monitoring for general profile model have also attracted much attention. See Zou
et al. (2008, 2009) and Qiu et al. (2010) for the Phase II methods based on nonparamet-
ric regression; Ding et al. (2006) and Chicken et al. (2009) for procedures using various
dimension-reduction techniques, such as wavelet transformations and independent compo-
nent analysis. A recent review of the literature has been given by Woodall (2007).

All these recent studies concentrated on the situation with a univariate profile that only
contains one response variable. Although such profiles can characterize various applications
as described in the literature, multivariate profiles in which multiple response variables are
involved simultaneously may be even more representative of most industrial applications in
certain real world practices. When the correlation structure between quality characteristics is
ignored and profiles are monitored separately, then misleading results may be expected (c.f.,
Lowry et al. 1992 and Hawkins 1991 for relevant discussions). However, research on the
monitoring and diagnosis of multivariate linear profiles is still scanty. A recent research by
Noorossana et al. (2010) discusses multivariate linear profile monitoring in Phase I analysis,
mainly based on the ordinary least square estimation. In this paper, we focus on a study of
the Phase II method for monitoring a general multivariate linear profile.

At first glance, the monitoring problem of multivariate linear profile is trivial if we use
a similar method to the general univariate linear profile monitoring one proposed by Zou et
al. (2007a), in which a control scheme based on integrating conventional multivariate SPC
(MSPC) procedures, such as the multivariate EWMA (MEWMA) chart, with the ordinary
LSE or equivalently maximum likelihood estimation (MLE) of the parameters of each pro-
file is constructed. For a multivariate model, it amounts to incorporating certain correlation
structures into the charting statistics. However, it should be emphasized that in a multivariate
profile problem, we are dealing with a high-dimensional case especially when the number
of responses incorporated is large. This issue actually inherits from that of the conventional
multivariate control charts when the dimensionality is large because the parametric profile
monitoring can be regarded as a special case of MSPC to some extent (Zou et al. 2007a;
Woodall 2007). Due to the high dimensionality and the large scale of the data being mon-
itored, existing theories based on conventional estimation and testing methods are usually
of limited use or inefficient in practice for real-time, high-dimensional statistical computing
and on-line feature selection and dimension reduction.
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As a solution, Zou and Qiu (2009) recently propose a new multivariate control chart,
the LASSO-based EWMA chart (or LEWMA), for monitoring multiple parameters. It is
based on adapting the recent variable selection method LASSO (cf., Tibshirani 1996) to
the SPC problem. Their proposed control chart is capable of determining the shift direction
automatically based on observed data. Thus, it offers a balanced protection against various
shifts. Furthermore, the proposed control chart provides an easy to use, yet quite effective
diagnostic aid, mainly due to the sparsity property of a LASSO estimator that some of its
components would be exactly zero after an appropriate choice of its tuning parameters.

In light of the LEWMA chart, this paper develops a variable-selection-based SPC
methodology for monitoring general multivariate linear profiles. We propose utilizing the
LEWMA control scheme for the transformations of estimated parameters, as a single chart
to monitor both the coefficients and variances of a multivariate linear profile. Due to cer-
tain good properties of LEWMA, the proposed chart is easy to implement, fast to compute,
and efficient to detect various profile shifts. As a by-product, this chart also provides a tool
for profile diagnosis which is critical for a complicated multivariate linear profile. The re-
mainder of this paper is organized as follows: in Sect. 2, we introduce a loading process
example from the logistics industries that motivates this research. Our proposed methodol-
ogy is described in detail in Sect. 3; Its numerical performance is thoroughly investigated in
Sect. 4; The motivating example, which has a profile that fits a multivariate linear regression
model well, is used to illustrate the step-by-step implementation of the proposed approach
in Sect. 5. The article is concluded with several remarks in Sect. 6.

2 The motivating example: monitoring a loading process

We use an example taken from a logistic company to illustrate the motivation for this re-
search. Everyday, the logistic company has ships from all over the world visiting its ports.
The ships either belong to the company itself or its contractors. They release their cargoes
at the ports before moving on to the next destinations. One of the job at the ports is to load
cargoes into the ports or discharge them. For this logistic company, it is better to complete
as many jobs as possible in as little time. Therefore, the quality of the discharging or load-
ing process can be characterized by two variables, the time needed to complete a job and
the amount of cargoes in a job. The two variables together represent the efficiency and the
capability of the process.

However, having only these two variables is not enough for characterizing the perfor-
mance. Further study reveals that the time needed to complete a job is influenced by other
factors. For instance, the scale of the contractor. If the contractor is of a large scale, the time
needed to complete a job is around 27.28 minutes and if the contractor is of a medium scale,
the time needed to complete a job is around 22.76 minutes. It can also be influenced by
the current workload in the ports. If the ports are too busy, the time needed is longer. The
same influences affect the other variable. That is, larger-scale contractors usually have more
cargoes while medium-scale contractors have less. Other variables, like the container size,
also affects the two process variables. From a technical point of view, it takes more time to
transport larger containers than smaller ones. While at the same time, the size of a container
reflects partially on the workload.

Therefore, the quality of the discharging or loading process depends not only on the time
needed to complete a job and the amount of cargoes in a job, but also on the relationships
between the two dependent variables and other independent variables. These relationships
are critical to the quality of the process and requires careful monitoring over time. This is a
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typical multiple or multivariate profile monitoring problem. In the remainder of this paper,
we propose an SPC scheme to monitor such a profile and give a step-by-step demonstration
of how to implement the proposed scheme in practice in a later section.

3 Methodology

We describe the proposed control chart in four parts. In Sect. 3.1, the considered multivari-
ate linear model formulation and the associated assumptions are introduced. Then, a brief
introduction to Zou and Qiu’s (2009) multivariate control chart, LEWMA, is presented in
Sect. 3.2. A new multivariate profile monitoring and diagnostic scheme using the LEWMA
chart is derived in Sect. 3.3. Its practical guidelines regarding design and computational
issues are addressed in Sect. 3.4.

3.1 Model and assumptions

Assume that for the j th (j ≥ 1) random sample collected over time, we have n obser-
vations on q responses y = (y1, . . . , yq)

T and p explanatory variables x = (x1, . . . , xp)T .
The process observations are collected from the following general multivariate linear profile
model,

Yj = Xj Bj + Ej , j = 1, . . . , τ, τ + 1, . . . , (1)

where τ is the unknown change-point, Yj = (yj1, . . . ,yjq) is an n × q matrix, Xj =
(xj1, . . . ,xjn)

T is an n × p matrix, Bj = (β1, . . . ,βq) is a p × q coefficients matrix,
Ej = (ej1, . . . , ejn)

T is the regression noise with ejk = (εjk1, . . . , εjkq)
T and e’s are inde-

pendently sampled from a distribution with (0,�j ) with the diagonal components of �j

being sj = (σ 2
j11, . . . , σ

2
jqq). It is assumed that after some unknown change-point τ , there is

a change in the coefficient matrix and/or variances of the profiles, i.e.

Bj = B(0), sj = s(0) for j ≤ τ,

Bj = B(1), sj = s(1) for j > τ,

B(0) �= B(1) and/or s(0) �= s(1). We will elaborate on this shift model in this paper because it
is of great interest in practice. The extension to the case of monitoring the entire covariance
matrices will be discussed in Sect. 6. Here we shall assume that n > p + 1 which is not a
restrictive one and can easily be satisfied in practical applications.

In what follows, for ease of exposition, the explanatory variable matrix, Xj , is assumed
to be fixed for different j (denoted as X). This is usually the case in practical calibration
applications in industrial manufacturing and is also consistent with the literatures, such as
Kim et al. (2003) and Zou et al. (2007a, 2008). For the profile monitoring with more complex
covariate designs, we refer to Qiu and Zou (2010) and Qiu et al. (2010). Without loss of
generality, here suppose that the first column of X is 1 where 1 is an n-variate vector of all
1s and the other columns are orthogonal to 1. Otherwise, we can obtain this form through
some appropriate transformations.

We mainly consider the Phase-II case in which the necessary in-control (IC) parameters
are assumed to be known as a convention in the literatures. It is essentially equivalent to
saying that the number of historical samples is sufficiently large. Once the IC models are
established as a baseline, in Phase II, we would want to detect any change in the regression
coefficients and profile variance as quickly as possible. For Phase I study, interested readers
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can refer to Noorossana et al. (2010) for multivariate multiple regression and Kazemzadeh
et al. (2008), Mahmoud (2008) and Jensen et al. (2008) for univariate linear regression.

As mentioned above, the parametric profile monitoring can be regarded as a special case
of MSPC since we usually apply the multivariate control chart to the estimated parame-
ter (coefficient and variance) vector. Since the conventional MSPC methods may fail under
a high-dimensional situation as discussed above, one may first use a dimension-reduction
method, such as principal component analysis, before process monitoring. However, these
methods usually yield some linear combinations of all original variables, making it much
more difficult to exploit the on-line abnormal structures and to interpret a signal, especially
when dimension is large or the variables are of different scales. Thus, most recent research
on MSPC focus more on directly monitoring all available data/full information instead of
skipping or reducing information. We’ll propose our method along these lines where we will
incorporate all information during on-line monitoring. Of course, it is desirable and neces-
sary to screen irrelevant and redundant predictors from original covariates before monitoring
to improve the detection and diagnosis capabilities. Recent development on variable filter-
ing and estimation in multivariate linear regression can be found in Yuan et al. (2007) and
the references therein. This is beyond the scope of this paper but should be subjects of fu-
ture research. In the remainder of this paper, we suppose that all the explanatory variables
involved in model (1) are significant in regression, that is, all the irrelevant and redundant
covariates have been removed from the model by using some appropriate methods.

3.2 A brief review of MSPC

In this subsection, we review some multivariate schemes and introduce the LEWMA chart
suggested by Zou and Qiu (2009). In MSPC, one monitors several quality characteristics of
a process. The fundamental tasks of MSPC are to determine whether a multivariate process
mean, μ, has changed; to identify when a detected shift in μ has occurred; and to isolate the
shifted components of μ. Methods for accomplishing these tasks are usually derived under
the assumption that the observed measurement vectors, xi = (x1i , . . . , xpi)

′, are Np(μ0,�)

for i = 1,2, . . . , τ , and Np(μ1,�) for i = τ + 1, . . . , n, with μ0 and � known. Throughout,
we set μ0 = 0 without loss of generality. Then, a portmanteau test for detecting a mean
shift occurring at τ is based on testing H0 : μ = 0 versus H1 : μ �= 0, using the likelihood
ratio test statistic, nx̄′�−1x̄, where x̄ = ∑n

i=1 xi/n. Based on such test statistics, several
MSPC control charts have been proposed, in the framework of CUSUM or EWMA, such
as the MCUSUM proposed by Croisier (1988) and the MEWMA proposed by Lowry et al.
(1992), etc. After a control chart signals a mean shift, a separate diagnostic procedure is
often used for identifying the shift time and the component(s) of μ that shifted. Commonly
used diagnostic procedures include the ones based on decomposition of T 2 (e.g., Mason and
Young 2002) and various step-down procedures (e.g., Sullivan et al. 2007).

Although conventional MSPC control charts with quadratic charting statistics are pow-
erful in a low-dimensional situation, their shift-detection ability would decline substan-
tially when p increases, due to the well-known “curse of dimensionality”. Regarding post-
detection diagnosis, conventional approaches (e.g., the decomposition of the T 2 procedure
and the step-down test) are theoretically sound, but they are inefficient when p is large.
For instance, the decomposition of the T 2 procedure considers p! different decompositions
of T 2, which is computationally expensive in such cases. Certain parameters in these ap-
proaches (e.g., the threshold values) affect their diagnostic ability significantly, but they are
generally difficult to determine (Sullivan et al. 2007).

Zou and Qiu (2009) proposed variable-selection-based MSPC control charts, based on
the following assumption: in a high-dimensional process, the probability that all variables
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shift simultaneously is rather low; Instead, an alarm is more likely to be caused by a hidden
source, which affects one or a small set of observable variables. They consider the penalized
likelihood function of multivariate observations based on the conventional multinormality
assumption. To be specific, Zou and Qiu (2009) integrate a LASSO test statistic into a mul-
tivariate EWMA charting scheme for on-line process monitoring, LEWMA, based on the
following adaptive LASSO (ALASSO; Zou 2006) penalized likelihood,

(Uj − μ)T �−1(Uj − μ) + γ

p∑

k=1

1

|U(k)
j | |μ

(k)|, (2)

where

Uj = λxj + (1 − λ)Uj−1, for j = 1,2, . . . , (3)

U0 = 0, λ is a weighting parameter in (0,1], and μ(k) and U(k)
j denote the kth components

of μ and Uj , respectively. The proposed charting statistic is

Qj = max
k=1,...,q

Wj,γ̃
mlast

k

− E(Wj,γ̃
mlast

k

)

√
Var(Wj,γ̃

mlast
k

)
> L, (4)

where

Wj,γ = 2 − λ

λ[1 − (1 − λ)2j ]
(UT

j �−1μ̂γ )2

μ̂T
γ �−1μ̂γ

,

and μ̂γ is the minimizer of (2) given that γ , mlast
k is the index of the last γ̃ in the sequence

of the ALASSO transition points {γ̃0, γ̃1, . . . , γ̃K} in which the corresponding active set
contains exactly k elements. The random integer K is the total number of transition points
and can be larger than p (Efron et al. 2004). This approach is easy to implement using the
LARS algorithm (cf., Efron et al. 2004). It is shown that this approach balances protection
against various shift levels and shift directions, and hence provides an effective tool for
multivariate SPC applications particularly in a high-dimensional setting. We are naturally
led to consider the LEWMA in our profile monitoring problem because there are more
process parameters involved.

3.3 Control charts for the monitoring and diagnosis of general multivariate linear profiles

Recall model (1) and the associated notation. To monitor a general multivariate linear profile
model (1), there are pq + q parameters, pq regression coefficients and q variances s, to be
controlled simultaneously. For notation convenience, we define z(k) = (VecT (B(k)), sT

(k))
T for

k = 0,1 and δ = z(1) − z(0) =: (δT
C, δT

V )T , where Vec(S) denotes the pq-dimensional vector
formed by stacking the columns of a (p × q)-dimensional matrix S, and δC and δV denote
the shift vectors for coefficients and variances, respectively.

In the MSPC problem discussed in the previous subsection, an a priori assumption is
that some components of the mean vector μ are zero. In high-dimensional cases, it is often
reasonable to assume that only a few components are non-zero, which is the so-called spar-
sity characteristic. Analogously, in the profile monitoring problem, we assume in model (1)
that only a few profile parameters in the shift vector δ are expected to be non-zero when a
shift occurs. Therefore, the penalized likelihood method, LEWMA, should have a potential
in solving the profile problem, which is investigated below.
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To motivate our final proposal, we firstly assume that the variances of profiles do not
change and the errors are multivariate normally distributed. Similar to Qiu et al. (2010), at
any time point t , we consider the following exponential weighted-2log-likelihood function
after a constant term is ignored

WL(B; t, λ) =
t∑

j=1

λ(1 − λ)t−j tr
(
(Yj − XB)�−1

(0)(Yj − XB)T
)
,

where we use the fact that under IC Vec(Yj ) ∼ Npq(Vec(B),�(0) ⊗ Ip), tr(·) stands for the
trace operator, ⊗ is the Kronecker product, Ip denotes the p × p identity matrix and λ is
a weighting parameter. From the expression of WL(B) above, we can see that this function
makes use of all available observations up to the current (i.e., the t th) profile data, and
different profiles are weighted as in a conventional EWMA chart (i.e., more recent profiles
get more weight and the weights change exponentially over time). Then, the estimator of B
at time point t , defined as the solution to B of the minimization problem minB WL(B; t, λ),
has the expression

B̃t = (XT X)−1XT Ỹt ,

Ỹt = (1 − λ)Ỹt−1 + λYt ,

or equivalently in a standard EWMA recursive form

B̃t = (1 − λ)B̃t−1 + λB̂t , (5)

where B̂t = (XT X)−1XT Yt and B̂0 = 0.
Furthermore, by taking the sparsity of δC into account, we consider the following

weighted ALASSO penalized likelihood,

AWL(B; t, λ) =
t∑

j=1

λ(1 − λ)t−j tr
(
(Yj − XB)�−1

(0)(Yj − XB)T
) + γ

pq∑

k=1

|Vec(k)(B − B0)|
|z(k)

tB | ,

where ztB = Vec(B̃t ) − Vec(B0). By using the properties of trace operator and B̂t , it is
straightforward to see that

arg min
B

AWL(B; t, λ) = arg min
B

tr
(
(XB̃t − XB)�−1

(0)(XB̃t − XB)T
)

+ γ

pq∑

k=1

|Vec(k)(B − B0)|
|z(k)

tB |
= arg min

B
[Vec(B̃t − B)]T �−1

(0) ⊗ (XT X)[Vec(B̃t − B)]

+ γ

pq∑

k=1

|Vec(k)(B − B0)|
|z(k)

tB | .

Then, this minimization can be represented in vector-form as

arg min
μ

(ztB − μ)T �−1
(0) ⊗ (XT X)(ztB − μ) + γ

pq∑

k=1

1

|z(k)
tB | |μ

(k)|. (6)
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Heuristically speaking, by noting that

Vec(B̃t ) − Vec(B0) ∼ Npq(δC,�(0) ⊗ (XT X)−1),

we can directly obtain (6) by mimicking the formula (2) with Uj being replaced by ztB .
However, the foregoing arguments provide a formal derivation of our proposed testing sta-
tistic.

Following Zou et al. (2007a), we define a working vector

ŝt = √
n − p

(
σ̂t1

σ(0)11
− 1, . . . ,

σ̂tq

σ(0)qq

− 1

)T

,

where

σ̂ 2
t i = (yt i − Xβ̂ t i )

T (yt i − Xβ̂ t i )/(n − p),

β̂ t i is the ith column of B̂t and σ 2
(0)11 is the ith diagonal element of �(0). Then we could

construct an EWMA sequence for ŝt as

ztV = (1 − λ)zt−1V + λ̂st ,

and rewrite ztB and ztV into one vector together, say zt = (zT
tB, zT

tV )T . When the process is
in-control, the vector zt is asymptotically multivariate normally distributed with mean 0 and
covariance matrix λ�/(2 − λ), where

� = diag{�(0) ⊗ (XT X)−1,�q}.
The asymptotic expression of �q is given in the Appendix.

Thus, we can generalize formula (6) by taking the variances of profiles into account as
follows,

(zt − μ)T �−1(zt − μ) + γ

pq+q∑

k=1

1

|z(k)
t | |μ

(k)|, (7)

where we still use the notation μ here which should not cause any confusion. This is exactly
a LASSO-type penalized likelihood function. Following Zou and Qiu (2009), for each zt ,
we suggest computing q LASSO estimators μ̂t,γk

, for k = 1,2, . . . , q , from the penalized
likelihood function (7) and obtain the corresponding q regression-adjustment-type testing
statistics

Wt,γk
= 2 − λ

λ

(zT
t �−1μ̂t,γk

)2

μ̂T
t,γk

�−1μ̂t,γk

, k = 1, . . . , q,

and μ̂t,γk
is the minimizer of (6) given γ = γk , γk is the index of the last penalty parameter in

the sequence of the ALASSO transition points {γ0, γ1, . . . , γK} in which the corresponding
active set contains exactly k elements. If we have prior information indicating potential
shifts in r components, we could use Wt,γr as the charting statistic which has been shown
to have certain optimal properties in detecting such shift patterns (Zou and Qiu 2009). Of
course, in practice, r is rarely known in advance. Similar to Zou and Qiu (2009), we suggest
combining all these testing statistics into one charting statistic by taking the maximum of
their standardizations, that is,

Qt = max
k=1,...,q

Wt,γk
− E(Wt,γk

)
√

Var(Wt,γk
)

, (8)
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and the proposed chart signals if Qt > L where L > 0 is a control limit chosen to achieve
a given IC average run length (ARL). Regarding q , if prior information indicating potential
shifts in at most r components, with 1 ≤ r ≤ p, then our numerical studies show that using
q = r +1 or q = r +2 provides satisfactory performance in practice. When prior information
is unavailable, numerical results (Sect. 4) show that the LEWMA chart with q = p performs
reasonably well in all cases considered there.

In the practice of quality control, in addition to being able to detect a process change
quickly, it is also critical to identify which parameter(s) have shifted after an out-of-control
(OC) signal occurs. A diagnostic aid to isolate the type of parameter change will help an
engineer to identify and eliminate the root cause of a problem in a timely manner. After the
LEWMA chart gives an OC signal at the t th observation, the LASSO methodology can be
used to specify the shifted parameters, by choosing one of the LASSO estimators with a
model selection criterion (e.g., Cp , GCV, AIC, or BIC). Namely, we can find μ̂γ ∗ so that

γ ∗ = arg min
γ

2 − λ

λ
(zt − μ̂γ )′�−1(zt − μ̂γ ) + η · d̂f(μ̂γ ), (9)

where μ̂γ is the minimizer of (6) given γ and d̂f(μ̂γ ) is the number of nonzero coefficients
in μ̂γ . Here η is a parameter indicating which model selection criterion is used, such as
η = 2 for AIC-type and η = log(n) for BIC-type criteria. The choice of η will be carefully
examined and certain guidelines will be offered in Sect. 3.4. Since some components of μ̂γ ∗
would be exactly zero, we can simply take its nonzero components as the shifted compo-
nents, without making any extra tests that are necessary in most existing diagnostic methods,
such as in the decomposition of T 2 method or in the step-down method. It is convenient to
use and is fast in computation as well because the LASSO estimators from zt have been
computed in the monitoring process. By generalizing the proof of Theorem 3 in Zou et al.
(2007), we can obtain results in the following proposition without much difficulty, which
greatly facilities the searching procedure.

Proposition 1 μ̂γ ∗ is one of μ̂γ1
, . . . , μ̂γK

, where μ̂γi
s are the ALASSO solutions to (7) at

the transition points.

With this proposition, we can obtain the diagnostic result easily and quickly after the
LEWMA chart triggers a signal. This diagnostic tool will provide a reasonable and efficient
alternative to the existing fault isolation method in the literature, such as Sullivan et al.
(2007).

3.4 Design and implementation of the proposed schemes

On implementation In calculating the charting statistic Qt in (8), quantities E(Wj,γk
) and

Var(Wj,γk
) are usually unknown. By the central limit theorem, it can be easily verified that

when the process is IC, zt is asymptotically distributed as a multivariate normal distribution
with mean zero and covariance matrix λ�/(2 − λ), if n → ∞ or λ → 0. As a consequence,
the following result suggests replacing them by their approximations.

Proposition 2 When the process is IC, the distribution of Wt,γk
is asymptotically equiva-

lent to that of the corresponding statistic by replacing the zt with a multivariate normal
observation with mean zero and covariance matrix �, as n → ∞ or λ → 0.
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By Proposition 2, E(Wt,γk
) and Var(Wj,γk

) are asymptotically free of λ and t , and thus
they can respectively be approximated by the empirical expectation and variance of Wj,γk

computed from simulated multivariate normal measurement vectors with mean zero and
covariance matrix �. Since this is a one-time computation before the Phase II online process
monitoring, it is convenient to accomplish.

On choosing the smoothing weight, λ As demonstrated by Stoumbos and Sullivan (2002),
the MEWMA chart should be more appealing than multivariate nonparametric schemes be-
cause MEWMA charts can be quite robust in the sense that the IC run length distribution for
a continuous non-normal process is quite close to the distribution of a multivariate normal
process with the same control limit if the weighting parameter, λ, is small. This is still valid
for the LEWMA chart. With a large number of observations and a small smoothing parame-
ter, the central limit theorem would ensure that the accumulation vector has approximately
a multinormal distribution, which ensures robustness (c.f., Proposition 2). In fact, some pre-
liminary evidence can be found in Zou and Qiu (2009). Specifically, in the present profile
monitoring problem, the sample size n is always quite large in practice, which in turn will
further alleviate the problem of degraded statistical performance due to the non-normality
(c.f., Montgomery 2005). Our numerical results show that LEWMA’s superiority still holds
under various non-normal multivariate distribution assumptions.

Of course, similar to MEWMA, in the LEWMA chart, λ should be chosen to balance
the robustness to non-normality and the detection ability to various shift magnitudes (c.f.,
Stoumbos and Sullivan 2002). In general, a smaller λ leads to a quicker detection of smaller
shifts (c.f., e.g., Lucas and Saccucci 1990). When λ is too small, the corresponding pro-
cedure would not be sensitive to relatively large shifts. Based on our simulation results,
we suggest choosing λ ∈ [0.03,0.08], which is a reasonable choice in practice, and using
λ ∈ [0.005,0.025] when prior information indicates that the underlying distribution is very
skewed.

On the control limits and computation For a given λ, � and a desired IC ARL, computa-
tion involved in finding L is not difficult, partly due to the fact that the LARS algorithm used
in LASSO computation is efficient. In the searching procedure, some numerical searching
algorithms, such as the bisection search, can be applied (cf., e.g., Qiu 2008). For instance,
when IC ARL = 500 and pq + q = 15, it requires about 15 minutes to complete the bisec-
tion searching procedure based on 10,000 simulations, using a Pentium-M 2.4 MHz CPU.
Fortran code for implementing the proposed procedure is available from the authors upon
request.

On post-signal diagnosis In using the diagnostic procedure (9), we need to specify the
parameter η. In the literature, it is well demonstrated that AIC (identically Cp) tends to
select the model with the optimal predication performance, while BIC tends to identify the
true sparse model well if the true model is included in the candidate set (cf., e.g., Wang
et al. 2007). As we want to identify the special cause of the OC condition, the sparsity
of μ∗ is our primary concern and consequently the BIC criterion may be more relevant.
However, as argued by Zou and Qiu (2009), unlike the fixed sample case, in the current
SPC problem, we usually do not have a large sample (relative to the shift magnitude) to
implement the diagnostic procedure, because the whole point of SPC is to detect the shift
(and hence stop the process) as quickly as possible. Based on extensive simulations, we find
that the conventional BIC criterion does not perform well in certain cases. Instead, using the
recommendation in Zou and Qiu (2009), the risk inflation criterion (RIC) which is proposed
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by George and Foster (1994) based on the minimax principle, in which η = 2 ln(pq + q),
the diagnostic procedure (9) would perform reasonably well in most cases. The simulation
results can be found in Sect. 4.

To end this subsection, we summarize the detailed steps for implementing the proposed
method as follows.

Step 1. Collect the reference data and calibrate IC parameters according to the model (1).
Step 2. Obtain E(Wt,γk

) and Var(Wt,γk
) by simulation.

Step 3. Choose the desired IC ARL and the smoothing constant, λ. Determine the control
limit, L, based on p, q , IC ARL and λ.

Step 4. Start monitoring the process and obtain profile observations sequentially. Whenever
obtaining a new profile sample, use the LARS procedure and compute Wt,γk

. Conse-
quently, compute the plot statistic, Qt , in (8) and compare it with control limit.

Step 5. Then, use (9) to identify the shifted parameters.
Step 6. After correctly identifying the out-of-control parameters and fixing the problem, we

will then go back to Step 3 to re-start the monitoring procedure.

4 Numerical performance comparison

We present some simulation results in this section regarding the numerical performance of
the proposed LEWMA chart for Phase II analysis. It is challenging to compare the proposed
method with alternative methods, since there is no obvious comparable method in the lit-
erature. Here, we consider the control chart based on the generalization of the MEWMA
chart proposed by Zou et al. (2007) to multivariate profiles as an alternative method. By
this approach, a signal is trigged when zT

t �−1zt exceeds the control limit. The combination
of three charts proposed by Kim et al. (2003) is not involved because Zou et al. (2007a)
has shown that the combination chart has similar performance to MEWMA for the sim-
ple linear model but is not directly applicable to more complex models, such as multiple
regression models and multivariate profiles. Control limits of the MEWMA chart are deter-
mined by Markov chain method given in Zou et al. (2007a) to attain the nominal IC ARL
under the standard normal error distribution, while the control limits used for LEWMA are
found by the simulation method mentioned in Sect. 3.4. Since the zero-state and steady-
state ARL (SSARL) comparison results are similar, only the OC SSARLs are provided. To
evaluate the OC SSARL behavior of each chart, any series in which a signal occurs before
the (τ + 1)th observation is discarded (c.f., Hawkins and Olwell 1998). Because a similar
conclusion holds for other cases, here we only present the results when IC ARL = 500,
λ = 0.05 and τ = 50 for illustration. All the ARL results in this section are obtained from
10,000 replications.

The number and variety of covariance matrices and shift directions are too large to al-
low a comprehensive, all-encompassing comparison. Our goal is to show the effectiveness,
robustness and sensitivity of the LEWMA chart, and thus we only choose certain represen-
tative models for illustration. For this purpose, we consider the following profile model,

yij = β1k + β2kxi1 + β3kxi2 + β4kx
2
i1 + εij , i = 1, . . . , n, k = 1, . . . , q (10)

where the design points xi are generated from uniform distribution by centering so that their
means are zero. we fix n = 25 and q = 3. Without loss of generality, we set

(β1k, β2k, β3k, β4k) = (0,1,2,3),
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Table 1 ARL comparisons of MEWMA and LEWMA for model (10) when there is one shifted parameter.
The nominal IC ARL = 500 and λ = 0.05

Shift
δ

β11 + δ Shift
δ

β21 + δ

MEWMA LEWMA MEWMA LEWMA

0.05 162 (1.43) 135 (1.18) 0.05 404 (3.96) 387 (3.79)

0.10 48.4 (0.31) 37.5 (0.22) 0.10 286 (2.74) 253 (2.38)

0.20 16.8 (0.07) 13.5 (0.05) 0.20 114 (0.96) 88.1 (0.70)

0.40 7.23 (0.02) 6.06 (0.02) 0.40 33.9 (0.19) 25.7 (0.13)

0.60 4.74 (0.01) 4.03 (0.01) 0.60 18.4 (0.08) 14.5 (0.06)

0.80 3.59 (0.01) 3.09 (0.01) 0.80 12.5 (0.05) 10.2 (0.05)

1.00 2.93 (0.01) 2.54 (0.01) 1.00 9.65 (0.03) 7.90 (0.04)

1.50 2.08 (0.01) 1.85 (0.01) 1.50 6.16 (0.02) 5.12 (0.03)

2.00 1.71 (0.01) 1.48 (0.005) 2.00 4.60 (0.01) 3.85 (0.01)

Shift
δ

β41 + δ Shift
δ

δ · σ(0)11

MEWMA LEWMA MEWMA LEWMA

0.05 411 (4.07) 404 (3.94) 1.05 110 (0.85) 92.1 (0.71)

0.10 311 (3.05) 294 (2.84) 1.10 35.1 (0.18) 28.4 (0.15)

0.20 136 (1.20) 113 (0.95) 1.20 13.8 (0.05) 10.6 (0.04)

0.40 40.0 (0.24) 31.4 (0.16) 1.40 6.15 (0.02) 4.61 (0.01)

0.60 21.3 (0.10) 17.1 (0.07) 1.60 3.93 (0.01) 2.94 (0.01)

0.80 14.4 (0.06) 11.7 (0.05) 1.80 2.89 (0.01) 2.18 (0.01)

1.00 10.9 (0.04) 9.01 (0.03) 2.00 2.28 (0.01) 1.75 (0.01)

1.50 6.91 (0.02) 5.79 (0.02) 2.50 1.52 (0.005) 1.17 (0.004)

2.00 5.11 (0.01) 4.32 (0.01) 3.00 1.12 (0.003) 1.02 (0.002)

NOTE: Standard errors are in parentheses

for all k under IC model. This scenario, containing both multiple and polynomial regression
terms, is quite common in practical applications. In the interest of brevity, the covariance
matrix �(0) = (σ(0)ij ) is chosen to be σ(0)ii = 1 and σ(0)ij = 0.5|i−j |, for i, j = 1,2, . . . , q .

The OC ARLs of the LEWMA and MEWMA charts for detecting shifts in coefficients
β11, β21, β41 and variance σ 2

11 are presented in Table 1. It can be seen that the proposed
LEWMA is almost uniformly superior to its alternative MEWMA in detecting any magni-
tude of shifts in all the cases considered in this table. Simultaneous shifts in two parameters
in model (10) are considered in Table 2. The superiority of LEWMA to its counterpart holds
when there are two shifted parameters simultaneously in both cases where the shifts come
from one profile (β21 and β41) and two profiles (β21 and β32). In both tables, λ is fixed at
0.05 for both charts. To diminish the possible effect of λ on the performance of the two
charts, we also compute the optimal OC ARLs with respect to λ (i.e., the smallest OC ARLs
when λ changes) in the cases considered in Tables 1–2. The results are not reported here but
available from the authors. They are slightly better than those in Tables 1–2, as expected;
but, the conclusions made from Tables 1–2 are also valid.

We now evaluate the performance of the proposed diagnostic procedure (9). Simulation
results in the same chosen representative settings of Tables 1 and 2 are tabulated in Table 3.
In this table, the columns labelled “C” present relative frequencies of when the diagnostic
procedures identified shifted parameters correctly, the columns labelled “U” present relative
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Table 2 ARL comparisons of MEWMA and LEWMA for model (10) when there is two shifted parameter.
The nominal IC ARL = 500 and λ = 0.05

Shifts β21 + δ1 and β41 + δ2 β21 + δ1 and β32 + δ2

δ1 δ2 MEWMA LEWMA MEWMA LEWMA

0.100 0.100 207 (1.96) 195 (1.78) 197 (1.81) 182 (1.67)

0.100 0.200 108 (0.89) 95.3 (0.77) 94.7 (0.75) 80.7 (0.62)

0.100 0.400 37.4 (0.22) 30.3 (0.17) 32.0 (0.17) 26.0 (0.13)

0.100 0.600 20.7 (0.09) 16.9 (0.07) 18.1 (0.07) 14.7 (0.06)

0.200 0.100 97.8 (0.80) 82.4 (0.65) 96.0 (0.78) 81.4 (0.63)

0.200 0.200 67.2 (0.49) 59.6 (0.42) 62.8 (0.44) 55.6 (0.38)

0.200 0.400 32.2 (0.17) 27.6 (0.14) 28.3 (0.14) 24.4 (0.12)

0.200 0.600 19.4 (0.08) 16.4 (0.07) 17.2 (0.07) 14.4 (0.05)

0.400 0.100 33.5 (0.18) 26.1 (0.13) 33.5 (0.18) 26.2 (0.13)

0.400 0.200 29.6 (0.15) 24.6 (0.12) 29.2 (0.15) 24.5 (0.12)

0.400 0.400 21.5 (0.09) 19.4 (0.08) 20.2 (0.08) 18.3 (0.07)

0.400 0.600 15.8 (0.06) 14.2 (0.05) 14.5 (0.05) 13.0 (0.05)

0.600 0.100 18.6 (0.07) 14.9 (0.06) 18.6 (0.07) 14.9 (0.06)

0.600 0.200 17.7 (0.07) 14.5 (0.06) 17.6 (0.07) 14.6 (0.06)

0.600 0.400 15.1 (0.06) 13.3 (0.05) 14.8 (0.05) 13.2 (0.05)

0.600 0.600 12.6 (0.04) 11.4 (0.04) 11.8 (0.04) 10.9 (0.03)

NOTE: Standard errors are in parentheses

Table 3 Diagnostic results of the proposed procedure (9) for model (10) in various shifted cases. The nomi-
nal IC ARL = 500 and λ = 0.05

Shifts β11 + δ β31 + δ

C U O I C U O I

δ = 0.20 0.538 0.000 0.422 0.041 0.293 0.000 0.218 0.489

δ = 0.60 0.595 0.000 0.391 0.015 0.439 0.000 0.174 0.386

δ = 1.00 0.627 0.000 0.363 0.010 0.452 0.000 0.179 0.369

δ = 2.00 0.684 0.000 0.311 0.005 0.466 0.000 0.179 0.355

Shifts β21 + δ1 and β41 + δ2 β21 + δ1 and β32 + δ2

C U O I C U O I

δ1 = 0.40; δ2 = 0.40 0.240 0.243 0.132 0.385 0.265 0.207 0.139 0.388

δ1 = 0.40; δ2 = 0.60 0.282 0.232 0.146 0.341 0.278 0.233 0.146 0.344

δ1 = 0.60; δ2 = 0.40 0.193 0.317 0.094 0.396 0.219 0.278 0.103 0.399

δ1 = 0.60; δ2 = 0.60 0.272 0.218 0.145 0.365 0.288 0.196 0.160 0.356

NOTE: The SE of the rate (π ) in each entry,
√

π̂(1 − π̂)/10000, is typically less than 0.01

frequencies of when some shifted parameters are missed while all identified parameters are
indeed OC parameters, the columns labelled “O” denote relative frequencies of when all
shifted parameters are identified while some un-shifted parameters are also identified, and
the columns labelled “I” denote relative frequencies of when at least one shifted parameter
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is missed and at least one identified shifted parameter is false. So, for a given diagnostic pro-
cedure, it performs better in a given case if its value in column “C” is comparatively larger
and its value in column “I” is comparatively smaller. The results show that the proposed
LASSO-based approach has reasonable diagnostic ability to identify shifted parameters in
all the considered situations. After taking into account its computational advantage, we think
that the LASSO-based approach provides a satisfactory diagnosis tool for multivariate pro-
file diagnosis.

5 An illustration of the implementation steps: the loading process profile monitoring
case revisited

In this section, we use the data from the logistic company example to illustrate the imple-
mentation steps. Two dependent variables are under consideration, y1, the daily job fre-
quency in the company’s ports and y2, the daily average time length to complete a job. The
first dependent variable reflects the workload of the ports while the second reflects the effi-
ciency. Five independent variables are used to explain variations in the dependent variables:
x1 is the daily loading amount of cargoes in the ports, x2 is the daily discharging amount,
x3 is a dummy variable indicating whether the cargoes belong to the logistic company it-
self or not, x4 is a dummy variable indicating whether the cargoes belong to a large-scale
contractor or not, and x5 is a dummy variable indicating whether the cargoes belong to a
medium-scale contractor or not. Standard linear regression graphic analysis (Cook 1998)
shows that a multivariate multiple regression model is sufficient to capture the relationships
between y’s and x’s.

Here we collect about six months worth of data (the dataset is available from the authors
upon request). We choose the first three months profile observations as the historical sam-
ple and the others for test. A calibration sample of this size may be smaller than ideal to
determine fully the in-control model but it suffices to illustrate the use of the method in a
real-world setting. By using the standard outlier detection method in linear regression analy-
sis (Rousseuw and Leroy 1987), we removed a few influential outlying observations from
the dataset and then obtained the following estimated IC model based on the LSE,

yi1 = −81.38 + 0.25xi1 + 0.26xi2 + 21.47xi3 + 98.19xi4 + 24.69xi5 + εi1,

yi2 = 5.60 + 0.77xi1 − 0.86xi2 + 26.82xi3 + 22.32xi4 + 15.90xi5 + εi2,

where �(0) = ( 2.33 1.86
1.86 2.45

)
. This covariance matrix shows that the correlation between the two

profiles is significant and therefore, using control charts that take this correlation into ac-
count should be more appropriate in this example than monitoring each profile individually.

We now apply the LEWMA chart to the remaining profiles of the dataset. In the LEWMA
chart, we set λ = 0.05, and IC ARL = 500. By simulation, we can obtain the approximated

E(Wj,γk
) = (3.96,5.86,7.44,8.78,9.92,10.90,11.72,

12.40,12.94,13.36,13.66,13.87,13.96,14.00),

Var1/2(Wj,γk
) = (2.26,3.00,3.49,3.86,4.17,4.43,4.64,

4.82,4.97,5.09,5.17,5.23,5.27,5.28).

Then, its control limit is computed as L = 4.281. Figure 1 shows the resulting LEWMA
chart (solid curve connecting the dots), along with its control limit (solid horizontal line).
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Fig. 1 The LEWMA control chart for monitoring the logistic loading process. The solid horizontal line
indicates its control limit

The LEWMA chart signals at the 17th profile and remains above the control limits in the
remainder of the sequence. Then, we use the proposed diagnostic procedure (9) to identify
the shifted parameters and the corresponding values of 2−λ

λ
(z17 − μ̂γj

)′�−1(z17 − μ̂γj
) +

2 ln(14)·j are calculated. μ̂γ ∗ has twelve zero components but (μ̂
(8)

γ ∗ , μ̂
(10)

γ ∗ ) = (0.44,−2.35).
These values indicate that the shift may have occurred in the relationships between y2 and
x2 and that of y2 and x4 as well.

6 Concluding remarks

In practical applications, general multivariate linear profile monitoring is particularly use-
ful due to its simplicity and flexibility. However, in such situations, the existing paramet-
ric profile monitoring methods suffer from a drawback in that when the profile parameter
dimension is large, the detection ability of the procedures commonly used T 2-type chart-
ing statistics is likely to decline substantially. Moreover, it is also challenging to identify
which parameter(s) have changed after an alarm is signaled in this high-dimensional case.
Hence, there is a strong need for designing an efficient SPC scheme for multivariate profile
monitoring and diagnosis. This paper develops a new methodology for monitoring gen-
eral multivariate linear profiles, including the regression coefficients and profile variation.
After examining the link between the parametric profile monitoring and multivariate sta-
tistical process control, we propose to apply a variable-selection-based multivariate control
scheme, which was proposed by Zou and Qiu (2009), to the transformations of estimated
profile parameters. Our proposed control chart is capable of determining the shift direction
automatically based on observed profile data. Thus, it offers a balanced protection against
various profile shifts. As a by-product, the proposed control chart provides an easy to use
but quite effective diagnostic aid. A real-data example from manufacturing shows that it
performs quite well in applications.

As we can expect, the performance of LEWMA is affected by the amount of data in
the reference dataset. Thus, determination of the required Phase I sample sizes to remove
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the effects of estimated parameters and a general recommendation are needed. An ongoing
effort of the authors is to develop a self-starting version of LEWMA that can handle se-
quential monitoring by simultaneously updating parameter estimates and checking for OC
conditions and to compare it with the self-starting scheme designed under the normality
assumption proposed by Zou et al. (2007b). Moreover, in the high-dimensional profile mon-
itoring, monitoring all the components of the covariance matrix of the profile may be of
practical interest. In fact, this may be handled by constructing a [q(q + 3)/2]-dimensional
working vector Vec(�̂j ) and defining the corresponding ztV .
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Appendix: The asymptotic covariance matrix of ŝt , �q , under in-control situation

As we know, the components of ŝt + √
n − p are proportional to the square-roots of the

diagonal elements of the fitted residual covariance matrix (Yt − XB̂t )
T (Yt − XB̂t ) which is

distributed as the Wishart distribution W(�(0), n − p). Thus, by Anderson (2003, Chap. 7),
we have

Cov(
√

n − p · σ̂ti ,
√

n − p · σ̂tj ) ≈ σ 4
(0)ij

σ(0)iiσ(0)jj

,

where σ 2
(0)ij is the (i, j)th element of �(0).

References

Anderson, T. W. (2003). An introduction of multivariate statistical analysis (3rd ed.). New York: Wiley.
Chicken, E., Pignatiello, J. J. Jr., & Simpson, J. (2009). Statistical process monitoring of nonlinear profiles

using wavelets. Journal of Quality Technology, 41, 198–212.
Cook, R. D. (1998). Regression graphics: ideas for studying regressions through graphics. New York: Wiley.
Croisier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technomet-

rics, 30, 243–251.
Ding, Y., Zeng, L., & Zhou, S. (2006). Phase I analysis for monitoring nonlinear profiles in manufacturing

processes. Journal of Quality Technology, 38, 199–216.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics,

32, 407–489.
George, E. I., & Foster, D. P. (1994). The risk inflation criterion for multiple regression. The Annals of

Statistics, 22, 1947–1975.
Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics,

33, 61–75.
Hawkins, D. M., & Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement. New

York: Springer.
Jensen, W. A., Birch, J. B., & Woodall, W. H. (2008). Monitoring correlation within linear profiles using

mixed models. Journal of Quality Technology, 40, 167–183.
Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of

Quality Technology, 32, 418–426.
Kazemzadeh, R. B., Noorossana, R., & Amiri, A. (2008). Phase I monitoring of polynomial profiles. Com-

munications in Statistics: Theory and Methods, 37, 1671–1686.
Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality

Technology, 35, 317–328.



Ann Oper Res (2012) 192:3–19 19

Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). Multivariate exponentially weighted
moving average control chart. Technometrics, 34, 46–53.

Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control scheme properties
and enhancements. Technometrics, 32, 1–29.

Mahmoud, M. A. (2008). Phase I analysis of multiple linear regression profiles. Communications in Statistics:
Simulation and Computation, 37, 2106–2130.

Mahmoud, M. A., & Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications.
Technometrics, 46, 380–391.

Mason, R. L., & Young, J. C. (2002). Multivariate statistical process control with industrial application.
Philadelphia: SIAM.

Montgomery, D. C. (2005). Introduction to statistical quality control (6th ed.). New York: Wiley.
Noorossana, R., Eyvazian, M., Amiri, A., & Mahmoud, M. A. (2010). Statistical monitoring of multivari-

ate multiple linear regression profiles in Phase I with calibration application. Quality and Reliability
Engineering International, 291–303.

Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions,
40, 664–677.

Qiu, P., & Zou, C. (2010). Control chart for monitoring nonparametric profiles with arbitrary design. Statistica
Sinica, 1655–1682.

Qiu, P., Zou, C., & Wang, Z. (2010). Nonparametric profile monitoring by mixed effects modeling (with
discussions). Technometrics, 52, 265–277.

Rousseuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.
Stoumbos, Z. G., & Sullivan, J. H. (2002). Robustness to non-normality of the multivariate EWMA control

chart. Journal of Quality Technology, 34, 260–276.
Sullivan, J. H., Stoumbos, Z. G., Mason, R. L., & Young, J. C. (2007). Step-down analysis for changes in the

covariance matrix and other parameters. Journal of Quality Technology, 39, 66–84.
Tibshirani, R. J. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical

Society: Series B, 58, 267–288.
Wang, H., Li, R., & Tsai, C. L. (2007). On the consistency of SCAD tuning parameter selector. Biometrika,

94, 553–568.
Williams, J. D., Woodall, W. H., & Birch, J. B. (2007). Statistical monitoring of nonlinear product and process

quality profiles. Quality and Reliability Engineering International, 23, 925–941.
Woodall, W. H. (2007). Current research on profile monitoring. Revista Producão, 17, 420–425.
Woodall, W. H., Spitzner, D. J., Montgomery, D. C., & Gupta, S. (2004). Using control charts to monitor

process and product quality profiles. Journal of Quality Technology, 36, 309–320.
Yuan, M., Ekici, A., Lu, Z., & Monteiro, R. (2007). Dimension reduction and coefficient estimation in multi-

variate linear regression. Journal of the Royal Statistical Society, Series B, 69, 329–346.
Zou, C., & Qiu, P. (2009). Multivariate statistical process control using LASSO. Journal of the American

Statistical Association, 104, 1586–1596.
Zou, C., Zhang, Y., & Wang, Z. (2006). Control chart based on change-point model for monitoring linear

profiles. IIE Transactions, 38, 1093–1103.
Zou, C., Tsung, F., & Wang, Z. (2007a). Monitoring general linear profiles using multivariate EWMA

schemes. Technometrics, 49, 395–408.
Zou, C., Zhou, C., Wang, Z., & Tsung, F. (2007b). A self-starting control chart for linear profiles. Journal of

Quality Technology, 39, 364–375.
Zou, C., Tsung, F., & Wang, Z. (2008). Monitoring profiles based on nonparametric regression methods.

Technometrics, 50, 512–526.
Zou, C., Qiu, P., & Hawkins, D. (2009). Nonparametric control chart for monitoring profiles using the change

point formulation. Statistica Sinica, 19, 1337–1357.
Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Statistical Associa-

tion, 101, 1418–1429.
Zou, H., Hastie, T., & Tibshirani, R. (2007). On the ‘degrees of freedom’ of LASSO. The Annals of Statistics,

35, 2173–2192.


	LASSO-based multivariate linear profile monitoring
	Abstract
	Introduction
	The motivating example: monitoring a loading process
	Methodology
	Model and assumptions
	A brief review of MSPC
	Control charts for the monitoring and diagnosis of general multivariate linear profiles
	Design and implementation of the proposed schemes
	On implementation
	On choosing the smoothing weight, lambda
	On the control limits and computation
	On post-signal diagnosis


	Numerical performance comparison
	An illustration of the implementation steps: the loading process profile monitoring case revisited
	Concluding remarks
	Acknowledgements
	Appendix: The asymptotic covariance matrix of st, Gammaq, under in-control situation
	References


