
Ann Oper Res (2012) 194:59–70
DOI 10.1007/s10479-010-0707-0

Benchmarking curriculum-based course timetabling:
formulations, data formats, instances, validation,
visualization, and results

Alex Bonutti · Fabio De Cesco · Luca Di Gaspero ·
Andrea Schaerf

Published online: 11 February 2010
© Springer Science+Business Media, LLC 2010

Abstract We propose a set of formulations for the Curriculum-Based Course Timetabling
problem, with the aim of “capturing” many real-world formulations, and thus encouraging
researchers to “reduce” their specific problems to one of them, gaining the opportunity to
compare and assess their results. This work is accompanied by a web application that main-
tains all the necessary infrastructures for benchmarking: validators, data formats, instances,
reference scores, lower bounds, solutions, and visualizers. All instances proposed here are
based on real data from various universities and they represent a variety of possible situa-
tions.

1 Introduction

Course timetabling (CTT) consists of the weekly scheduling of the lectures of a set of uni-
versity courses within a given number of rooms and time periods, satisfying various con-
straints due to conflicts and other features (Schaerf 1999). CTT is a practically-important
and widely-studied problem; nevertheless, looking at the research literature on the prob-
lem, we see that many papers create a new formulation (see e.g. Avella and Vasil’ev 2005;
Daskalaki et al. 2004) and often do not consider the previously-defined ones. This is due
to the indisputable truth that, like for other timetabling problems, it is impossible to write a
CTT formulation that suits all cases: every institution (and even every department) has its
own rules, features, costs, and fixations.

A. Bonutti · L. Di Gaspero · A. Schaerf (�)
DIEGM, University of Udine, via delle Scienze 208, 33100 Udine, Italy
e-mail: schaerf@uniud.it

A. Bonutti
e-mail: alex.bonutti@virgilio.it

L. Di Gaspero
e-mail: l.digaspero@uniud.it

F. De Cesco
EasyStaff S.r.l., via Oderzo 1, 33100 Udine, Italy
e-mail: fabio@easystaff.it

mailto:schaerf@uniud.it
mailto:alex.bonutti@virgilio.it
mailto:l.digaspero@uniud.it
mailto:fabio@easystaff.it


60 Ann Oper Res (2012) 194:59–70

On the other hand, when we think about research, measurability is a fundamental is-
sue, and thus this inconvenient situation should not be taken as an excuse to refrain from
performing fair comparisons and, more generally, from assessing (or benchmarking) the
absolute quality of a solution method proposed.

The International Timetabling Competitions, ITC2002 in 2002–03 and ITC2007 in
2007–08, have been organized specifically with the aim of creating the common ground
for comparison (McCollum et al. 2010). The success of the competitions confirms that there
is a wide awareness in the community of the need for such ground.

Among the different versions of CTT, one distinguishing feature is whether student en-
rollments are available (and reliable) or not. In the negative case, conflicts between courses
are set according to the curricula, which can be either published by the university or de-
signed based on experience from previous years. In this work, we focus on this latter case
in which conflicts are based on curricula, and the resulting problem is named Curriculum-
Based Course Timetabling (CB-CTT).

The CB-CTT problem, in one of its possible formulations, has been used as one of the
tracks of ITC2007, namely track 3. The competition formulation of CB-CTT have been
designed with the twofold objective of being, on the one side, very realistic and, on the other
side, simple and general enough to attract many researchers. In fact, it has been created by
starting form a real formulation and stripping out features and cost components in a careful
way so as to maintain the general flavor of the problem but removing a lot of overwhelming
details. Despite this effort, the competition formulation of CB-CTT has been criticized by
some of the participants for not being well-designed, in the sense that the cost components
used are not the most important or they do not penalize the right patterns.

In order to answer to these type of (reasonable) critics and to push forward the spirit
of the competition, we propose here a larger set of possible formulations for CB-CTT. Our
overall objective is thus to create a portfolio of “standard” versions of the problem that could
be accepted by a larger community of researchers. Thus also trying to help in bridging the
gap between theory and practice (McCollum 2007).

Obviously, we do not believe that we could “hit” exactly the formulation adopted by
others; nevertheless, we hope to make simpler the “reduction” process from ad hoc for-
mulations, considered by researchers for their institution, to an already existing one. The
reduction would allow the researcher to work on both her/his formulation and the “stan-
dard” one, for which results are already available and thus the assessment process would be
much easier. For example, the work of Nurmi and Kyngäs (2008) goes into this direction, by
translating one of our formulations to their problem so as to test and compare their algorithm
on our instances.

In addition, if this portfolio starts to get a footing, new formulations could be added, by
others or by ourselves, based on the feedback obtained from the timetabling community. The
existence of standard formulations should also stimulate the application of other techniques
and the design of new ones that could compete with the existing ones for the best results.

In order to give a chance to this ambitious plan to become effective, we provide along
with the problem formulations all the necessary infrastructures for benchmarking: i.e., val-
idators, data formats, instances, scores, lower bounds, solutions, and visualization tools.
In fact, we believe that all the aforementioned tools are mandatory in order to foster the
necessary sharing and cross-fertilization (Schaerf and Di Gaspero 2007). For example, the
validator is needed to double-check that all the information has been made clear and unam-
biguous; and the solutions (along with the corresponding scores) provide a set of reference
results, which in our opinion are very useful for a first evaluation of the own solutions of the
perspective users.



Ann Oper Res (2012) 194:59–70 61

This paper is therefore accompanied by a web application (http://satt.diegm.uniud.it/ctt)
from which many operations can be performed, as explained in Sect. 4; for example, all
instances can be downloaded and solutions can be validated through the web application.
Moreover, all updates and news about the problem will be posted there.

2 Problem definition

The basic features of CB-CTT are presented in the ITC2007 web site and in the correspond-
ing technical report (Di Gaspero et al. 2007). However, the model has to be extended in
order to include the features related to the addition components. In order to make this paper
self-contained, we present here the full model. The problem consists of the following basic
entities:

Days, Timeslots, and Periods. We are given a number of teaching days in the week (typ-
ically 5 or 6). Each day is split into a fixed number of timeslots, which is equal for all
days. A period is a pair composed of a day and a timeslot. The total number of scheduling
periods is the product of the days times the day timeslots.

Courses and Teachers. Each course consists of a fixed number of lectures to be scheduled
in distinct periods, it is attended by a given number of students, and is taught by a teacher.
For each course there is a minimum number of days that the lectures of the course should
be spread in, moreover there are some periods in which the course cannot be scheduled.

Rooms. Each room has a capacity, expressed in terms of number of available seats, and a
location expressed as an integer value representing a separate building. Some rooms may
not be suitable for some courses (because they miss some equipment).

Curricula. A curriculum is a group of courses such that any pair of courses in the group
have students in common. Based on curricula, we have the conflicts between courses and
other soft constraints.

Curricula are published by the university in the Student Guide. However, the information
published in the guide is usually expressed in terms of mandatory and optional courses.
In order to obtain the curricula in the form proposed here, some preprocessing is neces-
sary. In particular, the person responsible for the timetabling, mainly based on experience
of previous years, has to divide optional courses in groups that are normally taken together
by the students. Each group of optional course, together with the mandatory ones, forms a
curriculum in our meaning.

The solution of the problem is an assignment of a period (day and timeslot) and a room
to all lectures of each course.

We split the cost components into two sets: the basic ones, which belong to all formula-
tions and constitute the core of CB-CTT, and the optional ones, which are considered only
in some formulations.

2.1 Basic cost components

Lectures: All lectures of a course must be scheduled, and they must be assigned to distinct
periods. A violation occurs if a lecture is not scheduled or two lectures are in the same
period.

Conflicts: Lectures of courses in the same curriculum or taught by the same teacher must
be all scheduled in different periods. Two conflicting lectures in the same period represent
one violation. Three conflicting lectures count as 3 violations: one for each pair.

http://satt.diegm.uniud.it/ctt


62 Ann Oper Res (2012) 194:59–70

RoomOccupancy: Two lectures cannot take place in the same room in the same period. Two
lectures in the same room at the same period represent one violation. Any extra lecture in
the same period and room counts as one more violation.

Availability: If the teacher of the course is not available to teach that course at a given period,
then no lecture of the course can be scheduled at that period. Each lecture in a period
unavailable for that course is one violation.

RoomCapacity: For each lecture, the number of students that attend the course must be less
than or equal the number of seats of all the rooms that host its lectures.

All the basic cost components are hard constraint for all formulations, except for Room-
Capacity which is soft, and each student above the capacity counts as 1 point of penalty. The
weight for this component is 1 in all formulations, and it can be interpreted as the basic unit
of penalty.

2.2 Optional cost components

MinWorkingDays: The lectures of each course must be spread into a given minimum number
of days. Each day below the minimum counts as 1 violation.

IsolatedLectures (Compactness v. 1): Lectures belonging to a curriculum should be adja-
cent to each other (i.e., in consecutive periods). For a given curriculum we account for a
violation every time there is one lecture not adjacent to any other lecture within the same
day. Each isolated lecture in a curriculum counts as 1 violation.

Windows (Compactness v. 2): Lectures belonging to a curriculum should not have time win-
dows (i.e., periods without teaching) between them. For a given curriculum we account for
a violation every time there is one windows between two lectures within the same day.
Each time window in a curriculum counts as many violation as its length (in periods).

RoomStability: All lectures of a course should be given in the same room. Each distinct
room used for the lectures of a course, but the first, counts as 1 violation.

StudentMinMaxLoad: For each curriculum the number of daily lectures should be within a
given range. Each lecture below the minimum or above the maximum counts as 1 violation.

TravelDistance: Students should have the time to move from one building to another one
between two lectures. For a given curriculum we account for a violation every time there
is an instantaneous move: two lectures in rooms located in different building in two adja-
cent periods within the same day. Each instantaneous move in a curriculum counts as 1
violation.

RoomSuitability: Some rooms may be not suitable for a given course because of the ab-
sence of necessary equipment (projector, amplification, . . . ). Each lecture of a course in an
unsuitable room counts as 1 violation.

DoubleLectures: Some courses require that lectures in the same day are grouped together
(double lectures). For a course that requires grouped lectures, every time there is more than
one lecture in one day, a lecture non-grouped to another is not allowed. Two lectures are
grouped if they are adjacent and in the same room. Each non-grouped lecture counts as 1
violation.

Notice that IsolatedLectures and Windows are two different ways to account for the cur-
riculum compactness, which is meant to reflect the time wasted by students for traveling to
the university and waiting between lectures. As an example of the difference, a single lecture
in a day is penalized by IsolatedLectures but not by Windows. As another example, two split
lectures in a day are penalized always as 2 violations by IsolatedLectures, whereas they are
penalized by Windows proportionally to the width of the time window between them.



Ann Oper Res (2012) 194:59–70 63

Table 1 Problem formulation descriptions

Problem Formulation: UD1 UD2 UD3 UD4 UD5

Cost Component

Lectures H H H H H

Conflicts H H H H H

RoomOccupancy H H H H H

Availability H H H H H

RoomCapacity 1 1 1 1 1

MinWorkingDays 5 5 – 1 5

IsolatedLectures 1 2 – – 1

Windows – – 4 1 2

RoomStability – 1 – – –

StudentMinMaxLoad – – 2 1 2

TravelDistance – – – – 2

RoomSuitability – – 3 H –

DoubleLectures – – – 1 –

2.3 Formulations

With the term formulation here we mean a specific set of cost components, along with the
weights assigned to each of them. The weights are necessary because we consider only
weighted-sum single-objective functions, as multi-objective formulations and Pareto opti-
mality issues are out of the scope of this work.

Up to now, only two formulations have been proposed: The first one has been introduced
in our previous work on multi-neighborhood local search (Di Gaspero and Schaerf 2003,
2006) and it has been considered also by Burke et al. (2007, 2008) by means of an IP-based
approach. The second one has been specifically designed for ITC2007.

We name these formulations as UD1 and UD2, respectively (UD for Udine), and we
introduce three new ones, UD3, UD4, and UD5. Among all possible formulations (expo-
nentially many w.r.t. the number of cost components), these ones have been designed with
the aim of capturing different university settings. Once the “machinery” is consolidated, new
formulations can be very easily added in response to stimuli from the community.

Table 1 presents the formulations in terms of which cost components they include. For
each pair formulation/component we write in the cell the weight associated to the component
in the formulation, or ‘H’ if the component is hard. A dash sign ‘–’ means that the component
is not included in the formulation. The horizontal line separates the basic components from
the optional ones.

It is clear that the weight used in the formulations are quite arbitrary. They are used to
create common single-objective formulations, but it is understood that multi-objective ones
would be more appropriate in many cases.

3 Problem data

We present in this section the data needed to share the problem with other researchers, and
thus to compare the algorithms.



64 Ann Oper Res (2012) 194:59–70

3.1 Instances

The set of instances includes the 4 instances used in Di Gaspero and Schaerf (2003),
called test1, . . . , test4, and the 21 proposed for the competition, called comp01, . . . ,
comp21, which are all real cases taken mainly from University of Udine. For many of those
instances, the additional information needed in the new formulations was not available, not
reliable, or not meaningful. For example, for many instances, rooms were all in the same
building, therefore the travel distance was always 0. In these cases and in similar ones, some
information has been added in an arbitrary way. Nevertheless, most of the information is
composed of real data.

Recently we have added to the portfolio 7 new real world instances, which come mainly
from other Italian universities, and thus represent new cases to be dealt with. We name these
instances as DDS1, . . . , DDS7. Finally, we have one small instance, called toy, that in our
case turned out very useful for debugging and testing. This instance is build in such a way
that for all formulations it is easy to find a zero-cost solution and it can be verified also by
human inspection.

Table 2 shows the main features of all instances together with some statistical indicators:
courses (C), total lectures (L), rooms (R), periods per day (PpD), days (D), curricula (Cu),
min and max lectures per day per curriculum (MML), average number of conflicts (Co),
average teacher availability (TA), average number of lectures per curriculum per day (CL),
average room occupation (RO).

More precisely:

– conflict density (Co) counts the pairs of lectures that cannot be scheduled at the same time
(same course, same teacher, or same curriculum) divided by the total number of distinct
pairs of lectures;

– teacher’s availability (TA) is the average teacher’s availability per lecture calculated on
the total number of distinct pairs lectures/periods;

– room’s suitability is the average room’s availability calculated on the total number of
distinct pairs lectures/rooms;

– lectures per day per curriculum (CL) is the average number of daily lectures;
– room occupation (RO) is the total number of lectures divided by the total number of

distinct pairs room/period.

Notice that Co and TA are computed for each single lecture rather than at course level,
in order to consider the fact that courses have different number of lectures.

3.2 Data formats

The .ctt data format used for ITC2007 could not be used as is for formulations UD3,
UD4, and UD5, because it needs to be extended for adding the extra data necessary for the
new features and cost components. We believe that it would be too complicated to main-
tain separated data formats for each formulation, therefore we decide to create an extended
format that accommodates all the features. Researchers that are interested in one specific
formulation can simply ignore the unnecessary additional information from the input files.

The outcome is the .ectt file format (e for extended) which largely resembles the
.ctt one, but with extra data added in various points: header, courses, rooms, and con-



Ann Oper Res (2012) 194:59–70 65

Table 2 Description of the instances

Instance C L R PpD D Cu MML Co TA CL RO

comp01 30 160 6 6 5 14 2–5 13.2 93.1 3.24 88.9

comp02 82 283 16 5 5 70 2–4 7.97 76.9 2.62 70.8

comp03 72 251 16 5 5 68 2–4 8.17 78.4 2.36 62.8

comp04 79 286 18 5 5 57 2–4 5.42 81.9 2.05 63.6

comp05 54 152 9 6 6 139 2–4 21.7 59.6 1.8 46.9

comp06 108 361 18 5 5 70 2–4 5.24 78.3 2.42 80.2

comp07 131 434 20 5 5 77 2–4 4.48 80.8 2.51 86.8

comp08 86 324 18 5 5 61 2–4 4.52 81.7 2 72

comp09 76 279 18 5 5 75 2–4 6.64 81 2.11 62

comp10 115 370 18 5 5 67 2–4 5.3 77.4 2.54 82.2

comp11 30 162 5 9 5 13 2–6 13.8 94.2 3.94 72

comp12 88 218 11 6 6 150 2–4 13.9 57 1.74 55.1

comp13 82 308 19 5 5 66 2–3 5.16 79.6 2.01 64.8

comp14 85 275 17 5 5 60 2–4 6.87 75 2.34 64.7

comp15 72 251 16 5 5 68 2–4 8.17 78.4 2.36 62.8

comp16 108 366 20 5 5 71 2–4 5.12 81.5 2.39 73.2

comp17 99 339 17 5 5 70 2–4 5.49 79.2 2.33 79.8

comp18 47 138 9 6 6 52 2–3 13.3 64.6 1.53 42.6

comp19 74 277 16 5 5 66 2–4 7.45 76.4 2.42 69.2

comp20 121 390 19 5 5 78 2–4 5.06 78.7 2.5 82.1

comp21 94 327 18 5 5 78 2–4 6.09 82.4 2.25 72.7

test1 46 207 12 4 5 26 2–4 5.25 97.6 1.97 86.2

test2 52 223 12 4 5 30 2–4 5.57 86.1 2.11 92.9

test3 56 252 13 4 5 55 2–4 5.89 78.1 2 96.9

test4 55 250 10 5 5 55 2–4 5.98 76.8 2 100

DDS1 201 900 21 15 5 99 3–7 4.58 21.3 5.18 57.1

DDS2 82 146 11 11 6 11 3–6 23.2 34.8 4.06 20.1

DDS3 50 206 8 11 5 9 3–6 12.4 58.8 4.76 46.8

DDS4 217 972 31 10 5 105 3–6 2.85 91.4 3.78 62.7

DDS5 109 560 18 12 6 44 3–6 2.19 66 1.89 43.2

DDS6 107 324 17 5 5 62 2–4 5.79 77.8 2.38 76.2

DDS7 49 254 9 10 6 37 3–6 14 89 3.01 47

toy 4 16 3 4 5 2 2–3 75 90 2.1 26.7

straints sections. For brevity, it is not presented here but it is fully described in the web
site.1

In addition, we propose an XML format, along with its DTD (Document Type Defini-
tion), that contains the same information. We post on the website all instances also in this

1It also corrects an incongruity in the use of the separators in the .ctt format: in .ectt files data fields are
always separated by one single space character.



66 Ann Oper Res (2012) 194:59–70

alternative format, for the convenience of researchers that are accustomed to use this (very
flexible) technology.

4 Problem management system

The CB-CTT web site (http://satt.diegm.uniud.it/ctt), is what we call a problem manage-
ment system (PMS); that is, a web application which provides all the tools for the complete
benchmarking of the underlying optimization problem.

The PMS aim is to join the common web sites features with more advanced ones, such
as solution validation, instance generator, and an online solver, which could help the com-
munity of researchers. In Schaerf and Di Gaspero (2007) we advocated for the necessity of
developing a system which could manage an optimization problem, because we all know the
importance of a benchmarking activity in the research field, especially in the optimization
area.

In the public section of the PMS the basic functions are available: description of the prob-
lem (data formats and instances), online validator, visualization of solutions and instance sta-
tistics. For registered users, the application becomes more interactive because users can not
only add their solutions, lower bounds and new instances, but also generate new instances
and ask for a solution.

We think that with the current version of the PMS we achieved our main goal, but we
are aware that with the feedback and the interaction with the research community our ap-
plication could still be improved. In the following sections we describe in more details the
features available in our PMS.

4.1 Validate and insert solutions

In order to allow other researchers to check whether they correctly evaluate their solutions,
we provide a solution validator along the lines of the one developed for ITC2007 track 3.
This tool is a simple program that requires three command-line arguments: the formulation,
the input file name, and the solution file name. The result of the validation is an output of
all specific violations (one per line), and a summary report that shows the costs for each
component plus the total one. The validator can be downloaded form the web site as C++
source code. We provide it open-source so that it can be inspected, improved, and extended
by the community.

In addition, we also set up a web-based validator that allows the user to upload a solution
file, select an existing instance and obtain the same report information (without having to
compile and execute the validator). If a user is registered and logged in, upon validation,
she/he can also insert her/his solutions in our repository, along with the associated score and
time-stamp.

4.2 Visualize instances and solutions

All instances listed in Table 2 are downloadable in each of the file formats. We organized all
the instances in families, with one table per family, from which every user can also see all
the statistics of every instance, including those described in the table.

Contributed solutions are organized so as to be presented in various ways: by formulation,
by author, or by score. Another feature is the visualization of the contributed solutions in the
graphical timetable format, which gives a clearer feeling of how good or bad a solution really
is. Users can also visualize the solution with the highlights of the violations and penalties
(hard and soft).

http://satt.diegm.uniud.it/ctt


Ann Oper Res (2012) 194:59–70 67

4.3 Insert lower bounds

In order to allow for a better understanding of the structure of the CB-CTT instances, we
provide a section of our PMS where users can upload the lower bounds of any instance and
formulation.

We do not have any lower bound validator or mathematical software to prove the correct-
ness of the lower bounds, so we accept any data uploaded (relying on users’ trustfulness),
as long as it is below the cost of all solutions. To this regard, along with the numeric values
the user can also insert a log file, which could be used to reconstruct/prove the lower bound.

4.4 Insert new instances

We developed a checker for the instance files, so as to guide the process for other researchers
to add their own instances to the benchmark set. This program reads an instance file (in
.ectt or XML format) and checks if the data is coherent and correctly formatted, and it
issues errors, warnings, and statistics. For example, if there is a constraint on a non-existing
course or two curricula are identical, this arises an error; instead, if a course does not belong
to at least one curriculum, this generates a warning.

The use of the input checker provides against the publication of non well-defined in-
stances, that could create ambiguity on the computation of the cost. Instances with errors
cannot be inserted in the PMS, whereas warnings are tolerated. In any case, new instances
would be published on the web only upon approval of the administrator. The PMS provides
also the translation of the instances from .ectt or XML format to the other one (and to
.ctt).

4.5 Random instance generator

The generator produces problem instances which could be used for experimentation pur-
poses, with different characteristics for different values of the given parameters. The user
specifies through a web form the values for the input features and the number of instances
requested. These random instances are meant for experimentation of algorithms but not to
be inserted in the repository, which is (and should remain) composed exclusively of real
data.

The generator is available and it generates only instances without errors. If it is impos-
sible to obtain error-free instances, for example if the number of courses is to small to gen-
erate the requested number of (distinct) curricula, the generator alerts the user and refrains
from producing the instances. Conversely, it is possible that the generated instances contain
warnings; the most frequent one is the presence of courses which not belong to any curricula
(4.4), which could occur if the number of requested curricula is too small compared to the
number of requested courses.

A new version is under development, because we are planning to improve the control
parameters of the program, avoiding the possibility to insert in the input form those specifi-
cations that can be fulfilled only by instances with warnings.

5 Related work

The inspiration and the guidelines for this work come from Johnson’s seminal paper (John-
son 2002) that emphasizes, among other features, the importance of the measurability of the
experimental results in computer science.



68 Ann Oper Res (2012) 194:59–70

The motivations come also from the observation of the evolution in the last decade of
the literature on the “twin” problem, namely the examination timetabling problem (ETT).
For ETT, Carter et al. (1996) proposed in 1996 a set of formulations which differ from each
other based on some components of the objective function. Carter also made available a
set of benchmark instances (Carter 2005) extracted from real data, which represent a large
variety of different situations. Many researches (see, e.g., Burke and Newall 1999; Casey and
Thompson 2003; Di Gaspero and Schaerf 2001) have adopted one of Carter’s formulations
using his instances, and also have added new instances and new formulations.2 For the most
complex new formulations, additional data have been added by other researchers, mainly in
an arbitrary but realistic way. Available formulations and instances, and the corresponding
best results, up to 2003, have been published on the web (Merlot 2005) by Liam Merlot,
although those results have not been validated. More recently, Rong Qu has created a new
web site (Qu 2006) that allows the visitors to download an executable that validates ETT
solutions (using a raw fixed-structure output format). Up to now, the executable validates
only solutions for the basic version of ETT. Finally, a new version of the problem has been
defined for ITC2007 (track 1) together with the online validator to test solutions (McCollum
et al. 2007).

Learning from the reported experience with ETT, we hope to give to CTT a similar,
but hopefully more systematic, development that could converge rapidly to a mature state.
Besides some earlier attempts to define a standard timetabling language (Burke et al. 1997;
Kingston 2001; Özcan 2005), a remarkable effort for CTT in this direction has been made by
Müller and Murray: they published on the web (Müller and Murray 2008) all their instances
and the source code of the solution methods (Murray et al. 2007). Their approach is however
somewhat complementary to our, as they provide directly the general problem formulation
with all its complex details. Our idea instead has been to start with simpler formulations
and add complexity in a controlled way only when (and if) the time is mature for it. In our
opinion, both can be useful for the evolution of the field.

6 Discussion, conclusions, and future work

At the time of writing (July 7th, 2009), the application has 24 users (excluding ourselves),
194 solutions, and 45 lower bounds inserted by other researchers. All the best known pub-
lished solutions, up to our knowledge, have been inserted. We believe that the system is
on its way to become the “official” reference for authors to see the current results and for
referees to check the reliability of results claimed in the submitted papers.

We are now working on an online solving facility that could run available solvers on
selected instances (either randomly generated or real world). This feature is currently under
testing, and we are about to invite other researchers to contribute with their software. For the
users that are willing to provide us their code, we plan for the future to add the possibility
of validating also the running times of their solutions.

The other current work is on improving the random instance generator. The aim is to
make it more configurable and more effective.

Regarding the problem, the full-fledged formulation used at the University of Udine, with
respect to the five proposed here, still contains many extra features:

2Incidentally, as documented in detail in Qu et al. (2009), at some time two slightly different versions of
Carter’s datasets were available on the web.



Ann Oper Res (2012) 194:59–70 69

Preassignments: Some lecture can be preassigned to a specific room or a specific period.
Lunch break: There is a cost component dealing with the lunch break for students: at least

one slot among those around the lunch time should be free.
Room too big: If a room is too big for a class, this is also penalized. This is not only for the

unpleasant feeling that an empty room provokes, but also to save big rooms for activities
which were unforeseen at the time the timetable is computed.

Flexibility: For most cost components, the hard and the soft version are both available to the
user. For example, it is possible to set soft conflicts for courses and soft unavailability for
teachers.

Configurability: Weight assigned to soft violations are not fixed. They have a complex
penalty scheme, which depends also on the number of students in the curriculum.

Besides the above ones, many other cost components have emerged from other universi-
ties. The most common ones are the following:

Commuters: Some teachers must be assigned to consecutive days.
TeacherMinMaxLoad: Load limits similar to student’s ones might be imposed also on teach-

ers.
Day patterns: Courses might require specific patterns of lectures (e.g., lecture in the morn-

ing, labs in the afternoon).
Video-conference: A single lecture might require more than one room.
External rooms: Some lecture might be given in rooms that are outside the control of the

system.
Simultaneity: It is possible that some courses are requested to be scheduled exactly at the

same time (e.g., lab. sections of the same course).

All these features are among the candidates to be inserted in future formulations, depend-
ing also on the general interest they rise.

Acknowledgements We thank Marco Chiarandini for his comments of an earlier draft of this paper that
helped us to improve it. We are grateful to Barry McCollum and all the other members of the team of ITC2007
for their work for the organization of the competition. We also thank Martin Geiger, Gerald Lach, Zhipeng
Lü, Jin-Kao Hao, and Tomáš Müller for using the system and giving us comments to improve it. Finally,
we also thank Jakub Mareček and Harald Michalsen for fruitful discussions about the formulation and the
solution of the problem.

References

Avella, P., & Vasil’ev, I. (2005). A computational study of a cutting plane algorithm for university course
timetabling. Journal of Scheduling, 8, 497–514.

Burke, E., & Newall, J. (1999). A multi-stage evolutionary algorithm for the timetable problem. IEEE Trans-
actions on Evolutionary Computation, 3(1), 63–74.

Burke, E., Pepper, P., & Kingston, J. (1997). A standard data format for timetabling instances. In E. Burke, &
M. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proc. of the 2nd int. conf. on the practice
and theory of automated timetabling (PATAT-97), selected papers (pp. 213–222). Berlin: Springer.

Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2007). On a clique-based integer programming
formulation of vertex colouring with applications in course timetabling (Technical Report NOTTCS-
TR-2007-10). The University of Nottingham, Nottingham.

Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2008). Penalising patterns in timetables: Novel
integer programming formulations. In S. Nickel, & J. Kalcsics (Eds.), Operations Research Proceedings.
Operations Research Proceedings 2007. Berlin: Springer.

Carter, M. W. (2005). Carter’s test data. URL: ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. Viewed: July 7,
2009, Updated: June 7, 2005.

ftp://ftp.mie.utoronto.ca/pub/carter/testprob/


70 Ann Oper Res (2012) 194:59–70

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Algorithmic strategies and appli-
cations. Journal of the Operational Research Society, 74, 373–383.

Casey, S., & Thompson, J. (2003). Grasping the examination scheduling problem. In E. Burke, & P. De
Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proc. of the 4th int. conf. on the
practice and theory of automated timetabling (PATAT-2002), selected papers (pp. 232–244). Berlin:
Springer.

Daskalaki, S., Birbas, T., & Housos, E. (2004). An integer programming formulation for a case study in
university timetabling. European Journal of Operational Research, 153, 117–135.

Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for examination timetabling. In E. Burke, &
W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proc. of the 3rd int. conf. on the practice
and theory of automated timetabling (PATAT-2000), selected papers (pp. 104–117). Berlin: Springer.

Di Gaspero, L., & Schaerf, A. (2003). Multi-neighbourhood local search with application to course
timetabling. In E. Burke, & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740.
Proc. of the 4th int. conf. on the practice and theory of automated timetabling (PATAT-2002), selected
papers (pp. 262–275). Berlin: Springer.

Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modeling and Algorithms, 5(1), 65–89.

Di Gaspero, L., McCollum, B., & Schaerf, A. (2007). The second international timetabling competition
(ITC-2007): Curriculum-based course timetabling (track 3) (Technical Report QUB/IEEE/Tech/
ITC2007/CurriculumCTT/v1.0/1). School of Electronics, Electrical Engineering and Com-
puter Science, Queens University, Belfast (UK), August 2007. ITC-2007 site: http://www.cs.
qub.ac.uk/itc2007/.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of algorithms. In M. H. Goldwasser,
D. S. Johnson, & C. C. McGeoch (Eds.), Data structures, near neighbor searches, and methodology:
fifth and sixth DIMACS implementation challenges (pp. 215–250). Providence: Am. Math. Soc.. Avail-
able from http://www.research.att.com/~dsj/papers.html.

Kingston, J. H. (2001). Modelling timetabling problems with STTL. In E. Burke, & W. Erben (Eds.), Lecture
notes in computer science: Vol. 2079. Proc. of the 3rd int. conf. on the practice and theory of automated
timetabling (PATAT-2000), selected papers (pp. 309–321). Berlin: Springer.

McCollum, B. (2007). A perspective on bridging the gap in university timetabling. In E. Burke, & H. Rudová
(Eds.), Lecture notes in computer science: Vol. 3867. Proc. of the 6th int. conf. on the practice and
theory of automated timetabling (PATAT-2006), selected papers (pp. 3–23). Berlin: Springer.

McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., & Qu, R. (2007). The second interna-
tional timetabling competition: Examination timetabling track (Technical Report QUB/IEEE/Tech/
ITC2007/Exam/v4.0/17). Queens University, Belfast (UK), September 2007.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., &
Burke, E. K. (2010). Setting the research agenda in automated timetabling: The second international
timetabling competition. INFORMS Journal on Computing, 22(1)

Merlot, L. (2005). Public exam timetabling data sets. URL: http://www.or.ms.unimelb.edu.au/timetabling.
Viewed: July 7, 2009, Updated: October 13, 2003.

Müller, T., & Murray, K. (2008). University course timetabling & student scheduling. URL: http://www.
unitime.org. Viewed: July 7, 2009, Updated: August 8, 2008.

Murray, K. S., Müller, T., & Rudová, H. (2007). Modeling and solution of a complex university course
timetabling problem. In Proc. of the 6th int. conf. on the practice and theory of automated timetabling
(PATAT-2006), selected papers, pp. 189–209.

Nurmi, K., & Kyngäs, J. (2008). A conversion scheme for turning curriculum-based timetabling problem into
school timetabling problem. In E. Burke & M. Gendreau (Eds.), Proc. of the 7th int. conf. on the practice
and theory of automated timetabling (PATAT-2008).

Özcan, E. (2005). Towards an XML-based standard for timetabling problems: TTML. In G. Kendall, E.
Burke, S. Petrovic, & M. Gendreau (Eds.), Proc. of the 1st multidisciplinary international conference
on scheduling: theory and applications (MISTA-03), selected papers (pp. 163–185). Berlin: Springer.

Qu, R. (2006). The exam timetabling site. URL: http://www.cs.nott.ac.uk/~rxq/ETTP.htm. Viewed: March 13,
2007, Updated: July 8, 2006.

Qu, R., Burke, E., McCollum, B., Merlot, L., & Lee, S. Y. (2009). A survey of search methodologies and
automated system development for examination timetabling. Journal of Scheduling, 12(1), 55–89.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.
Schaerf, A., & Di Gaspero, L. (2007). Measurability and reproducibility in timetabling research: Discussion

and proposals. In E. Burke, & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proc.
of the 6th int. conf. on the practice and theory of automated timetabling (PATAT-2006), selected papers
(pp. 40–49). Berlin: Springer.

http://www.cs.qub.ac.uk/itc2007/
http://www.cs.qub.ac.uk/itc2007/
http://www.research.att.com/~dsj/papers.html
http://www.or.ms.unimelb.edu.au/timetabling
http://www.unitime.org
http://www.unitime.org
http://www.cs.nott.ac.uk/~rxq/ETTP.htm

	Benchmarking curriculum-based course timetabling: formulations, data formats, instances, validation, visualization, and results
	Abstract
	Introduction
	Problem definition
	Basic cost components
	Optional cost components
	Formulations

	Problem data
	Instances
	Data formats

	Problem management system
	Validate and insert solutions
	Visualize instances and solutions
	Insert lower bounds
	Insert new instances
	Random instance generator

	Related work
	Discussion, conclusions, and future work
	Acknowledgements
	References


