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Abstract This paper introduces a new Petri Net based approach for resource allocation and
scheduling. The goals are (i) minimize the number of required resources given a set of jobs,
(ii) find both an assignment for all jobs in the span of a predefined shift and (iii) the sequence
in which such jobs are executed. The studied problem was inspired from a complex real life
manufacturing shop as described in this document. The modeling of the processes and jobs
is carried out with Petri Nets due to their capability of representing dynamic, concurrent
discrete-event dynamic systems. The resource assignment starts with an initial feasible so-
lution (initial number of resources) and then follows with a re-optimization process aimed
to further reduce the resource requirements. The algorithm is based on a modified Heuristic
Search method previously presented. The algorithm was tested first on a number of instances
from the literature and then on the aforementioned system (a car seat cover manufacturer).
The proposed approach shows not only good results in terms of performance but also shows
the potential of Petri Nets for modeling and optimizing real-life systems. An implementation
phase at the first stages of the process is underway at the time of writing.

Keywords Petri Nets · Resource assignment · Scheduling · Heuristic search

1 Introduction

Resource allocation and scheduling problems are related to a number of topics which in-
clude the calculation of the number of required resources (workers and/or machines), and
both the assignment and the scheduling of tasks to such resources. A number of applica-
tions of this are commonly found in every day life that different types of manufacturing and
service systems such as manufacturing shops, airlines, hospitals, call-centers, banks, etc.
(Meisels and Lusternik 1997). In some cases, such as the Employee Timetabling Problem
(ETP) and the Workforce Scheduling Problem (WSP), the problem consists of establishing
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the number of resources without subject to mostly cost and timing (shifts) constraints; other
problems such as the Flow and Job Shop Scheduling Problem (FSSP and JSSP), and the
Resource Constrained Project Scheduling Problem (RCPSP) consider precedence and re-
source constraints but with a predefined number of resources (Rodammer and Whit 1988;
Bachman et al. 2002; Zhang and Bard 2006; Nhu et al. 2007).

In real manufacturing systems, the problem at hand is more difficult to solve: Generally,
the resource requirements and the job and workforce schedule must be worked out at the
same time as these two problems are interrelated. In addition, scheduling jobs is difficult,
not only for its combinatorial nature but also because of complex routings, assembly op-
erations, concurrent and parallel activities commonly found in real settings. In turn, such
jobs are processed with workers with different skills and requirements. In many companies,
establishing the number of resources on a daily or a weekly basis depending on the work-
loads together with a job schedule is a highly demanding task that typically uses up many
man-hours.

The aim of this paper is to propose a methodology to handle both the problem of de-
termining the minimum number of resources (machines and workers) required to execute
a schedule of jobs within a time frame (shift) and the schedule of such jobs. Constraints
for this problem include, but are not limited to, the qualifications or capabilities of each re-
source, precedence and routing constraints. The outputs of the algorithm are: (i) the number
of resources of each type, (ii) the assignment of resources to tasks and (iii) the sequence and
timing in which all tasks are processed on each resource.

This paper proposes an integrated Petri Net modeling and optimization approach. Hav-
ing the Petri Net model, the optimization procedure starts with finding an initial solution
consisting of both a number of resources and a feasible schedule (i.e. all tasks are finished
within the allocated time span (shift)). Next, a re-optimization process based on a Heuristic
Graph Search method attempts to reduce the initial number of resources found at the first
stage. This Graph Search algorithm is a modified version of the A* Search (A*S) presented
in previous work (Mejía and Montoya 2007).

The remainder of this paper is organized as follows: Sect. 2 reviews the basic concepts of
modeling with Petri Nets; Sect. 3 describes the proposed method which includes the initial
solution and the re-optimization process. Section 4 is devoted to the computational tests on
the instances from the literature. Section 5 describes and discusses the modeling, testing and
implementation of the methodology on a real life setting. Results of the computer tests are
also shown in this section. Finally, the conclusions are presented in Sect. 6.

2 Modeling systems with Petri Nets

A Petri Net is a directed graph, with an initial state called the initial marking M0. A Petri Net
is a directed, weighted, bipartite graph consisting of two kinds of nodes, called places and
transitions where arcs are directed either from a place to a transition or from a transition to
a place. In graphical representation places are drawn as circles, transitions as bars or boxes.
Places usually represent actions or conditions and transitions represent events. Tokens (black
dots) reside in places and represent the truth of the condition or action associated with the
corresponding place. A place containing at least one token is denoted as a marked place
(Murata 1989).

A marking is defined as an array which contains in each of its positions the number of
tokens at each place. Tokens move throughout the net by effect of transition firings. A tran-
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Fig. 1 Petri Net Model of a system with two jobs and four workstations

sition is enabled when all its input places are marked (contain at least one token).1 If an
enabled transition fires, one token is removed from all the transition input places and one
token is put on each of the transition output places. A marking (state of the net) M ′ is reach-
able from another marking M if there exists a valid sequence of transition firings which
converts M into M ′. A Timed Place Petri Net (TPPN) considers time associated with places.
In TPPNs, in addition to the token rule for transition firing, a transition is enabled when the
time associated with each of its input places has been exhausted (Mejía and Odrey 2005).

Definition Timed Place Petri Net (TPN): A TPN is a 6-tuple (P,T ,P × T ,T × P,M0, τ )

where P = set of places, T = set of transitions, P ∩ T = {}, P × T = a set of input arcs,
T × P = a set of output arcs, M0 = initial marking, and τ = set of time delays associated
with places.

This paper followed the methodology concept of S4R nets (Systems of Sequential Sys-
tems with Shared Resources (Abdallah et al. 2002)) for modeling manufacturing systems.
In S4R nets, a number of concurrent serial processes (jobs) are modeled with an equal num-
ber of strongly connected state machines. Places belonging to such processes are denoted
as “Operational Places” and can be timed if representing the execution of an operation, or
untimed if representing a condition such as “ready”, “in queue” or “finished”. A kind of
Operational Place is the Source Place (with no input transitions) that represent the condi-
tion “component, (part, job) available”. Resource capacity constraints are incorporated to
the model via “Resource Places”. All resource places are untimed.

Figure 1 illustrates a Petri Net model of a manufacturing system with two machines and
two jobs. Each job has a sequence to follow: Job 1 is processed first either at the workstation
1 or at the workstation 3 and then at workstation 2; job 2 is processed first at workstation 2
and then at workstation 4. The number of tokens at each resource place (places W1 to W4

1This is the concept of ordinary Petri Net in which all arc weights are set to 1.
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Table 1 Description of Timed Place for the Petri Net in Fig. 1

p1 Job 1 in queue p9 Job 2 in buffer waits for machine 1

p2 Job 1 processed by machine 1 p10 Job 2 processed by machine 1

p3 Job 1 processed by machine 3 p11 Job 2 finished

p4 Job 1 in buffer waits for machine 2 W1 Workstation 1 available

p5 Job 1 processed by machine 2 W2 Workstation 2 available

p6 Job 1 finished W3 Workstation 3 available

p7 Job 2 in queue W4 Workstation 4 available

p8 Job 2 processed by machine 2

in Fig. 1) corresponds to the number of identical machines or workers in parallel available
at each workstation at a given marking. Table 1 describes the places in the net.

3 The proposed resource assignment and scheduling methodology

3.1 The Resource Allocation A* Search algorithm (RAAS)

Several attempts have been made to reduce the effort to search the entire state space of Petri
Nets. Perhaps the most widely used approach has been the application of modified versions
of the commonly known A* search algorithm (Lee and DiCesare 1994; Xiong and Zhou
1998; Reyes-Moro et al. 2002; Low and Wu 2001; Yu et al. 2003; Kim et al. 2007; Mejía
and Montoya 2008, 2009). The A* search algorithm is a branch and bound-like algorithm
which expands only the most promising nodes of the Petri Net reachability graph, which
contains all the possible states of the net. The root node of this graph is the initial marking
M0, and its successors are generated by firing one transition at a time, thus obtaining new
markings (nodes).

The algorithm A* search expands branches of the net reachability graph according to a
criterion established with the heuristic function f (M) = g(M) + h(M). The function g(M)

is the actual cost from the initial marking M0 to the marking M and h(M) is an estimate of
the cost from marking M to the desired final marking Mf . The function h(M) is admissible
if underestimates the true value of the cost to reach the final marking. The list of candidate
markings is sorted values of f (M) will have priority for expansion (Lee and DiCesare 1994).

3.2 The RAAS algorithm implementation

The A* Search algorithm guarantees optimality if the h(M) function is admissible for all
markings but has exponential complexity in both memory and time (Mejía and Odrey 2005).
For this reason a number of improvements, mostly on limiting the nodes that are expanded
at the expense of optimality, have been presented in the literature (Mejía and Odrey 2005;
Xiong and Zhou 1998; Yu et al. 2003). The RAAS algorithm developed in this paper was
adapted from the BAS (Beam A* Search) presented in previous work (Mejía and Odrey
2005) to further speed up the search. The BAS algorithm had improvements over the clas-
sic A* search that include: (i) tighter bounds for the h(M) function, (ii) reduction of the
search space by trimming out non-promising nodes, and (iii) limited backtracking. The BAS
algorithm proved effective on classical Job Shop, Flexible Job Shop and Flexible Manu-
facturing Systems (FMS) scheduling problems both in solution quality and computer time
for the makespan (Mejía and Odrey 2005) and total tardiness criteria (Mejía and Montoya



Ann Oper Res (2010) 181: 795–812 799

2008). For the classical JSSP instances. The average deviation from the optimal solution
(makespan) was approximately 4%,2 the highest deviation from the optimal solution was
around 7% and in about 35% of the cases the optimal value was found. The RAAS algo-
rithm changes the expansion strategy by cutting off those nodes whose value of f (M) are
greater than the shift length and limiting the number of iterations without finding a feasible
schedule. This version of the algorithm was implemented in JAVA and run on a PC having
2 GB RAM.

3.3 The Resource Assignment and Scheduling algorithm (RAAS)

The primary idea of the algorithm is to start with a preliminary schedule, calculated with
either simple dispatching rules or simple heuristics and an assignment of resources and
then iteratively add resources until the shift duration constraint is met (feasible solution
in which all jobs are finished within the shift span). Next, improve the schedule with the
RAAS algorithm and iteratively decrease the number of resources until no further reduction
can be achieved without violating the shift constraint.3 An important assumption is that the
shift length must be greater than both the maximum of the total operation times for all jobs
and all the machine workloads. In this way, the algorithm is guaranteed to find feasible
assignments of resources.

Inputs:

a. A manufacturing system with n jobs to be processed, all available at the beginning. Each
job has a route that includes (some or all) precedence, buffer (intermediate storage) and
resource eligibility constraints and known processing times. There may also be alterna-
tive routings, multiplicity of resources (one or more resources required to perform one
operation), recirculation, non-identical parallel machines, and all features that can be
modeled with Petri Nets (Murata 1989).

b. A predefined shift duration in which all jobs must be completed.
c. An initial distribution of resources of each type. In the case of the studied FJSSPs the

number of initial resources of each type is set to one unit. This means that initially only
one token is put in each resource place (Nr = 1).

Outputs:

a. The number of (identical) resources of each type.
b. A feasible schedule.

Steps: The general steps of the proposed methodology are the following:

1. Model the system using S4R Petri Nets.
2. Find an initial solution feasible schedule and an initial value of the number of resources

of type r(Nr). The number of resources of each type corresponds to the initial number of
tokens at each resource place.

3. Re-optimize to both minimize the number of resources and to improve resource utiliza-
tion (analogous to minimize Makespan).

2When the optimal solution was available.
3Another tested strategy was: Start with a resource assignment and a schedule established with RAAS. Add
iteratively resources until the shift constraint is met. This strategy proved to be a lot slower than the proposed
in this paper.
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3.4 Initial solution

The objective of this stage is to find an initial value for the number of resources given the
set of tasks, resource capacity and technical constraints and length of the shift. These are the
steps:

1. Find a preliminary schedule using a priority rule to sequence all tasks (jobs). Three dis-
patching rules were tested (SPT, LPT and MWR).4 The rule that provided with the best
objective function was selected as the initial solution.

2. In the case of that one or more jobs could not be completed in the required shift duration,
increase in one unit the resource with the highest utilization rate (Nr = Nr + 1).

3. Repeat steps 2 and 3 until all jobs can be finished within the shift length. It is assumed
that the sum of processing times of a job cannot exceed the shift duration. Otherwise
there would not be a feasible solution.

3.5 Re-optimization process

In this stage, an attempt is made to selectively reduce the number of resources. Let
checked_resources be a list of resources which have been reduced in size. This stage has
three phases:

1. Re-sequence the operations of all tasks, finding a new sequence of transition firings. This
phase is performed with the RAAS algorithm.

2. Originally this list is empty. Reduce in one unit the size of the resource type r with the
lowest utilization rate (Nr = Nr − 1) that is not in the list (r �∈ checked_resources), and
re-run the RAAS algorithm. Put r in checked_resources.

3. Re-check that all tasks can be completed within the shift duration. If yes, go directly to
step 3. If no, re-set the size of the resource r with the lowest utilization rate (Nr = Nr +1)

and go to step 3. The re optimization process stops when the number of all resources
cannot be further reduced (the shift limit is exceeded).

4 Computational experiments and results

The performance of the algorithm was evaluated in two parts: The first part (Sect. 4.1)
involved a test on classical scheduling problems. The test included classical job shop and
a set of flexible manufacturing systems scheduling problems; the second part (Sect. 5.2)
corresponds to application of the proposed modeling methodology and the testing of the
algorithm on a real manufacturing company.

4.1 Problems from the literature

In this section we study the performance of the algorithm on problems adapted from the
literature. The primary idea is to show that this methodology can be easily adapted to a
variety of manufacturing systems. The first set consists of classical Job Shop Scheduling
Problems (JSSP) converted into Flexible Job Shop Scheduling problems (FJSSP). A JSSP
(or a FJSSP) consists of a number of jobs that follow a pre-defined sequence of machines

4SPT (Shortest Processing Time); LPT (Longest Processing Time); MWR (Most Work Remaining).
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which they must visit. Each machine can process one job at a time and all jobs and machines
are available at the beginning of the planning horizon. A FJSSP extends the concept of
the JSSP with a pool of identical parallel machines at each workstation. Twelve 10 × 10
(jobs × machines) JSSP instances were studied. Such instances were proposed by Lawrence
(1984), Applegate and Cook (1991) and Adams et al. (1988). These instances were adapted
for this test as follows: We start with the classical JSSP instance (one machine per station)
and then we iteratively add (with the RAAS algorithm) machines to stations until the shift
constraint is met. As parallel machines are added to workstations, the original JSSP instance
is converted into a FJSSP.

The lengths of the shifts were defined as β times the maximum of the Total Work Time
(TWT) of all jobs:

Shift Length = β × max
j

(
m∑
i

pij

)

The TWT of job j is the sum of all processing times pij over all machines, indexed in i

(1 to m), in the system. If job j does not visit machine i.
For each of the tested instances different shifts lengths were generated, varying the value

of β . Shift lengths were set in such way that their values were greater or equal than the
maximum of the Total Work Time (TWT) of all jobs and less than the optimal makespan
value for the JSSP instance (where only one machine per work station is required). Thus the
lowest value of the shift length was obtained when β is equal to 1. Other shift lengths were
obtained by increasing the value of β (β = 1, 1.1, 1.2 and so forth ). The selected maximum
value of β is such that the corresponding shift length does not exceed the optimal makespan
value for the JSSP instance.

For the JSSP instances, the results of the proposed algorithm (initial solution + re-
optimization) are compared against the solutions provided by two algorithms: The General
Shifting Bottleneck algorithm (GSB) (Implemented in the software Lekin® by Pinedo and
Chao 1999) and the Flexible Job Shop Java Genetic Algorithm (FJSJGA) (Gutiérrez and
Mejía 2009). The GSB algorithm was chosen due to its availability and its “general pur-
pose” characteristic which makes it easily adapted to a number of settings (as it is the case
of RAAS). The FJSJGA is a recent development that has been extensively tested with a
large number of Flexible Job Shop instances from the literature and has reached the best
known solutions (makespan) in the majority of the cases (the average deviation from the
best known solution is around 2%). Notice that the GSB and the FJSJGA algorithms are
aimed for scheduling purposes only and do not establish the number of required machines
at each workstation. For both the GSB and the FJSJGA routines, the number of parallel ma-
chines at each workstation was set equal to the number of machines of each type found with
the RAAS algorithm. Unlike the JSSP instances, for most classical 10 × 10 FJSSP instances
the optimal solutions are not known.

The second set of scheduling problems can be characterized as Flexible Manufacturing
Systems. Three instances proposed by Lee and DiCesare (1994) were studied. Each instance
consists of a number of jobs with alternative routings, parallel machines, recirculation, mul-
tiplicity of resources and batch sizes. For these instances the optimal values are not yet
known. For this reason, we used the best known solutions from Reyes-Moro et al. (2002).
In previous work (Mejía and Odrey 2005), we showed that our Petri Net scheduler (BAS)
reached solutions within 1% of the solutions of Reyes-Moro et al. (2002). For these prob-
lems, the TWT is route dependent and therefore the shift spans were set as α times the best
known makespan values. The values of α were set between 0.4 and 0.95.
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Tables 2 and 3 show the results obtained for the job shop instances. Each JSSP instances
consists of 10 jobs and 10 workstations with one machine each. Column 2 shows the shift
length, while columns 3, 4 and 5 show respectively the rule(s) that obtained the best initial
solution, the number of initially added machines and the initial makespan obtained with such
rule(s). The next columns show the final results obtained by the RAAS algorithm: Column
6 shows the number of added machines per workstation; column 7 the total number of ma-
chines added, and column 8 shows the makespan and CPU time (sec). Columns 10 and 11
show respectively the results of the GSB and FJSJGA algorithms. We did not include com-
puter times for such algorithms as these are not comparable: The RAAS runs the scheduling
routine several times until the shift length constraint is met whereas the GSB and FJSJGA
algorithms run their scheduling routines once with the assignment of resources defined by
RAAS as input. Tables 2 and 3 show for each of the tested instances the results for the
minimum (β = 1) and the maximum shift lengths (β max varies from instance to instance)
respectively. The number of additional machines vs. different values of shift lengths (vary-
ing the values of β) can be seen in Fig. 2 for selected instances. Tables 4 and 5 illustrate
the results of the RAAS algorithm on the more complex Lee and DiCesare (1994). These
tables follow the same format as Tables 2 and 3 and are self explanatory. In this case showed
results considered a minimum (α = 0.4) and maximum (α = 0.95) shift length. Also Fig. 3
shows for the Lee and DiCesare (1994) instances (denoted here as ld3, ld4a and ld4b). These
results considered all the shifts lengths generated for each of the tested instances.

4.2 Analysis

The above results show that, considering all the job shop instances shown in Tables 2 and 3,
in 75%, 10% and 20% of all of such problems the best initial solution was obtained with
the MWR, LPT and SPT dispatching rules respectively. On the other hand, it is possible to
obtain the same initial solution with different dispatching rules. For example for the ABZ5
instance in Table 2, the same initial solution was obtained with the MWR, SPT and LPT
dispatching rules.

The results in Tables 2 and 3 show the validity of the proposed approach: The RAAS
algorithm outperformed the GSB in 22 out of 24 instances and the FJSJGA in 20 out of 24
with the same number of machines. Also, the values of makespan obtained were greater than
the predetermined shift length in 16 of the 24 tested instances for GSB and in 15 out of 24
for the FJSJGA.

Notice also that the shorter the shift length, the better the RAAS algorithm seems to
perform as compared to the GSB and the FJSJGA routines. These can be seen in the results
from Tables 2 and 3. For short shift lengths (see Table 2), the RAAS algorithm outperforms
the GSBA and FJSJGA. The deviations are 6% and 5% respectively from the makespan
value of the RAAS algorithm. This suggests that the RAAS algorithm performs best in tight
shift lengths. In Table 3 (longer shifts), the results do not appear conclusive as on average
the results are very similar. The makespan from the GSBA and the FJSJGA are in average
2% and 0% respectively in comparison to the makespan value obtained with the RAAS
algorithm.

Tables 4 and 5 show the results when the shift spans were fixed to 0.95 and 0.4 times
the values of makespan obtained by the DLSS algorithm proposed by Reyes-Moro et al.
(2002). Considering the FMS instances shown in Tables 4 and 5, in the 50%, 0% and 50%
of all such problems the best initial solution was obtained with the MWR, LPT and SPT
dispatching rules respectively. If in such analysis it is included all shift lengths generated for
each FMS instance, in the 32%, 17% and 53% of all such problems the best initial solution
was obtained with the MWR, LPT and SPT dispatching rules respectively.
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Fig. 2 Comparison between shift lengths and number of added machines for job shop instances

Table 4 Results for the FMS Instances with a shift span equals to (α = 0.4) times the makespan values found
with the DLSS algorithm (Reyes-Moro et al. 2002)

Problem Shift RAAS algorithm

length Initial solution Final solution

Best rule Additional Machines added Cmax CPU (sec)

Rule Additional Cmax machines per workstation

machines

ld3 132 SPT 7 117 6 (3) + 1; (2) + 2; (1) + 3 125 38

ld4a 102 MWR 20 101 14 (2) + 1; (4,5) + 2; 100 342

(1,3,6) + 3

ld4b 95 SPT 24 94 14 (1) + 2; (3,4,5,6) + 3 95 434

CPU: Computer time in seconds. Cmax: Value of makespan

These tables show that very few machines were added when the value of α was close
to 1.0 (α = 0.95). With a very reduced shift length (α = 0.4) the algorithm still found a
feasible solution at the expense of adding many machines. For example, for the ld3 instance
of Table 4 the RAAS algorithm obtained that 6 machines must be added to complete the
all the operations within the defined shift length. The reason why the algorithm was able to
add such a large number machines was that these FMS problems had a large number of jobs
(about 50) and the value of the obtained makespan was far greater than the TWT of the jobs.
As such the shift length was greatly reduced without generating unfeasible solutions. In the
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Fig. 3 Comparison between shift lengths and number of added machines for the FMS instances

Table 5 Results for the FMS Instances with a shift span equals to (α = 0.95) times the makespan values
found with the DLSS algorithm (Reyes-Moro et al. 2002)

Problem Shift RAAS algorithm

length Initial solution Final solution

Best rule Additional Machines added Cmax CPU (sec)

Rule Additional Cmax machines per workstation

machines

ld3 242 SPT 1 312 1 (3) + 1 286 11

ld4a 242 SPT 2 237 2 (5,6) + 1 219 37

ld4b 226 MWR 2 214 1 (5) + 1 216 45

CPU: Computer time in seconds. Cmax: Value of makespan

case of the JSSP instances, a very shortened shift may have a duration shorter than the TWT
of some job and therefore it would be impossible to find a feasible solution.

5 An application in a complex system: manufacturing of car cover seats

The methodology proposed in this paper was inspired from a company that produces car seat
covers in Colombia (South America). The company is both supplier of large car assembly
plants (“serial production”, which is the term coined in the company) and of customers who
order small quantities or special orders of seat covers (make-to-order production). This study
focuses on the make-to-order production. In a typical day the company receives up to 30
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special orders which must be processed within one calendar day; the schedule is calculated
daily. All unfinished jobs at the end of the day are interrupted and re-scheduled for the next
day. Thus, the plant can be considered as empty (no jobs) at the beginning of each day.

Despite the fact that the company uses ERP software, the company suffers from poor
of coordination at the final assembly (sewing station) which in turn results in waste of re-
sources. Sometimes, the sewing workers remain idle for hours due to the lack of components
and sometimes the workforce is insufficient to meet due dates. Additional sewing person-
nel can be brought in easily with a 24-hour notice. The plant management has determined
that it is mandatory to have a model that predicts both the workforce requirements and the
schedule of jobs.

5.1 The manufacturing process and the Petri Net modeling

The manufacturing process itself has many features that complicate the scheduling task:
These comprise both concurrent and alternative routings, assembly operations, machine eli-
gibility constraints, batching, non identical parallel machines and so forth. Furthermore the
company has very tight due dates. In fact, the company just dropped the implementation of
a commercial scheduling software package because such a package did not fit their needs.
The company has facilitated the information of products, machines, routing sheets and shift
durations and expects that this research proves effective. At the time of writing the project
has been underway for 6 months and the company is currently implementing a prototype in
the first stages of the process. Most of the time has been on data collection, interfacing with
the ERP software and modeling the system.

The current manufacturing process starts with four processes that can be performed con-
currently: leather cutting, vinyl cutting, leather punching and carpet cutting. Leather cutting
can either be made manually by cutting workers or by a CNC cutting machine. Vinyl cutting
is done manually by the cutting workers if the batch size of the job is less than four (4) sets
of cover seats or otherwise with a sheet cutting machine. In the first case, the vinyl and the
leather pieces are cut concurrently by one cutting worker. In case of machine cutting, such
a machine can cut up to 60 vinyl sheets at the same time. After the vinyl cutting operation,
a punching operation is done on the cut vinyl parts. Next, a first assembly operation is per-
formed. Here polyurethane foam pads are attached to all leather and vinyl parts. The next
operation, called “setup” by the plant personnel, consists of picking plastic frames from the
warehouse and get them ready for the final assembly. In this operation the leather-foam and
vinyl parts are sewn onto the car seats. The critical activities (bottleneck) are the leather
cutting and the sewing operations.

We selected three typical days in which about 30 jobs had to be processed. Such jobs were
downloaded from the ERP system and input to our algorithm via a spreadsheet application.
The company runs two eight-hour shifts and the primary objectives are (i) meeting the hard
due date of 24 hours for each job and (ii) establishing the schedule for the cutting and sewing
stations.

Typical process times for the operations are shown in Table 6. The process time depends
on many parameters that include the process itself (manual or automated), the batch size, the
complexity (difficulty) of the cutting operations, the configuration (“deluxe” or “regular”)
and the number of seats per car.

Most products follow a standard route, although variations are not uncommon. For ex-
ample, not all products require vinyl cutting (e.g. the “full leather” covers) and only a few
require leather punching.

The number resources currently available are: 7 leather cutting workers, 1 worker for
carpet cutting, 1 worker at the leather punching press, 1 worker at the vinyl cutting table,
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Table 6 Typical processing times

Process Time (hours)

Leather cutting (manual) 1.5–3

Leather cutting (CNC) 0.5–1.5

Vinyl cutting (machine) 2–4

Leather punching 0.5–1.5

Vinyl punching 0.5

Setup 1

Sewing 2–5

2 workers at the first assembly and 10 sewing lines with 5 workers each. The cutting and
sewing workers specialize in either serial or make-to-order production.

In addition to all the above technical constraints, other issues further complicate the
scheduling: sometimes jobs require reprocessing, raw materials and components are not
always available, new products are developed almost every month, etc. Classical exact op-
timization techniques such as mathematical programming, branch and bound are unlikely
to deal with the complexity of this system; on the other hand, heuristic methods are usu-
ally difficult to maintain in real settings since they are very rigid and problem specific. As
for the company, having information as to the number of workers at the cutting and sewing
operations and their schedule, seems the critical thing. For the above reasons, the Petri Net
approach combined with the Graph Search optimization algorithms was adequate for this
problem.

Figure 4 illustrates the manufacturing process of a standard cover seat as modeled with
a Petri Net. Places “px” are operational places whereas places “Wx” are resource places.
In this model, one token represents one set of cover seats. The proposed Petri Net model
consisted of about 84 places and 64 transitions. Table 7 shows a description of each place.

5.2 Computer tests

The testing was performed with the production orders of three typical days with 31, 35
and 45 jobs. Two shift lengths were set: 16 hours, which is the daily available time, and
13 hours. Additional resources (workers) were added to the manned stations (no additional
CNC machines were added). The sewing line was considered as a single resource. The initial
configuration was set to one resource to each workstation.

The primary objective of this testing was to compare the actual number of resources at
each station with the solution provided by the RAAS algorithm. The scheduling methods
(RAAS and the company’s) were not compared since: (i) neither the exact schedule nor
the performance indicators were available from the records of the company, (ii) the old
scheduling method also contemplated the skills and preferences of workers, (iii) rework was
not considered in RAAS. The following table shows the results of the computer testing.

Table 8 shows only the number of machines or workers of the stations that require more
than one resource.

The above results show that the actual configuration of workers is greater than the sug-
gested by the RAAS algorithm. It is expected as there are many aspects that hinder the
execution of the schedule (see Sect. 5.1). These include reprocessing, fabrication of spare
components and loss of worker productivity due to external factors. As in the case of the ac-
tual plant, the critical resources are the cutting workers in terms of capacity and throughput.
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Fig. 4 Petri Net model of the routing sheet of a standard cover seat

Table 7 Description of places for the Petri Net in Fig. 2

p1 Leather sheets ready p18 Setup operation

p2 Leather sheet CNC cutting p19 Carpet sheets ready

p3 Leather sheet manual cutting p20 Carpet cutting

p4 Leather components cut p21 Carpet parts ready

p5 Vinyl sheets ready p22 Leather and vinyl parts ready

p6 Vinyl sheet machine cutting p23 Final assembly (sewing)

p7 Vinyl components cut p24 Seat cover ready

p8 Vinyl punching W1 CNC station available

p9 Vinyl components ready W2 Leather cutting workers available

p10 Leather parts ready for punching W3 Vinyl cutting station available

p11 Leather punching W4 Leather punching station available

p12 Leather components punched W5 Carpet cutting station available

p13 Foam pad attachment W6 Vinyl punching station available

p14 First sub-assembly ready for sewing W7 First assembly station available

p15 Frame components in stock W8 Setup worker available

p16 Frame processing (cutting) W9 Framing worker available

p17 Frames and carpet components ready W10 Sewing station available
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Table 8 Results for the case of study

Problems Shift span Total number of resources Cmax

(number of jobs) (min) Workstation Number of (min)

resources

31 960 W2 4 960

W7 2

W10 3

31 780 W2 11 780

W7 4

W9 5

35 960 W2 5 960

W7 3

W9 2

W10 3

35 780 W2 13 780

W5 2

W7 3

W9 3

W10 5

45 960 W2 8 960

W7 3

W9 2

W10 5

45 780 W2 18 780

W5 2

W7 5

W9 2

W10 7

The second most critical resources are the sewing lines and the third is the first assembly
station.

Another conclusion is that as the number of jobs increases the number of cutters in-
creases more rapidly than the number of sewing lines. This figure increased from 13 to 18
cutters when the number of jobs changed from 35 to 45 in the 13 hour (780 min) shift. In the
same situation, the number of sewing lines changed from 5 to 7. This result has implications
in the actual management of resources. Although the sewing line seems less critical, no-
tice that a sewing line employs 5 workers. Another issue is that finding additional capacity
for this resource is not easy due to several reasons that include lack of satellite companies
(“maquilas”) and both lack of sewing machines and trained workers. On the other hand,
according to the plant supervisor, finding additional trained cutting workers is not as diffi-
cult, but there is a limitation on the number of available cutting tables (seven at the time of
writing).

Summarizing, the proposed RAAS method can be indeed a tool for workforce planning
on real settings. The analysis, however, carried out for this manufacturing shop leads to



Ann Oper Res (2010) 181: 795–812 811

different conclusions as compared to the problems from the literature. Clearly here, adding
resources to stations imply additional costs, worker training, outsourcing and space and
machine limitations that do not exist on the literature instances. The final word on these
issues is on the plant management.

6 Conclusions

This paper has presented a Petri Net based methodology for resource assignment and
scheduling. The methodology was inspired from a real problem in a manufacturing plant
of car seat covers. Petri Nets become ideal for the studied problem since they can cap-
ture the essence of the interactions between workers and machines, complex precedence
relationships, and concurrent activities. Usually traditional resource assignment approaches
only take into account only time windows and worker skills constraints. Accurate resource
assignment must also include job precedence relationships and resource—job interactions.

This paper shows the validity of Petri Nets for resource assignment and scheduling. The
results on the classical instances suggest that the methodology used to both identify the
critical resources and schedule jobs was indeed effective. The algorithm outperformed the
well-known General Shifting Bottleneck (GSB) and the FJSJGA in most of the studied cases
from the literature.

The methodology also showed its value on a real system. Here we can affirm that (i) Petri
Nets are capable to model real system with an adequate detail, (ii) the RAAS algorithm can
be effectively applied to a real-life setting and (iii) the further research will be focused
on issues of online scheduling for complex systems such as order arrival and cancellation,
changes in the processing times and machine breakdowns.

This project is in a prototype stage. The development of the scheduling system and its
implementation at this system has several issues to be resolved. A full scale scheduling
platform still requires has many issues: Database management, security and permissions,
job status handling, training and adapting and changing the schedule to name a few. The
latter seems to be very important for the plant schedulers: Usually the computer generated
schedule requires manual changes to incorporate tacit rules. Such rules are very difficult
and impractical to implement in any system. At the time of writing, the scheduling system
provides only an off-line schedule at the cutting stages and all schedule changes are done
manually.
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