
Ann Oper Res (2011) 184: 3–26
DOI 10.1007/s10479-010-0730-1

Rapidly computing robust minimum capacity s-t cuts:
a case study in solving a sequence of maximum
flow problems

Douglas S. Altner · Özlem Ergun

Published online: 23 March 2010
© US Government 2010

Abstract The Minimum Capacity s-t Cut Problem (MinCut) is an intensively studied prob-
lem in combinatorial optimization. A natural extension is the problem of choosing a min-
imum capacity s-t cut when arc capacities are unknown but confined to known intervals.
This motivates the Robust Minimum Capacity s-t Cut Problem (RobuCut), which has appli-
cations such as open-pit mining and project scheduling. In this paper, we show how RobuCut
can be reduced to solving a sequence of maximum flow problems and provide an efficient
algorithm for rapidly solving this sequence of problems. We demonstrate that our algorithm
solves instances of RobuCut in seconds that would require hours if a standard maximum
flow solver is iteratively used as a black-box subroutine.

Keywords Maximum flows · Robust minimum cuts · Reoptimization heuristics ·
Goldberg-Tarjan algorithm · Robust network optimization · Incremental maximum flow
algorithms

1 Introduction

The Minimum Capacity s-t Cut Problem (MinCut) is a fundamental problem in combinato-
rial optimization. It has numerous nontrivial applications to a wide selection of real-world
problems. For an extensive list of applications, please see Sect. 6.2 of Ahuja et al. (1993).
A natural extension of MinCut is the problem of conservatively choosing a s-t cut in light
of uncertain arc capacities. Specifically, we propose and study the Robust Minimum Capac-
ity s-t Cut Problem (RobuCut) where arc capacities are unknown but confined to known
intervals.

D.S. Altner (�)
Department of Mathematics, United States Naval Academy, 572C Holloway Road, Annapolis,
MD 21402, USA
e-mail: altner@usna.edu

Ö. Ergun
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
765 Ferst Drive NW, Atlanta, GA 30332, USA
e-mail: oergun@isye.gatech.edu

mailto:altner@usna.edu
mailto:oergun@isye.gatech.edu

4 Ann Oper Res (2011) 184: 3–26

Robust programming is a branch of mathematical programming that models conservative
planning under data uncertainty. Intuitively, robust programming allows a user to maximize
his profit or minimize his costs in a “bad” scenario. Since planning for the worst possible
scenario is often too conservative, robust programming includes a parameter of robustness
that allows the decision maker to specify a desired degree of conservative planning. In this
paper, we use the polyhedral model of uncertainty of Bertsimas and Sim (2003).

RobuCut can be used for several applications of MinCut where arc capacities may be
obtained from imprecise engineering estimates. For example, in the application of open-pit
mining, a minimum capacity s-t cut (minimum cut) in the formulated network indicates
which blocks of earth should be excavated to maximize profit subject to constraints on the
slope requirement of the pit and precedence constraints on the blocks (Hochbaum and Chen
2000). In this model, the arc capacities correspond to the estimated economic value of the
ore in each block, which relies on geological information obtained from drill cores and
the forecasting of future commodity prices. Due to the number of critical assumptions that
serve as the basis for widely used open-pit mining decision models, industry experts have
emphasized the need for models that incorporate the uncertainty of the economic value of the
orebodies (Monkhouse and Yeates 2005). One such method of encapsulating this uncertainty
is to model the open-pit mining problem as a robust optimization problem.

There are several other applications of MinCut that can be extended to a robust program-
ming framework. Stone (1977) proposes a MinCut model that can be used for distributed
computing on a dual-processor machine with the objective of minimizing the amount of
communication required between the two processors. With RobuCut, this model can be
extended to ensure the computer user never has to wait “too” long even in a “bad” case.
Möhring et al. (2003) show that a cost minimization scheduling problem with start-time de-
pendent costs can be formulated with MinCut. With RobuCut, this model can be extended to
incorporate the uncertainty in cost that could stem from unplanned delays. For example, in
the context of construction management, these could be delays caused by weather or acci-
dents. Harris and Ross (1955) discuss how to model finding a minimum cost interdiction of
a s-t flow network as a MinCut. With RobuCut, their model can be extended to incorporate
uncertainty of the costs associated with destroying arcs. For example, in the context of inter-
dicting a railroad network, this allows one to hedge against several real-world uncertainties
such as the strength of defenses as well as the success of the air strikes.

Bertsimas and Sim (2003) initiate the study of robust combinatorial optimization and
network flows. In addition to providing a modeling framework, the authors also prove that
any robust combinatorial optimization problem (RobuCOP) can be solved by solving a linear
number of nominal combinatorial optimization problems. Thus, RobuCut may be solved by
solving a linear number of MinCuts.

A fundamental result of network optimization is that a minimum cut may be constructed
by computing a maximum s-t flow (maximum flow). Initially, it may seem as if no further
study is required. After all, a RobuCut can be solved with at most a linear number of maxi-
mum flow computations and there are quite effective open-source solvers for the maximum
flow problem that are freely available on the Internet (Goldberg 2010). However, we show
that using a maximum flow solver as a black-box subroutine when solving RobuCut can lead
to hours of unnecessary computations. As a remedy, we propose an algorithm that relies on
rapid maximum flow reoptimization heuristics.

Given that RobuCut can be reduced to solving a sequence of maximum flow problems,
our study also serves as a case study of the effectiveness of maximum flow reoptimization
heuristics. Large sequences of similar maximum flow problems arise in a diverse collec-
tion of practical solution techniques for complex, real-world problems including those in

Ann Oper Res (2011) 184: 3–26 5

computational biology (Strickland et al. 2005), constraint programming (Régin 1994) and
biometry (Govindaraju 2008). For an extensive list of algorithms that involve solving a large
sequence of maximum flow problems as well as a detailed study of maximum flow reopti-
mization heuristics, see Altner (2008).

RobuCut is also one of several important problems in the burgeoning collection of re-
search literature on robust network programming. We briefly survey a few other papers in
robust network programming. Chaerani and Roos (2006) formulate a robust maximum flow
problem as a conic program using the ellipsoidal model of uncertainty of Ben-Tal and Ne-
mirovski (1998). Atamtürk and Zhang (2007) develop a two-stage robust optimization ap-
proach for solving network flow and design problems with uncertain demand. The authors
generalize the approach to multicommodity flow network design and suggest applications to
lot-sizing and location-transportation problems. Ordóñez and Zhao (2007) develop a robust
programming formulation for the problem of expanding arc capacities in a network subject
to demand and travel uncertainty. The authors also prove their model can be reformulated as
a conic linear program.

The main contributions of this paper are developing an efficient algorithm for Robu-
Cut and demonstrating that our algorithm drastically outperforms two other algorithmic
approaches: one that uses a maximum flow solver as a black-box subroutine and another
that incrementally uses a maximum flow simplex algorithm as a subroutine. Specifically,
we demonstrate our algorithm solves RobuCut instances with hundreds of nodes in seconds
whereas the other algorithms could require more than four hours. Thus, we have turned what
could require half of a working day’s worth of time into a near real-time decision.

In Sect. 2, we discuss network flow preliminaries. In Sect. 3, we formally introduce the
Robust Minimum s-t Cut Problem and prove a worst-case algorithmic result. In Sect. 4, we
provide a detailed description of our algorithm and prove it is no worse, in terms of worst-
case analysis, than making a linear number of subroutine calls to the highest label pre-flow
push algorithm of Goldberg and Tarjan (1988). In Sect. 5, we detail our experiments and
present computational results. In Sect. 6, we draw conclusions.

2 Preliminaries

2.1 Notation

We use N = (V ,A) to denote a network or directed graph with node set V and arc set A.
An arc from node i to node j is denoted as (i, j). xi,j and ui,j are used to denote the flow
on and the capacity of arc (i, j), respectively. Every network mentioned in this paper is a
single commodity flow network and has a unique source s ∈ V and a unique sink t ∈ V . We
assume there are no arcs entering s and there are no arcs leaving t . All problems discussed
in this paper are defined on networks that are s-t connected; that is, there exists a directed
path from node s to node t . If it is possible to send at least one unit of flow from a node u to
a node v then node v is reachable from node u.

Given a node v, the forward star of v, that is, the set of all arcs leaving v, is denoted by
FS(v). Similarly, the set of all arcs entering v is known as the reverse star and is denoted by
RS(v).

2.2 Network flow preliminaries

For background in network flows, we recommend Ahuja et al. (1993). The reader should be
familiar with the Maximum Flow Minimum Cut Theorem, which states that the maximum

6 Ann Oper Res (2011) 184: 3–26

flow in a s-t network equals the minimum capacity s-t cut in that network. This theorem
was originally proved in Ford and Fulkerson (1956).

Given a feasible s-t flow x in a network N = (V ,A), we can construct the residual
network as follows. For each node v ∈ V we create a corresponding node in the residual
network. For each arc e = (u, v) ∈ A such that ue − xe > 0 we create a corresponding arc
ef = (u, v) in the residual network with capacity uef

= ue − xe . Similarly, for each arc
e = (u, v) ∈ A such that xe > 0 we create a corresponding arc eb = (v,u) in the residual
network with capacity ueb

= xe . The source and sink in the residual network correspond to
the source and sink respectively of the original network. The following result is well known:

Theorem 1 A feasible s-t flow is a maximum flow in a network N if and only if the corre-
sponding residual network has a maximum flow of 0.

2.2.1 Goldberg-Tarjan algorithm

We refer to the well known maximum flow algorithm of Goldberg and Tarjan (1988) as the
Goldberg-Tarjan algorithm. This algorithm is also known as the pre-flow push algorithm and
as the push-relabel algorithm.

At any point during the Goldberg-Tarjan algorithm, every node v has an associated dis-
tance label d(v) and an excess e(v). The distance label is a lower bound on the shortest
distance, in terms of the number of arcs, from v to t . Upon initiation, we set d(s) = |V | and
d(t) = 0. The excess of a node v is defined as e(v) = ∑

i∈RS(v) x(i,v) − ∑
j∈FS(v) x(v,j). Any

node with a positive excess is an active node.
We say that a residual arc (u, v) is admissible if and only if d(u) = d(v)+1. Throughout

the course of the Goldberg-Tarjan algorithm, admissible arcs are the only arcs that have their
current value of flow adjusted.

A pseudoflow is a flow that satisfies arc bounds but does not necessarily satisfy the flow
balance constraints. A pre-flow is a pseudoflow where the flow entering a node is always
greater than or equal to the flow leaving a node. We refer to the quantity

∑
i∈V :e(v)>0 e(v) as

the amount of pre-flow in a network.
The pseudocode for the Goldberg-Tarjan algorithm is contained in Algorithm 1.

Initialize d(v) and e(v) ∀ v ∈ V

xe ← ue ∀ e ∈ FS(s)

xe ← 0 ∀ e /∈ FS(s)

while There is an active node i do
if the residual network contains an admissible arc (i, j) then

Push δ := min{e(i), u(i,j) − x(i,j)} units of flow from node i to node j

else
d(i) ← min {d(j) + 1 : (i, j) ∈ residual FS(i)}

end if
end while

Algorithm 1: Goldberg-Tarjan algorithm

The Goldberg-Tarjan algorithm maintains a pre-flow as an invariant and strives to convert
the pre-flow into a maximum flow. At the beginning of each iteration, we find an active

Ann Oper Res (2011) 184: 3–26 7

node i. If there is no active node, then we terminate with a maximum flow. Otherwise, we
find an admissible arc in FS(i) in the residual network and augment its flow. If no such
admissible arc exists, then we relabel node i. The step: d(i) ← min {d(j) + 1 : (i, j) ∈
residual FS(i)} denotes relabeling.

The success of the Goldberg-Tarjan algorithm was partly attributed to the implementa-
tion of both gap relabeling and global relabeling heuristics. These heuristics are detailed in
Cherkassky and Goldberg (1994) and their discussion is beyond the scope of this paper.

In terms of implementation, we implemented the Highest-Label Goldberg-Tarjan algo-
rithm. That is, we always choose the active node with the highest distance label for the
discharge operation. This is regarded as the fastest implementation of the Goldberg-Tarjan
algorithm in practice (Cherkassky and Goldberg 1994). We also implemented both the global
and the gap relabeling heuristics.

2.3 Storing minimum capacity s-t cuts

Given a network and a corresponding maximum flow, we can use the following data structure
to store two important minimum cuts:

Definition 1 Given a network that is currently at maximum flow, a cut tripartition is a
tripartition (Vs,V \(Vs ∪ Vt),Vt) of the node set V according to the following schema: Vs is
the set of all nodes currently reachable from the source in the optimal residual network. Vt

is the set of all nodes that can currently reach the sink in the optimal residual network.

A cut tripartition implicitly stores two, not necessarily unique, minimum cuts: Cs =
(Vs,V \Vs) and Ct = (V \Vt ,Vt). We alternatively denote a cut tripartition as {Cs,Ct }.

Once it is stored, a cut tripartition can indicate if an arc is contained in all minimum cuts
in constant time. This is because an arc e is contained in all minimum cuts if and only if
e ∈ Cs ∩ Ct .

A cut tripartition is used later in the paper to obtain a good upper bound on the new
maximum flow value in a network after a few arc capacities have been increased. Altner and
Ergun (2008) first introduced the cut tripartition.

3 The robust minimum capacity s-t cut problem

In the first subsection in this section, we formally introduce the Robust Minimum Capacity
s-t Cut Problem. In the second subsection, we present a worst-case algorithmic result.

3.1 Problem statement

Robust Minimum Capacity s-t Cut Problem: Let N = (V ,A) be a network with source s

and sink t . Assume arc capacities ũe are unknown but are known to take value in [ue,ue +de]
for all e ∈ A. Choose a s-t cut C that is of minimax capacity given that Γ arcs will assume
their highest possible capacity after C is selected and all other arcs will assume their lowest
possible capacity.

We may assume that the arcs are enumerated A = {e0, e1, . . . , e|A|−1} such that de0 ≥
de1 ≥ · · · ≥ de|A|−1 . For notational convenience, we define de|A| to be 0. In the robust opti-
mization literature, Γ is referred to as the robust parameter of optimization. The user assigns
Γ an integer value from the interval [0, |A|] to quantify his desired degree of conservative

8 Ann Oper Res (2011) 184: 3–26

planning. Let ζ be the family of all s-t cuts in the network N . The Robust Minimum Capac-
ity s-t Cut Problem (RobuCut) can be formally written as follows:

Minimize
∑

e∈C

ue + max
{S|S⊆A,|S|≤Γ }

∑

j∈S∩C

dj

Subject to C ∈ ζ

Theorem 2 RobuCut may be solved by computing |A| + 1 minimum cuts. Specifically, by
solving the following optimization problem:

Z∗ = min
�=0,...,|A|

G�

where for � = 0, . . . , |A|:

G� := Γ de�
+ min

C∈ζ

{∑

e∈C

ue +
∑

{ej ∈C:j≤�}
(dej

− de�
)

}

Proof Immediate corollary of Theorem 3 in Bertsimas and Sim (2003). �

Corollary 1 RobuCut may be solved by computing |A| + 1 maximum flows.

Proof This follows immediately from the previous theorem and by the Maximum Flow
Minimum Cut Theorem, which was originally proved in Ford and Fulkerson (1956). �

The sequence of maximum flow problems will henceforth be referred to as the sequence
of nominal maximum flow problems.

3.2 Algorithmic result

Theorem 3 Consider an instance of RobuCut on a network N = (V ,A). This problem may

be solved in O(Gr + |C∗
card | |A| de0) time where Gr = min(|V | 2

3 ,
√|A|) |A| log(

|V |2
|A|) ×

log(umax), C∗
card is a minimum cardinality s-t cut in N and umax = max{ue|e ∈ A}.

Proof Goldberg and Rao (1998) demonstrate that a maximum flow in a network may be
computed in O(Gr), where Gr is defined as above. To obtain the desired algorithmic bound,
we describe an algorithm for solving the sequence of nominal maximum flow problems. We
then use the optimal objective values of these nominal problems to construct an optimal
solution to our instance of RobuCut. We may assume that the 0th nominal maximum flow
problem is solved by the algorithm of Goldberg and Rao.

Consider the ith nominal maximum flow problem. Note this problem differs from the
(i − 1)st nominal maximum flow problem in that in the capacities of arcs e0, e1, . . . , ei are
increased by dei−1 − dei

. Let C∗
card denote a minimum cardinality s-t cut in N . Then the

inequality z∗
i − z∗

i−1 ≤ |C∗
card |(dei−1 −dei

) holds true, where z∗
i denotes the optimal objective

value of the ith nominal maximum flow problem.
We can solve the ith nominal maximum flow problem using an augmenting path algo-

rithm with an optimal solution from the (i − 1)st nominal maximum flow problem as an
initial solution. Note |C∗

card |(dei−1 −dei
) is an upper bound on the maximum number of aug-

menting paths that must be found in the corresponding residual network until a maximum

Ann Oper Res (2011) 184: 3–26 9

flow for the ith nominal problem is obtained. Since an augmenting path can be found in
at most O(|A|), we conclude we can compute the maximum flow value of the ith nominal
maximum flow problem in O(|C∗

card |(dei−1 − dei
)|A|).

Since we must solve |A| nominal maximum flow problems after the 0th, the total number
of computations to compute all of the subsequent maximum flow values may be bounded
above by

∑|A|
i=1 |C∗

card |(dei−1 − dei
)|A| = |C∗

card |de0 |A|.
What remains to be addressed is how to construct an optimal objective value to an in-

stance of RobuCut given the optimal objective values to each of the nominal problems:
z∗

0, z
∗
1, . . . , z

∗
|A|. This can be constructed by solving the following optimization problem:

min
�∈{0,...,|A|}

{Γ de�
+ z∗

�}

which can be solved in O(|A|) time. The corresponding optimal solution can be obtained
similarly. The desired result follows. �

4 Algorithm for RobuCut

This section focuses on our algorithmic approach to solving RobuCut. In the first subsec-
tion, we briefly overview our algorithm for RobuCut. In the second subsection, we identify
properties of the sequence of maximum flow problems that stem from Corollary 1. In the
third subsection, we discuss a heuristic for solving this sequence of maximum flow prob-
lems. In the fourth subsection, we provide a detailed description of our algorithm. In the
third subsection, we prove that our algorithm is no worse, in terms of worst-case analysis,
than iteratively using a black-box highest-label Goldberg-Tarjan algorithm |A| + 1 times.

4.1 Overview of algorithm

In this subsection, we provide a broad overview of our algorithm for RobuCut.
Recall that Bertsimas and Sim (2003) provide a general algorithm for solving any Robu-

COP, which they refer to as Algorithm A. Algorithm A consists of solving a linear number
of nominal COPs, which is a minimum cut problem in the case of RobuCut. To allow for the
use of maximum flow reoptimization heuristics, we take the dual of each of these minimum
cut problems.

Our algorithm for RobuCut will solve two sequences of maximum flow problems in an
alternating fashion. The first sequence is a sequence of auxiliary maximum flow problems
on “incremental networks.” Solving these problems improves the running time of our algo-
rithm and incremental networks are precisely defined in Sect. 4.3. The second sequence of
maximum flow problems is the |A| + 1 nominal maximum flow problems. The networks
that underlie the nominal maximum flow problems are called the nominal networks.

At the beginning of the ith iteration, we assume we have both a maximum flow in the
(i − 1)st incremental network as well as a maximum flow in the (i − 1)st nominal network.
During the ith iteration, we perform the following computations:

1. Use the maximum flow in the (i − 1)st incremental network to as a starting solution
for computing the maximum flow in the ith incremental network. Since the incremental
network is a unit capacity network and the ith incremental network contains all of the
arcs in the (i − 1)st incremental network plus one additional arc, this step requires at
most the computation of a single augmenting path.

10 Ann Oper Res (2011) 184: 3–26

2. Use both the maximum flow in the ith incremental network and the maximum flow in
the (i − 1)st incremental network to get an initial feasible flow for the maximum flow
problem on the ith nominal network.

3. Use a modified Goldberg-Tarjan algorithm to compute a maximum flow in the ith nomi-
nal network using the initial feasible flow computed in the second step. This step involves
computing a crude upper bound on the maximum flow to restrict the amount of pre-flow
added to the network.

4.2 Properties of the sequence of maximum flow problems

In this subsection, we discuss properties of the sequence of maximum flow problems that
must be solved. These properties are employed to develop reoptimization heuristics that
improve the running time of our algorithm for RobuCut.

Let N0 = (V ,A0),N1 = (V ,A1), . . . ,N|A| = (V ,A|A|) be the sequence of nominal net-
works. For each possible i, let ui

e be the capacity of arc e in network Ni . All of the net-
works have the same set of arcs although their capacities monotonically increase with i.
Let Âi = {e ∈ A : ui−1

e < ui
e}. We make the following observations about this sequence of

maximum flow problems:

1. Ai = Ai+1 ∀ i ∈ {0, . . . , |A| − 1}
2. ui

e ≤ ui+1
e ∀ i ∈ {0, . . . , |A| − 1}, ∀ e ∈ A

3. Âi ⊆ Âi+1 ∀ i ∈ {0, . . . , |A| − 1}
4. | ˆAi+1\Âi | = 1 ∀ i ∈ {0, . . . , |A| − 1}
5. ui

ej
− ui−1

ej
= dei−1 − dei

∀ ej ∈ Âi , ∀ i ∈ {1, . . . , |A|}
The first listed observation indicates that all of the nominal networks have the same set

of arcs, even though the capacities on the arcs may differ between nominal networks. The
second observation indicates that, for each arc e, the capacity of arc e in the ith nominal
network is less than or equal to the capacity of arc e in the (i + 1)st nominal network. The
third observation indicates that the set of arcs whose capacity in the ith nominal network is
strictly greater than the arc’s corresponding capacity in the (i − 1)st nominal network is a
subset of the set of arcs whose capacity in the (i + 1)st nominal network is strictly greater
than the arc’s corresponding capacity in the ith nominal network. The fourth observation
indicates there is exactly one arc that is in the latter set but not the former set. The last
observation indicates that the difference between each arc’s capacity in the ith nominal
network and the (i − 1)st nominal network is either 0 or dei−1 − dei

, where dei
is the size of

the interval that the ith arc’s capacity is confined to.

4.3 Heuristic for maximum flow reoptimization

In this subsection, we use the properties of the sequence of maximum flow problems that
were identified in the previous subsection to develop a heuristic speedup for solving them.
This heuristic speedup is an integral part of our algorithm for RobuCut.

Suppose we want to compute the maximum flow in Ni and that we know that xi−1 is
a maximum flow in Ni−1. Note that xi−1 is always a feasible flow in Ni for all possible i.
Moreover, suppose there exists an s-t path P ⊆ Âi . Then we know a priori that the flow of
xi−1 with dei−1 − dei

units of flow augmented along path P always routes at least as much
flow through Ni as xi−1. Furthermore, we know the flow of xj−1 with dej−1 − dej

units
of flow augmented along path P always routes at least as much flow through Nj as xj−1

Ann Oper Res (2011) 184: 3–26 11

for each j ∈ {i + 1, i + 2, . . . , |A|}. Further still, we can apply the same reasoning to any
collection of arc-disjoint s-t paths contained in Âi .

This suggests the following heuristic: at each iteration we maintain an auxiliary network
using the arcs in Âi , which we henceforth call an incremental network and denote it by N̂i .
At each iteration i > 0, we use the maximum number of arc-disjoint paths in the incremental
network along with a maximum flow in Ni−1 to construct a good feasible flow for Ni . We
formally define the incremental network below.

Definition 2 The incremental network for iteration i is the network N̂i = (V , Âi) where all
arcs have unit capacity.

Since ui
ej

− ui−1
ej

= dei−1 − dei
∀ ej ∈ Âi , we may assume without loss of general-

ity that every arc in the incremental network has unit capacity. In light of this assump-
tion, each incremental network has a corresponding multiplier λi where λi = dei−1 − dei

∀ i ∈ {1,2, . . . , |A|}. If the incremental network has a maximum flow of ẑast
i units, then the

network would have a maximum flow of λi ẑ
ast
i units, had each arc instead been assigned a

capacity of dei−1 − dei
units.

4.4 Algorithm details

In this subsection, we provide the details of our algorithm for RobuCut. At the beginning of
iteration i, we have the following information stored:

1. Ni = (V ,Ai), the network where we need to compute a maximum flow.
2. xi−1, the maximum flow in the (i − 1)st network Ni−1 = (V ,Ai−1).
3. N̂i = (V , Âi), the incremental network for the ith iteration along with its corresponding

multiplier λi .
4. x̂i−1, the maximum flow in the incremental network N̂i−1 = (V , Âi−1).
5. A cut tripartition {Ĉi−1

s , Ĉi−1
t } based on an optimal residual network of N̂i−1.

6. A cut tripartition {Ci−1
s ,Ci−1

t } based on an optimal residual network of Ni−1.

First we discuss how to use the maximum flow in N̂i−1 to compute the maximum flow
in N̂i . Second, we discuss how to construct an initial feasible solution for the nominal max-
imum flow problem on Ni using the maximum flow in N̂i and the maximum flow in Ni−1.
Finally, we discuss computing the maximum flow in Ni .

4.4.1 Computing a maximum flow in the ith incremental network

We may assume i > 0 since computing a maximum flow in the 0th incremental network is
trivial. Let {ei−1} = Âi\Âi−1. ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1

s , Ĉi−1
t }) is

our subroutine for computing a maximum flow in N̂i . Algorithm 2 contains pseudocode for
ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1

s , Ĉi−1
t }).

ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1
s , Ĉi−1

t }) takes four inputs, which are
all listed in the parenthesis. This subroutine returns two outputs: a maximum flow x̂i and a
new cut tripartition {Ĉi

s , Ĉ
i
t }.

The subroutine findAugmentingPath(N̂i, x̂i) finds an augmenting path in the
residual network of N̂i on flow x̂i using depth-first search. Since incremental networks are
unit capacity networks, we need to find at most one augmenting path. Lastly, the subroutine
updateCutTripartition(N̂i, x̂i, {Ĉi−1

s , Ĉi−1
t }) takes the three inputs listed in the

12 Ann Oper Res (2011) 184: 3–26

x̂i
e ← x̂i−1

e ∀ e ∈ Âi−1

x̂i
ei−1

← 0

if ei−1 ∈ Ĉi−1
s ∩ Ĉi−1

t then
findAugmentingPath(N̂i, x̂i)

end if

{Ĉi
s , Ĉ

i
t } ← updateCutTripartition(N̂i, x̂i, {Ĉi−1

s , Ĉi−1
t })

return (x̂i , {Ĉi
s , Ĉ

i
t })

Algorithm 2: ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1
s , Ĉi−1

t })

parenthesis and returns a new cut tripartition in the optimal residual network of N̂i . A cut tri-
partition can always be constructed from scratch by using two breadth-first search methods,
one from the source and the other from the sink. However, when the maximum flow value
in N̂i−1 equals the maximum flow value in N̂i , it is usually much faster in practice to update
the cut tripartition from an optimal residual network of N̂i−1, using breadth-first search, to
obtain the cut tripartition from an optimal residual network of N̂i .

4.4.2 Constructing a feasible flow in the ith nominal network

In this section we discuss how we construct a maximum flow in Ni given a maximum flow
in an incremental network N̂i and a maximum flow in the previous network Ni−1. To this
end, we introduce the following merge operation, which is detailed in Algorithm 3.

for each e in Ai do
if e is in Âi then

xi
e ← xi−1

e + λix̂
i
e

ui
e ← ui−1

e + λi

else
xi

e ← xi−1
e

ui
e ← ui−1

e

end if
end for

return xi

Algorithm 3: MergeNetworks(Ni−1, xi−1, N̂i, x̂i, λi)

Algorithm 3 contains the pseudocode for the subroutine MergeNetworks(Ni−1,
xi−1, N̂i, x̂i, λi) where the five inputs for the subroutine are contained within the
parenthesis. xi−1 denotes a maximum flow in Ni−1 and x̂i denotes a maximum flow in N̂i .
Thus, xi−1

e and x̂i
e denote the amount of flow on arc e in flows xi−1 and x̂i respectively.

MergeNetworks(Ni−1, xi−1, N̂i, x̂i, λi) returns xi a feasible, but not necessarily
optimal, flow in Ni .

Ann Oper Res (2011) 184: 3–26 13

4.4.3 Adding pre-flow to the ith nominal network

For the purpose of determining how much pre-flow to add to Ni , we obtain a quickly com-
putable upper bound Δ on z∗

i − zinit
i where z∗

i denotes the maximum flow value in Ni and
zinit
i denotes the value of the flow constructed by the subroutine MergeNetworks(Ni−1,

xi−1, N̂i, x̂i, λi). We know each unit of pre-flow added to Ni in excess of Δ must in-
evitably be returned to the source. Moreover, each unit of pre-flow in excess of Δ will most
likely result in unnecessary computations. Thus, having a quickly computable upper bound
on z∗

i − zinit
i allows us to heuristically restrict the amount of pre-flow we add to Ni .

Let (V i−1
s , V \(V i−1

s ∪ V i−1
t), V i−1

t) be a cut tripartition on the optimal residual network
of Ni−1 and let Âr

i be the set of residual arcs in the optimal residual network of N̂ i . Note
that after two networks are merged, it is possible for z∗

i − zinit
i > 0, even if {(u, v) ∈ Âr

i : u ∈
V i−1

s , v ∈ V i−1
t } = ∅. Nevertheless, we can compute an upper bound on z∗

i − zinit
i using our

cut tripartition (V i−1
s , V \(V i−1

s ∪ V i−1
t), V i−1

t).

Lemma 1 The following inequality is true:

(dei−1 − dei
)θi ≥ z∗

i − zinit
i (1)

where

θi = min
{
|{(u, v) ∈ Âr

i : u ∈ V i−1
s , v /∈ V i−1

s }|, |{(u, v) ∈ Âr
i : v ∈ V i−1

t , u /∈ V i−1
t }|

}

Proof zinit
i is the objective value of the flow xi . Moreover, given the feasible flow xi , the

maximum flow in Ni equals zinit
i plus the maximum flow in the residual network obtained

when xi is routed through Ni .
Let ζ r be the set of all s-t cuts in the residual network when xi is routed through Ni and

let ri
e be the residual capacity of arc e when flow xi is sent through Ni . From the Maximum

Flow Minimum Cut Theorem, we get:

z∗
i − zinit

i = min
Cr∈ζ r

∑

e∈Cr

ri
e

Let Ar be the set of residual arcs when xi is routed through Ni . Let Cr
s = {(u, v) ∈ Ar :

u ∈ V i−1
s , v /∈ V i−1

s } and let Cr
t = {(u, v) ∈ Ar : u /∈ V i−1

t , v ∈ V i−1
t }. Then we obtain the

following inequality:

z∗
i − zinit

i ≤ min

{∑

e∈Cr
s

ri
e,

∑

e∈Cr
t

r i
e

}

Since both (V i−1
s , V \V i−1

s) and (V \V i−1
t , V i−1

s) are minimum cuts of Ni−1 we know
ri
e = dei−1 − dei

∀ e ∈ Cr
s ∪ Cr

t by construction of xi :

z∗
i − zinit

i ≤ min

{∑

e∈Cr
s

dei−1 − dei
,
∑

e∈Cr
t

dei−1 − dei

}

which can be simplified to:

z∗
i − zinit

i ≤ (dei−1 − dei
)min{|Cr

s |, |Cr
t |}

14 Ann Oper Res (2011) 184: 3–26

By construction of xi and from the topological similarities between N̂i and Ni , we know
|Cr

s | = |{(u, v) ∈ Âr
i : u ∈ V i−1

s , v /∈ V i−1
s }| and |Cr

t | = |{(u, v) ∈ Âr
i : v ∈ V i−1

t , u /∈ V i−1
t }|,

which completes the proof. �

4.4.4 Computing a maximum flow in the ith nominal network

We may now formally state our algorithm for RobuCut, whose pseudocode may be found in
Algorithm 4.

(z∗
0, x

0) ← GoldbergTarjan(N0)
{C0

s ,C
0
t } ← constructCutTripartition(N0, x0)

x̂0 ← 0
{Ĉ0

s , Ĉ
0
t } ← {∅,∅}

for i = 1, . . . , |A| do

if ei−1 ∈ Ĉi−1
s ∩ Ĉi−1

t then

(x̂i , {Ĉi
s , Ĉ

i
t }) ← ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1

s , Ĉi−1
t })

else

(x̂i , {Ĉi
s , Ĉ

i
t }) ← (x̂i−1, {Ĉi−1

s , Ĉi−1
t })

end if

xi
f eas ← MergeNetworks(Ni−1, xi−1, N̂i, x̂i, dei−1 − dei

)

θ̂i ← ComputeUB(Ni, xi
f eas, dei−1 − dei

, {Ci−1
s ,Ci−1

t })

(z∗
i , x

i) ← modMaxFlow(Ni, xi
f eas, θ̂i)

{Ci
s,C

i
t } ← updateCutTripartition(Ni, xi, {Ci−1

s ,Ci−1
t })

end for

return mini∈{0,1,...,|A|}Γ dei
+ z∗

i

Algorithm 4: Algorithm for RobuCut

Algorithm 4 begins by computing a maximum flow in N0 using the Goldberg-Tarjan
algorithm along with creating a cut tripartition {C0

s ,C
0
t } on an optimal residual network

of N0. For notational convenience, we initialize the maximum flow in the 0th incremental
network x̂0 to be the trivial flow of 0 units and we initialize two empty cuts for the cut
tripartition for the optimal residual network of the 0th incremental network {Ĉ0

s , Ĉ
0
t }.

The incremental network initially starts with no arcs. Recall ei−1 ∈ Âi\Âi−1. At the
beginning of iteration i, the algorithm checks the cut tripartition corresponding to the
(i − 1)st incremental network, {Ĉi−1

s , Ĉi−1
t }, to see if the maximum flow from the in

Ann Oper Res (2011) 184: 3–26 15

the (i − 1)st incremental network, x̂i−1, is also a maximum flow for the ith incremen-
tal network N̂i . If not, then we compute the new maximum flow in N̂i using the sub-
routine ReoptIncNetwork(N̂i, x̂i−1, ei−1, {Ĉi−1

s , Ĉi−1
t }). Otherwise, we equate x̂i

and {Ĉi
s , Ĉ

i
t } to their respective values from the previous iteration.

Given x̂i , we combine this with xi−1, the maximum flow in the (i − 1)st nominal net-
work, to construct an initial feasible flow xi

f eas for Ni . This is done during the subroutine

MergeNetworks(Ni−1, xi−1, N̂i, x̂i, dei−1 −dei
). Next, we obtain an upper bound

on the difference between the maximum flow value in Ni and the current value of flow us-
ing the subroutine ComputeUB(Ni, xi, dei−1 − dei

, {Ci−1
s ,Ci−1

t }), which returns the
upper bound proved in Lemma 1.

The penultimate step of an iteration is to compute the maximum flow in Ni using the
subroutine modMaxFlow(Ni, xi, θ̂i). The details of this subroutine are presented in
the next paragraph. In the final step of each iteration, we update the cut tripartition for the
optimal residual network of Ni using the subroutine updateCutTripartition(Ni,
xi, {Ci−1

s ,Ci−1
t }). After all iterations are complete, the algorithm returns the optimal so-

lution to the RobuCut problem.
The subroutine modMaxFlow(Ni, xi

f eas, θ̂i) requires three arguments, each of
which are listed parenthetically, and returns two outputs. The pseudocode for this subroutine
is listed in Algorithm 5.

V ← V ∪ {ŝ} // Create a new source ŝ.
A ← A ∪ {(ŝ, s)} // Add a new uncapacitated arc.
Initialize d(v) ∀ v ∈ V using global relabeling
e(v) ← 0 ∀ v ∈ V

e(ŝ) ← θ̂i x(ŝ,s) ← θ̂i

while There is an active node i do
if the residual network contains an admissible arc (i, j) then

Push δ := min{e(i), c(i,j) − x(i,j)} units of flow from node i to node j

else
d(i) ← min{d(j) + 1 : (i, j) ∈ residual FS(i)}

end if
end while

V ← V \{ŝ}
A ← A\{(ŝ, s)}

return (e(t), x)

Algorithm 5: modMaxFlow(Ni, xi, θ̂i)

modMaxFlow(Ni, xi, θ̂i) is similar to the Goldberg-Tarjan algorithm but contains
two key differences. First, at most θ̂i of pre-flow is added to the arcs in FS(s). This is not
mandatory for correctness but instead is a heuristic improvement for reasons previously
discussed.

Second, during modMaxFlow(Ni , xi , θ̂i), a temporary new source ŝ is added to the
network and is only adjacent to the original source s. This allows the original source s to

16 Ann Oper Res (2011) 184: 3–26

Fig. 1 Saturating the “wrong”
arc

be relabeled and to potentially receive and subsequently redirect a positive excess of flow
throughout the algorithm. This is in contrast to the standard Goldberg-Tarjan implemen-
tation, where the source is never relabeled and all flow that is returned to the source is
immediately removed from the network.

Recall that we are only adding a bounded amount of pre-flow θ̂i to Ni . In contrast, the
original Goldberg-Tarjan algorithm begins by saturating all arcs in FS(s). Since we arbitrar-
ily choose which arcs in FS(s) to initially distribute θ̂i units of pre-flow, it is possible that we
could saturate the “wrong” arcs. That is, at least one unit of pre-flow may be placed on an
arc in FS(s) where that flow cannot possibly reach the source, even if the network currently
is not at maximum flow.

Figure 1 illustrates a situation where a “wrong” arc is saturated. Assume the dashed
arc (u, t) has just been added to the network. In the diagram, the bold arc (s, v) has been
saturated when it is better to initially saturate (s, u).

There are pathological examples where less computations are required during the course
of modMaxFlow(Ni, xi, θ̂i) if all arcs in FS(s) are initially saturated. However, in
practice, it is typically faster to add a bounded amount of pre-flow to the network while
simultaneously adding a temporary source to allow s to be relabeled.

4.5 Algorithmic result

In this subsection, we prove Algorithm 4 is no worse, in terms of worst-case complexity, than
solving |A| maximum flow problems from scratch using the highest label implementation
of the algorithm of Goldberg and Tarjan.

Theorem 4 Consider an instance of RobuCut on a network N = (V ,A). Algorithm 4 runs
in time O(|V |2|A| 3

2).

Proof Cheriyan and Melhorn (1999) prove the highest label implementation of the
Goldberg-Tarjan algorithm, which is used in our implementation, runs in time O(|V |2√|A|).
A modified version of this algorithm, which has the same worst-case algorithmic bound, is
called O(|A|) times. This leads to the bound O(|V |2|A| 3

2) for all modified maximum flow
computations, including solving the 0th nominal maximum flow problem.

Ann Oper Res (2011) 184: 3–26 17

What remains to show is a bound on solving the sequence of incremental networks.
Recall that to compute the maximum flow value of the ith incremental network given a
maximum flow in the (i − 1)st incremental network as an initial solution requires the com-
putation of at most one augmenting path. Since it takes O(|A|) time to find an augmenting
path in a network with |A| arcs, to search for augmenting paths in the sequence of incre-
mental networks takes 1 + 2 + · · · + |A| = |A|(|A|−1)

2 ∈ O(|A|2). Finally, since for simple

networks O(|A|) ⊆ O(|V |2) this implies O(|A|2) ⊆ O(|V |2|A|) ⊆ O(|V |2|A| 3
2). The re-

sult follows. �

5 Computational experimentation

In this section, we describe two computational experiments. The first experiment investi-
gates the best algorithmic techniques for solving sequences of maximum flow problems that
stem from RobuCuts. Specifically, we compare the performance of Algorithm 4, an algo-
rithm that iteratively uses the Goldberg-Tarjan algorithm as a black-box subroutine (hence-
forth referred to as the black-box approach) and an algorithm that incrementally uses a
maximum flow simplex algorithm (henceforth referred to as the simplex approach).

In the black-box approach, no warm starting techniques are used. We consider this as
a valid alternative worth testing for a few reasons. First, the Goldberg-Tarjan algorithm is
still considered the best algorithm for the maximum flow problem in practice (Cherkassky
and Goldberg 1994; Matsuoka and Fujishige 2004). Second, computer code for intensively
tested Goldberg-Tarjan solvers are widely available (Goldberg 2010). Third and most im-
portantly, the available codes for the Goldberg-Tarjan algorithm do not have warm starting
heuristics built-in.

Now we detail the simplex approach. Although the maximum flow simplex algorithm is
not highly regarded for its ability to quickly solve a single maximum flow problem, simplex
algorithms in general are well known for their ability to warm start efficiently after slight
perturbations to problem data. Thus, since our general method for solving RobuCut consists
of solving a sequence of similar maximum flow problems, this suggests that an algorithm
with great potential for warm starts, such as the maximum flow simplex algorithm, is worthy
of investigation.

The second experiment that we conduct demonstrates the advantage, in terms of run-
ning time, of using incremental networks to construct a better feasible solution for each
maximum flow problem defined on a nominal network as opposed to merely warm start-
ing the maximum flow problem on the ith nominal network with a maximum flow from
the (i − 1)st nominal network. This advantage of using incremental networks does not be-
come pronounced until we solve instances of RobuCut on networks with tens of thousands
of nodes. To highlight this difference, we conduct our second experiment on instances of
RobuCut with substantially more nodes than those used in our first experiment.

In the first subsection, we provide greater detail on the specific implementations of the
algorithms we used as well as the computer we ran our experiments on. In the second sub-
section, we detail how we generated test instances. In the third subsection, we describe
our computational results for the experiment that compares the different algorithms. In the
fourth subsection, we describe our computational results for the experiment that tests the
advantage of using incremental networks.

18 Ann Oper Res (2011) 184: 3–26

5.1 Implementations of algorithms used

To ensure a controlled experiment, we implemented each of the tested algorithms with the
same data structures, memory allocation techniques and any other considerations that might
impact the running time, to the extent that it is possible. We implemented all three of our
algorithms using the C programming language. Algorithm 4 is implemented using a highest-
label implementation of the Goldberg-Tarjan algorithm. We implemented both the gap rela-
beling and the global relabeling heuristics, as described in Cherkassky and Goldberg (1994).
We used the number of nodes in the network as the global relabeling frequency parameter.
To implement our networks, we used the forward star representation as described in Ahuja
et al. (1993).

5.1.1 The black-box approach implementation

For the black-box approach, we used our implementation of the highest-label Goldberg-
Tarjan algorithm. As with Algorithm 4, we used both the gap and global relabeling heuristics
as well as the forward star network representation. To reduce the running time, we only
allocate memory for the network data structures at the beginning of the algorithm. Thus,
when using the black-box algorithm to solve the ith maximum flow problem where i > 0,
we simply reset all arc flows to zero and restart the distance labels on the nodes using the
global relabeling heuristic.

During iteration i of the black-box algorithm, if the multiplier of the incremental network
dei−1 − dei

equals 0 then we do not recompute the maximum flow since the maximum flow
in the ith nominal network equals that of the (i − 1)st nominal network. For our generated
instances, this substantially reduces the number of calls to the black box maximum flow
solver.

5.1.2 The simplex approach implementation

We implemented the maximum flow simplex algorithm as described in Sect. 11.8 of Ahuja et
al. (1993). To prevent the algorithm from cycling, we implemented the strongly feasible trees
pivoting rule, which is described in Sect. 11.6 of Ahuja et al. (1993). We also implemented
a special tree data structure to allow the dual variables on the nodes to be efficiently updated
as opposed to having to relabel all of the nodes from scratch during every iteration.

Recall that a maximum flow in the ith nominal network, xi , is always a feasible solution
to (i + 1)st nominal maximum flow problem MFPi+1. However, xi might be an interior
point solution to the maximum flow problem defined on Ni+1, which means that xi cannot
be used as a starting basic feasible solution to MFPi+1. This can only happen if we increase
the capacity on one of the non-basic arcs that is at its upper bound in xi . As a remedy, arc
e is temporarily split into two parallel arcs, one that is saturated and one that has no flow.
Note that by doing this, we can always obtain an initial basic feasible solution for MFPi+1.
Therefore, we can use this solution to warm start the maximum flow simplex algorithm.

We also note that we did not explicitly split arcs in our implementation so as not to create
too many arcs in the network. Instead, we merely partitioned the non-basic arcs into three
sets: non-basic arcs with zero flow, non-basic arcs that are saturated and non-basic arcs with
non-zero flow and non-zero residual capacity. However, the specific implementation details
are beyond the scope of this paper.

Ann Oper Res (2011) 184: 3–26 19

5.2 Generating test instances

To conduct our experiments, we generated three broad classes of random instances: acyclic
networks, grid networks and general random (i.e., not necessarily acyclic) networks. First,
we generated instances of RobuCut on both random acyclic networks and random grid net-
works since recent computational studies of maximum flow algorithms have been tested on
such networks (Cherkassky and Goldberg 1994; Matsuoka and Fujishige 2004). We also
tested the algorithms on general random networks to show our results are not limited to
networks with either grid or acyclic topologies.

We first discuss how we generated instances on acyclic networks. Second, we discuss
how we generated instances on networks with grid topologies. Third, we discuss how we
generated instances on general random networks. Lastly, we discuss the differences between
each of these network topologies in the context of computing maximum flows.

We note that both the size and the number of maximum flow computations required
in Algorithm 4 is independent of Γ . Recall that our study investigates which algorithmic
approach solves instances of RobuCut in the least amount of time. Thus, choosing a single
value for Γ is sufficient for our experiment.

5.2.1 Acyclic network instance generation

We randomly generate instances of RobuCut on acyclic networks according to the following
distribution:

1. The number of nodes is deterministically selected, as a parameter, from the set
{200,250,300,400,450,500}.

2. Given a set of nodes V , the probability that each arc in the complete acyclic network on
V is included in our RobuCut instance is p, where p is a parameter that is deterministi-
cally chosen from the set {.55, .6, .65, .7, .75, .8, .9, .95}. We refer to p as the arc density
parameter.

3. The lowest possible capacity for each arc e, ue , is drawn uniformly at random from the
interval [10, 50].

4. The largest possible increase in an arc’s capacity for each arc e, de , is drawn uniformly
at random from the interval [5, 20].

5. The parameter of robustness Γ is arbitrarily chosen to be 20.

For each possible value of the arc density parameter p, for each possible number of
nodes, we randomly generated 10 instances. The naming convention for these instances
is acyclic-nN-p(100p).net where N is the number of nodes. For example, the
class of instances generated on 300 nodes with arc density .7 is named acyclic-n300-
d70.net.

5.2.2 Grid topology instance generation

We randomly generate instances of RobuCut on networks with grid topologies. Figure 2
illustrates a sample grid topology with three rows and four columns of nodes. We obtain the
idea for these topologies as well as Fig. 2 from Royset and Wood (2007).

1. The number of rows of nodes is deterministically selected, as a parameter, from the set
{20,30,40,50,60,70,80,90,100,150,200,250}.

2. Typically, we choose the number of columns to be 2 times the number of rows. However,
in our second experiment, we also generated networks where the number of columns
equals 3

2 and 5
2 the number of rows.

20 Ann Oper Res (2011) 184: 3–26

Fig. 2 Grid topology with three
rows and four columns

3. The lowest possible capacity for each arc e, ue , is drawn uniformly at random from the
interval [10, 50].

4. The largest possible increase in an arc’s capacity for each arc e, de , is drawn uniformly
at random from the interval [5, 20].

5. The parameter of robustness Γ is arbitrarily chosen to be 20.

For each possible number of rows of nodes r , for each considered number of columns c,
we generated 10 instances. The naming convention for these instances is grid-rxc.net
where c is the number of columns and r is the number of rows. For example, the class
of instances generated with 30 rows of nodes and 60 columns of nodes is named grid-
30x60.net.

5.2.3 General random network instance generation

We generate instances of RobuCut on random general networks according to the following
distribution:

1. The number of nodes is deterministically selected, as a parameter, from the set
{200,250,300,350,400,450}.

2. Given a set of nodes V such that |V | ∈ {200,250,300}, the probability that each arc
in the complete network on V is included in our RobuCut instance is p, where p is a
parameter that is deterministically chosen from the set {.6, .7, .8, .9}. We refer to p as the
arc density parameter. For node sets such that |V | ∈ {350,400,450}, we generated arcs
with p chosen from the set {.3, .4, .5, .6, .7, .8, .9}.

3. The lowest possible capacity for each arc e, ue , is drawn uniformly at random from the
interval [10, 50].

4. The largest possible increase in an arc’s capacity for each arc e, de , is drawn uniformly
at random from the interval [5, 20].

5. The parameter of robustness Γ is arbitrarily chosen to be 20.

For each possible pair of the arc density parameter p and a possible number of nodes |V |,
we randomly generated 10 instances. The naming convention for these instances is rand-
nN-p(100p).net where N is the number of nodes. For example, the class of instances
generated on 300 nodes with arc density .7 is named rand-n300-d70.net.

5.2.4 Comparing the network topologies

There are two key topological differences between the grid instances and the other two
instances. First, we expect the non-grid instances to be much more dense in terms of the

Ann Oper Res (2011) 184: 3–26 21

number of arcs. The expected degree of each node in the non-grid networks is a linear
function of the number of nodes in the network. However, the degree of each node in the
grid networks is bounded above by a fixed constant that does not increase with the number
of nodes in the network.

Second, the shortest s-t path, in terms of the fewest number of arcs, should be much
longer for the grid topologies than in the non-grid topologies. Specifically, in the grid
topologies, this distance is bounded below by the number of columns of nodes. Thus, for
Goldberg-Tarjan approaches that use pre-flow, there is a greater possibility of pre-flow be-
ing pushed a much greater distance towards the sink, only to be ultimately returned to the
source.

The main difference between the acyclic instances and the general random instances,
in the context of maximum flows, is the latter have more s-t paths, which suggests that
computing the maximum flow in these networks should take longer.

5.3 Comparing the different algorithms for RobuCut

We tested the three algorithms on all of the acyclic instances and all of the general random
instances. We also tested the three algorithms on all of the grid instances with up to 90
rows of nodes. Table 1 contains the results on all of the acyclic instances with less than 400
nodes. The column labeled File Name contains the name of the RobuCut instance class. The
columns labeled BBtime, MFStime, and AEtime contain the average number of seconds
required, over 10 randomly generated instances for the corresponding instance type, for the
black-box approach, the simplex approach and Algorithm 4 to terminate with an optimal
solution respectively. Note how both the black-box approach and the simplex approach re-
quire over 20 minutes for the largest of these instances while our algorithm requires around
3 seconds.

Table 2 contains the results of this experiment on all of the instances with grid topol-
ogy networks that had less than 100 rows of nodes and the number of columns of nodes
equals twice the number of rows of nodes. As with the smaller acyclic instances, Algo-
rithm 4 dominates the other two approaches. Note that on the largest of these instances,
the black-box algorithm requires over 25 minutes, the simplex algorithm requires over
30 minutes while our algorithm requires just over 30 seconds. As in Table 1, each of
these entries is an average over 10 different instances drawn from the same distribu-
tion.

We also note that the relative performance of our algorithm, when compared to the best of
the two alternate approaches, is slightly worse on the instances on grid topologies as opposed
to the instances on acyclic networks. We suspect this is because our algorithm does not fully
saturate the forward star of the source with flow at the beginning of each maximum flow
computation. Although this heuristic typically helps under most circumstances, the low-
degree of the nodes combined with the length of each s-t path bounded below by the number
of columns of nodes most likely increases the chances of “wrong” arcs, as is illustrated
in Fig. 1, in the forward star of the source to be saturated more frequently than with the
instances on the acyclic networks.

Table 3 contains the results of this experiment on all of the instances on the acyclic net-
works with at least 400 nodes. Unlike Table 1 and Table 2, the cells in this table correspond
to the average over 2 randomly generated instance for each instance class.

As was shown with previous two sets of instances, Algorithm 4 is clearly superior to the
other two algorithms. This suggests the performance of our algorithm scales well with the

22 Ann Oper Res (2011) 184: 3–26

Table 1 Experiment on small acyclic instances

File name BBtime MFStime AEtime

acyclic-n200-p55.net 45.3 48.4 0.3

acyclic-n200-p60.net 62.4 64.6 0.3

acyclic-n200-p65.net 81.0 85.9 0.4

acyclic-n200-p70.net 98.1 100.4 0.6

acyclic-n200-p75.net 115.0 123.0 0.7

acyclic-n200-p80.net 143.2 146.3 0.9

acyclic-n250-p55.net 145.2 151.4 0.5

acyclic-n200-p85.net 160.7 169.8 0.8

acyclic-n200-p90.net 199.6 202.3 0.6

acyclic-n250-p60.net 201.5 201.6 0.8

acyclic-n200-p95.net 246.7 261.6 1.1

acyclic-n250-p65.net 253.0 263.5 1.1

acyclic-n250-p70.net 305.6 309.4 1.2

acyclic-n250-p75.net 331.0 343.9 1.4

acyclic-n300-p55.net 395.8 408.4 1.2

acyclic-n250-p80.net 424.6 434.0 1.4

acyclic-n300-p60.net 468.1 483.8 1.4

acyclic-n250-p85.net 516.3 538.3 1.4

acyclic-n250-p90.net 587.8 597.9 1.9

acyclic-n300-p65.net 600.9 621.6 1.9

acyclic-n250-p95.net 694.4 725.1 1.9

acyclic-n300-p75.net 888.4 917.7 2.4

acyclic-n300-p85.net 1288.4 1322.9 3.1

Table 2 Experiment on small grid instances

File name BBtime MFStime AEtime

grid-20x40.net 1.0 0.6 0.3

grid-30x60.net 6.2 8.1 0.9

grid-40x80.net 34.0 41.9 1.3

grid-50x100.net 132.5 152.2 3.6

grid-60x120.net 239.9 290.8 7.3

grid-70x140.net 530.5 635.7 12.1

grid-80x160.net 939.0 1141.9 21.3

grid-90x180.net 1556.8 1901.8 36.8

number of nodes in a RobuCut instance. Note that on the largest of these instances, both the
black-box algorithm and the simplex algorithm require over 4.5 hours on average while our
algorithm requires a little under 15 seconds on average.

Table 4 contains the results of this experiment on all of the instances on the general
random networks with 200, 250 or 300 nodes but only contains the instances with 350,
400 or 450 nodes that have an arc density parameter selected from the set {.3, .4, .5}. The

Ann Oper Res (2011) 184: 3–26 23

Table 3 Results on large acyclic instances

File name BBtime MFStime AEtime

acyclic-n400-p60.net 1855.0 1896.5 4.0

acyclic-n400-p70.net 2809.0 2850.5 4.5

acyclic-n450-p60.net 3233.0 3313.5 5.0

acyclic-n400-p80.net 4041.5 4116.5 6.5

acyclic-n450-p70.net 4850.0 4942.5 7.0

acyclic-n500-p60.net 5368.5 5457.0 7.0

acyclic-n400-p90.net 5561.0 5650.0 7.0

acyclic-n450-p80.net 7069.0 7171.0 9.0

acyclic-n500-p70.net 8156.0 8310.0 10.0

acyclic-n450-p90.net 9751.0 9878.5 11.5

acyclic-n500-p80.net 11878.0 12028.0 11.5

acyclic-n500-p90.net 16325.0 16512.0 14.5

Table 4 Results on general random instances

File name BBtime MFStime AEtime

rand-n200-p60.net 353.6 354.3 1.3

rand-n200-p70.net 539.1 539.9 1.5

rand-n200-p80.net 783.9 781.9 2.6

rand-n200-p90.net 1051.9 1046.9 2.9

rand-n250-p60.net 1041.8 1038.9 2.7

rand-n250-p70.net 1573.8 1571.7 3.7

rand-n250-p80.net 2272.3 2249.9 4.9

rand-n250-p90.net 3120.9 3087.8 6.0

rand-n300-p60.net 2469.4 2445.5 4.8

rand-n300-p70.net 3709.0 3671.5 6.6

rand-n300-p80.net 5358.4 5332.6 8.6

rand-n300-p90.net 7391.4 7326.7 10.9

rand-n350-p30.net 803.4 795.7 2.3

rand-n350-p40.net 1694.7 1695.4 3.7

rand-n350-p50.net 3091.7 3065.8 5.5

rand-n400-p30.net 1537.5 1519.8 3.3

rand-n400-p40.net 3269.9 3238.1 5.8

rand-n400-p50.net 5893.6 5852.8 8.5

rand-n450-p30.net 2606.8 2599.2 4.8

rand-n450-p40.net 5627.6 5601.6 8.0

rand-n450-p50.net 10269.2 10201.0 12.0

remaining general random instances are contained in Table 5 and are discussed separately.
The cells in Table 4 correspond to the average of 10 randomly generated instances for each
instance class.

24 Ann Oper Res (2011) 184: 3–26

Table 5 Results on large dense
general random instances File name AEtime

rand-n350-p60.net 8.8

rand-n350-p70.net 11.8

rand-n350-p80.net 14.7

rand-n350-p90.net 18.4

rand-n400-p60.net 12.7

rand-n400-p70.net 17.0

rand-n400-p80.net 21.5

rand-n400-p90.net 26.6

rand-n450-p60.net 18.3

rand-n450-p70.net 24.0

rand-n450-p80.net 30.9

rand-n450-p90.net 38.7

As with all previous results, Algorithm 4 is clearly superior to both the black-box ap-
proach and the simplex approach. This shows the performance of our algorithm is not de-
pendent on the fact that the network topology is either a grid or an acyclic directed graph.

Table 5 contains the results of Algorithm 4 on all of the instances on general random
networks with either 350, 400 or 450 nodes that have an arc density parameter from the set
{.6, .7, .8, .9}. The cells in this table correspond to the average of 10 randomly generated
instances for each instance class.

As with all previous results, Algorithm 4 still solves these instances on average in less
than one minute. Both the black-box approach and the simplex approach require several
hours to solve each one of these larger and denser general random instances so they were
excluded from this experiment. Nevertheless, these results demonstrate that our algorithm
performs well even on instances on large dense general random networks.

5.4 Testing the effectiveness of incremental networks

We also conducted an experiment to demonstrate the advantage of using incremental net-
works to heuristically improve the running time of our algorithm. To this end, we im-
plemented an algorithm for RobuCut that is essentially Algorithm 4 without incremental
networks. Thus, in this alternate algorithm, the maximum flow in j th nominal network is
computed by using our implementation of the Goldberg-Tarjan algorithm with the bounded
pre-flow that uses the maximum flow in the (j − 1)st nominal network as an initial solution.

For most RobuCut instances on networks on the order of a few hundred nodes, the differ-
ence between our algorithm and our algorithm without using incremental networks was not
very noticeable. Thus, we limited our comparison of these two algorithms on grid topology
networks with at least 100 rows of nodes.

Table 6 contains the results of this experiment. The column labeled File Name contains
the name of the class of RobuCut instances. The columns AEtime and noINCtime contain
the average number of seconds to solve each of the 10 RobuCut instances for our algorithm
and the version of our algorithm without using incremental networks respectively. The col-
umn PerAdv? contains the percentage of instances for this class where the algorithm using
incremental networks is faster.

These results suggest using incremental networks is superior. Moreover, these results
suggest the savings that stem from using the incremental networks increases along with the

Ann Oper Res (2011) 184: 3–26 25

Table 6 Advantage of using incremental networks

File name AEtime noINCtime PerAdv?

grid-100x150.net 31.6 32.5 90%

grid-100x200.net 50.4 54.8 100%

grid-100x250.net 82.5 88.0 90%

grid-150x225.net 147.4 162.9 90%

grid-150x300.net 265.8 276.4 70%

grid-150x375.net 337.0 392.4 90%

grid-200x400.net 765.7 833.1 90%

size of the RobuCut instances. This second result is intuitive, since if an s-t path in the
incremental is discovered during iteration i, it not only allows one to construct an initial
feasible solution for the maximum flow problem on the ith nominal network with a greater
objective value than we could without the incremental network, it also allows us to do the
same for each iteration j for all j > i. Thus, as the size of the RobuCut instance gets larger,
there are more arcs and therefore more iterations are required for our algorithm. Thus, there
is greater potential for savings from using incremental networks.

6 Conclusions

In this paper, we introduce, motivate and develop an algorithm for the Robust Minimum
Capacity s-t Cut Problem (RobuCut) that exploits powerful maximum flow reoptimization
heuristics. RobuCut is an interesting case study in maximum flow reoptimization since the
sequence of maximum flow problems that arise possesses a structure that can be exploited
for problem-specific heuristics, such as the usage of incremental networks, in addition to
general maximum flow reoptimization heuristics.

We have proven our algorithm is theoretically efficient. Specifically, we prove our al-
gorithm is no worse, in terms of worst-case complexity, than solving a linear number of
maximum flow problems using the highest-label Goldberg-Tarjan algorithm. This is what
the worst-case complexity bound is if the Bertsimas-Sim algorithm for general RobuCOPs
is directly applied to RobuCut while iteratively using the highest-label Goldberg-Tarjan al-
gorithm as a black-box subroutine.

Furthermore, we demonstrate our algorithm is very efficient in practice. Our experiments
demonstrate the substantial computational savings of maximum flow reoptimization in the
context of computing RobuCuts. In particular, our algorithm can solve the largest instances
tested on the order of seconds, while the alternate approaches considered in this paper can
take several hours.

Since RobuCut naturally extends many industrial applications of minimum cuts, we are
confident this research can be incorporated into decision tools for industries where the need
to make conservative decisions in light of uncertain data is of great importance. In particular,
we identify open-pit mining as an auspicious opportunity for our model. Furthermore, our
algorithm has the obvious advantage in that it can solve instances of RobuCut on tens of
thousands of nodes in seconds. Another advantage is that the maximum flow value in each
nominal network is completely independent of the robust parameter of optimization. Thus,
if a project manager wants to resolve a RobuCut instance using a different degree of conser-
vative planning, the software can resolve without any further maximum flow computations.

26 Ann Oper Res (2011) 184: 3–26

We hope this paper convinces the reader that not only is it possible to save a substantial
amount of computational time by using maximum flow reoptimization heuristics but that
these savings can be obtained on important problems. We also hope this paper continues
interest in the budding field of robust network optimization.

Acknowledgement Özlem Ergun was partially supported by the NSF CAREER Grant DMI-0238815.

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms and applications.
New York: Prentice Hall.

Altner, D. S. (2008). Advancements on problems involving maximum flows. Ph.D. Thesis, Georgia Institute
of Technology, Atlanta, Georgia.

Altner, D. S., & Ergun, Ö. (2008). Rapidly solving an online sequence of maximum flow problems with
applications to computing robust minimum cuts. In L. Perron & M. A. Trick (Eds.), Lecture Notes
in Computer Science: Vol. 5015. Integration of AI and OR techniques in constraint programming for
combinatorial optimization problems. Berlin: Springer.

Atamtürk, A., & Zhang, M. (2007). Two-stage robust network flow and design under demand uncertainty.
Operations Research, 55, 662–673.

Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research,
23, 769–805.

Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Program-
ming, 98, 49–71.

Chaerani, D., & Roos, C. (2006). Modelling some robust design problems via conic optimization. Operations
Research Proceedings, 209–214.

Cheriyan, J., & Melhorn, K. (1999). An analysis of the highest-level selection rule in the preflow-push max-
flow algorithm. Information Processing Letters, 69, 239–242.

Cherkassky, B. V., & Goldberg, A. V. (1994). On implementing the push-relabel method for the maximum
flow problem. Algorithmica, 19, 390–410.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of Mathematics,
8, 399–404.

Goldberg, A. V. (2010). Andrew V. Goldberg’s network optimization library. http://avglab.com/andrew/soft.
html.

Goldberg, A. V., & Rao, S. (1998). Beyond the flow decomposition barrier. Journal of Associated Computing
Machinery, 45, 783–797.

Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum flow problem. Journal of Associated
Computing Machinery, 35, 921–940.

Govindaraju, V. (2008). Professor of computer science and engineering, University of Buffalo, personal com-
munication.

Harris, T. E., & Ross, F. S. (1955). Fundamentals of a method for evaluating rail network capacities. Research
Memorandum RM-1573, The RAND Corporation, Santa Monica, CA.

Hochbaum, D. S., & Chen, A. (2000). Improved planning for the open-pit mining problem. Operations Re-
search, 48, 894–914.

Matsuoka, Y., & Fujishige, S. (2004). Practical efficiency of maximum flow algorithms using maximum
adjacency (MA) orderings. Technical Report METR 2004-27, University of Tokyo.

Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling problems by minimum
cut computations. Management Science, 49, 330–350.

Monkhouse, P. H. L., & Yeates, G. (2005). Beyond naive optimization. AUSIMM Spectrum Series, 14, 3–8.
Ordóñez, F., & Zhao, J. (2007). Robust capacity expansion of network flows. Networks, 50, 136–145.
Régin, J. C. (1994). A filtering algorithm for constraints of difference in constraint satisfaction problems. In

Proceedings of the twelfth national conference on artificial intelligence, vol. 1, pp. 362–367.
Royset, J. O., & Wood, R. K. (2007). Solving the bi-objective maximum flow network interdiction problem.

INFORMS Journal on Computing, 19, 175–184.
Stone, H. S. (1977). Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions

on Software Engineering, 3, 85–93.
Strickland, D. M., Barnes, E., & Sokol, J. S. (2005). Optimal protein structure alignment using maximum

cliques. Operations Research, 53, 389–402.

http://avglab.com/andrew/soft.html
http://avglab.com/andrew/soft.html

	Rapidly computing robust minimum capacity s-t cuts: a case study in solving a sequence of maximum flow problems
	Abstract
	Introduction
	Preliminaries
	Notation
	Network flow preliminaries
	Goldberg-Tarjan algorithm

	Storing minimum capacity s-t cuts

	The robust minimum capacity s-t cut problem
	Problem statement
	Algorithmic result

	Algorithm for RobuCut
	Overview of algorithm
	Properties of the sequence of maximum flow problems
	Heuristic for maximum flow reoptimization
	Algorithm details
	Computing a maximum flow in the ith incremental network
	Constructing a feasible flow in the ith nominal network
	Adding pre-flow to the ith nominal network
	Computing a maximum flow in the ith nominal network

	Algorithmic result

	Computational experimentation
	Implementations of algorithms used
	The black-box approach implementation
	The simplex approach implementation

	Generating test instances
	Acyclic network instance generation
	Grid topology instance generation
	General random network instance generation
	Comparing the network topologies

	Comparing the different algorithms for RobuCut
	Testing the effectiveness of incremental networks

	Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

