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Abstract We present a variety of approaches for solving the post enrolment-based course
timetabling problem, which was proposed as Track 2 of the 2007 International Timetabling
Competition. We approach the problem using local search and constraint programming tech-
niques. We show how to take advantage of a list-colouring relaxation of the problem. Our lo-
cal search approach won Track 2 of the 2007 competition. Our best constraint programming
approach uses an original problem decomposition. Incorporating this into a large neigh-
bourhood search scheme seems promising, and provides motivation for studying complete
approaches in further detail.

1 Introduction

Timetabling problems have a wide range of applications in education, sport, manpower
planning, and logistics. A diverse variety of university timetabling problems exist, but
three main categories have been identified (de Werra 1985; Carter and Laporte 1997;
Schaerf 1999): school, examination and course timetabling. The Post Enrolment University
Course Timetabling Problem (Lewis et al. 2007) occurs in an educational context whereby
a set of events (lectures) have to be scheduled in timeslots and assigned to appropriate
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rooms. The problem tackled in this paper was proposed as Track 2 of the 2007 Interna-
tional Timetabling Competition organised by PATAT.1 A similar problem was also used in
the 2003 competition. In the 2007 variant, two new hard constraints were introduced, which
are discussed in Sect. 2. These new constraints were introduced to make the search for feasi-
ble timetables difficult, moving the competition closer to real-world timetabling where this
can be a very challenging task. Finding feasible timetables in the 2003 competition was
relatively easy and, consequently, the best algorithms were incomplete and focused on op-
timising the soft constraints of the problem. In contrast, the 2007 competition provided a
strong motivation to study complete approaches, especially constraint programming (CP)
techniques, and compare them with the state-of-the-art local search. While our complete
CP models are not competitive in a competition setting on their own, they can be used suc-
cessfully in conjunction with local search techniques. Specifically, a promising large neigh-
bourhood search (LNS) scheme (Shaw 1998) is proposed, which contrasts with all previ-
ous published local search work on this problem (Chiarandini et al. 2006; Kostuch 2004;
Rossi-Doria et al. 2002; Abdullah et al. 2005; Di Gaspero and Schaerf 2006).

Our main contribution in this paper is a comprehensive study of the problem using a wide
range of techniques highlighting both pitfalls and positive results. A list-colouring relaxation
of the problem is highlighted as the core computational challenge, and we show how to take
advantage of it through the various approaches we develop. Our main technical novelty lies
in the analysis of complete approaches with original CP models and lower bounds for the
costs associated with the soft constraints of the problem, including algorithms to maintain
them. We also present an original local search (LS) approach that can deal with the challenge
of finding feasible timetables; this approach was the winning entry from amongst thirteen in
Track 2 of the 2007 International Timetabling Competition.

The remainder of the paper is organised as follows. Section 2 defines the problem tackled
in this paper. Section 3 presents a local search approach based on the ideas used in the
2003 challenge, but that addresses, efficiently, the more difficult task of finding feasible
timetables. This local search constitutes a baseline against which we evaluate our complete
approaches. Section 4 investigates several CP models for finding feasible timetables. The
most promising one is extended in Sect. 5 in order to find optimised timetables, based on
a set of additional soft constraints defined in the problem specification. A hybrid of the
incomplete and complete approaches is proposed as a large neighbourhood search scheme
in Sect. 6. We present a detailed empirical evaluation of each of our approaches in Sect. 7.
A number of concluding remarks are made in Sect. 8.

2 Problem description

In the post enrolment-based course timetabling problem we are given a set E of n events,
to be scheduled in 45 timeslots {1, . . . ,45} (5 days of 9 hours each) using a set R of m

rooms. Each room is characterised by its seating capacity, which we will refer to as its
size, and its features, defining the set of services available in it. We are also given a set
S of students, along with the set of events that each student wishes to attend. To solve
the problem, each event must be assigned a room and a timeslot while obeying a set of
constraints. The constraints of the problem are partitioned into two sets: the hard constraints
define the requirements of a feasible timetable, while the soft constraints define an optimal
timetable.

1http://www.cs.qub.ac.uk/itc2007/.

http://www.cs.qub.ac.uk/itc2007/
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2.1 The hard constraints of the problem

The hard constraints of the problem are the following:

1. No student can attend more than one event at the same time.
2. The room of each event must be large enough to accommodate the number of students

attending it, and must provide all of the features required by the event.
3. Only one event can be assigned to a room in each timeslot.
4. An event can only be timetabled to take place in one of its pre-defined “available” times-

lots.
5. When specified, events must occur in the correct order in the week.

In the 2007 competition, each of the benchmark instances provided to the competitors was
guaranteed to admit at least one timetable that satisfied all these hard constraints. However,
finding such feasible timetables was a challenging task. Therefore, the organisers of the
competition also introduced the notion of “distance to feasibility” to be able to compare
entries that do not find any feasible timetables. We ignore this point in our study, and regard
all infeasible timetables as mere failures.

2.2 The soft constraints of the problem

While feasibility is important, is does not represent the full story. The quality of a feasible
timetable is evaluated in terms of the following soft constraints. Students should not have
to:

1. attend an event in the last timeslot of the day {9,18,27,36,45};
2. attend more than two events in a row on a given day;
3. attend exactly one event during a day.

The penalty given to a feasible schedule is computed in the following way (taken from the
description of the problem from the competition web-site):

• Count the number of occurrences of a student having a class in the last timeslot of the
day.

• Count the number of occurrences of a student having more than two classes consecutively
(3 consecutively scores 1, 4 consecutively scores 2, 5 consecutively scores 3, etc.). Classes
at the end of the day followed by classes at the beginning of the next day do not count as
consecutive.

• Count the number of occurrences of a student having just one class on a day (count 2 if a
student has two days with only one class in each, etc.).

The total penalty of the timetable is the total of these three values.

2.3 A list colouring perspective and the colouring relaxation of the problem

The problem defined only by the hard constraints can be seen as a list-colouring with ad-
ditional constraints. The colouring is defined in a graph where each node corresponds to
an event and an edge is added between two events that must be timetabled into different
timeslots; the set of colours available to each node are the timeslots available to the corre-
sponding event in the timetable. This graph is primarily made of many large overlapping
cliques, referred to as student cliques, defined by the set of events chosen by each student.
In addition, two events that share a unique possible room, because of their size and features,
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must be timetabled into different timeslots. Sets of events sharing such a unique room define
room cliques. Finally, precedences between events also imply timeslot differences and can
be added to the list colouring graph.

Table 1 summarises the size and number of cliques found in the colouring graphs of
the first eight instances2 made available to competitors in Track 2. Both our LS and CP
approaches will try to take advantage of these cliques. Also shown is the density of the
basic graph, i.e. the original graph of student choices including the precedence edges, and
the full graph, i.e. the same graph augmented with room information.

The final cliques of Table 1 are obtained using a heuristic process. Let the neighbour-
hood of a clique c be the set of the nodes connected to every node in c. The nodes in the
neighbourhood of c are not necessarily connected to each other. However, if they also be-
long to another clique, they are connected to each other and thus can be added to extend c

to a bigger clique. The final cliques are then obtained by applying such a process iteratively,
starting from the student/room cliques until a fixed point is reached. Note that while the
density of the full graph is not much bigger than that of the basic graph, the added edges can
significantly improve the maximum and average size of the cliques.

Finally, we define a very useful relaxation of the problem, which we will refer to as
the colouring relaxation, which we obtain by relaxing Hard Constraint 2. This relaxation
is a list colouring problem defined on the previous graph where each colour can occur at
most m times, where m is the number of rooms, and precedences exist between the colours
of some pair of nodes. Hard Constraints 1, 4 and 5 are the core list-colouring problem
with precedences; Hard Constraint 3 is expressed here as a cardinality constraint over the
occurrences of each colour in the colouring. Hard Constraint 2 is not completely ignored,
but is relaxed since the room edges are included in the graph; these edges ensure that events
that have the same unique possible room are timetabled into different timeslots.

A solution to the colouring relaxation is not necessarily feasible. In fact, knowing if a set
of events can be assigned to a given timeslot with respect to room features and room capacity
is a bipartite matching problem: the events assigned to a given timeslot can only fit in a given
set of rooms depending on their features and size. Assigning each event to a suitable room
is, therefore, an “event to room” matching problem. Thus, the problem defined by the hard
constraints can be seen as a list-colouring combined with many matching problems (one per
timeslot).

3 A local search approach

Our local search approach builds upon the various approaches used in the 2003 competi-
tion (Chiarandini et al. 2006; Kostuch 2004; Rossi-Doria et al. 2002). However, since find-
ing feasible timetables was much more challenging in the 2007 competition, some advances
over the 2003 approaches were required.

In this section we study two alternative approaches. The first one, similar to most of those
used in 2003, uses a two-phase approach: we first try to identify a feasible timetable, and
then try to reduce its cost of violating the soft constraints. The second approach, referred
to as the colouring strategy, also involves two phases, but the first deals with the colouring
relaxation.

2See http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm.

http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm


Ann Oper Res (2012) 194:111–135 115

Ta
bl

e
1

So
m

e
st

at
is

tic
s

ab
ou

tt
he

lis
tc

ol
ou

ri
ng

gr
ap

h
st

ru
ct

ur
e

in
th

e
fir

st
ei

gh
tc

om
pe

tit
io

n
in

st
an

ce
s

fr
om

T
ra

ck
2

of
th

e
In

te
rn

at
io

na
lT

im
et

ab
lin

g
C

om
pe

tit
io

n
20

07

In
st

.
In

st
.s

ta
tis

tic
s

St
ud

en
tc

liq
ue

s
R

oo
m

cl
iq

ue
s

Fi
na

lc
liq

ue
s

D
en

si
ty

n
St

ud
en

ts
m

M
in

.
M

ax
.

A
vg

.
N

um
be

r
M

in
.

M
ax

.
A

vg
.

N
um

be
r

M
in

.
M

ax
.

A
vg

.
B

as
ic

Fu
ll

1
40

0
50

0
10

18
25

21
.0

2
6

12
32

17
.1

7
50

6
12

32
22

.0
7

0.
33

0.
34

2
40

0
50

0
10

19
24

21
.0

3
5

8
32

18
.8

0
50

5
8

32
21

.9
2

0.
37

0.
37

3
20

0
10

00
20

10
15

13
.3

8
13

1
7

3.
85

90
6

7
28

19
.5

5
0.

47
0.

48

4
20

0
10

00
20

10
15

13
.4

0
10

1
10

3.
90

92
5

4
33

21
.7

5
0.

52
0.

52

5
40

0
30

0
20

19
23

20
.9

2
14

2
21

9.
07

31
4

5
25

20
.6

6
0.

30
0.

31

6
40

0
30

0
20

18
24

20
.7

3
17

4
17

11
.1

2
31

7
7

26
20

.6
2

0.
29

0.
30

7
20

0
50

0
20

10
15

13
.4

7
19

3
18

8.
26

49
8

5
29

18
.5

7
0.

52
0.

53

8
20

0
50

0
20

11
15

13
.8

3
19

2
13

7.
26

50
3

7
25

17
.6

5
0.

51
0.

52



116 Ann Oper Res (2012) 194:111–135

3.1 Finding a feasible timetable

The search for a feasible timetable is performed by considering a unit cost for each hard
constraint violation: an infeasible timeslot or room for an event, two events sharing a student
in the same timeslot, two events violating a precedence between them.

3.1.1 Basic scheme

We present a local search with a composite neighbourhood called the basic scheme and
describe two ideas to improve it by adding a more complex move for intensification and
relaxing the matching constraint to increase the density of solutions in the search space.

Solution representation The position of an event is defined by a given timeslot and room.
The solution is represented by the position of each event as opposed to the solution rep-
resentation described in Rossi-Doria et al. (2002), which ignores the rooms and maintains
the room violations by solving a matching problem per timeslot. For efficiency reasons, the
lists of events per timeslot, as well as the list of all free positions in the timetable (positions
where no event is currently assigned), are added to the representation.

Neighbourhood We define a composite neighbourhood (Abdullah et al. 2005; Di Gaspero
and Schaerf 2006) based on the following alternative moves:

1. TrE: translates an event to a free position in the timetable.
2. SwE: swaps two events by interchanging their position in the timetable.
3. SwT : swaps two timeslots ti and tj , i.e. translates all events currently placed in ti to tj

and all events in tj to ti .
4. Ma (Matching): reassigns the events within a given timeslot to minimise the number

of events assigned to an unsuitable room; to allow violations, a maximum matching is
solved. Events left unassigned in the matching are put into arbitrary rooms.

5. TrE + Ma: translates an event to a given timeslot and evaluates if this does not violate
the room constraints by checking the corresponding matching problem; if the matching
is infeasible, the move is rejected.

The order of exploration amongst these alternative moves is chosen randomly. The move is
thus selected randomly but the exploration of the neighbourhood associated to the move is
performed from the last point where it was left (following exactly the method in Kostuch
2004) for efficiency reason. This also ensures that all events and positions in the timetable are
regularly examined. There is therefore no specific strategy for picking events or timeslots.

Search We start from a randomly generated timetable, since we found that starting from
one generated by a greedy heuristic showed no benefit. Improving and sideways moves,
i.e. moves that keep the current violation cost constant, are always accepted and search
is not guided by events involved in hard constraints violations. Instead, we believe that
moves TrE and SwE are very important since they can be performed very quickly and,
therefore, provide a diversification mechanism. This also explains why we choose a solution
representation that includes the room information explicitly, since this is mandatory for TrE
and SwE.

By maintaining a simple tabu list, we can avoid cycling during search by forbidding an
event from being moved to a timeslot it was assigned in the last k iterations; we set k = 10
in practise. This approach is similar to Chiarandini et al. (2006) and is classic in graph
colouring (Galinier and Hertz 2006).
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3.1.2 Improving the basic scheme through intensification

Assuming that a set of events have to go into different timeslots (for example, a clique of
the colouring graph) and that they share no precedences, then their optimal placement in
the current timetable is an assignment problem. The improvement we examine introduced
intensification into the search process by enriching the neighbourhood with a more complex
move, Hu, based on the Hungarian method for solving assignment problems. Hu picks a set
of events {e1, . . . , ek} assigned to different timeslots (k ≤ 45) that do not have precedences
defined between them, and reassigns them optimally by solving an assignment problem with
the Hungarian method (Kuhn 1955). Any violation of the hard constraints for placing each
event in each timeslot is known, since it does not depend on the other removed events, they
do not share precedences, and only a single event is removed per timeslot. We solve 45 × k

maximum matching problems to evaluate the cost, due to the room capacities, of placing
each event in each timeslot (to know whether the new event can fit in the timeslot without
causing one more room conflict).

This move, being quite costly, is not included by default in the neighbourhood but rather
used as a greedy intensification procedure as follows. Firstly, move Ma is applied on every
timeslot. The intensification step applies move Hu on each clique. All events of the clique
must be in different timeslots and define an assignment problem in the current timetable. All
cliques containing an event involved in a constraint violation are considered, and simplified
by removing events sharing precedences inside the clique. This intensification is applied
every 1000 non-improving iterations and loop over all the “final cliques” of Table 1.

3.2 Optimising the timetable

Once a feasible solution has been found, another local search optimises its soft cost.

Representation of the solution We extend the previous representation by adding the student
view in order to reason about the soft constraints in the problem specification. The timetable
of each student (needed for Soft Constraint 2) is maintained as a three dimensional matrix
of size |S|×5×9 where each entry is equal to the event attended by the student at the corre-
sponding day and timeslot, if there is one, and set to ⊥ otherwise. Moreover, the number of
events attended by each student, each day, is stored so we can reason about Soft Constraint 3.

Neighbourhood The only move used in this phase is TrE + Ma. Furthermore, the only
moves considered are those that preserve the feasibility of the timetable. However, this is a
challenge for the search due to the tightness of the hard constraints. The main motivation
for the colouring strategy (Sect. 3.3) as well as the large neighbourhood search (Sect. 6) is
to compensate for this disadvantage.

Search We found that a tabu search appeared inefficient for optimising the costs of the soft
constraints, and better results can be obtained using simulated annealing (SA) (Kirkpatrick
et al. 1983). This seems to match the experience of Chiarandini et al. (2006), Kostuch (2004)
and the study made in Rossi-Doria et al. (2002).

Improving and sideways moves are always performed, and degrading ones are accepted
with a probability depending on their cost variation �:

Pacceptance(�, τ) = e− �
τ ,
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where the parameter τ , the temperature, controls the acceptance probability and is decreased
over time. The temperature is cooled at each step using a standard geometric cooling:

τn+1 = 0.95 × τn.

Two parameters are needed to define the cooling: the initial temperature τ0, and the length
of a temperature step, L, i.e. the number of iterations performed at each temperature level.

As the time demand varies a lot from one problem instance to the other, we try to predict
“the speed” of our soft solver during an initialisation phase by running the SA at a temper-
ature of 1 for 20,000 iterations and set τ0 and L in the following way. Firstly, τ0 is set to
the average of the cost variation observed during the initialisation step; then, based on the
time needed to perform the initialisation, we get an estimation of the number of iterations
that will be performed in the remaining time, I . By setting a final temperature to τf = 0.2,
we also know the number of temperature steps, nbSteps, needed to go from τ0 to τf and
therefore L is set to L = I

nbSteps . A reheating is performed if the neighbourhood is scanned
without accepting any moves. This can happen if the number of feasible moves is limited;
the SA is more likely to reject all choices as the temperature decreases.

3.3 An alternative approach based on the colouring strategy

The local search approaches to solve the hard and soft constraints can be used to solve
the colouring relaxation as defined in Sect. 2.3 by ignoring the room allocation. The repre-
sentation of the solution is restricted to the timeslots with a capacity of m (the number of
rooms). The representation itself guarantees that at most m events can be assigned to the
same timeslot.

In the case of hard constraints, the neighbourhood is restricted to TrE, SwE, SwT and
Hu. In this context, Hu is simply ignoring the rooms and does not need to solve any matching
to compute the violation cost of each event-timeslot pair. In the case of the soft constraints,
the neighbourhood is restricted to TrE (instead of TrE + Ma). Moreover, only moves that
preserve feasibility of the colouring relaxation are accepted.

3.3.1 The colouring strategy for finding feasible timetables

The colouring approach for satisfying the hard constraints is very simple. Once a solution
to the colouring relaxation is found, it is used to initialise the local search that also operates
on the rooms, rather than using a random initial timetable. By relaxing the room allocation,
we increase the solution density of the search space on which the local search operates, thus
allowing us to find colourings that would otherwise be difficult to reach without strongly
violating the matchings.

3.3.2 The colouring strategy for generating optimised timetables

The colouring strategy for the whole problem is divided into four stages:

1. Hard constraints on colouring: Find a feasible solution S1 to the colouring relaxation
(applying the colouring strategy on the hard constraints).

2. Soft constraints on colouring: Improve the soft constraint violation of S1 with the colour-
ing local search for soft constraints and obtain S2.

3. Hard constraints: Initialise the local search solver for hard constraints with S2 and com-
pute from that point a feasible solution S3.
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4. Soft constraints: Improve the soft constraint violation of S3 with the local search for soft
constraints and return the final result.

We allocate 90% of the time available to solve Stages 1 and 2. The idea is to invest most of
the time in Stage 2 to find a good colouring solution. Stages 3 and 4 only intend to repair
this good colouring solution into a feasible and hopefully good solution. By choosing 90%
we assume that a good colouring solution can be easily repaired to a feasible one. However,
finding a good tradeoff between the two first stages and the two last ones can probably affect
the performance significantly, and this parameter could be certainly tuned more accurately.

3.4 Experimental results for the local search

We conclude the presentation of the local search approach by showing the behaviour of the
search in each of the two stages, i.e. feasibility and optimisation, on a typical timetabling
instance presented in Fig. 1. We will then evaluate the local search approach using the avail-
able timetabling instances from Track 2 of the International Timetabling Competition.

Both plots show the evolution of the costs at each iteration. The cooling is also indicated
for the SA. The search for feasibility proceeds by moving over large plateaux of configura-
tions of equivalent violation cost, i.e. the cost is never degraded in practise. Sideways moves
appear to be very frequent for feasibility (Fig. 1(a)). Therefore, the search can remain on
the same plateau for quite some time as it does not focus on events involved in constraint
violations and accepts sideways steps; this is why favouring moves TrE and SwE brings
diversification over the plateaux.

Sideways moves are less likely to occur at the optimisation stage (Fig. 1(b)) and one can
see the effect of the cooling by observing that the cost variation is decreasing while the best
known cost is converging toward its final value (no reheating occurs in this example). The
choice of the different metaheuristics for feasibility and optimisation, with their resulting
behaviours, is also motivated by the fact that, in the first case, we try to get a feasible solution
as soon as possible, whereas in the second case we aim for the best possible solution within
a given time-limit.

3.4.1 Detailed results for finding feasible timetables

Table 2 compares (over 100 runs with different seeds) the basic scheme described in Sect. 3.1
enhanced with the intensification procedure (LS) and the colouring strategy (LS-Colouring)
on the publicly available 2007 ITC instances for Track 2. We recall that the colouring strat-
egy splits the search for optimised timetables into two steps: a colouring solution is sought
first, which is then repaired to a feasible solution (Sect. 3.3). LS was the algorithm submitted
to the 2007 ITC with small variations.3

Table 2 shows the percentage of feasible solutions found over 100 runs with different
seeds within the time limit set using a software utility provided by the ITC organisers for
benchmarking across different hardware platforms.4 The average time reported in the table is
computed only on runs that have found a solution. The effects of the two improvements can

3The randomisation in the algorithm submitted was different, but systematic tests showed later that randomis-
ing the order of the moves alone achieves better performance.
4These experiments were run in a single thread on a Dual Quad Core Xeon CPU @ 2.66 GHz with 12 MB
of L2 cache per processor and 16 GB of RAM overall, running Linux 2.6.25 × 64. The time limit given by
the benchmarking system of the competition was 324 s.
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Fig. 1 Evolution of the violation cost per iteration for the two stages of the local search approach

mainly be seen on the hardest instances (Instances 2, 9, and 10). The colouring strategy is
significantly better, justifying the usefulness of exploiting the search space of the relaxation.
Satisfiable colourings can be found much faster in the search space of the relaxation and
quickly lead to feasible solutions for the matchings. LS-Colouring is now, to our knowledge,
the best approach for finding feasible solutions.

3.4.2 Detailed results for finding optimised timetables

Table 3 compares the local search described in Sect. 3.2 (SA), which was submitted to the
competition, against SA-Colouring, the colouring strategy for the soft cost introduced in
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Table 3 Overall results on 100 runs using a time-limit of 324 s (see Footnote 4), reporting the average,
median, min and max cost for the SA and SA-Colouring techniques

Inst. SA SA-Colouring

% feas Avg. Med. Min. Max. % feas Avg. Med. Min. Max.

1 100 830 845 358 1313 100 547 555 15 1072

2 100 924 969 11 1965 100 403 356 9 1254

3 100 224 220 156 396 100 254 237 174 465

4 100 352 351 61 471 100 361 362 249 666

5 100 3 3 0 14 100 26 11 0 154

6 100 14 0 0 285 100 16 0 0 133

7 100 11 8 5 83 100 8 8 1 32

8 100 0 0 0 0 100 0 0 0 0

9 100 1649 1643 1049 2377 100 1167 1251 29 1902

10 98 2003 1999 773 2940 89 1297 1394 2 2637

11 100 311 309 157 456 100 361 366 178 496

12 100 408 420 0 782 100 380 397 14 676

13 100 89 74 0 270 100 135 111 0 425

14 100 1 1 0 14 100 15 1 0 139

15 100 80 0 0 311 100 47 0 0 294

16 100 19 11 1 120 100 58 23 1 245

Sect. 3.3. We report the average, median and min/max cost obtained over 100 runs with
different seeds.

SA-Colouring outperforms SA on instances 1, 2, 9, and 10. Those instances are the tight-
est from a feasibility point of view, as shown previously. The difficulty of finding feasible
timetables strongly handicaps the SA approach, which maintains feasibility while improv-
ing the cost. The colouring strategy gains flexibility by ignoring the matchings. However,
the latter strategy might rely on the fact that a perfect solution (a feasible timetable of soft
cost 0) is guaranteed to exist on this benchmark so that good configurations could also be
likely to be feasible solutions. If optimal soft cost configurations were not feasible, optimis-
ing the soft cost before having a feasible solution, as per the colouring strategy, could lead
us outside the feasible region. However, this conjecture needs to be confirmed by generating
instances without this property.

3.4.3 Comparisons with other solvers in the competition

Five algorithms5 were chosen for the final phase of the Track 2 of the 2007 ITC. These were
evaluated on 24 timetabling instances: the 16 already mentioned and 8 unknown competition
ones. Since all solvers were randomised, 10 runs per instance were performed giving 50
runs per instance. Each run for each solver was ranked among the 50 for each instance and
the average rank across all runs and all instances was used to give a rank to each solver.
Table 4 shows the ranking of each solver, with the number of times they have found the best
solution among all runs for a given instance, and the number of times they have failed to
find a feasible solution.

5The other four algorithms were developed by: M. Atsuta, K. Nonobe, T. Ibaraki; M. Chiarandini, C. Fawcett,
H. Hoos; C. Nothegger, A. Mayer, A. Chwatal, G. Raidi; and T. Muller.
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Table 4 Ranking of the five finalists from the tests ran by the organisers on the 24 instances

Cambazard
et al.

Atsuta
et al.

Chiarandini
et al.

Nothegger
et al.

Muller

Average rank (out of 240 runs) 13.9 24.43 28.34 29.52 31.31

Number of best solutions (out
of 24 instances)

13 11 3 11 0

Number of failures on
feasibility (out of 240 runs)

17 43 4 54 53

Rank in the competition 1 2 3 4 5

Our local search approach, with a score of 13.9, did significantly better than all other
entries. Our approach appeared generally more robust both for finding feasible and good
solutions. Chirandini et al. were best on feasibility only. We believe that LS-Colouring is
now the best approach to finding feasible timetables. It also does not take the soft cost
into account therefore being independent of the perfect solution property of the benchmark.
Our approach also obtained the best results on many instances. The detailed results of the
competition (not presented here) show that our approach was however outperformed (e.g.
by Nothegger et al.) on instances we considered to be very hard on feasibility, e.g. in-
stance 10. Therefore, we believe that there is a significant room for improvement in our
results.

4 Constraint programming models for feasible timetables

The post enrolment-based course timetabling problem has been tackled by a number of
local search techniques (Chiarandini et al. 2006; Kostuch 2004; Rossi-Doria et al. 2002;
Abdullah et al. 2005; Di Gaspero and Schaerf 2006). We are not aware, however, of any
complete approach. To this end we considered several CP models, none of which were able
to match the efficiency of local search. However, as we shall see in Sect. 6, the CP approach
can still be valuable to provide complex neighbourhoods for incomplete algorithms. It also
constitutes a sound basis for future work on complete approaches for this problem. We
present here the most promising CP model as well as two less successful ones and give
some insights into their inefficiency.

4.1 Basic model

For an event i we introduce two variables eventTimei ∈ {1, . . . ,45} and eventRoomi ∈
{1, . . . ,m}, for the timeslot and room associated to event i, respectively. Let Ri be the set
of rooms that can accommodate event i; Ti be the set of timeslots available for event i;
student(i) be the set of students attending event i; and let prec be the set of the pairs of
ordered events. We define the first model as follows:
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Model 1

∀i, j ≤ n such that student(i) ∩ student(j) �= ∅ eventTimei �= eventTimej (1)
∀i ≤ n eventRoomi ∈ Ri (2)
∀i, j ≤ n (eventTimei �= eventTimej ) ∨ (eventRoomi �= eventRoomj ) (3)
∀i ≤ n eventTimei ∈ Ti (4)
∀(i, j) ∈ prec eventTimei < eventTimej (5)

In this viewpoint, the constraints (1), (4) and (5) correspond to a list colouring problem
with precedences on the variables eventTime. Constraints (2) and (3) enforce that events
must be allocated to suitable rooms, and that within a given timeslot, every event must
be put into a different room, respectively. They correspond to a set of matching problems
conditioned by the result of the above colouring problem. In this model, the colouring and
matching aspects of the problem are relatively disconnected. In fact, as long as an event is
not committed to a given timeslot, we do not know in which matching it will participate,
because of the disjunctions (3). If an early decision on the colouring part prevents a con-
sistent room allocation, it will not be discovered until very late in the search, leading to a
trashing behaviour where large unsatisfiable subtrees are explored again and again. We ex-
plored two ways of resolving this issue. First, we modelled the relation between the room
allocation (matching) and timeslot allocation (colouring) using a global constraint (Aggoun
and Beldiceanu 1993) to achieve stronger inference between these two aspects and detect
mistakes earlier. We describe this model in Sect. 4.2. The second solution was to separate
the solving of the colouring and the matchings, so that we explore more diverse colourings,
and hopefully avoid trashing. We describe this model in Sect. 4.3.

4.2 Matching constraint

As mentioned in the problem description (Sect. 2), knowing if a set of events can fit in a
given timeslot with respect to room availability and capacity is a bipartite matching problem
(events to rooms). The objective is to remove the eventRoom variables from the search space.
In other words, we will make sure that constraint propagation alone ensures that an assign-
ment of all events can be extended to a matching for each timeslot. As a result, we solve a
colouring problem where we only assign events to timeslots subject to timeslot availability
and precedences, and such that the remaining matching sub-problems are backtrack-free.

The room allocation sub-problem can be represented in a bipartite graph G = (V1,V2,E)

where V1 = {1, . . . , n} is the set of events, and V2 = {〈1,1〉, . . . , 〈45,m〉} is the set of all pairs
〈timeslot, room〉. An edge (i, 〈j, k〉) is present iff event i can be assigned to timeslot j in
room k. A maximal matching of G thus represents an assignment of events to rooms satisfy-
ing constraints (2) and (3). We introduce n variables to link this matching with the colouring:
eventi ∈ {〈1,1〉, . . . , 〈45,m〉} denotes the timeslot and room, represented by a pair, to which
event i is assigned. An ALLDIFF({event1, . . . , eventn}) constraint (Régin 1994) ensures that
the graph G admits a matching of cardinality n. Notice that during search, arc-consistency is
achieved for all matching problems at once, giving stronger inference than considering the
matchings independently. Notice that we could post other constraints directly on variables
events. However, this can be done more easily on the eventTime variables. They also provide
a naturally good branching scheme, since rooms have been factored out of the search space.
We thus define a second model, where we substitute the variable eventRoomi with eventi
and channel it to eventTimei using a simple binary constraint.
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Model 2

∀i, j ≤ n such that student(i) ∩ student(j) �= ∅ eventTimei �= eventTimej (1)
∀i ≤ n eventTimei ∈ Ti (4)
∀(i, j) ∈ prec eventTimei < eventTimej (5)
∀i ≤ n eventi ∈ 〈Ri × Ti〉 (6)
∀i ≤ n eventTimei = eventi [0] (7)

ALLDIFF({event1, . . . , eventn}) (8)

Constraint (7) channels the variables eventTime to event by projecting on the first element
of the pair. Notice that since arc consistency is achieved in polynomial time on the ALLDIFF

constraint, an assignment of eventTime satisfying Model 2 can always be extended to event
in a backtrack-free manner.

4.3 Alternate colourings and matchings

Constraint (8) of Model 2 is very costly to maintain. Therefore, we consider a decomposition
similar to a logic-based Benders decomposition scheme (Hooker and Ottosson 2003). We
adopt the colouring strategy of the local search (Sect. 3.3), and first solve the colouring
relaxation and delay the resolution of the matchings until a colouring has been found. If
the matching is infeasible, we seek another solution for the colouring, and iterate in this
way until a full solution is found. Clearly, solving the colouring part alone allows for a far
more optimised and sleeker model, however, reaching a fixed point might not be easy. We
first describe the lighter model restricted to the colouring and precedence constraints, and
where the room allocation constraints are relaxed to a simpler cardinality constraint. Then,
we show how Benders cuts can be inferred when failing to solve a matching in order to
tighten the colouring sub-problem.

The eventRoom variables are ignored as in the previous model and a single global cardi-
nality constraint (GCC) (Régin 1996) is added to ensure that every timeslot is used at most m

times. This constraint eliminates trivially infeasible matchings where the number of events
assigned to a timeslot is greater than the number of rooms.

Model 3

∀i, j ≤ n s.t. student(i) ∩ student(j) �= ∅ eventTimei �= eventTimej (1)
∀i ≤ n eventTimei ∈ Ti (4)
∀(i, j) ∈ prec eventTimei < eventTimej (5)
∀i ≤ n GCC({eventTimei | i ≤ n}, [[0..m], . . . , [0..m]]) (9)

A solution of this model is not guaranteed to be a feasible solution of the original prob-
lem. Indeed, a matching problem can be inconsistent once the colouring is fixed. We,
thus, iteratively solve the colouring part until we find a feasible room allocation, as de-
picted in Algorithm 1. If a matching problem fails, a minimal conflict corresponds to a
set of events that cannot be assigned together in any timeslot. We use an algorithm for
finding minimal conflicts (de Siqueira and Puget 1988) to extract such a set of events
(line 3). In order to rule out this conflicting assignment in future resolutions of the colour-
ing sub-problem, we post a NOTALLEQUAL constraint to the model (line 4). The constraint
NOTALLEQUAL(x1, . . . xk) ensures that there exists i, j ∈ [1..k] such that xi �= xk . This
acts as a Benders cut and prevents the same assignment from being met repeatedly. Ob-
serve that since we extract minimal sets of conflicting events (Jain and Grossmann 2001;
Cambazard et al. 2004), entire classes of assignments that would fail for the same reason are
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Algorithm 1: Decomposition

repeat1

solve Model 3;2

matched ← true;
foreach 1 ≤ j ≤ 45 do

G ← (V1 = {i | eventTimei = j},V2 = ⋃
i∈V1

Ri,E = {(i, k) | i ∈ V1, k ∈ Ri});
if cannot find a matching of G then

matched ← false;
cut ← Extract-min-conflict(G);3

add NOTALLEQUAL(eventTimek|k ∈ cut) to Model 3;4

until matched;

ruled out. Notice also that although this constraint is inferred from a particular timeslot, it
holds for every timeslot.

We explored further improvements of this model based on the analysis of the colouring
graph described in Sect. 2. Conflicts between events are organised into large cliques, one for
each student and even larger cliques can be inferred by taking room conflicts into account.
This information can be used to obtain stronger filtering from the model. One possibility
is to replace the constraints (1) by ALLDIFF constraints. Each of the aforementioned “fi-
nal cliques” implies an ALLDIFF constraint between a set of eventTimei variables. In this
manner, all the binary differences (1) are covered by at least one clique and can thus be
removed. We can expect to achieve a stronger level of propagation as a result. On the other
hand, ALLDIFF can be expensive to maintain. We can therefore choose to keep, amongst
the final cliques, only the cliques obtained from a room clique, as a trade-off between the
efficiency of binary differences and the additional reasoning brought by the cliques, as they
are big and they contain additional conflicts. This leads to two variations of Model 3 that we
assess empirically below.

4.4 Experimental results

We ran Model 2, Model 3, Model 3-cliques (Model 3 including all implied ALLDIFF

constraints) and Model 3-rooms (Model 3 including only the ALLDIFF constraints rep-
resenting room cliques). In Table 5, we give the number of iterations of Algorithm 1
(Decomposition), that is, the number of feasible colourings that were required to find a
complete solution. This number is always 1 for Model 2. We also give the cumulative CPU
time in seconds and number of nodes explored on solved instances.

Notice that no model could solve instances 1, 2, 9, 10, 13 and 14 within the time cutoff
of 420 s, corresponding to the 10 min cutoff in the competition, on an Apple MacBook.
Model 2 does not need to solve several colouring problems, however, the overhead due to
the extra variables (event) and to the large ALLDIFF constraint, is too important. We also
observe that in most cases, the ALLDIFF constraints on events sharing the same unique
suitable room dramatically reduces the number of iterations required to solve the problems.
On the other hand, using ALLDIFF constraints for representing the colouring problem seems
to be detrimental. The best combination seems to be Model 3 using ALLDIFF only for rooms.

We believe that the main reason for Model 3 dominating Model 2 is that the difficult
part of the problem lies primarily in the colouring for these instances. The very low number
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Table 5 A comparison of the various CP models we studied

Inst. Model 2 Model 3 (conflicts) Model 3 (all) Model 3 (room)

Iter. Time (s) Nodes Iter. Time (s) Nodes Iter. Time (s) Nodes Iter. Time (s) Nodes

3 1 12.813 327 2 5.111 312 1 15.919 198 1 4.850 198

4 – – – 2 7.386 3789 1 18.154 351 1 4.814 351

5 – – – – – – 4 23.428 5335 3 9.599 1977

6 – – – 22 28.878 26,049 3 93.895 42,753 2 25.619 22,137

7 – – – 9 17.608 21,410 1 17.459 2595 1 7.690 5626

8 1 119.190 2144 6 2.521 534 1 7.283 633 1 3.015 633

11 – – – 5 4.297 713 3 18.485 443 3 5.678 1896

12 – – – 8 160.732 178,437 2 271.381 29,291 1 75.705 78,666

15 – – – 10 2.528 601 2 6.096 191 2 2.783 191

16 1 4.883 213 12 2.477 1143 2 6.153 261 2 2.713 261

of colouring sub-problems solved when adding the implied ALLDIFF constraints provides
further evidence of this. Any given colouring satisfying the implied ALLDIFF constraints
is very likely to be extensible to a feasible matching. We also observed (but this is not
apparent in the tables) that the extra GCC constraint used to approximate the matching part
was almost unnecessary in most cases. That is, even without this constraint, the number of
iterations to reach a complete solution remains relatively small. Notice, however, that this
last observation does not stand for instances 1, 2, 9 and 10, which happen to be the hardest.

Next we compare three heuristics all using the best model: Model 3 (room). We used
the good general purpose heuristics minimum domain over future degree (dom/deg) and
impact (Refalo 2004) as benchmarks. The former was used successfully on list-colouring
problems in the past, whilst the latter proved to be the best in our experiments. The third
heuristic, contention, is based on computing the contention of events for a given timeslot. In
scheduling, resource contention has been used as heuristic with considerable success (Sadeh
and Fox 1996). In our case, timeslots can be viewed as resources, of capacity m (the number
of rooms), required by events. The contention C(j) of a timeslot j is

C(j) =
∑

i|j∈D(eventTimei )

1/|D(eventTimei )|.

Intuitively, this quantity describes the demand for timeslot j . It clearly induces a value or-
dering, since less contended for time slots are less likely to lead to a failure. Next we can
compute a contention value for variables C(eventTimei ), representing the “constrainedness”
of a given variable and is equal to

C(eventTimei ) =
∑

j∈D(eventTimei )

1

C(j)
.

The event i that minimises C(eventTimei ) and the timeslot j that minimises C(j) are ex-
plored first.

In Table 6, we give the number iterations of Decomposition (Algorithm 1) as well
as the cumulative cpu time and number of nodes explored on solved instances. The results
clearly show that contention dominates dom/deg and is itself dominated by impact. Notice
that these two better heuristics also provide value orderings, whereas dom/deg does not. This
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Table 6 Comparison of search heuristics for the CP models

Inst. Impact Contention Dom./Deg.

Iter. Time (s) Nodes Iter. Time (s) Nodes Iter. Time (s) Nodes

3 1 4.850 198 1 3.455 182 1 3.183 228

4 1 4.814 351 – – – – – –

5 3 9.599 1977 3 66.489 112,413 – – –

6 2 25.619 22,137 2 318.635 529,877 – – –

7 1 7.690 5626 – – – – – –

8 1 3.015 633 2 1.958 413 3 3.021 3098

11 3 5.678 1896 4 3.165 342 – – –

12 1 75.705 78,666 – – – – – –

15 2 2.783 191 1 6.224 6478 – – –

16 2 2.713 261 2 1.878 252 2 1.831 237

is important on these benchmarks, since they have a relatively large number of solutions
whilst being hard for a complete method.

5 Constraint programming models for timetable optimisation

In this section we introduce three soft global constraints to reason about the costs, based
on the soft constraints from the problem description, and specifically derive lower bounds
for those. The main difficulty we encountered is that all three costs are defined in terms of
students who are numerous and, thus, not represented explicitly in our CP model. In each
case we tried to circumvent this issue by projecting the cost onto events and/or timeslots.
All the pruning is done regarding the current upper bound (best known solution) denoted ub

in the following. We say that a lower bound of a cost is exact if and only if it is the cost of
an optimal solution given the current domains, and discarding all other constraints.

5.1 Last timeslot of each day

This soft constraint counts the number of students attending an event in the last timeslot
of the day ({9,18,27,36,45}). We introduce, for each event i, a Boolean variable bi such
that bi = 0 if event i is in a timeslot other than the last ones, and bi = 1 if the event i is in
one of the last timeslots. The cost can then be expressed as cost1 = ∑

i (bi × |student(i)|).
The Boolean variables can be added to Model 3 and channelled with eventTimei or a simple
dedicated global constraint can be implemented. We chose the latter option for efficiency
reasons and to be able to augment it with stronger inference.

Lower bound Consider the bipartite graph G = (V1,V2,E) described in Sect. 4.2 and
captured by Constraint (8) of Model 2. We recall that V1 = {1, . . . , n} is the set of events
and V2 = {〈1,1〉, . . . , 〈45,m〉} is the set of all pairs 〈timeslot, room〉. The existence of
a maximum matching in this graph ensures a possible allocation of each event to a pair
〈timeslot, room〉. WG extends G by adding a weight wij to each edge of E defined as fol-
lows:

wij =
{ |student(i)| iff j = 〈a, b〉 with a ∈ {9,18,27,36,45};

0 otherwise.
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Let us denote by W the value of a minimum weighted matching in WG. W is a lower bound
on the minimum number of students that must go in the last timeslots. Adding these weights
to the matching extends the ALLDIFF constraint to an ALLDIFF with costs.

Pruning The ALLDIFF with costs is a specific case of the global cardinality constraint with
costs (Régin 1999). We refer the reader to Régin (1999) for details about the pruning.

Computational complexity The maximum weighted matching corresponds to an assign-
ment problem and can be solved in polynomial time (in O(n245m) for our particular
case (Régin 1999)). This improved bound has not yet been included in our current imple-
mentation. Note that this bound is exact when relaxing only Hard Constraints 1 and 5 of the
problem description. We saw that the colouring sub-problem can however be tighter than
the matchings so that reasoning on the colouring can improve this bound.

5.2 Consecutive events

This soft constraint counts the number of students attending more than two events in a row
on a given day. We present the lower bound developed for this cost and show how it is
maintained incrementally at a relatively low computational cost.

Lower bound The cost associated with the consecutive allocation of every possible triplet
of events is pre-computed initially and stored in a large static table: static-cost(i1, i2, i3) =
|student(i1)∩ student(i2)∩ student(i3)|. We first consider only events committed to a times-
lot, i.e., instantiated variables. The lower bound, lb(cost2) takes into account the sum of
these costs implied by instantiated events i1, i2, and i3 to consecutive timeslots. This part of
the bound is referred to as lbg(cost2):

ground-cost(i1, i2, i3) =
⎧
⎨

⎩

static-cost(i1, i2, i3) if eventTimei1/i2/i3 are
assigned and consecutive;

0 otherwise.

lbg(cost2) =
∑

i1<i2<i3

ground-cost(i1, i2, i3).

Then, for each unassigned event, a lower bound on the cost involved by its insertion in the
current timetable is maintained. For a timeslot j , let pairs(j) be the set of pairs of events
assigned respectively to j − 2 and j − 1, or j − 1 and j + 1, or j + 1 and j + 2. The cost of
assigning event i to timeslot j is the sum of all triplets formed by i and any existing pair p

in pairs(j). Then we define pending-cost(i, j) as:
∑

p∈pairs(j) static-cost(p ∪{i}). The lower
bound lb(i) associated with allocating event i to one of its possible timeslots is equal to the
minimum pending cost over all values lb(i) = minj∈D(eventTimei )pending-cost(i, j). We use
the following lower bound during search:

lb(cost2) = lbg(cost2) +
∑

|D(eventTimei )|>1

lb(i).

Pruning We prune timeslot j for event i iff lb(cost2) + pending-cost(i, j) − lb(i) > ub.



130 Ann Oper Res (2012) 194:111–135

Computational complexity The base lower bound lbg(cost2) is maintained incrementally
during search. It is updated only when a variable eventTime becomes assigned to some
timeslot. In this case we increase the cost by the value of the static-cost of the newly formed
triplets of events. There are at most 35m3 triplets in total, the amortised computational cost
of maintaining this lower bound along one branch of the search tree is thus O(m3).

The pre-computation of the static-cost is key for efficiency. Computing pending-cost(i, j)

can be done in O(m2) time since there are three sets of at most m2 pairs to consider for each
timeslot of each event. Since there are at most 45 possible timeslots for a given event, one
can compute lb(i) for all events in O(nm2). In practise, we update the values of lb(i) only
when event i loses some values, or when another variable gets assigned to some timeslot j

and D(eventTimei ) ∩ {j − 2, j − 1, j + 1, j + 2} �= ∅. The pruning can be done in the same
time complexity since we only need to go through at most 45n values.

5.3 Single events

This soft constraint counts students attending a single course in any day of the week. The
non-monotonic nature of this cost makes it difficult to reason about. In fact, scheduling an
event in a given day simultaneously increases the cost for students attending only this event,
and decreases it for students attending another, until then unique, event. We show that even
when we relax all other factors to an extreme case, computing an optimal lower bound for
this cost is NP-hard.

Theorem 1 Finding the exact lower bound for Soft Constraint 3 is NP-complete, even if all
other constraints are relaxed.

Proof We consider the problem of finding a lower bound for cost3 for a given day, with no
external constraint. We only assume that a set of events may already have been assigned
to this day (event variables with a singleton domain), and that we have a finite set of extra
events to choose from (yet unassigned event variables). Observe that, in this formulation,
even the “domain constraints” are relaxed since it is possible for an event to account for
the occupation of two slots in two different days. We analyse the corresponding decision
problem, SINGLE-EVENT:

Data: An integer k, a set R of events already assigned to one given day, and another
set P that can possibly be assigned to this day.
Question: Is there a set R ⊆ S ⊆ P of events such that no more than k students have
a single event in that day?

We reduce SET-COVER to SINGLE-EVENT. A SET-COVER instance is composed of a
set U = {u1, . . . , un}, a set S = {S1, . . . , SM} ⊆ 2U of subsets of U , an integer k ≤ M . The
problem consists of deciding whether there exists a set C ⊆ S such that

⋃
Si∈C Si = U and

|C| ≤ k.
We build R with one event E, that contains k + 1 students e1

i , . . . , e
k+1
i per element ui

of U (the element-students). We build P with an event Ej for each subset Sj ∈ S. Each
event Ej contains the element-students of each element in Sj , i.e. the element-students
e1
i , . . . , e

k+1
i for each ui ∈ Sj , plus one unique student sj (the set-student).

Each subset R ⊆ S ⊆ P of cost k, i.e. such that no more than k students attend a single
event in the day, corresponds to a set cover of U of size k, and vice-versa:

• For a given set cover C of size k, the set S = {Ej |Sj ∈ C} is of cost k.
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• Conversely, let S be a set of cost k. Clearly, S corresponds to a set cover: if any element of
U is not covered, then the cost of S is at least k + 1 (each uncovered element corresponds
to k + 1 element-students attending only E). Now, as all the element-students attend at
least two events, the cost can only result from the set-students, which is simply the number
of events (other than E) in S. �

Observe that solving a sequence of SINGLE-EVENT instances with decreasing values
of k gives us a lower bound on this cost when all other constraints are relaxed, and without
even imposing each variable to take at least one value. For instance if event i is in P , we can
choose not to schedule it at all, whereas in effect, it will necessarily be assigned to some day
of the week. This is, therefore, a much easier problem than finding the exact lower bound of
Cost 3. However, even this relaxed problem is NP-complete.

Taking this fact into consideration, we only maintain this cost correctly in the computa-
tionally cheapest possible way. We consider each pair 〈day, student〉. As long as at least two
events attended by this student can potentially happen this day, we do nothing. Otherwise,
there are two choices, either this student has no course at all in this day, or has exactly one.
In the latter case we increase the cost by one. This can be efficiently done with a system akin
to the watched literals used in SAT unit propagation (Moskewicz et al. 2001). For every stu-
dent and every day, we randomly pick two events to “watch” for this pair. When an event
cannot be assigned to some day anymore, we update the list of students it watches for that
day, finding a new available watcher. Notice that this is very cheap to do. For instance if this
event was not watching any student for that day, it does not cost anything at all. When we
do not find any replacement, we know that the given student is either attending no event in
that day, or only a single one. We update the cost accordingly.

6 Large neighbourhood search

One weakness of the local search approach is the lack of flexibility when moving in the
space of feasible solutions. The search space accessible from a given feasible solution might
be very limited by the hard constraints and even disconnected. In such a case, the search can
only reach the best solution connected with the initial one.

One solution would be to relax feasibility during search without any guarantees to find it
again or to restart from different feasible solutions. We already investigated the first option
with the colouring strategy. Another possibility is to design more complex moves that affect
larger parts of the current assignment. Move Hu is one example of a complex move that re-
mains polynomial. A more general kind of move can be performed using a complete solver.
This is the central idea of Large Neighbourhood Search (LNS) (Shaw 1998). LNS is a local
search paradigm where the neighbourhood is defined by fixing a part of an existing solution.
The rest of the variables are said to be released and all possible extensions of the fixed part
define the neighbourhood which is usually much larger than the one obtained from classical
and elementary moves. Algorithm 2 presents the simple LNS scheme. An efficient system-
atic algorithm is needed to explore this large neighbourhood and the CP Model 3 presented
earlier will be used for this.

Nature and size of the neighbourhood The selection of variables to release is a key element
of a LNS scheme: we need to decide which events should be released (nature of the neigh-
bourhood), and in what number (size of the neighbourhood). Previous work on LNS (Danna
and Perron 2003; Perron et al. 2004; Perron and Shaw 2004) outlines the importance of
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Algorithm 2: LNS Scheme

find a feasible solution;1

while optimal solution not found or time limit not reached do2

choose a set of events to release;3

freeze the remaining events to their current position;4

if search for an improving solution succeeds then5

update the upper bound;6

structured neighbourhoods specific to the problem. We have investigated neighbourhoods
that release events per timeslots (all events contained in a given set of timeslots). It is crit-
ical to choose a neighbourhood that releases related variables, i.e. variables that are likely
to be able to change and exchange their values. It is indeed very important that the neigh-
bourhood contain more feasible solutions than the one we already had before releasing the
variables. A promising neighbourhood should also be likely to contains feasible solutions of
better cost. We, therefore, investigated a neighbourhood that releases kc conflicting and kr

random timeslots (all events in the corresponding timeslots are released).
The size of the neighbourhood is difficult to set as the tradeoff between searching more

versus searching more often is difficult to achieve. We choose to start from small sizes
(kc = 2 and kr = 2) and to increase it when the search stagnates; in practise, after 100
non-improving iterations, the minimum of kc and kr is increased by 1. The reason is that
the accurate size seems to vary a lot between timetabling instances. Much bigger sizes are
typically needed for instances 1, 2, 9 and 10 where feasibility is tight. Sideways moves are
again very important for diversification and are always accepted.

LNS as an intensification mechanism for the SA The LNS approach relies only on the CP
solver as shown in Algorithm 2. Another idea is to use the LNS move at the low temperatures
of the SA to help the very important and final phase of optimisation performed at the end of
the cooling phase. In this mode, we do not accept sideways moves to speed up the solving
process and look for improving solutions only. Diversification is ensured by other moves
of the SA that continuously change the current assignment. The CP move is included in
the neighbourhood of the SA at each iteration with a probability that increases while the
temperature decreases:

pinclude_lns(τ ) = 1

200 ∗ τ
.

7 Experimental results comparing the various approaches

We summarise the results of our study with complete approaches (including the SA of the
local search as a mean of comparison):

• CP: The Constraint Programming approach described in Sects. 4 and 5 based on Model 3
(room) using Impact-based search.

• LNS: The Large Neighbourhood Search approach relying on Model 3 (room) (the local
search of Sect. 3.1 is used to provide an initial feasible solution).

• SA: The local search approach described in Sect. 3 which is based on Simulated Anneal-
ing for the optimisation stage.
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Table 7 Overall results on 100 runs reporting the average, median, min and max cost for LNS, SA and
SA_LNS. CP being deterministic, a single cost is given

Inst. CP LNS SA SA_LNS

Avg. Med. Min. Max. Avg. Med. Min. Max. Avg. Med. Min. Max.

1 – 1977 1979 1566 2278 830 845 358 1313 827 839 349 1308

2 – 2206 2189 1789 2678 924 969 11 1965 930 968 0 1938

3 1930 860 843 515 1174 224 220 156 396 221 213 142 399

4 2097 948 942 667 1213 352 351 61 471 349 352 22 474

5 1767 912 931 660 1110 3 3 0 14 5 5 0 23

6 1681 989 996 766 1172 14 0 0 285 15 2 0 285

7 1450 518 524 258 735 11 8 5 83 1 0 0 50

8 1111 465 462 166 714 0 0 0 0 0 0 0 0

9 – 2334 2330 1989 2586 1649 1643 1049 2377 1634 1623 978 2313

10 – 2473 2469 2059 2916 2003 1999 773 2940 1985 1983 772 2845

11 2388 909 899 642 1170 311 309 157 456 302 299 149 456

12 2328 1163 1147 767 1498 408 420 0 782 402 413 0 748

13 – 1018 1017 784 1207 89 74 0 270 88 76 0 269

14 – 1053 1051 789 1258 1 1 0 14 2 2 0 6

15 1225 585 585 404 778 80 0 0 311 79 0 0 309

16 964 443 441 312 654 19 11 1 120 10 0 0 114

• SA_LNS: the SA approach augmented with LNS as an intensification mechanism at the
end of the cooling (still using Model 3 (room)).

Table 7 reports the cost found by each technique on the 16 available timetabling instances
from Track 2 of the 2007 ITC. LNS, SA and SA_LNS were run on 100 different seeds and
the average, median, minimum and maximum cost found over the 100 runs are reported. The
CP approach is entirely deterministic and a single run is therefore shown. Two computers
were used, CP was run on a MacBook6 within a time limit of 420 s and the others were run
on a cluster7 within a time limit of 324 s, selected using the ITC benchmarking utility that
gives an approximation of 10 min of competition time on alternative hardware platforms.

Firstly, the LNS scheme outperforms CP alone (even by only looking at instances where
CP does find a feasible solution) while being a very simple application of CP. Secondly,
LNS is itself outperformed by the SA. We observed here that it remains stuck in local minima
despite the large size of the neighbourhood. Finally, SA_LNS marginally improves over SA.
The CP moves do not seem to bring much more flexibility to the SA to escape local minima
in general. It allows, however, to find three new optimal solutions (Instances 2, 7, and 16)
and improves the performance on two instances (7 and 16). Note that all the minimum costs
are improved showing that LNS does play a role in the final intensification stage.

6Mac OS X 10.4.11, 2 GHz Intel Core 2 Duo, 2 GB 667 Mhz DDR2.
7A single thread on a Dual Quad Core Xeon CPU @ 2.66 GHz with 12 MB of L2 cache per processor and
16 GB of RAM overall, running Linux 2.6.25 × 64.
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8 Conclusion

We have presented a comprehensive study of a university timetabling problem, comparing a
variety of local search and constraint programming approaches. A central and very success-
ful idea across the methods is the decomposition based on colouring and matching views
of the problem. We designed a constraint programming approach that proceeds by decom-
posing the list-colouring and the matching subproblems and outperforms more classic CP
models. Lower bounds were introduced to tackle soft constraints, leading to the first com-
plete algorithm for this problem.

While our local search technique benefits from the experience of the 2003 competition,
we have presented several improvements to deal with hard constraints. The results show
that the local search technique is more mature than the CP technique, which in turn should
have much more room for improvement. However, an LNS scheme integrating both our
CP and LS approaches improved some of the best results. Any improvement of the CP
approach should lead to improvements on the LNS thus opening additional avenues for the
CP technique.

The structure of the list-colouring graph made of large and overlapping cliques was
shown to be important for both CP and LS techniques. Improving the propagation we can
achieve from a collection of ALLDIFF constraints is very important in this context. Arc-
consistency on two overlapping ALLDIFF is already known to be NP-Complete (Beldiceanu
et al. 2007) but a number of pragmatic filtering rules could be designed. This is an important
topic for future work.
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