
Ann Oper Res (2010) 177: 127–137
DOI 10.1007/s10479-009-0670-9

An exact approach for solving integer problems under
probabilistic constraints with random technology matrix

Patrizia Beraldi · Maria Elena Bruni

Published online: 12 November 2009
© Springer Science+Business Media, LLC 2009

Abstract This paper addresses integer programming problems under probabilistic con-
straints involving discrete distributions. Such problems can be reformulated as large scale
integer problems with knapsack constraints. For their solution we propose a specialized
Branch and Bound approach where the feasible solutions of the knapsack constraint are used
as partitioning rules of the feasible domain. The numerical experience carried out on a set
covering problem with random covering matrix shows the validity of the solution approach
and the efficiency of the implemented algorithm.

Keywords Stochastic integer programming · Probabilistic constraints · Branch and bound
method

1 Introduction

Integer programming under probabilistic constraints represents one of the most challenging
areas of modern stochastic programming. Its relevance is due to the possibility of bring-
ing into the integer programming framework, the fundamental issues of reliability and risk
which are of special concern in real life applications.

Let us denote by (�,�,P) a probability space. Later on we shall focus our attention on
the following class of stochastic programming problems (IPPC, for short):

min z = cT x (1)

P{T (ω)x ≥ h(ω)} ≥ α (2)

x ∈ X (3)

Here c is a n-dimensional vector, X = {Ax ≥ b, x ∈ Zn+} is shorthand for the usual deter-
ministic constraints, where A is a q × n matrix and b is q-dimensional vector. In addition,

P. Beraldi (�) · M.E. Bruni
Dipartimento di Elettronica, Informatica e Sistemistica, Università degli Studi della Calabria,
87030 Rende, CS, Italy
e-mail: beraldi@deis.unical.it

mailto:beraldi@deis.unical.it

128 Ann Oper Res (2010) 177: 127–137

the decision variables x are assumed to be purely integer. The mixed-integer case can be
handled in a straightforward way without any added conceptual difficulty.

Constraints (2) are joint probabilistic constraints which impose the satisfaction of the sto-
chastic constraints T (ω)x ≥ h(ω) within a prescribed reliability level α ∈ (0,1). We assume
that ω follows a discrete distribution with finite support � = (ω1, . . . ,ωS). In this case �

is called scenario set. We denote by ps the probability of realization of the s-scenario ωs .
We observe that discrete distributions arise frequently in applications, either directly, or as
empirical approximations of the underlying distribution (see, for example, Prékopa 1995).

It is evident that, linking together integrality and reliability, model (1)–(3) provides a ver-
satile paradigm suitable to model applications occurring in almost all fields of management
as well as in engineering disciplines. We mention, for example, a classical application arising
in medical logistics and concerning the problem of locating and dimensioning emergency
medical services so as to guarantee a reliable level of service on a given geographical region
and minimize the overall costs (Beraldi et al. 2004). We also cite applications in financial
risk management (Gaivoronski and Pflug 2005), in routing design (Gendreau et al. 1996), in
facility location (Owen and Daskin 1998), in power industry management (Prékopa 1995).

The main difficulty in dealing with problem (1)–(3) derives from the non-convex na-
ture of the problem. Convexity is regained only if the distribution function of the random
parameters satisfies some rather strong conditions, such as, for example, the log-concavity
property for continuous distributions (Prékopa 1993). In the case of discrete distributions,
the feasible region defined by (2) is non-convex even for continuous decision variables. In
our case, the integer restrictions add another source of non convexity. This double level of
difficulty poses severe computational difficulties.

Programming under probabilistic constraints involving continuous distributions has been
the subject of intensive research, beginning with the seminal work of Charnes and Cooper
(1959). The interested readers are referred to Prékopa (1995) and references therein. Much
less attention has received the case of discrete distributions (Dentcheva et al. 2000, 2002;
Sen 1992). All the cited contributions rely on the derivation of deterministic equivalent
formulations of problem (1)–(3). When uncertainty affects only the right hand side of (2) and
the technology matrix is deterministic, such reformulations may be obtained by means of the
α-efficient points of the distribution function. These are defined as the minimal points of the
set of realizations ωs for which P{ω ≤ ωs} ≥ α (Prékopa 1990). In Dentcheva et al. (2000)
the authors proposed an algorithm that iteratively updates the set of relevant α-efficient
points to generate tight lower and upper bounds for the problem. Branch and Bound methods
based on partial and complete enumeration of the α-efficient points have been proposed in
Beraldi and Ruszczyński (2002a) for the probabilistic set covering problem and in Beraldi
and Ruszczyński (2002b) for general integer problems. In Sen (1992), the author suggested
convex relaxation of probabilistically constrained problems using disjunctive programming
techniques. More recently, in Cheon et al. (2006) the authors proposed a branch and bound
algorithm based on the partitioning of the non-convex feasible region and on the use of
bounds to fathom inferior partition elements. The basic algorithm is enhanced by domain
reduction and cutting plane strategies.

Unlike most of the papers mentioned above, our contribution addresses the more gen-
eral case where uncertainty affects both sides of (2). To the best of our knowledge, the
only exception that dealt with a similar case is due to Ruszczyński (2002), who proposed
a specialized branch and cut algorithm for the problem instance with continuous decision
variables.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the deter-
ministic equivalent formulation of the problem. Section 3 is devoted to the presentation of

Ann Oper Res (2010) 177: 127–137 129

the solution method in its basic version. The relevant issues to exploit in order to define
an enhanced approach are illustrated in Sect. 4. Finally, in Sect. 5 we present and discuss
preliminary computational results collected on different instances of a set covering problem
with random technology matrix.

2 The deterministic equivalent formulation

All the methods proposed in the literature for solving probabilistically constrained problems
involving discrete distributions are based on the derivation of deterministic equivalent for-
mulations of the original problem. When uncertainty affects both sides of the probabilistic
constraints, the reformulation may be obtained by introducing a binary knapsack constraint.
In what follows, we show how the reformulation can be derived in our case.

Let us denote by S = {1, . . . , S} the index set for scenarios and by (T s, hs), with T s a
m × n matrix and hs a m-dimensional vector, the uncertain problem parameters associated
with scenario ωs occurring with probability ps .

Furthermore, for each s ∈ S let us denote by Ks the corresponding feasible set:

Ks = {x|T sx ≥ hs} (4)

For each s, Ks is assumed to be non-empty and compact. Problem (1)–(3) can be rewritten
as:

min z = cT x (5)

x ∈ X ∩ K(α) (6)

where

K(α) =
⋃

I∈�

⋂

s∈I

Ks (7)

and

� =
{
I |I ⊆ {1, . . . , S},

∑

s∈I

ps ≥ α

}
(8)

The disjunctive reformulation of K(α) clearly shows the non-convex nature of the problem.
By adopting a standard technique used in disjunctive programming (Balas 1985), K(α) can
be rewritten by using binary variables. In particular, for each scenario s, we may introduce a
vector Ms ∈ Rm such that T sx +Ms >= hs , for all x ∈ X. In addition, we introduce a vector
y of binary variables whose components ys , s ∈ S take value 0 if the corresponding set of
constraints Ks has to satisfied and 1 otherwise. Thus, problem (5)–(6) can be equivalently
rewritten as:

min z = cT x (9)

T sx + Msys ≥ hs s = 1, . . . , S (10)
S∑

s=1

psys ≤ (1 − α) (11)

ys ∈ {0,1} s = 1, . . . , S (12)

x ∈ X (13)

130 Ann Oper Res (2010) 177: 127–137

We observe that (11)–(12) define a binary knapsack constraint ensuring that the violation of
the stochastic constraints is limited to (1 − α).

In the reformulation introduced above, the number of constraints is replicated in the num-
ber of scenarios. Thus, even for small size problems, (9)–(13) results in an integer problem
of very large size. As a consequence, exploiting the problem structure represents the only
alternative to design effective solution algorithms.

3 The solution approach

In spite of their relevance, from both methodological and applicative standpoint, IPPC prob-
lems have received scant attention by the scientific community. To the best of our knowl-
edge, the only contribution that dealt with a similar case is due to Ruszczyński (2002), who
considered the version of the problem with nonlinear convex function, but continuous rather
than integer decision variables. Ruszczyński proposed a Branch and Cut method based on
the definition of a partial order relation “�” on �. This relation is mathematically translated
by introducing into model (9)–(13) precedence constraints. The proposed method uses valid
inequalities obtained by a specialized lifting procedure for the precedence constraints.

Our method relies on a different idea: instead of attacking the full formulation of the
integer problem it treats the binary knapsack separatelely using its feasible solutions as
partitioning rules of the feasible domain within a Branch and Bound scheme.

Let us denote by yc a feasible solution of (11) with c ∈ C = {1, . . . ,C}. Then, the set
K(α) can be rewritten as:

K(α) =
⋃

c∈C

K(c)

where, for each c ∈ C

K(c) =
⋂

{s|yc
s =0}

Ks

It can be trivially observed that if all yc , with c ∈ C were known, then the optimal solution
of (9)–(13) would be obtained as minc∈C zc where

zc = min cT x

x ∈ X ∩ K(c)

This straightforward approach would benefit by the reduction of the cardinality C and, thus,
of the number of integer problems to solve. To this aim some dominance criterion might be
applied.

Definition 3.1 Given two feasible solutions y1 and y2 of (11) we say that y1 dominates y2

if y1 ≥ y2, where the inequality “≥” should be understood componentwise.

It is evident that the explicit enumeration even of the dominant solutions only, would
result computationally intensive limiting the applicability of the method to very small in-
stances.

The proposed approach uses an implicit enumeration and relies on the definition of a
search tree. In particular, branches refer to the decisions of fixing a given component s

Ann Oper Res (2010) 177: 127–137 131

of the vector y at the value 0. This operation results in requiring the satisfaction of the
corresponding set of scenario constraints Ks . Nodes refer to the corresponding subproblems.
It is worthwhile noting that the search tree should be defined in such a way to guarantee
that subproblems are all different. This can be accomplished by adopting the following
branching rule.

At the top of the search tree (level 0) no fixing decision is performed, i.e. all the compo-
nents of y have value 1. Since at each branch only one component is fixed, nodes at level 1
refer to |S| disjunctive subproblems, each defined on one different scenario feasible domain.
More generically, let us consider a node l at level j of the tree and let us denote by �(l) the
path joining the root of the tree to l. In particular, let us denote by l1, . . . , lj the different
arcs and, thus, the set of indices of the vector y that have been set to 0 along �(l). Starting
from this node, we perform ||S| − lj | branches by setting, in each branch k, the component
yk to 0, with k = lj + 1, . . . , S.

Node l inherits all the restrictions defined by the arcs (branches) of the path �(l). Then,

node l at level j will refer to the subproblem defined on the feasible set
⋂lj

s=l1
Ks . In the

following, the term node and corresponding subproblem will be used indistinctly.
We observe that the feasible set associated with a given node can be defined “incremen-

tally”, starting from the feasible domain of its predecessor and adding the scenario con-
straints implied by the last branch. This will be very useful in the solution phase allowing
to adopt some warm starting procedure. In particular, in our method we consider a linear
relaxation and, thus, the solution of a given subproblem can be obtained starting from the
optimal solution of its predecessor rather than from scratch.

It is important to point out that some subproblems of the tree might be associated with
infeasible solutions of (11). Nevertheless, the definition of the search tree assures that the
solution of a subproblem provides a lower bound on the optimal solution for all the subprob-
lems generated starting from it. As in any Branch and Bound scheme, lower bounds on the
solution of subproblems can be useful in eliminating not promising partitions of the feasible
domain. In our method another pruning criteria is represented by the satisfaction of (11). In
fact, since by construction all the feasible solutions generated starting from the current node
are dominated by that node, they can not provide a better solution.

We observe that in our scheme the satisfaction of (11) at a given node does not assure that
the corresponding solution y is not dominated by another one determined at a previous level.
However, the node corresponding to a dominated solution would yield a worse solution and
it would be discarded during the exploration of the search tree.

In the following, the basic scheme of the proposed approach is reported:

Step 0 (Initialization). Compute an initial upper bound UB and set:
M = {} set of subproblems to solve as integer;
L = {0} set of active nodes, where 0 denotes the root of the tree.

Step 1 (Termination). Check L. If it is empty, STOP. Otherwise, extract a node l and go to
Step 2.

Step 2 (Solution). Solve a linear relaxation of the subproblem l. Let xl be the solution and
z(xl) the corresponding objective function value. If z(xl) ≥ UB then prune the node. If
z(xl) < UB check the feasibility (11). If

∑
s∈S−�(l) p

s > (1 − α) go to Step 3 otherwise
check if xl has integer components. If so update the incumbent value, otherwise add node
l to M .

Step 3 (Branching). Let lj be the last arc of �(l). Perform (|S| − lj) branches and add the
generated subproblems into L. Go to Step 1.

132 Ann Oper Res (2010) 177: 127–137

When the algorithm terminates M contains all the subproblems to solve as integer. The
solution process is carried out starting from the problem with the lowest bound value and
whenever the incumbent value is updated, other problems are removed from M until the list
is empty.

Theorem 3.1 If the original problem is feasible, then the proposed algorithm finds the op-
timal solution in a finite number of iterations.

Proof Since the number of nodes generated and explored in the search tree is finite, the
algorithm terminates after finitely many steps. The optimality of the solution follows from
the validity of the lower and upper bounds used. �

We observe that the proposed method has general validity and can be applied to solve
problems with continuous decision variables and nonlinear convex functions.

4 Enhancements and refinements

The performance of the proposed solution method depends on different issues. In what fol-
lows, we suggest some enhancements and refinements that can be adopted to improve effi-
ciency.

First of all, we mention the determination of the upper bound value UB used to initialize
the algorithm. Let us denote by ŷ a feasible solution of (11). Then, UB can be computed by
solving the problem:

min cT x (14)

T sx ≥ hs s ∈ S with ŷs = 0 (15)

x ∈ X (16)

Depending on the criteria used to determine ŷ, different strategies for computing UB may be
defined. Here we propose an approach that takes into account the weights associated with
the different scenarios. In particular, ŷ is determined by solving the following knapsack
problem:

max
S∑

s=1

γ sys (17)

S∑

s=1

psys ≤ (1 − α) (18)

ys ∈ {0,1} s = 1, . . . , S (19)

The value γs are computed on the basis of the dual variables associated with the different
scenarios. These latter are determined by solving the version of the problem obtained by
(9)–(13) dropping (11). The logic behind this strategy is evident: look for a solution ŷ which
corresponds to the subset of scenarios of minimal weight.

Another critical issue in the definition of an efficient approach is the preprocessing of the
scenario set. It is worthwhile noting that on the basis of the comparison of the probability

Ann Oper Res (2010) 177: 127–137 133

values ps , s ∈ S , and the reliability level α, the value that some variables ys will take in the
optimal solution can be established a priori. In particular, if ps > (1 − α), then ys can be
set to 0. In the following, we shall assume that constraints corresponding to such scenarios
are included in X and that � is accordingly reduced. Further reduction can be obtained
by defining on � a partial order relation as suggested in Ruszczyński (2002). In particular,
Ruszczyński showed that the order i � j defined as:

i � j ⇔ hi − T ix ≤ hj − T jx ∀ x ∈ X (20)

is a “consistent” order for problem (9)–(13) and proved that adding the constraints

yi ≤ yj ∀i, j ∈ {1, . . . , S} such that i � j (21)

does not cut off optimal solutions.
The precedence constraints defined by the partial order may be useful in the reduction of

the search tree.
Let us consider a node l of the search tree for which

∑
s∈S−�(l) p

s > (1 − α) and z(xl) <

UB. Before proceeding to the branching phase, we may check if the corresponding solution
y satisfies the precedence constraints. If their satisfaction requires to fix the value of other
components of y to 0, then we check if following this operation (11) is satisfied. If so we
may prune node l, otherwise we proceed to branch starting from the new solution.

The advantage of the proposed solution approach relies on the possibility of exploiting
lower bound values provided by the solution of the linear relaxation of subproblems defined
during the exploration of the search tree. We remind that these subproblems might be asso-
ciated with infeasible solutions of (11). In effect, the proposed method in its basic version
might enumerate many of these solutions. In order to improve efficiency, we may limit the
exploration only to “promising” infeasible solutions. This can be accomplished by modify-
ing the branching rule and solving the linear relaxation of subproblems which satisfy some
criteria. In particular, because of the branching mechanism illustrated in previous section, it
is evident that it is not worthwhile to generate branches on k = lj + 1, . . . , |S| if

k∑

s=1,s �∈�(l)

ps > (1 − α) (22)

since they will produce infeasible solutions of (11). In addition, we may limit the solu-
tion phase only to subproblems for which the violation of (11) is limited by θ , where
θ = max{s∈S |ps≤(1−α)}{ps}.

5 Numerical illustration

In order to test the proposed solution approach we have considered a specific problem arising
in the location of emergency services.

We consider a given geographical territory and we assume that the service request is con-
centrated in a finite set I of demand points (e.g. municipality or county). We also consider
a given finite set J of potential sites where service facilities may be located. A candidate
location j can provide service to a demand point i (i.e. i can be covered by j) only if the
traveling times dij , between i and j , is within a given threshold value V . On the basis of the
restricted traveling distance, it is possible to define the covering matrix T , whose generic

134 Ann Oper Res (2010) 177: 127–137

Table 1 Characteristics of the
test problems Test problem |I | |J | |S| Dens

Test 1 25 250 20 4.4%

Test 2 25 250 30 4.4%

Test 3 25 250 50 4.4%

Test 4 50 500 20 17.7 %

Test 5 50 500 30 7.2 %

Test 6 50 500 50 6.0 %

component tij is equal to 1 if dij ≤ V and 0 otherwise. Let us denote by cj the cost incurred
for installing the service facility at location j . The problem is to decide where to locate
emergency services so to cover all the demand points minimizing the total cost. This prob-
lem can be formulated by a classical set covering model (Balas 1983), where the decision
variables xj , with j = 1, . . . , J , are equal to 1 if the service facility is located at j and 0
otherwise.

It is evident that in real applications the traveling times dij can not be considered deter-
ministic since their values may vary because of traffic conditions, speed ambulances, time
of day, climate conditions, and land and road type. Thus, a more accurate model should
take explicitly into account uncertainty by including a random covering matrix rather than
a deterministic one. This leads to the definition of a stochastic version of the set covering
problem. In particular, in a reliability perspective the problem consists in deciding the opti-
mal location of the emergency services in such a way to cover all the demand points with a
given reliability level α.

The basis of our preliminary experiments is represented by six randomly generated
instances obtained by varying the number of demand points |I |, of potential locations
|J |, and scenarios |S|. We observe that the deterministic equivalent formulation presents
[|I |× |S|+1] constraints and [|J |+ |S|] binary variables and is characterized by a coverage
matrix T composed by |S| submatrices T s each of size |I | × |J |.

Let Dens denote the number of nonzero entries of matrix T . Table 1 reports the charac-
teristics of the test problems.

To provide the basis for the experiments, randomly generated test problems were created.
Each entry of matrix T s corresponds to a realization of a random variable with Bernoulli dis-
tribution. We observe that scenarios probabilities are determined in a general way allowing
us to consider the more general case of dependent random variables. If the individual en-
tries of T are independently drawn from the given probability distribution, then the scenario
probabilities can be easily calculated. In order to determine the scenarios probabilities, we
have randomly generated a set 	 of numbers between 0 and 1 and we have extracted a sub-
set of cardinality |S| from 	 whose elements obey to the second probability axiom. The full
problems data are reported in Beraldi and Bruni (2005).

Each instance has been solved for three different reliability levels, 0.85, 0.90, 0.95. The
proposed algorithm has been implemented in the C++ programming language and uses the
LINDO API callable library to solve linear and integer programming problems at various
steps of the method.

Table 2 reports the numerical results. They have been collected by implementing the
solution approach with the enhancements introduced in Sect. 4. We present a comparison of
our method with the general-purpose LINGO solver. In particular, in Table 2 we report, for
each instance, the CPU seconds required to solve the deterministic equivalent reformulation

Ann Oper Res (2010) 177: 127–137 135

Table 2 Computational results

Test problem α LINGO Our method

Time Nodes Time Nodes

Test 1 0.85 6 10155 3 30

0.90 11 33606 6 27

0.95 1 1641 1 11

Test 2 0.85 73 1440 24 12

0.90 52 79925 5 39

0.95 32 44864 2 14

Test 3 0.85 25 13728 8 46

0.90 31 7304 2 7

0.95 19 7667 9 32

Test 4 0.85 62 49404 39 42

0.90 44 43596 14 14

0.95 174 161574 5 16

Test 5 0.85 >5000 >200000 406 104

0.90 >5000 >200000 338 52

0.95 >5000 >200000 1374 23

Test 6 0.85 >5000 >200000 149 124

0.90 396 26794 25 7

0.95 3752 722240 967 136

(see column Time) and the number of iterations performed (see column Nodes). For the sake
of clarity we recall that although the relaxed problems are in both cases linear problems, the
branch is accomplished on a different basis.

On the basis of the numerical results obtained, we can point out the following:

• For all the test problems the proposed algorithm offers significant advantage over the
standard solver. This latter was not able to solve some instances within the imposed time
limit of 5000 seconds. This behavior can be explained by observing that our method fully
exploits the structure of the considered problem.

• We have observed that a key issue in enhancing the performance of the method is the
determination of a good initial upper bound. However the time spent by the algorithm to
evaluate an upper bound is not high if compared with the total time spent by the standard
solver LINGO.

• The procedure used to construct an initial solution performs very well providing initial
values that, in many of the test problems, coincide with the optimal solution (see Fig. 1
which shows the initial upper bound value and the optimal objective function value for
the larger test problems). Nevertheless, we observe that in order to compare the standard
solver with our algorithm on the same basis, the same initial upper bound values have
been used.

• As known, in the worst case exact algorithms for solving the knapsack problem have
exponential running time: it is important to point out that notwithstanding this very high
computational complexity, our algorithm is very efficient in practice.

136 Ann Oper Res (2010) 177: 127–137

Fig. 1 Initial upper bound versus optimal solution

• The successful application of our branch and bound procedure also depends on the branch
generating scheme: in fact it suffices to solve only non dominated subproblems to solve to
optimality the problem. Because the cardinality of such subproblems is in general smaller
than the cardinality of the whole search space, the resulting reduction allows us to tackle
problems with high dimension.

• As expected, the computing time of the algorithm increases with the number of nodes for
the demand points and the locations As evident from the table, LINGO has difficulty in
finding an optimal solution (within the allowed time limit) when |I | × |J | ≥ 25000. Our
algorithm seems to be able to handle such problems.

• Notice that the algorithm is quite insensitive to the scenario growth although the dimen-
sion of the problem increases rapidly when |S| increases. When |S| increases the CPU
time initially increases until it reaches some peak and then decreases.

• The number of nodes examined by our method is significantly less than the nodes exam-
ined by LINGO. Furthermore, each LINGO node is more computational expensive than
our node in which only a subset of scenarios are considered leading to a linear problem
of smaller dimension.

• LINGO reported comparable solution time for one problem. However we should note
that this problem instance is very easy to solve. We regard this indicator as somewhat
misleading, since LINGO fails to efficiently solve more larger and complicated instances.

6 Conclusion

In this paper we presented a new solution framework for stochastic optimization problems
with probabilistic constraints. In particular the solution of a general class of model not previ-
ously treated in literature has been efficiently addressed. It represents a direct generalization
of the probabilistic models where uncertainty affects both sides of the stochastic constraints.
Most practical problems would seem to fall into this category. The problem is a non-convex
integer program for which we developed a specialized Branch and Bound algorithm. The
analysis of the preliminary computational experiments indicate the proposed approach as
a computationally efficient methodology for obtaining global optimal solution to realistic
sized probabilistically constrained models with random technology matrix. In addition, we

Ann Oper Res (2010) 177: 127–137 137

developed fairly tight upper bounds on the optimal solution with no additional burden. We
feel that our algorithm is a viable step toward developing an adequate methodology for
dealing with such complex models.

References

Balas, E. (1983). A class of location, distribution and scheduling problems: modeling and solution methods.
In P. Gray & L. Yuanzhang (Eds.), Proceedings of the Chinese—US symposium on systems analysis.
New York: Wiley.

Balas, E. (1985). Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.
SIAM Journal on Algebraic and Discrete Methods, 6, 466–486.

Beraldi, P., & Bruni, M. E. (2005). An exact approach for integer problems under probabilistic constraints
with random technology matrix. ParcoLab Technical Report, Unical, Italy.

Beraldi, P., & Ruszczyński, A. (2002a). The probabilistic set covering problem. Operations Research, 50,
956–967.

Beraldi, P., & Ruszczyński, A. (2002b). A branch and bound method for stochastic integer problems under
probabilistic constraints. Optimization Methods and Software, 17, 359–382.

Beraldi, P., Bruni, M. E., & Conforti, D. (2004). Designing robust emergency medical service via stochastic
programming. European Journal of Operational Research, 158, 183–193.

Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6, 73–89.
Cheon, M.-S., Ahmed, S., & Al-Khayyal, F. (2006). A branch-reduce-cut algorithm for the global optimiza-

tion of probabilistically constrained linear programs. Mathematical Programming B, 108(2), 617–634.
Dentcheva, D., Prékopa, A., & Ruszczyński, A. (2000). Concavity and efficient points of discrete distributions

in probabilistic programming. Mathematical Programming, 89, 55–77.
Dentcheva, D., Prékopa, A., & Ruszczyński, A. (2002). Bounds for probabilistic integer programming prob-

lems. Discrete Applied Mathematics, 124, 5–65.
Gaivoronski, A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: properties and computational

approach. The Journal of Risk, 7, 1–339.
Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational

Research, 88, 3–12.
LINDO Systems Inc. LINDO API 2.0 and LINGO 8.0 http://www-lind.com/.
Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: a review. European Journal of Operational

Research, 111, 423–447.
Prékopa, A. (1990). Dual method for the solution of one-stage stochastic programming problem with random

RHS obeying a discrete probability distribution. ZOR—Methods and Models of Operations Research,
34, 441–461.

Prékopa, A. (1993). Contributions to the theory of stochastic programming. Mathematical Programming, 4,
202–221.

Prékopa, A. (1995). Stochastic programming. Boston: Kluwer Scientific.
Ruszczyński, A. (2002). Probabilistic programming with discrete distributions and precedence constrained

knapsack polyhedra. Mathematical Programming Ser. A, 93, 195–215.
Sen, S. (1992). Relaxation for probabilistically constrained programs with discrete random variables. Opera-

tions Research Letters, 11, 81–86.

http://www-lind.com/

	An exact approach for solving integer problems under probabilistic constraints with random technology matrix
	Abstract
	Introduction
	The deterministic equivalent formulation
	The solution approach
	Enhancements and refinements
	Numerical illustration
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

