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Abstract The stochastic nature of emergency service requests and the unavailability of
emergency vehicles when requested to serve demands are critical issues in constructing
valid models representing real life emergency medical service (EMS) systems. We consider
an EMS system design problem with stochastic demand and locate the emergency response
facilities and vehicles in order to ensure target levels of coverage, which are quantified using
risk measures on random unmet demand. The target service levels for each demand site and
also for the entire service area are specified. In order to increase the possibility of represent-
ing a wider range of risk preferences we develop two types of stochastic optimization mod-
els involving alternate risk measures. The first type of the model includes integrated chance
constraints (ICCs), whereas the second type incorporates ICCs and a stochastic dominance
constraint. We develop solution methods for the proposed single-stage stochastic optimiza-
tion problems and present extensive numerical results demonstrating their computational
effectiveness.

Keywords Stochastic programming · Random demand · Risk constraints · Integrated
chance constraints · Stochastic dominance · Emergency system · Facility location ·
Ambulance allocation · Equity

1 Introduction

Determining the optimal location of emergency vehicles is a significant problem in design-
ing EMS systems and has received considerable attention in the literature (Brotcorne et al.
2003; Marianov and ReVelle 1995). A key point in effective emergency response is the
prompt availability of emergency vehicles at response facilities. The service area of an EMS
system is often modeled by defining a network consisting of a set of geographical nodes,
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where each node represents a source of requests for response (emergency) vehicles it may
also denote a candidate facility site.

We consider an EMS system design problem of locating the response facilities (ambu-
lance stations) and determining the number of vehicles (ambulances) to allocate to each
facility. In real life situations, the future emergency service requests from demand sites are
not known with certainty. Furthermore, due to the various constraints, such as budget or
capacity, pre-allocated emergency vehicles may not be sufficient to cover all demand in the
service area within an acceptable time. Since unmet demands in emergency situations may
result in loss of life, it is critical to design systems that guarantee reasonable levels of cov-
erage for potential users. Hence, the demand uncertainty must be addressed effectively in
designing EMS systems.

Stochastic programming is one of the fundamental approaches that can be used to model
decision problems in the presence of uncertainty. Here, we model the uncertainty in demand
for the emergency vehicles. In particular, we represent the uncertain demands by random
variables and use a scenario approach to characterize the randomness and model risk, which
can be broadly defined as the effect of variability of random demand. We describe two types
of new stochastic programming formulations that determine the optimal location and allo-
cation decisions minimizing the total cost while meeting the target service levels. The level
of service is measured by keeping the unmet demand values below some prescribed target
values, guaranteeing a high level of coverage. We specify an individual target service level
for each demand node and a target service level for the entire geographical area (system-
wide coverage). Defining only a system-wide target service level may result in a lower level
of coverage at one demand site and a higher level of coverage at another site, hence lead-
ing to inequitable solutions. Providing equal access to users is an important issue in EMS
system design (Felder and Brinkmann 2002). However, there is no agrement on what is
fair in an EMS system and how to measure the equity. For instance, Felder and Brinkmann
(2002) discuss the conflicts between the equal access policy guaranteeing a nationwide uni-
form response time and the policy aiming to provide equal per-capita resources in EMS
systems. Felder and Brinkmann (2002) suggest that every person should not be given equal
access to emergency service irrespective of locations. For further discussion on equity in
locating facilities, we refer to Marsh and Schilling (1994). In this study, the way we define
the individual target service levels may be regarded as an alternative approach to model
the coverage equity. We consider an equal access policy which guarantees a system-wide
uniform response time and also guarantee equal service at each demand site based on the
proportion of the unmet demand. This implies that our models consider the level of demand
as a criterion and allocate more vehicles to higher-demand areas than lower-demand areas,
but in terms of proportionality different areas would get equal service. To the best of our
knowledge, there does not exist an EMS design model like ours considering simultaneously
individual target service levels and a system-wide service level.

Stochastic programming formulations using probabilistic constraints, also called chance
constraints, are widely applied in stochastic EMS design models. These models usually con-
sider the probability of having an available vehicle within a standard acceptable distance as
the performance measure. However, Erkut et al. (2008b) argue in detail that this probabilistic
performance measure is not consistent with the performance measures used by most EMS
operators in practice. A common performance measure is the fraction of calls covered whose
response time is below a specified threshold. Discussions by Erkut et al. (2008b) indicate
the significance of the models based on the expected coverage performance measures. Fol-
lowing this line of thought, we propose to use alternate risk measures based on the expected
unmet demand; and therefore, our proposed risk measures may potentially be better aligned
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with the performance measures employed by EMS operators in practice. The major con-
tribution of our study is the use of integrated chance constraints and stochastic dominance
constraints as alternatives to probabilistic constraints in EMS system design problems.

Probabilistic constraints are commonly used; however, it is well known that they pose
great computational difficulties. Therefore, in general we can only solve small to moderate
size problems involving probabilistic constraints. In this study, we show that switching to
alternate risk constraints and developing corresponding solution methods we obtain compu-
tationally tractable models for a larger set of scenarios compared to the existing literature.
Handling a larger set of scenarios is significant in modeling uncertainties of real life. In
our first type of stochastic optimization model, the target service levels are defined using
integrated chance constraints. Note that probabilistic constraints measure the probabilities
of violating the coverage constraints, irrespective of how violated the constraints are. In
other words, the probabilistic constraints do not take the magnitude of the unmet demand
into account. As an alternative, ICCs are based on the magnitude of violation in coverage
constraints. ICCs were introduced by Klein Haneveld (1986) and have only been used in
finance applications so far. The use of ICCs in EMS design is novel. In our second type of
model, the individual target service level for each demand node is defined using an ICC on
the random unmet demand, whereas the system-wide service level is defined using a sec-
ond order stochastic dominance (SSD) constraint introduced by Dentcheva and Ruszczyński
(2003). The stochastic dominance relation allows us to obtain location and allocation deci-
sions for which the random total unmet demand dominates a benchmark (reference) random
total unmet demand. Such a reference outcome may be defined based on an EMS standard
or a potential/candidate solution. In either case, there is a reference random outcome and
the model involving stochastic dominance constraints constructs a decision vector for which
the associated random outcome is better than the reference with respect to the specified
dominance criterion. We propose to define the reference outcome based on a common EMS
performance standard which imposes a lower bound on the fraction of calls whose response
time is below a threshold. By proposing two models we increase the possibility of repre-
senting a wider range of risk preferences. In many applications, where the distribution of a
random outcome is of significant interest and it is possible to define a reasonable reference
random outcome, we recommend the decision makers to use the model involving stochastic
dominance constraints.

The literature review is presented in Sect. 2. In Sect. 3, we describe the underlying deter-
ministic problem for the proposed stochastic programming models. In Sect. 4, we describe
the general framework, which incorporates the risk constraints into the single- and two-stage
stochastic optimization models. After discussing the computational challenge of the two-
stage formulations, we restrict our attention to the single-stage formulations for the remain-
der of the paper. In Sect. 5, we first introduce a mixed integer linear programming (MILP)
formulation for the single-stage stochastic EMS system design model with ICCs and then
develop an associated computationally effective alternate formulation. In Sect. 6, a single-
stage stochastic optimization problem involving ICCs and an SSD constraint, more precisely
an “increasing convex order” constraint, is presented. We also describe effective and prac-
tical methods to solve this problem. We present numerical results in Sect. 7 to demonstrate
the computational effectiveness of the developed solution methods and illustrate how input
parameters and risk measures affect the optimal location and allocation decisions. In Sect. 7,
we also discuss the computational study performed to compare the proposed models with a
closely related existing model. Finally, in Sect. 8 we conclude and discuss further research
directions.
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2 Literature review

The problem of determining the optimal locations of emergency vehicles has been quite
popular in the MS/OR literature. For extensive reviews on emergency vehicle location and
allocation models we refer to Brotcorne et al. (2003), Marianov and ReVelle (1995), and
Goldberg (2004). EMS design problems are closely related to the facility location prob-
lems. The readers should consult the book by Daskin (1995) and the references therein
for a detailed discussion on facility location theory. The models we propose in this study
are stochastic versions of the capacitated facility location problem. Our aim is not to pro-
vide an extensive review; but to briefly discuss some selected relevant papers on modeling
the uncertainty in location problems. Comprehensive reviews on facility location under un-
certainty can be found in Berman and Krass (2001), Louveaux (1993), Owen and Daskin
(1998), and Snyder (2006). One of the first probabilistic models for locating emergency ve-
hicles, known as the maximum expected covering location model (MECLM), is proposed by
Daskin (1983). MECLM accounts for the potential unavailability of ambulances and max-
imizes the expected demand coverage for a given number of facilities to be located on the
network under the assumption that each ambulance has the same probability of being un-
available to serve a call. As a generalization of the maximum covering model, ReVelle and
Hogan (1989) propose chance constrained stochastic models which maximize the demand
covered with a given probability value. There is also a rich literature on emergency vehicle
location models focusing on randomness in response times (e.g., see Ingolfsson et al. 2008;
Erkut et al. 2008a). After this brief review of stochastic location models in general, we next
focus on stochastic versions of the classical capacitated fixed charge facility location prob-
lem (CFLP) which are particularly related to our study.

Research focusing on the stochastic CFLP includes Louveaux (1986), Ball and Lin
(1993), Beraldi et al. (2004) and Beraldi and Bruni (2009). Louveaux (1986) presents a
stochastic version of the CFLP in which the expected utility of profit is maximized while
considering a penalty for unmet demand. Ball and Lin (1993), Beraldi et al. (2004) and
Beraldi and Bruni (2009) assume that the main uncertainty is due to the stochastic call ar-
rival process, and they propose stochastic programming formulations under probabilistic
constraints. Prékopa (1995) discusses in detail the probabilistic optimization theory and the
associated numerical techniques. Ball and Lin (1993) incorporate a probabilistic constraint
for each demand site to ensure that the probability of unavailability of a vehicle to serve
a request from the demand site within an acceptable time is less than a certain value. On
the other hand, Beraldi et al. (2004) and Beraldi and Bruni (2009) incorporate probabilistic
constraints to ensure that all requests are served with a prescribed high probability. Since
Beraldi et al. (2004) and Beraldi and Bruni (2009) directly focus on the randomness in de-
mand satisfaction rather than the randomness in the availability of vehicles, these studies
are more closely related to our study than Ball and Lin (1993) and we would like to discuss
our contribution relative to these studies. Beraldi and Bruni (2009) introduce a two-stage
stochastic programming problem, where the second stage decision variables are associated
with scenarios to represent the assignment of vehicles to demand nodes under each scenario.
In this study, we do not consider scenario dependent vehicle assignment decisions and only
focus on locating the response facilities and determining the number of vehicles to allo-
cate to each facility. Thus, we mainly focus on single-stage stochastic programming models
similar to Beraldi et al. (2004). Moreover, Beraldi and Bruni (2009) do not allow splittable
demand, i.e., the demand at each node must be served by exactly one facility under each
scenario. Therefore, our paper has more commonalities with Beraldi et al. (2004) and we
performed a computational study to compare our results to those that would be obtained by
using probabilistic constraints as in Beraldi et al. (2004).
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Some previous studies like Daskin (1983) and Revelle and Hogan (1989) assume that
the service providers operate independently. Although calls for service may arrive indepen-
dently, the assumption of independence among service providers may not be justified and
relaxing this independence assumption is crucial to handle the spatial dependencies of de-
mand sites (e.g., see Batta et al. 1989). We model the random demands using the scenario
approach and relax the assumptions that the service providers operate independently and
the demand sites are independent. Beraldi et al. (2004) assume that the demand distribu-
tions at each node are given and random demands are independent. Under the assumption
of independent demands they reformulate the problem involving probabilistic constraints
and solve it using the CPLEX solver. Without this independence assumption it is hard to
solve such a problem and the reformulation presented in Beraldi et al. (2004) is not valid
for a given set of scenarios characterizing the joint demand. Therefore, a different reformu-
lation is required to incorporate the probabilistic constraints when a scenario approach is
used to model risk. These discussions support the potential contribution of the proposed risk
constraints alternate to probabilistic constraints.

In general, one cannot claim that one risk measure is better than others. Depending on
the decision maker’s risk preference, either probabilistic constraint, or ICCs, or stochastic
dominance constraints may be employed. However, our motivation to propose risk con-
straints alternate to probabilistic constraints in EMS system design models is based on the
arguments by Erkut et al. (2008b). Apart from this, the computational difficulties inherent
in probabilistic constraints further motivate our research. The risk measures we propose
to model different types of risk preferences, lead to computationally tractable single-stage
models and allow us to handle a larger set of scenarios for improving the validity of the
models.

3 The underlying deterministic model

In this section we present our assumptions and notation, and describe the underlying deter-
ministic model for the stochastic programming models that are presented in the following
sections. Then, we discuss how to incorporate stochastic demand into the model.

We say that a candidate facility can cover a demand node if the distance between them is
less than or equal to an acceptable value, which is known as the coverage distance threshold
and can be determined according to a response time standard.

Inputs

I : finite set of demand sites (nodes);
J : finite set of candidate facility sites, where response facilities can be located;

dij : traveling distance between demand node i and candidate facility node j, i ∈ I, j ∈ J ;
Tc: coverage distance threshold;
Mj = {i ∈ I | dij ≤ Tc}: set of demand nodes that can be covered by a facility located at

node j , j ∈ J ;
Ni = {j ∈ J | dij ≤ Tc}: set of candidate facility nodes within acceptable distance of node i,

i ∈ I ;
fj : (hourly) fixed cost of opening a facility at node j, j ∈ J ;
a: (hourly) cost of purchasing and maintaining an emergency vehicle;
β: cost of shipping per unit distance per unit demand;

cij : cost of shipping a unit demand from a facility at node j to node i (notice that cij =
βdij ), i ∈ I, j ∈ J ;
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Uj : maximum number of vehicles that can be assigned to a facility located at node j, j ∈ J ;
hi : number of service requests (demand) generated at node i, i ∈ I, during a specified

amount of time.

Decision variables

yj =
{

1 if a facility is located at node j ∈ J,

0 otherwise.
xij = Number of vehicles located at facility site j ∈ J due to demand at node i ∈ I.

We remark that we do not explicitly model how an available response vehicle is assigned
to an emergency call, i.e., we do not consider any particular dispatching rule. The alloca-
tion variable xij is interpreted as the number of vehicles located at facility site j due to
the demand at node i. However, these vehicles are not dedicated to node i in real life dis-
patching problems. In other words,

∑
i∈Mj

xij only represents the total number of vehicles
allocated to node j and these vehicles are not reserved to serve specific demand nodes. For
the determined facility locations and the number of vehicles allocated to each facility, ex-
isting methods may be utilized to find practical solutions for dispatching and reallocating
vehicles.

We consider service requests at each demand site during a certain amount of time. The
length of this time period is chosen as a reasonable time required for a service trip, which we
define as the total time required for an emergency vehicle to return to the original location
before responding to another service request. Similar to other studies in this area, such as
Beraldi et al. (2004) and Beraldi and Bruni (2009) we consider hourly demand.

For our stochastic programming problems, we have the following underlying determin-
istic problem:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij (1)

subject to:
∑
j∈Ni

xij ≥ hi, ∀i ∈ I, (2)

∑
i∈Mj

xij ≤ Ujyj , ∀j ∈ J, (3)

xij ∈ Z+, ∀i ∈ I, j ∈ J, (4)

yj ∈ {0,1}, ∀j ∈ J. (5)

This is similar to the well known mathematical programming formulation of the capaci-
tated fixed charge facility location problem with splittable demands. The objective function
(1) minimizes the sum of the variable transportation costs, the fixed setup cost for opening
the facilities and the total cost of purchasing and maintaining vehicles. Different than the
traditional CFLP, we also incorporate the total ambulance cost which is obtained by mul-
tiplying the total number of ambulances by the unit cost a. In ambulance service, 24-hour
availability is required and therefore, it has relatively high fixed costs associated with equip-
ment and staffing. However, the variable costs based on distances are significant in allocating
vehicles since the closest available vehicle is usually dispatched to an emergency call. Each
demand node i has a total request of hi vehicles, and coverage constraints (2) ensure that all
of the demand at each node must be served by one or more open facilities. Constraints (3) are
capacity constraints, which guarantee that the amount of vehicles allocated to each facility



Ann Oper Res (2010) 181: 559–589 565

site j ∈ J is less than or equal to the maximum number of vehicles that can be assigned to
facility node j . Constraints (4) and (5) are the integrality and nonnegativity constraints. We
denote the cardinality of a set A by |A|. Notice that xij = 0 for j /∈ Ni, i ∈ I, and therefore,
the dimension of the decision vector x reduces to

∑
i∈I |Ni |.

In practice, as we determine the values of the allocation vector x and the location vector y,
the actual values of hi, i ∈ I, are not known; they will become known in the future. In
this paper, we consider models where the demand parameters, hi, i ∈ I, are not constants
but random variables denoted by hi(ω), i ∈ I . This implies that coverage constraints (2)
are stochastic. In the following Sects. 4, 5 and 6, we develop mathematical programming
formulations, which involve risk measures to model the uncertainty in demand using the
scenario approach.

4 General framework with risk constraints

We model risk, which can be broadly defined as the effect of variability of random service
requests, by specifying constraints on random unmet demands. The underlying idea of the
models we consider is to allow infeasibilities in the stochastic version of the coverage con-
straints (2), while specifying restricting constraints on the amount of their violations. We
assume that we are given a discrete set of scenarios, a set of realizations of joint service
requests at the demand nodes, and their associated probabilities. Let S denote the finite set
of (global) scenarios, ps denote the probability associated with scenario s, s ∈ S, and hs

i

denote the realization of demand at node i under scenario s, i ∈ I, s ∈ S. It is worthwhile to
point out that using scenarios allows the demand values to be dependent.

The general formulation of the proposed single-stage stochastic EMS design optimiza-
tion models reads:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij (6)

subject to: risk constraints on the violation of

⎛
⎝∑

j∈Ni

xij ≥ hi(ω), ∀i ∈ I

⎞
⎠ , (7)

∑
i∈Mj

xij ≤ Ujyj , ∀j ∈ J, (8)

xij ∈ Z+, ∀i ∈ I, j ∈ J, (9)

yj ∈ {0,1}, ∀j ∈ J. (10)

As an alternative approach, we can define a decision variable xij associated with each
scenario, denoted by xs

ij , s ∈ S, and determine how to assign the vehicles to demand nodes
under each scenario. Basically, xs

ij , i ∈ I, j ∈ J, s ∈ S, are the second-stage decisions,
which depend on the realized values of the random demands, and we can state that they are
the realizations of the random decision variables xij (ω), i ∈ I, j ∈ J . Then the traditional
two-stage stochastic programming formulation of the EMS design problem, presented in
Sect. 3, is given by

min
∑
j∈J

fjyj +
∑
j∈J

aυj + E[Q(y, υ,h(ω))] (11)
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subject to: υj ≤ Ujyj , ∀j ∈ J, (12)

yj ∈ {0,1}, ∀j ∈ J, (13)

υj ∈ Z+, ∀j ∈ J, (14)

where υj denotes the number of vehicles allocated to facility node j, j ∈ J . For the realiza-
tion of the random demand vector h(ω) under scenario s, s ∈ S, the second-stage problem
is given by

Q(y, υ,hs) = min
∑
i∈I

∑
j∈J

cij x
s
ij (15)

subject to:
∑
j∈Ni

xs
ij ≥ hs

i , ∀i ∈ I, (16)

∑
i∈Mj

xs
ij ≤ υj , ∀j ∈ J, (17)

xs
ij ∈ Z+, ∀i ∈ I, j ∈ J. (18)

Unlike the traditional two-stage stochastic programming, in our proposed approach we
allow constraints (16) to be violated and we impose risk constraints on the solvability of
the second-stage problem. Then the two-stage version of the proposed general formulation
(6)–(10) becomes

min
∑
j∈J

fjyj +
∑
j∈J

aυj +
∑
s∈S

∑
i∈I,j∈J

pscij x
s
ij (19)

subject to: risk constraints on the violation of

⎛
⎝∑

j∈Ni

xij (ω) ≥ hi(ω), ∀i ∈ I

⎞
⎠ , (20)

∑
i∈Mj

xs
ij ≤ υj , ∀j ∈ J, s ∈ S, (21)

υj ≤ Ujyj , ∀j ∈ J, (22)

yj ∈ {0,1}, ∀j ∈ J, (23)

υj ∈ Z+, ∀j ∈ J, (24)

xs
ij ∈ Z+, ∀i ∈ I, j ∈ J, s ∈ S. (25)

It is easy to see that υj = maxs∈S

∑
i∈Mj

xs
ij for all j ∈ J .

Introducing risk constraints on the solvability of the second-stage problem has been
first proposed by Prékopa (1973). Mainly probabilistic constraints are considered in such
a framework (e.g., see Prékopa 1973; Noyan and Prékopa 2006; Beraldi and Bruni 2009). In
Sects. 5 and 6, we develop single-stage stochastic programming formulations, which incor-
porate alternate risk measures to specify the risk constraints on the random unmet demands.
The risk constraints proposed for the single-stage formulations directly apply to their two-
stage counterparts (20) if the variables xij are replaced by their scenario-dependent versions
xs

ij , s ∈ S. Although we do not explicitly state these two-stage formulations, we note that
introducing such alternate risk measures on the solvability of the second-stage problem is a
valuable contribution in its own right.
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The single-stage formulations are based on the simplifying assumption that allocations do
not depend on scenarios. Basically, the risk constraints in the single-stage formulations are
safe approximations of those in the two-stage formulations. In other words, the two-stage
formulations would find solutions with lower total costs with respect to their associated
single-stage formulations under flexible allocations. However, a single-stage formulation
would be the right choice in a setting where the capacity allocation needs to be specified for
each demand node a priori, i.e., if xij is pre-allocated for demand node i. The ideal modeling
choice clearly depends on the problem context. The downside of the two-stage formulations
is the computational challenge of solving them optimally due to their size. Therefore, we
choose to dedicate our study to the single-stage models because the main focus of this pa-
per is to introduce alternate risk measures in stochastic EMS design models and deal with
large problem instances. In this study, we do not focus on the assignment decisions under
each scenario and define the variables xij only to represent the inter-facility resource alloca-
tion. The proposed single-stage stochastic programming models provide us with xij , i ∈ I ,
j ∈ J, values that are large enough to guarantee the satisfaction of demand with prescribed
service levels, regardless of the realization of (actual value taken by) demand. Due to the
safe approximation, policies obtained by such models are more conservative and lead to
higher total costs. In Sect. 7.2, we present some illustrative numerical results to give some
insights about the relative increase in the total cost due to the simplifying assumption that
allocations are pre-determined.

Beraldi and Bruni (2009) consider a two-stage formulation involving a joint probabilistic
constraint for a simpler version of the EMS design problem, where the demands are not
splittable. According to their numerical results, it is even hard to solve their proposed two-
stage stochastic formulation for instances with |I | = 100, |J | = 50, |S| = 40. Our proposed
alternate risk measures avoid some of the computational difficulties inherent in probabilis-
tic constraints, but it is still hard to solve the two-stage versions of the our models for a
moderate number of scenarios, e.g., |S| = 200. In the following Sects. 5 and 6, we show
that the proposed stochastic programming models can be reformulated as MILP problems.
Preliminary results show that even solving the LP-relaxation of the linearized formulation
of (19)–(25) is hard for large problem instances due to the number of assignment decisions
(|S| ∗ ∑

i∈I |Ni |). In this study, we are mainly interested in identifying policies for a large
set of scenarios and therefore, we restrict our attention to the single-stage formulations. As
a part of our ongoing research, we focus on developing methods to solve the two-stage ver-
sions of the proposed models for moderate size problems. The rest of the paper is dedicated
to the single-stage stochastic programming models.

5 An integrated chance constrained EMS system design model

In Sect. 5.1, we discuss the integrated chance constraints, and then in Sect. 5.2 we introduce
the integrated chance constrained EMS system design problem. Finally, in Sect. 5.3 we
develop an equivalent alternate formulation, which leads to a significant reduction in the
number of variables and provides us with an effective solution method.

5.1 Integrated chance constraints

In connection with the stochastic constraints there are several measures of violation that can
be incorporated into an optimization model. One way of measuring such violations is via
probabilistic constraints. Integrated chance constraints (ICCs) are introduced by Klein Han-
eveld (1986) as alternate to probabilistic constraints. Integrated chance constraints can be
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considered as relaxations of probabilistic constraints. Therefore, ICCs can be used to obtain
convex approximations of the generally non-convex feasible sets defined by probabilistic
constraints.

We model the risk by specifying constraints on random unmet demands and the random
total unmet demand. Let ei : Z+|I |×|J | ×S → R, i ∈ I, be the outcome mappings. For a given
allocation vector x ∈ Z+|I |×|J | let us define the mapping e(x,i) : S → R by e(x,i)(s) = ei(x, s)

for all i ∈ I, s ∈ S. Also let [η]+ = max(0, η) and [η]− = max(0,−η) for η ∈ R. We denote
the random unmet demand at node i by e(x,i), i ∈ I , and the random total unmet demand
(for the network) by ξx, where

e(x,i)(s) =
⎡
⎣hs

i −
∑
j∈Ni

xij

⎤
⎦

+
, s ∈ S, (26)

and

ξ(x)(s) =
∑
i∈I

e(x,i)(s) =
∑
i∈I

⎡
⎣hs

i −
∑
j∈Ni

xij

⎤
⎦

+
, s ∈ S. (27)

Using the definition of Klein Haneveld (1986) we have the ICCs on random unmet de-
mands as follows:

E

([
hi(ω) −

∑
j∈Ni

xij

]
+

)
≤ qi, i ∈ I, (28)

where E stands for the expected value operator and qi, i ∈ I, are nonnegative risk aversion
parameters representing the largest acceptable expected unmet demand values. The con-
straints of type (28) guarantee that for all demand nodes the average magnitude of unmet
demand is less than or equal to the maximum acceptable risk aversion parameters. For ex-
ample, one can set qi = γiE[hi(ω)], where γi is another type of risk aversion parameter
and this would mean that at most a fraction γi of the expected demand be unmet. Here as
proposed by Klein Haneveld and Van Der Vlerk (2006), we construct alternative individ-
ual ICCs by choosing the risk parameters dependent on the distributions of random unmet
demands instead of specifying the maximum acceptable risk parameters as fixed numbers
qi, i ∈ I . These alternative ICCs are

E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ αiE

⎛
⎝

∣∣∣∣∣∣ hi(ω) −
∑
j∈Ni

xij

∣∣∣∣∣∣
⎞
⎠ , i ∈ I, (29)

where αi ∈ [0,1/2] is a risk aversion parameter associated with demand site i, i ∈ I , spec-
ified by decision makers according to their risk preferences. Let us denote the expected
value of the random demand hi(ω) by h̄i . We note that for the risk parameters αi = 1/2,
i ∈ I, the ICCs (29) take the form of the coverage constraints, where the random variables
are replaced by their expected values:

∑
j∈Ni

xij ≥ h̄i , i ∈ I.

Therefore, it is only meaningful to consider αi ∈ [
0,1/2

]
, i ∈ I . Otherwise, we would

obtain solutions for which the unmet demand values would be even higher than those as-
sociated with the solutions constructed by using a naive approach based on the expected
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demand values. Since [w]+ + [w]− = |w| and [w]− = [w]+ − w for w ∈ R, the alternative
ICCs (29) are equivalently represented by

(1 − 2αi)E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ αi

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , i ∈ I. (30)

Similarly, the ICC on the random total unmet demand defined in (27) is given by

(1 − 2δ)E

⎛
⎝∑

i∈I

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ δ

⎛
⎝∑

i∈I

∑
j∈Ni

xij −
∑
i∈I

h̄i

⎞
⎠ , (31)

where δ ∈ [
0,1/2

]
is a risk aversion parameter associated with the total unmet demand.

These constraints would allow the decision makers to evaluate different location and
allocation decisions based on the tradeoff between the quality of service and costs by varying
the risk parameters.

5.2 The optimization problem with integrated chance constraints

Replacing coverage constraints (2) in the underlying deterministic problem by ICCs (30)
and (31) leads to the following stochastic programming problem:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij (32)

subject to: (1 − 2αi)E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ αi

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , ∀i ∈ I, (33)

(1 − 2δ)
∑
i∈I

E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ δ

⎛
⎝∑

i∈I

∑
j∈Ni

xij −
∑
i∈I

h̄i

⎞
⎠ , (34)

(x,y) ∈ Q, (35)

where αi ∈ [
0,1/2

]
, i ∈ I, and δ ∈ [

0,1/2
]

are prescribed risk aversion parameters, and
Q = {(x ∈ Z+|I |×|J |,y ∈ {0,1}|J |) : ∑

i∈Mj
xij ≤ Ujyj , ∀j ∈ J }. Basically, we specify the

risk constraints in (7) by ICCs (30) and (31). We refer to this problem as the integrated
chance constrained EMS system design problem (ICCsP).

We set αi, i ∈ I, values to be equal for providing fair service to each demand site in terms
of the proportion of the unmet demand. For the rest of the paper we let αi = α, i ∈ I . The
ICCs (33) defined for individual demand nodes are referred to as local constraints and the
constraint (34) defined for the system-wide service level is referred to as a global constraint.
We chose the risk parameters, δ < α < 0.5, so that both types of constraints drive the system.
This model is significant since it allows us to control simultaneously the target levels for
individual demand nodes and the entire network.

The optimization problem (32)–(35) can be represented by an MILP formulation by cre-
ating an |S| × |I | matrix of new variables representing the excess demand values. Recall
that the excess value of demand realization hs

i , s ∈ S, with respect to the total number of
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vehicles that are allocated due to the demand at node i ∈ I is represented by e(x,i)(s) defined
in (26). Then, we obtain the following deterministic equivalent formulation of ICCsP:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij (36)

subject to: (1 − 2α)
∑
s∈S

ps ê(x,i)(s) ≤ α

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , ∀i ∈ I, (37)

(1 − 2δ)
∑
i∈I

∑
s∈S

ps ê(x,i)(s) ≤ δ

⎛
⎝∑

i∈I

∑
j∈Ni

xij −
∑
i∈I

h̄i

⎞
⎠ , (38)

ê(x,i)(s) ≥ hs
i −

∑
j∈Ni

xij , ∀s ∈ S, i ∈ I, (39)

ê(x,i)(s) ≥ 0, ∀s ∈ S, i ∈ I, (40)

(x,y) ∈ Q, (41)

where decision variables ê(x,i)(s), s ∈ S, i ∈ I, represent the excess values of demand real-
izations. We refer to this problem as DirectICCsP. The following observation is required
to argue that we obtain the optimal solution even if we use variable ê(x,i)(s) instead of
ê(x,i)(s), s ∈ S, i ∈ I .

Observation 1 For every feasible solution (x,y, ê(x,i)(s), s ∈ S, i ∈ I ) of (37)–(41) we
have ê(x,i)(s) ≥ e(x,i)(s), i ∈ I, and the solution (x,y, e(x,i)(s), s ∈ S, i ∈ I ) is also feasible
for (37)–(41).

One may solve this MILP formulation directly using a standard mixed integer program-
ming solver such as CPLEX. However, in case of large instances it would be difficult for
such a solver to provide an optimal solution. In the following section, we describe an alter-
native equivalent formulation for DirectICCsP in order to reduce the number of variables
and develop an effective method to solve our original problem ICCsP.

5.3 An alternate formulation based on local demand distributions

A scenario represents a realization of joint service requests at the demand nodes. Notice
that the same demand realization for a node can be observed under multiple scenarios, and
therefore, the number of different demand realizations for each node would be significantly
smaller than the number of global scenarios, |S|. For a given set of scenarios we can eas-
ily find the different demand realizations and the associated probabilities for each node.
Basically, we decompose the global scenarios into local scenarios, and we denote the set
of different demand realizations for node i by S̃i , i ∈ I . Let p̃i(m) denote the probabil-
ity that the realized value of the demand at node i is equal to m, m ∈ S̃i , i ∈ I , and then
p̃i(m) = ∑

s∈S{ps : hs
i = m} for all i ∈ I, m ∈ S̃i . Then, the expected value of the random

unmet demand at node i ∈ I is rewritten as follows:

E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ =

∑
s∈S

ps

⎡
⎣hs

i −
∑
j∈Ni

xij

⎤
⎦

+
=

∑
m∈S̃i

p̃i (m)

⎡
⎣m −

∑
j∈Ni

xij

⎤
⎦

+
.
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Introducing

τ(x,i)(m) =
⎡
⎣m −

∑
j∈Ni

xij

⎤
⎦

+
, i ∈ I, m ∈ S̃i ,

the alternate deterministic equivalent formulation of ICCsP becomes

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij , (42)

subject to: (1 − 2α)
∑
m∈S̃i

p̃i (m)τ̂(x,i)(m) ≤ α

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , ∀i ∈ I, (43)

(1 − 2δ)
∑
i∈I

∑
m∈S̃i

p̃i (m)τ̂(x,i)(m) ≤ δ

⎛
⎝∑

i∈I

∑
j∈Ni

xij −
∑
i∈I

h̄i

⎞
⎠ , (44)

τ̂(x,i)(m) ≥ m −
∑
j∈Ni

xij , ∀i ∈ I, m ∈ S̃i , (45)

τ̂(x,i)(m) ≥ 0, ∀i ∈ I, m ∈ S̃i , (46)

(x,y) ∈ Q, (47)

where decision variables τ̂(x,i)(m), i ∈ I, m ∈ S̃i , are introduced to represent the excess
values of demand realizations. We refer to this problem as the alternative integrated chance
constrained EMS system design problem (AlterICCsP). This alternate formulation creates
only

∑
i∈I |S̃i | new variables instead of |S||I |. Thus, it leads to a significant reduction in the

number of variables and provides us with an effective solution method. For example, in our
computational studies for a problem instance where |I | = |J | = 400 and |S| = 50,000 we
have maxi∈I |S̃i | = 9 and

∑
i∈I |S̃i | = 2471, whereas |S||I | = 400 ∗ 50,000 = 20,000,000.

In the next section, we describe another model involving a different type of constraint
on the system-wide service level, which is based on a common EMS performance crite-
rion which imposes a lower bound on the fraction of calls whose response time is below a
threshold (see Erkut et al. 2008a).

6 The stochastic dominance based EMS system design model

In Sect. 6.1, we discuss the SSD and increasing convex order (ICX) constraints. Then, in
Sect. 6.2 we describe the ICX-based EMS system design problem and develop an equivalent
alternate formulation. Since it is hard to solve the proposed problem with ICX constraints,
we develop a heuristic procedure in Sect. 6.3. Finally, in Sect. 6.4 we describe how to utilize
an EMS performance standard to generate the reference distribution of the total random
unmet demand, which is required to apply the stochastic dominance based approach.

6.1 Stochastic dominance constraints

Comparing uncertain outcomes is one of the fundamental interests of decision theory. In
many applications where the distribution of a random outcome is of significant interest,
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a single ICC may not be sufficient to model risk preferences. We may introduce many in-
dividual ICCs, which is closely related to the concept of SSD. The relation of stochastic
dominance is one of the fundamental concepts of statistics and decision theory (Mann and
Whitney 1947; Lehmann 1955). The concept of stochastic dominance introduces a preorder
in the space of real random variables.1 It has been widely used in economics and finance
(e.g., see Hadar and Russell 1969; Levy 1992). We refer to Müller and Stoyan (2002) for a
modern perspective on stochastic dominance relations. The SSD relation has been receiving
significant attention due its correspondence with the risk-averse preferences. When larger
values of random outcomes are preferred, we define the SSD relation based on the expected
shortfall values as follows:

Definition 1 For two integrable random variables X and Y , X dominates Y in the second
order, which we denote by X �(2) Y , if

E([η − X]+) ≤ E([η − Y ]+) for all η ∈ R. (48)

The SSD relation corresponds to the “increasing convex order” rule which assumes the
preference of smaller values to larger values. Thus, the increasing convex order relation can
be used while comparing the random outcomes with the preference of smaller values and its
definition is closely related to the one given above:

Definition 2 For two integrable random variables X and Y , X dominates (is stochastically
smaller than) Y in “increasing convex order”, which we denote by X 	icx Y , if

E([X − η]+) ≤ E([Y − η]+) for all η ∈ R. (49)

In this study we focus on the random unmet demands, and therefore, we use the increasing
convex order relation to compare random outcomes. However, note that equivalent formu-
lations can be obtained by considering the random served demand (covered calls) and using
the SSD relation. For the rest of paper, we focus on the ICX relation. Definition 2 fea-
turing the expected excess values of the random variables is intuitive; preferring smaller
realizations of a random outcome implies preferring smaller expected excess values with
respect to some threshold values. Suppose that Y has a discrete distribution with realiza-
tions yk, k = 1, . . . ,D, then the inequalities (49) are equivalent to (see Dentcheva and
Ruszczyński 2003):

E([X − yk]+) ≤ E([Y − yk]+), k = 1, . . . ,D. (50)

Stochastic dominance relations can be involved in optimization problems as constraints,
allowing us to obtain solutions for which the random outcomes of interest dominate some
benchmark (reference) random outcomes. Recently, there has been significant interest in
such stochastic optimization models. They have been introduced and analyzed by Dentcheva
and Ruszczyński (2003, 2006).

In this paper, we propose to introduce an ICX constraint into EMS system design models.
In particular, we introduce a new type of EMS system design optimization model involving

1A preorder is a relation that is reflexive and transitive, but not necessarily antisymmetric and each preorder
induces an equivalence relation between elements.
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local ICCs on random unmet demands and a single ICX constraint on the random total un-
met demand. The ICX constraint allows us to construct location and allocation decisions
for which the random total unmet demand dominates a reference random total unmet de-
mand. In this study, we define the reference outcome based on a common EMS performance
standard which is to respond to at least ρ ∗ 100% of all calls within r1 minutes. Therefore,
our model with the ICX constraint constructs solutions consistent with this common EMS
performance standard. By proposing the second type of stochastic optimization model, we
intend to provide a useful analytical tool for the EMS decision makers who are more inter-
ested in the distribution of the random outcome and would like to obtain a decision vector
dominating a potential one under consideration.

6.2 The optimization problem with increasing convex order constraints

Consider our problem of designing an EMS system in which the decision vector x affects
random unmet demands, e(x,i), i ∈ I, defined by (26). In order to find the best feasible deci-
sion vector x, we compare the corresponding random unmet demands according to a pref-
erence relation. Here, we specify the preference relation among random variables based on
ICCs (33) and the increasing convex order relation. Let Y be a random variable representing
a benchmark random total unmet demand. We develop the following stochastic optimization
model involving ICCs and an ICX constraint:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij ,

subject to: (1 − 2α)E

⎛
⎝

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ ≤ α

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , ∀i ∈ I, (51)

ξ(x) 	icx Y, (52)

(x,y) ∈ Q. (53)

We refer to this problem as the ICX-based EMS system design problem (ICXP).
Note that, equivalently, one can consider the SSD relation for the random total served

demand instead of the ICX relation for the random total unmet demand. First, observe that
the random total served demand is equal to

∑
i∈I

min

⎛
⎝hi(ω),

∑
j∈Ni

xij

⎞
⎠ =

∑
i∈I

⎛
⎝hi(ω) −

⎡
⎣hi(ω) −

∑
j∈Ni

xij

⎤
⎦

+

⎞
⎠ =

∑
i∈I

hi(ω) − ξ(x).

Then by Definitions 1 and 2, it is easy to see that

∑
i∈I

hi(ω) − ξ(x) �(2)

∑
i∈I

hi(ω) − Y ⇔ ξ(x) 	icx Y.

Thus, an equivalent formulation of ICXP based on an SSD constraint can be obtained by
replacing ξ(x) 	icx Y by −ξ(x) �(2) −Y .

Suppose that the reference random outcome Y has a discrete distribution with realizations
y1 < y2 < · · · < yD . Then, by the use of (50) the ICX relation (52) is equivalent to

E([ξ(x) − yk]+) ≤ E([Y − yk]+), k = 1, . . . ,D. (54)
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We would like to point out that the set of inequalities (54) can be viewed as finitely many
ICCs of type (28). In order to solve problem ICXP effectively we propose to use the set of
linear inequalities introduced by Luedtke (2008) for the SSD relation, where larger realiza-
tions of an uncertain outcome are preferred. We adapt this set of inequalities to the case of
reverse preference, since the smaller values of the total unmet demand are preferred.

Theorem 1 (A representation of the ICX relation) Suppose that X is a random variable
and the realization of X under scenario s is denoted by zs, s ∈ S. Furthermore, let Y be a
discrete distribution with the realizations yk, k = 1, . . . ,D, and vk, k = 1, . . . ,D, denote
the associated probabilities. Then, X 	icx Y if and only if there exists π ∈ R

|S|D
+ such that

zs ≤
D∑

k=1

ykπsk, ∀s ∈ S, (55)

D∑
k=1

πsk = 1, ∀s ∈ S, (56)

∑
s∈S

D∑
j=k

(yj − yk)πsj ≤
D∑

j=k

vj (yj − yk), k = 1, . . . ,D. (57)

In our study, zs is the realization of the total unmet demand under scenario s, i.e., zs =
ξ(x)(s) = ∑

i∈I e(x,i)(s). Here, we cannot utilize the local demand distributions as we did for
ICCsP, since we additionally consider the total unmet demand, and thus, the global scenarios
cannot be decomposed. Then, using the variables representing the excess demand values we
obtain an MILP formulation of ICXP referred to as AlterICXP:

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij

subject to: (1 − 2α)
∑
s∈S

ps ê(x,i)(s) ≤ α

⎛
⎝∑

j∈Ni

xij − h̄i

⎞
⎠ , ∀i ∈ I, (58)

(39)−(40), (59)

∑
i∈I

ê(x,i)(s) ≤
D∑

k=1

ykπsk, ∀s ∈ S, (60)

(56)−(57), (61)

πsk ≥ 0, ∀s ∈ S, k = 1, . . . ,D, (62)

(x,y) ∈ Q. (63)

This formulation creates |S| ∗ D new variables and O(S + D) constraints in order to repre-
sent the ICX relation (52) by linear inequalities. To improve the computational effectiveness
we propose to rewrite ICCs (58) using a binary search algorithm. Notice that ICCs (51) are
local constraints, each of which independently imposes a lower bound on the total number
of vehicles to be allocated in order to ensure the individual target service levels. It is easy to
see that these constraints depend monotonically on the number of vehicles allocated to cover
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demand at each node, i.e., if
∑

j∈Ni
xij = k satisfies the ICC associated with node i, then for

any number of vehicles greater than k the same constraint is satisfied. Due to this special
structure of the local constraints, we implement a binary search algorithm for each demand
node in order to find the minimum number of vehicles needed to reach the individual target
service levels. We denote these lower bounds on the number of vehicles allocated due to the
demand at each node by LB ICC

i , i ∈ I . Finally, the proposed formulation for ICXP, which
we refer to as AlterICXPWithBS, is given by

min
∑
i∈I

∑
j∈J

cij xij +
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

axij

subject to:
∑
j∈Ni

xij ≥ LB ICC
i , ∀i ∈ I,

(59)−(63).

6.3 Heuristic algorithm

In our numerical study, we could solve moderately large problem instances using the pro-
posed formulation AlterICXPWithBS. However, solving AlterICXPWithBS requires sub-
stantially more effort as the number of potential sites and the number of scenarios increase
due to the variables introduced to represent the ICX relation. Hence, we propose a mathe-
matical programming based heuristic procedure, HICXP, that yields a feasible solution with
a small optimality gap within a reasonable computation time. Intuitively, we have a two
step problem. First, we need to find an estimate for the optimal number of vehicles required
to satisfy the target service levels, which is accomplished by solving the LP relaxation of

Algorithm 1 Heuristic algorithm HICXP for ICXP
1: Initialize the iteration number, l = 0.
2: Solve the LP relaxation of AlterICXPWithBS to obtain the optimal solution (xLP ,yLP ).
3: Assign the total number of vehicles allocated due to node i, hl

i ,∀i ∈ I :

hl
i =

{�∑j∈Ni
xLP

ij �, if 
∑j∈Ni
xLP

ij � − ∑
j∈Ni

xLP
ij > 0.5,


∑j∈Ni
xLP

ij �, otherwise.

4: if ICX constraints (54) are not satisfied for
∑

j∈Ni
xij = hl

i , i ∈ I , then
5: Find the set I ∗ = {i ∈ I : (
∑j∈Ni

xLP
ij � − hl

i) > 0}.
6: end if
7: while ICX constraints (54) are not satisfied for

∑
j∈Ni

xij = hl
i , i ∈ I , do {Iteratively

increase the number of vehicles allocated}
8: Let l := l + 1. Find the smallest index i∗ ∈ I ∗ such that i∗ =

arg maxi∈I∗ {
∑j∈Ni
xLP

ij � − hl
i}l−1.

9: Update the allocation vector hl : hl
i∗ = 
∑j∈Ni∗ xLP

i∗j � and hl
i = hl−1

i for i ∈ I \ i∗.
10: Let I ∗ := I ∗ \ i∗.
11: end while
12: Solve the the underlying deterministic problem defined by (1)–(5), where hi = hl

i , i ∈ I .
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AlterICXPWithBS. Then, given the vehicle requirements we solve the deterministic prob-
lem (1)–(5) in order to determine the facility locations and the vehicle allocation at each
facility.

The finite heuristic algorithm, described in Algorithm 1, provides us with a feasible so-
lution of ICXP. It is easy to see that

∑
j∈Ni

xij = 
∑j∈Ni
xLP

ij � would satisfy the ICX con-
straints. However, such a direct round up approach would lead to an excessive allocation
of vehicles. Thus, instead we propose to increase the number of vehicles to be allocated
iteratively until the feasibility of ICX constraints is achieved. This iterative procedure turns
out to be effective to obtain feasible solutions with reasonable small optimality gaps (see
Sect. 7.4).

6.4 How to generate the distributions of reference outcomes

As discussed before, applying the stochastic dominance based approach requires that the
reference distribution of the total random unmet demand is available in advance. To this
end, we need to specify the target values yk, k = 1, . . . ,D, as realizations of the reference
total unmet demand along with the associated probabilities vk, k = 1, . . . ,D.

A widely applied EMS standard is to respond to ρ ∗ 100% of all calls within r1 minutes
(generally, ρ = 0.9 and r1 = 8). In order to construct solutions in line with this standard
we construct the empirical distribution of the total demand, denoted by TD, given the set of
scenarios and their associated probabilities. Then, we set the reference random total unmet
demand to Y = (1 − ρ)TD. For instance, suppose that a total demand realization is 50
with probability 0.001. For ρ = 0.9, we have 50 ∗ 0.1 = 5 as a reference target value for
the total unmet demand with the probability of 0.001. The parameter r1 = 8 is taken into
consideration while defining the set of demand nodes that can be covered by a facility located
at node j ∈ J and the set of all candidate facility nodes that are within acceptable distance
of node i ∈ I . For illustrative examples, please see Figs. 1(a) and 1(b).

The parameter values ρ = 0.9 and r1 = 8 are common in North America, but not neces-
sarily in elsewhere in the world. However, the method described above can be applied for
any parameter values. Note also that alternatively a reference total unmet demand may be
defined based on a potential solution. For example, we can solve a simplified deterministic
version of the EMS design problem and obtain its optimal solution. For that solution, we can
calculate the unmet demands under each scenario and obtain the empirical distribution of
the random total unmet demand. Then, this distribution can be used to define a benchmark
distribution according to the decision maker’s risk preference.

7 Computational results

In the following section, we give some details on generating the problem instances. Then,
in Sect. 7.2 we present illustrative results to give some insights about the level of increase
in the total cost when the single-stage versions of the proposed models are solved instead of
the two-stage versions. In Sect. 7.3, we provide results to demonstrate the computational ef-
fectiveness of the proposed alternate formulations of ICCsP and ICXP. Section 7.4 presents
numerical results illustrating the computational effectiveness of the heuristic developed for
ICXP. In Sects. 7.5 and 7.6, we present numerical results to analyze how the optimal loca-
tion and allocation solutions change with respect to the input parameters and different risk
preferences represented by ICCs and the ICX constraint. Finally, we discuss the computa-
tional study performed to compare the proposed models to the most relevant existing model
(Beraldi et al. 2004).
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7.1 Generation of problem instances

In order to test the computational performance of our solution methods, we consider several
problem instances of different sizes. A total of 206 test problem instances are used to obtain
the numerical results presented in this section. For a specified number of nodes (n = |J | =
|I |) in the network, where each node is a demand point as well as a facility candidate,
problem instances were randomly generated as follows:

• We randomly generate the set of demand points in the [0,30]2 square according to
a continuous uniform distribution as proposed by Gendreau et al. (1997). We set dij ,
i ∈ I , j ∈ J, values to be the Euclidean distance between these points. As Gendreau et al.
(1997), we assume the side of the square region to be 30 km and the ambulance speed to
be 40 km/h. Then, the coverage distance threshold Tc is 40 ∗ 8/60 ≈ 5.33 km, when the
response time standard is chosen to be 8 minutes.

• The (annual) fixed facility cost vector 365 ∗ 24 ∗ f is sampled from the uniform distrib-
ution on the interval [1000,4000]. The (annual) cost of purchasing and maintaining an
emergency vehicle (365 ∗ 24 ∗ a) is 100. The cost per unit distance per unit demand (β)
is 0.001 or 0.01.

• Demand realizations at each node i ∈ I , hs
i , s ∈ S, are generated from a Poisson distribu-

tion with the arrival rate parameter λi , which is sampled from the uniform distribution on
the interval [0.1,0.8]. As an alternative, in order to allow higher demand density in the
city center, we divide the [0,30]2 square in 9 equal square zones. The arrival rate parame-
ter for the nodes in the city center is sampled from the uniform distribution on the interval
[0.8,1]. For the corner zones we use the interval [0.1,0.2], whereas, for the remaining
four zones we use the interval [0.3,0.4].

• The maximum number of vehicles that can be allocated to each facility j ∈ J , Uj , is
sampled from the uniform distribution on the interval [2,4] or [6,10].

• Scenario probabilities ps, s ∈ S, are set to be equal or sampled from the uniform distrib-
ution on the interval [0.2,0.7] and then normalized.

• The risk aversion parameter α for individual ICCs is chosen to be 0.2, whereas the risk
aversion parameter δ for the global ICC is chosen to be 0.04 or 0.02.

• The proportion of demand covered within r1 = 8 minutes (ρ) is 0.9 unless stated other-
wise. As discussed in Sect. 6.4, the ρ parameter is used to generate the reference random
total unmet demand.

We would like to point out that generating the scenarios is not our main concern here. Ex-
isting methods can be applied to generate alternate scenarios, or if available, real historical
data may be employed. Also note that the demand varying depending on the time of day or
the day of the week, can be incorporated into the model by generating demand realizations
for different hourly time periods of a week.

All problems were solved using the AMPL modeling language (Fourer et al. 1993) run-
ning on ILOG CPLEX 10.2 (ILOG 2006). The binary search algorithms were implemented
in MATLAB R2006. The numerical experiments were performed on a 64-bit, 2 quad-core
CPU HP workstation running on Linux. In our computational study, we terminated CPLEX
when the prescribed time limit of 7200 seconds is reached.

In order to give an idea about the cost structure in the generated data sets, we present in
Table 1 the average optimal objective function values decomposed into three types of cost
components for 23 test problems presented in Table 3. We assume that the cost associated
with the amount of labor needed to operate facilities is also incorporated into the fixed costs
fi, i ∈ I, associated with the facility locations. As labor is typically the dominating cost
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Table 1 Average optimal cost
values associated with Table 3 Variable cost Fixed cost Vehicle cost Total cost∑

i∈I

∑
j∈J cij xij

∑
j∈J fj yj

∑
i∈I

∑
j∈J axij

6,880.57 57,096.65 36,752.17 100,729.39

6.83% 56.68% 36.49% 100.00%

Table 2 Results for the proposed single- and two-stage formulations

Family of prob.
∑

i∈I |Ni |
∑

i∈I |Ni | ∗ |S| With local ICCs and With local ICCs and

instances global ICC constraint global ICX constraint

Total cost CPU Total cost CPU

Percentage Two- Single- Percentage Two- Single-

increase stage stage increase stage stage

n = 25 |S| = 50 78 3900 7.53% 32.39 0.11 10.63% 330.93 0.06

n = 25 |S| = 100 85.4 8540 7.04% 321.75 0.05 16.00% 19.00 0.13

n = 25 |S| = 200 81.4 16280 6.02% 1372.40 0.18 18.28% 84.27 0.21

n = 25 |S| = 300 75 22500 5.77% 2032.06 0.05 19.26% 91.11 0.30

n = 50 |S| = 50 258 12900 13.69% 1255.18 0.52 20.44% 179.97 0.33

n = 50 |S| = 200 256 51200 <16.03%* 7199.63* 0.22 24.97% 1173.55 1.24

*For all 5 instances of the two-stage formulation, CPLEX terminated due to the time limit

component (Goldberg 2004), the cost parameters are chosen accordingly in order to give the
largest priority to the fixed costs of facilities in our models.

7.2 On safe approximation

Recall that the single-stage formulations are based on the simplifying assumption that al-
locations do not depend on scenarios. As discussed in Sect. 4, the risk constraints in the
single-stage formulations are safe approximations of those in the two-stage formulations.
Here, we present numerical results to demonstrate that the two-stage models would provide
decisions with lower total costs.

We cannot directly solve the deterministic equivalent formulations of the two-stage ver-
sions of the proposed models for moderate size problem instances. Therefore, we present
comparative results for several small problem instances. Let Obf1 and Obf2 denote the op-
timal objective function values (total costs) of the single- and two-stage versions of the
proposed models (ICCsP or ICXP), respectively. Then we calculate the percentage increase
(PI) in the total cost as follows:

PI = Obf1 −Obf2

Obf2 . (64)

Table 2 shows the percentage increases in the total cost, averaged over 5 problem instances
for each family. Even for these small problem instances, CPLEX could not find all of the
optimal solutions for the two-stage versions of the models within the time limit. For such
instances, the percentage increase is calculated by replacing Obf2 in (64) with the best lower
bound on the total cost provided by CPLEX.
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There is definitely a tradeoff between the computational complexity and the solution
quality. The main focus of this paper is to introduce alternate risk measures in stochastic
EMS design models and deal with large problem instances, and due to the computational
challenge of the two-stage formulations, we dedicate our study to the single-stage models.
In the rest of the section, we report results only on the single-stage formulations.

7.3 On alternate formulations

Here, we present some results indicating how substantial the computational improvement is
after decomposing the global scenarios into the local ones. Table 3 shows the CPU times
that are in favor of AlterICCsP even for the small problem instances.

It can be seen from Table 4 that when the formulation AlterICXP is used, CPLEX could
not provide optimal solutions within the time limit of 7200 seconds even for small instances
of ICXP. However, these instances could be solved to optimality by using the formulation
AlterICXPWithBS. The proposed formulation AlterICXPWithBS utilizing binary search al-
gorithms substantially outperforms the formulation AlterICXP and leads to great reductions

Table 3 Performance of AlterICCsP versus DirectICCsP

Problem instances
∑

i∈I S̃i DirectICCsP AlterICCsP Relative reduction

CPU (sec.) CPU (sec.) in CPU (%)

n = 100 |S| = 500 430 125.96 1.24 99.02%

n = 150 |S| = 500 652 852.15 7.68 99.10%

n = 200 |S| = 500 884 1780.02 23.78 98.66%

n = 300 |S| = 500 1326 1692.14 25.17 98.51%

n = 400 |S| = 500 1784 5924.99 94.08 98.41%

n = 100 |S| = 1000 459 2928.00 3.94 99.87%

n = 150 |S| = 1000 704 1134.38 4.34 99.62%

n = 200 |S| = 1000 941 7210.96* 19.34 >99.73%

n = 300 |S| = 1000 1383 7219.09* 20.58 >99.71%

n = 400 |S| = 1000 1904 7235.69* 44.10 >99.39%

n = 100 |S| = 3000 507 7210.17* 6.14 >99.91%

n = 150 |S| = 3000 772 7218.36* 30.82 >99.57%

n = 200 |S| = 3000 1011 7230.04* 70.83 >99.02%

n = 300 |S| = 3000 1556 7617.45* 109.67 >98.56%

n = 400 |S| = 3000 2073 7295.23* 184.85 >97.47%

n = 300 |S| = 10000 1671 N/A 34.29 N/A

n = 400 |S| = 10000 2230 N/A 426.12 N/A

n = 200 |S| = 30000 1205 N/A 29.25 N/A

n = 300 |S| = 30000 1841 N/A 47.91 N/A

n = 400 |S| = 30000 2409 N/A 67.11 N/A

n = 200 |S| = 50000 1241 N/A 18.36 N/A

n = 300 |S| = 50000 1906 N/A 40.23 N/A

n = 400 |S| = 50000 2471 N/A 170.89 N/A

*Time limit with integer solution

N/A: No solution is available since CPLEX terminated due to solver error (ran out of memory)
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Table 4 Performance of AlterICXPWithBS versus AlterICXP

Problem instances AlterICXP AlterICXPWithBS Relative Reduction

CPU (sec.) CPU (sec.) in CPU (%)

n = 50 |S| = 300 76.06 11.60 84.75%

n = 75 |S| = 300 118.14 14.42 87.80%

n = 100 |S| = 300 2129.35 82.21 96.14%

n = 150 |S| = 300 7201.81* 137.52 >98.09%

n = 200 |S| = 300 7202.95* 1043.47 >85.51%

n = 50 |S| = 500 43.07 5.33 87.62%

n = 75 |S| = 500 754.54 84.85 88.75%

n = 100 |S| = 500 7201.29* 1213.52 >83.15%

n = 150 |S| = 500 3692.95 442.86 88.01%

*CPLEX terminated due to the time limit

in CPU time to solve ICXP. We remark that the CPU time to obtain the local sets S̃i , i ∈ I,

and the associated probabilities from a given set of global scenarios (S), and to calculate
the lower bounds LB ICC

i , i ∈ I, were negligible and therefore, we did not report them. For
example, for a large problem instance with n = 400 and |S| = 50000, we obtain the sets
S̃i , i ∈ I, and the associated probabilities using MATLAB R2006 in 6.02 CPU seconds.
For the same problem instance it took the binary search algorithms 0.06 CPU seconds in
total to calculate the lower bounds, LB ICC

i , i ∈ I .

7.4 On the heuristic HICXP

Results presented in this section illustrate the computational effectiveness of the heuristic
HICXP. Since it is hard to solve AlterICXPWithBS for large problem instances, we solve
smaller problem instances in order to calculate the upper bounds on the optimality gaps,
as defined below. We use the best known lower bound on the objective value found by the
branch-and-bound algorithm of CPLEX, as most of the problem instances cannot be solved
for optimality within the prescribed time limit. Let Obft denote the best lower bound on
the objective function value that is provided by the CPLEX solver, when the prescribed
time limit t is reached. Obf∗ denotes the objective function value obtained by HICXP. The
feasible solution obtained by the described heuristic algorithm gives an upper bound on the
objective value. Then, we define the upper bound on the optimality gap (UBOPG) associated
with the heuristic HICXP as follows:

UBOPG = Obf∗ −Obft
Obft

.

To take the randomness in data generation into account, 5 test problem instances were gen-
erated for each selected combination of parameters n and |S|. Table 5 reports the CPU times
and UBOPG values averaged over 5 randomly generated instances. This table shows that
heuristic HICXP is quite effective for generating feasible solutions with reasonably small
optimality gaps.

Numerical results presented in Sects. 7.3 and 7.4 indicate that the proposed solution
methods are quite sufficient to solve ICCsP and ICXP for large problem instances.
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Table 5 Performance of Heuristic HICXP

Family of ICXP HICXP Relative reduction UBOPG

problem instances CPU (sec.) CPU (sec.) in CPU (%)

n = 100 |S| = 300 55.27 8.35 84.90% 2.28%

n = 150 |S| = 300 378.45 18.87 95.01% 1.49%

n = 200 |S| = 300 3839.03* 30.31 >99.21% 0.75%

n = 300 |S| = 300 7219.26* 87.69 >98.79% 0.74%

n = 400 |S| = 300 7209.33* 223.47 >96.90% 0.76%

n = 100 |S| = 500 2008.75* 18.13 >99.10% 3.46%

n = 150 |S| = 500 4844.03* 50.44 >98.96% 1.72%

n = 200 |S| = 500 7209.28* 75.31 >98.96% 1.23%

n = 300 |S| = 500 7216.89* 233.30 >96.77% 0.84%

n = 400 |S| = 500 7219.07* 469.80 >93.49% 0.56%

n = 100 |S| = 1000 5685.66* 54.41 >99.04% 2.91%

n = 150 |S| = 1000 6866.01* 155.04 >97.74% 2.43%

n = 200 |S| = 1000 7207.28* 304.96 >95.77% 1.89%

n = 300 |S| = 1000 7215.96* 889.93 >87.67% 1.09%

n = 400 |S| = 1000 7235.78* 1875.20 >74.08% 0.98%

*CPLEX terminated due to the time limit (for at least one instance out of 5)

Table 6 Results for different input parameters (averaged over 5 test problems)

Total cost Total # Ratio of total # Total expected

of facilities of vehicles unmet demand

Base case 79,488.66 33.4 0.4233 8.39

Response time standard: 7 mins. 81,098.91 34.0 0.4239 8.41

Upper bounds Ui, i ∈ I, divided by 2 146,279.19 70.4 0.4233 8.39

Upper bounds Ui, i ∈ I, multiplied by 2 60,204.50 18.5 0.4241 8.42

Risk parameter δ = 0.01 110,141.35 45.4 0.5731 2.99

Risk parameter δ = 0.1 74,968.00 31.8 0.3979 10.08

Fixed costs, fi , i ∈ I, divided by 20 35,635.77 40.0 0.4240 8.40

Fixed costs, fi , i ∈ I, multiplied by 100 4,498,674.53 33.2 0.4242 8.41

Unit purchase cost, a, divided by 1000 51,113.48 33.4 0.4251 8.45

Unit distance cost, β, multiplied by 100 429,547.36 67.8 0.4380 8.82

7.5 Solution sensitivity to input parameters

We solve ICCsP for a particular problem instance with n = 200 and |S| = 500 in order to
check the sensitivity of the model to changes in input parameters. We refer to the originally
generated test problem instance as the base case. The value(s) of only a certain type of
parameter is (are) changed while everything else is kept fixed. The entries in the first column
of Table 6 state which parameter values have been changed in the data of the base case. As
expected the upper bounds on the number of vehicles that can be allocated to facilities have
a significant effect on the number of facilities to be opened. It can also be seen from Table 6



582 Ann Oper Res (2010) 181: 559–589

that the risk parameter δ significantly effects the number of vehicles to be allocated. We will
elaborate on the effects of the risk parameters more in the next section.

The fixed cost parameters of the base case are turned out to be large enough to construct
solutions with the main objective of minimizing the number of facilities to be opened. That is
why when we increase the values of parameters fi, i ∈ I, the optimal solution does not really
change. The results also show that when we decrease the values of the fixed costs fi, i ∈ I,

the number of vehicles allocated stays almost constant, whereas the number of facilities to
be opened increases significantly. When the unit variable cost β is set to be a high value the
model may result in more facilities to reduce the total cost. However, we prefer small values
for the unit variable cost in order to give lower priority to the total variable cost than the
other cost components. Due to the risk constraints imposing lower bounds on the number of
vehicles, decreasing the value of the cost parameter a does not have a significant effect on
the total number of vehicles allocated and the number of facilities to be opened. Note also
that by the same reasoning, the total number of vehicles allocated and the total expected
unmet demand are mainly affected by the changes in the risk parameters.

Using a worst case scenario approach, a decision maker might construct a solution based
on the highest demand realizations to avoid any unmet demand situations, i.e., demand
would be satisfied under all scenarios. Instead of the number of vehicles, we report the
ratio of the total number of vehicles allocated to the total number vehicles that would be
required based on the worst case scenario approach. We will refer to this ratio as the “ratio
of total number of vehicles”.

7.6 On risk constraints

For comparison purposes, we find optimal decisions by solving a problem based on a naive
approach which uses expected demand values. We refer to the underlying deterministic prob-
lem (1)–(5), where hi set to 
h̄i�, ∀i ∈ I , as the base problem. The stochastic models, which
consider the variability in demand, provide solutions with more flexibility to avoid unmet
demand situations. Therefore, it is not surprising that the solutions of our models are better
in terms of the amount of total unmet demand than the ones found by the base problem (see
Table 7). As it can be seen from Table 7, the optimal numbers of vehicles obtained by ICCsP
and ICXP are between the values obtained by the base problem and the worst case scenario
approach (ratio of total # of vehicles = 1). Thus, risk measures deal with the problem of
placing too much weight on the extreme scenarios.

Table 7 Total number of facilities, ratio of total # of vehicles and expected unmet demand by the base
problem, ICCsP and ICXP

Problem instances Total number Ratio of total # Total expected

of facilities of vehicles unmet demand

Base ICCsP ICXP Base ICCsP ICXP Base ICCsP ICXP

prob. prob. prob.

n = 100 |S| = 3000 16 18 23 0.25 0.35 0.47 9.19 4.23 1.64

n = 200 |S| = 3000 24 33 41 0.25 0.34 0.42 19.39 8.28 4.50

n = 300 |S| = 3000 34 50 58 0.24 0.34 0.40 32.18 12.80 8.80

n = 100 |S| = 5000 15 17 24 0.23 0.33 0.44 9.80 4.30 1.57

n = 150 |S| = 5000 18 25 32 0.22 0.29 0.41 14.82 6.40 3.02

n = 200 |S| = 5000 23 32 40 0.23 0.32 0.40 18.93 8.27 4.35
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Table 8 For an instance with n = 200 and |S| = 3000

Risk parameter For reference benchmark Ratio of total # of vehicles Total # of facilities

δ ρ ICCsP ICXP ICCsP ICXP

0.04 0.9 0.34 0.41 31 38

0.01 0.9 0.46 0.41 43 38

Fig. 1 Reference distribution function and distribution functions of the total unmet demand associated with
the optimal solutions of ICCsP, ICXP and the base problem

The level of risk modeled by ICCsP and ICXP depend on the risk parameters and the
specified distribution of the reference random outcome. Either of these two types of models
may provide us with more risk averse solutions according to the risk parameter δ and the
reference distribution. In order to compare the level of risk aversion of the optimal solutions
we can check the distribution of total unmet demand when exactly the optimal number of
vehicles are assigned to each demand node, and the distribution of reference random total
unmet demand. For example, for a problem instance where n = 200 and |S| = 3000, the
optimal total number of vehicles required according to ICCsP is smaller than the amount
required according to ICXP when δ = 0.04 (see Table 8). For this instance, by setting the
risk parameter δ to 0.04 and 0.01, and keeping everything else fixed, we obtain two differ-
ent Figs. 1(a) and 1(b). These figures show the reference cumulative distribution function
and cumulative distribution functions of the random total unmet demand associated with the
optimal solutions of ICCsP, ICXP and the base problem. We note that when δ = 0.04 the
total unmet demand for the optimal solution constructed by ICCsP is dominated by the ref-
erence random total unmet demand in the increasing convex order. Therefore, ICXP which
requires the ICX dominance with respect to the reference random outcome leads to a more
risk averse solution than the one obtained by ICCsP. On the other hand, when δ = 0.01
the reference random total unmet demand is dominated by the total unmet demand for the
optimal solution obtained by ICCsP in the increasing convex order. Therefore, in this case
the ICCsP results in a more risk averse solution; the total numbers of vehicles assigned to
cover demand is higher (comparing ratios: 0.46 > 0.41). In conclusion, we cannot claim that
ICCsP provides more risk averse solutions than ICXP for all values of the risk parameter δ.
It can also be seen from the results in Table 9 corresponding to a problem instance, where
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Table 9 For an instance with n = 200 and |S| = 500

Risk parameter For reference benchmark Ratio of total # of vehicles Total # of facilities

δ ρ ICCsP ICXP ICCsP ICXP

0.04 0.85 0.42 0.41 34 33

0.04 0.9 0.42 0.48 34 39

Fig. 2 Results obtained solving ICCsP for different values of risk aversion parameters

n = 200 and |S| = 500, we cannot claim that ICXP constructs more risk averse solutions
than ICCsP for all reference random outcomes (for all values of the parameter ρ).

Figure 2 illustrates that our models obtain more risk averse optimal solutions when the
level of risk aversion gets higher. Thus, the total cost is nonincreasing while the risk aversion
parameters α and δ are increasing, i.e., while the level of risk aversion is getting smaller. Fig-
ure 2 also demonstrates the interaction between the local and global constraints. It is easy to
see that for large enough δ values the global ICC constraint would be implied by ICCs (33)
and it would become redundant. In this case increasing the value of δ would not affect the
optimal solutions, since a certain level of service is ensured by the local constraints. Simi-
larly, for large enough α values the global ICC constraint would be more significant and the
optimal solutions are not affected by further increasing α values. Figure 2 is consistent with
these observations; the total cost, the number of facilities and vehicles become constant after
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Table 10 Results by ICXP for different reference random total unmet demand

Problem instances For reference benchmark Total # Ratio of total # Total cost Total expected

ρ of facilities of vehicles unmet demand

n = 200 |S| = 500 0.8 32 0.39 73,590.76 10.29

n = 200 |S| = 500 0.85 33 0.41 77,758.72 9.19

n = 200 |S| = 500 0.9 39 0.48 91,198.71 6.24

n = 200 |S| = 500 0.95 50 0.62 120,686.61 2.37

n = 200 |S| = 3000 0.85 32 0.34 82,632.97 8.43

n = 200 |S| = 3000 0.9 38 0.41 100,510.27 4.80

n = 200 |S| = 3000 0.95 53 0.55 142,386.77 1.61

some large enough δ and α values. In particular, these large enough values are δ = 0.052
and α = 0.17, respectively. These values can be justified by solving ICCsP after dropping
the global ICC. For the optimal solution of the modified ICCsP, which involves only the
local constraints with α = 0.2 and α = 0.17, we calculate the associated value of the global
risk parameter δ for which the global constraint (34) is (externally) satisfied as 0.052 and
0.0399, respectively. That is why we observe that results stay constant around δ = 0.05 and
α = 0.17 in Fig. 2.

Tables 7–10 provide results for several problem instances to show how the optimal solu-
tions change with respect to different risk preferences. We also generate reference distrib-
utions to represent more risk averse preferences by increasing ρ, the proportion of demand
that must be covered within r1 = 8 minutes. It is not surprising that for larger values of ρ

the model ICXP constructs more conservative solutions with higher total cost values.

7.7 Comparison with an existing model

We perform a computational study to compare our models to the one proposed by Beraldi
et al. (2004). In general, Beraldi et al. (2004) consider the following probabilistic constraints:

P

⎛
⎝∑

j∈Ni

xij ≥ hi(ω), ∀i ∈ G(k)

⎞
⎠ ≥ 1 − εk, k = 1, . . . ,K, (65)

where K denotes the number of sub-area indexed by k, G(k) denotes the components of
the random demand vector associated with the group k and 1 − εk is the prescribed proba-
bility level for the group k. They consider three cases described below as quoted from their
paper: “(1) a global reliability system for the entire geographical territory (Jo); (2) an in-
dividual reliability system for each demand point (In); (3) an individual reliability system
for sub-area (Jo-In).” Notice that for the first case, K = 1 and for the second case K is
equal to the number of demand nodes (each group consists of an individual demand node).
In the last case we have divided the demand points in (5) (Jo-In 5) or (10) (Jo-In 10) sub-
areas.

As mentioned in Sect. 2, the reformulation presented in Beraldi et al. (2004) is not valid
for a given set of scenarios. Therefore, in order to solve the problems which involve proba-



586 Ann Oper Res (2010) 181: 559–589

bilistic constraints instead of our risk constraints, we need to consider another reformulation.
A common approach introduces a binary variable ζs associated with each scenario s ∈ S.
Then, for a group k ∈ K we reformulate (65) as

∑
j∈Ni

xij ≥ hs
i (1 − ζs), ∀i ∈ G(k), s ∈ S, (66)

∑
s∈S

psζs ≤ εk, (67)

ζ ∈ {0,1}|S|. (68)

When the binary variable ζs takes value of 0, it is guaranteed by (66) that all the inequalities∑
j∈Ni

xij ≥ hs
i , i ∈ G(k), hold. Constraints (66) and (67) require that demand at each node

will be satisfied for a set of scenarios whose aggregate probability is at least equal to the
enforced probability level 1 − εk . We derive a stronger formulation of (66)–(68) by employ-
ing a modeling approach proposed by Luedtke et al. (2010) to solve problems with joint
probabilistic constraints. (For details please see Luedtke et al. 2010.) In Tables 11 and 12
we present results obtained for three cases considered by Beraldi et al. (2004) and also the
results obtained by our models for several risk parameters. We also report the minimum of
the resulting probabilities of satisfying local demands.

As seen from Tables 11 and 12 similar results can be obtained using probabilistic con-
straints or the proposed alternate risk measures by varying the associated risk parameters.
Obviously, considering just individual probabilities leads to high unmet demand values. On
the other hand, enforcing a single joint probabilistic constraint is too conservative. A ratio-
nal decision maker would prefer an approach somewhere between these two extremes. Such
a decision maker can enforce joint probabilistic constraints for sub-areas or can use ICCs or
a stochastic dominance constraint depending on his/her risk preferences. As the performed
computational study shows our proposed models and the associated solution methods enable
the decision makers to solve relatively large problem instances.

Table 11 Comparative results for a problem instance where n = 100 and |S| = 100

Problems Total # of Total # of Total cost Total expected Minimum of all

facilities vehicles unmet demand local probabilities

Base problem 32 102 85,508.51 5.86 0.71

Worst case approach 72 229 222,779.59 0.00 1.00

Jo 63 207 195,487.23 0.22 0.99

Jo-In(5) 55 180 162,799.40 0.62 0.90

Jo-In(10) 49 161 142,576.17 1.12 0.90

In 33 106 92,416.44 4.35 0.90

ICCsP, α = 0.01 61 199 181,955.12 0.37 0.97

ICCsP, α = 0.05 45 148 130,488.77 1.55 0.95

ICCsP, α = 0.2 41 137 116,091.63 2.28 0.92

ICXP, α = 0.01 50 170 154,080.23 0.85 0.97

ICXP, α = 0.2 45 147 127,929.99 2.01 0.89
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Table 12 Comparative results for a problem instance where n = 100 and |S| = 300

Problems Total # of Total # of Total cost Total expected Minimum of all

facilities vehicles unmet demand local probabilities

Base problem 29 102 78,183.33 6.15 0.73

Worst case approach * 268 * * *

Jo 76 242 223,909.80 0.13 0.98

Jo-In(5) 56 189 156,299.87 0.59 0.90

Jo-In(10) 48 160 127,193.54 1.16 0.90

In 32 111 84,612.15 3.78 0.91

ICCsP, α = 0.01 59 195 165,053.65 0.50 0.98

ICCsP, α = 0.05 45 149 118,316.89 1.46 0.94

ICCsP, α = 0.2 39 114 103,143.52 2.15 0.93

ICXP, α = 0.01 49 166 135,967.37 0.94 0.98

ICXP, α = 0.2 45 152 120,072.41 1.65 0.92

*Not feasible; the total demand cannot be satisfied due to the upper bounds on the number of vehicles that
can be allocated to each facility

8 Conclusion and future work

Risk measures should be incorporated into facility location and allocation problems in order
to consider the inherent variability in the system and the decision makers’ risk preferences.
In this paper, we develop new stochastic programming models specifying alternate con-
straints on risk for the problem of designing an EMS system. We present a novel approach
to EMS design problems by modeling risk through the integrated chance and stochastic
dominance constraints. The decision makers can evaluate different location and allocation
decisions with respect to the quality of service and costs by varying the risk parameters.
The presented numerical results illustrate how the location and allocation solutions change
with respect to the different risk preferences. One of the main disadvantages of the scenario
approach is the requirement to limit the number of scenarios for computational reasons. We
develop alternative formulations and a heuristic for the proposed single-stage models and
by performing an extensive computational study we show that we can overcome the main
drawback of the scenario approach and solve relatively large problem instances.

In practice, the total demand varies depending on the time of the day or the day of the
week. Our models can be used to solve the problem of determining the facility locations and
the number of vehicles allocated to each facility. Then, given the optimal number of facilities
and the allocation of the emergency vehicles, modified versions of our models, where the
objective function represents the total hourly cost, can be solved 168 times for each hour
of a week. The optimal allocation decisions for each time period would provide us with the
number of vehicles required at each facility for each hourly time period of a week according
to the specified risk preferences. Then, existing methods for reallocating emergency vehicles
and multistage crew scheduling may be applied to improve the EMS system design.

Part of our ongoing research is on developing methods to solve the two-stage versions of
the proposed EMS design models for moderate size problem instances. The future research
can focus on developing similar stochastic models which consider other features of an EMS
system, such as different types of vehicles to serve different types of service requests. For
example, EMS systems typically work with two types of service providers having different
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capabilities: basic life support units and advanced life support units. Finally, the dispatching
rules that are related to the allocation of vehicles to specific nodes can also be modeled by
using the proposed risk measures in the two-stage stochastic programming framework.
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