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Abstract Variable neighbourhood search (VNS) is a metaheuristic, or a framework for
building heuristics, based upon systematic changes of neighbourhoods both in descent
phase, to find a local minimum, and in perturbation phase to emerge from the corresponding
valley. It was first proposed in 1997 and has since then rapidly developed both in its methods
and its applications. In the present paper, these two aspects are thoroughly reviewed and an
extensive bibliography is provided. Moreover, one section is devoted to newcomers. It con-
sists of steps for developing a heuristic for any particular problem. Those steps are common
to the implementation of other metaheuristics.

Keywords Variable neighbourhood search · Metaheuristic · Heuristic

1 Introduction

The VNS survey in this paper provides an update to the 2008 version which appeared
in 4OR. A Quarterly Journal (Hansen et al. 2008b). A short description of 21 recent suc-
cessful applications of VNS are added in Sect. 5.

Variable neighbourhood search (VNS) is a metaheuristic, or framework for building
heuristics, aimed at solving combinatorial and global optimization problems. Its basic idea
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consists in a systematic change of neighbourhood combined with a local search. Since its
inception, VNS has undergone many developments and been applied in numerous fields. We
review below the basic rules of VNS and of its main extensions. In addition, some of the
most successful applications are briefly summarized. Pointers to many other applications
are given in the reference list.

A deterministic optimization problem may be formulated as

min{f (x)|x ∈ X,X ⊆ S}, (1)

where S,X,x and f respectively denote the solution space and feasible set, a feasible so-
lution and a real-valued objective function. If S is a finite but large set, a combinatorial
optimization problem is defined. If S = R

n, we refer to continuous optimization. A solution
x∗ ∈ X is optimal if

f (x∗) ≤ f (x), ∀x ∈ X.

An exact algorithm for problem (1), if one exists, finds an optimal solution x∗, together with
the proof of its optimality, or shows that there is no feasible solution, i.e., X = ∅. Moreover,
in practise, the time needed to do so should be finite (and not too long). When one deals
with a continuous function, it is reasonable to allow for some degree of tolerance, i.e., to
stop when a feasible solution x∗ has been found such that

f (x∗) < f (x) + ε, ∀x ∈ X or
f (x∗) − f (x)

f (x∗)
< ε, ∀x ∈ X

for some small positive ε.
Many practical instances of problems of form (1), arising in Operations Research and

other fields, are too great for an exact solution to be found in reasonable time. It is well-
known from complexity theory (Garey and Johnson 1978; Papadimitriou 1994) that thou-
sands of problems are NP-hard, such that no algorithm with a number of steps polynomial
in the size of the instances is known for solving any of them and that if one were found
it would be a solution for all. Moreover, in some cases where a problem admits a polyno-
mial algorithm, this algorithm may be such that realistic size instances cannot be solved in
reasonable time in the worst case, and sometimes also in the average case or in most cases.

This explains the need to resort to heuristics which speedily yield an approximate solu-
tion, or sometimes an optimal solution but one which has no proof of its optimality. Some
of these heuristics have a worst-case guarantee, i.e., the solution xh obtained satisfies

f (xh) − f (x)

f (xh)
≤ ε, ∀x ∈ X (2)

for some ε, though this is rarely small. Moreover, this upper bound ε on the worst-case error
is usually much larger than the average error observed in practise and may therefore be a bad
guide in selecting a heuristic. In addition to avoiding excessive computing time, heuristics
address another problem: local optima. A local optimum xL of problem (1) is such that

f (xL) ≤ f (x), ∀x ∈ N(xL) ∩ X (3)

where N(xL) denotes a neighbourhood of xL (ways to define such a neighbourhood will
be discussed below). If there are many local minima, the range of values which they span
may be large. Moreover, the globally optimum value f (x∗) may differ substantially from
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the average value of the local minima, or even from the best such value among many, ob-
tained by some simple heuristic such as multistart (a phenomenon called the Tchebycheff
catastrophe in Baum 1986). There are, however, many ways to escape from local optima or,
more precisely, from the valleys which contain them.
Metaheuristics are general frameworks to build heuristics for combinatorial and global
optimization problems. For discussion of the best-known of them, the reader is referred
to the following survey books Reeves (1993), Glover and Kochenberger (2003) and Burke
and Kendall (2005). Some of the many successful applications of metaheuristics are also
mentioned there.
Variable Neighborhood Search (VNS) (Mladenović 1995; Mladenović and Hansen 1997;
Hansen and Mladenović 1997, 1999, 2001a, 2001c, 2003) is a metaheuristic which system-
atically exploits the idea of neighbourhood change, both in descent to local minima and in
escape from the valleys which contain them. VNS heavily relies upon the following obser-
vations:

Fact 1 A local minimum with respect to one neighbourhood structure is not necessarily a
local minimum for another neighbourhood structure.

Fact 2 A global minimum is a local minimum with respect to all possible neighbourhood
structures.

Fact 3 For many problems local minima with respect to one or several neighbourhoods are
relatively close to each other.

This last observation is empirical. It implies that a local optimum often provides some
information about the global optimum. For instance, it may be the case that there are several
variables with the same value in both. However, it is not usually known which ones are of
this kind. An organized study of the neighbourhood of this local optimum is therefore in
order, until a better one is found.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are sim-
ple and require few, and sometimes no parameters. Therefore, in addition to providing very
good solutions, often in simpler ways than other methods, VNS gives insight into the rea-
sons for such a performance, which, in turn, can lead to more efficient and sophisticated
implementations.

The paper is organized as follows. Background ideas, which in part inspired VNS, are
briefly discussed in Sect. 2. Basic schemes are reviewed in Sect. 3. Section 4 is devoted
to newcomers. The steps for developing heuristics for any particular problem are given.
Most of those steps are common to the implementation of other metaheuristics. Then some
tips which can help to improve the current VNS version are listed. Various applications are
classified and surveyed in Sect. 5. Section 6 lists those desirable properties of metaheuristics
that are enjoyed by VNS.

The purpose of this paper is threefold: (i) to present to researchers the main ideas and
schemes of VNS; (ii) to provide an extensive list of successful applications and (iii) to
(gently) introduce newcomers into the metaheuristics area.

2 Background

VNS embeds a local search heuristic for solving combinatorial and global optimization
problems. This idea has had some predecessors. It allows a change of the neighbourhood
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structures within this search. In this section, we give a brief introduction to the variable met-
ric algorithm for solving continuous convex problems and local search heuristics for solving
combinatorial and global optimization problems.

2.1 Variable metric method

The variable metric method for solving unconstrained continuous optimization problem (1)
has been suggested by Davidon (1959) and Fletcher and Powell (1963). The idea is to
change the metric (and thus the neighbourhood) at each iteration such that the search di-
rection (steepest descent with respect to the current metric) adapts better to the local shape
of the function. In the first iteration a Euclidean unit ball in the n dimensional space is
used and the steepest descent (anti-gradient) direction found. At subsequent iterations, ellip-
soidal balls are used and the steepest direction of descent is obtained with respect to a new
metric resulting from a linear transformation. The purpose of such changes is to build up,
iteratively, a good approximation to the inverse of the Hessian matrix A−1 of f , that is, to
construct a sequence of matrices Hi with the property,

lim
i→∞

Hi = A−1.

In the convex quadratic programming case, the limit is achieved after n iterations instead
of an infinity of them. In this way the so-called Newton search direction is obtained. The
advantages are that: (i) it is not necessary to find the inverse of the Hessian (which requires
O(n3) operations) at each iteration; (ii) the second order information is not needed. Assume
that the function f (x) is approximated by its Taylor series

f (x) = 1

2
xT Ax − bT x (4)

with positive definite matrix A (denoted by A > 0). Applying the first order condition
∇f (x) = Ax − b = 0 we have Axopt = b, where xopt is a minimum point. At the current
point we have Axi = ∇f (xi) + b. We will not rigorously derive here the Davidon-Fletcher-
Powell (DFP) algorithm for transforming Hi into Hi+1. Let us mention only that subtracting
one of these last two equations from the other and multiplying (from the left) by the inverse
matrix A−1, we have

xopt − xi = −A−1∇f (xi).

Subtracting this last equation evaluated at xi+1 from the same equation at xi gives

xi+1 − xi = −A−1(∇f (xi+1) − ∇f (xi)). (5)

Having made the step from xi to xi+1, we might reasonably require that the new approxima-
tion Hi+1 satisfies (5) as if it were actually A−1; that is,

xi+1 − xi = −Hi+1(∇f (xi+1) − ∇f (xi)). (6)

We might also assume that the updating formula for matrix Hi should be of the form
Hi+1 = Hi + U , where U is a correction. It is possible to obtain different updating for-
mulas for U and thus for Hi+1, keeping Hi+1 positive definite (Hi+1 > 0). In fact, there
exists a whole family of updates, the Broyden family. From practical experience, the so-
called BFGS method seem to be the most popular (see, e.g., Gill et al. 1981 for details).
Steps are listed in Algorithm 1.
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Function VarMetric(x);
let x ∈ R

n be an initial solution;1

H ← I ; g ← −∇f (x);2

for i = 1 to n do3

α∗ ← arg minα f (x + α · Hg);4

x ← x + α∗ · Hg;5

g ← −∇f (x);6

H ← H + U ;7

end

Algorithm 1: Variable metric algorithm

Function BestImprovement(x);
repeat1

x ′ ← x;2

x ← arg miny∈N(x) f (y)3

until (f (x) ≥ f (x ′)) ;

Algorithm 2: Best improvement (steepest descent) heuristic

From the above one can conclude that even in solving a convex program, a change of
metric, and, thus, a change of the neighborhoods induced by this metric, may produce more
efficient algorithms. Thus, using the idea of neighbourhood change for solving NP-hard
problems could well lead to even greater benefits.

2.2 Local search

A local search heuristic consists in choosing an initial solution x, finding a direction of
descent from x, within a neighbourhood N(x), and moving to the minimum of f (x) within
N(x) in the same direction. If there is no direction of descent, the heuristic stops; otherwise,
it is iterated. Usually the steepest direction of descent, also referred to as best improvement,
is used. This set of rules is summarized in Algorithm 2, where we assume that an initial
solution x is given. The output consists of a local minimum, also denoted by x, and its
value. Observe that a neighborhood structure N(x) is defined for all x ∈ X. In discrete
optimization problems it usually consists of all vectors obtained from x by some simple
modification, e.g., in the case of 0–1 optimization, complementing one or two components
of a 0–1 vector. Then, at each step, the neighbourhood N(x) of x is explored completely.
As this may be time-consuming, an alternative is to use the first descent heuristic. Vectors
xi ∈ N(x) are then enumerated systematically and a move is made as soon as a direction for
the descent is found. This is summarized in Algorithm 3.

3 Basic schemes

Let us denote with Nk , (k = 1, . . . , kmax), a finite set of pre-selected neighbourhood struc-
tures, and with Nk(x) the set of solutions in the kth neighbourhood of x. We will also use the
notation N ′

k, k = 1, . . . , k′
max, when describing local descent. Neighborhoods Nk or N ′

k may
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Function FirstImprovement(x);
repeat1

x ′ ← x; i ← 0;2

repeat3

i ← i + 1;4

x ← arg min{f (x), f (xi)}, xi ∈ N(x)5

until (f (x) < f (xi) or i = |N(x)|);
until (f (x) ≥ f (x ′));

Algorithm 3: First improvement heuristic

Function NeighbourhoodChange(x, x ′, k);
if f (x ′) < f (x) then1

x ← x ′; k ← 1 /* Make a move */;2

else
k ← k + 1 /* Next neighborhood */;3

end

Algorithm 4: Neighbourhood change or move or not function

be induced from one or more metric (or quasi-metric) functions introduced into a solution
space S. An optimal solution xopt (or global minimum) is a feasible solution where a mini-
mum of problem (1) is reached. We call x ′ ∈ X a local minimum of problem (1) with respect
to Nk (w.r.t. Nk for short), if there is no solution x ∈ Nk(x

′) ⊆ X such that f (x) < f (x ′).
In order to solve problem (1) by using several neighbourhoods, facts 1 to 3 can be used in

three different ways: (i) deterministic; (ii) stochastic; (iii) both deterministic and stochastic.
We first give in Algorithm 4 the steps of the neighbourhood change function which will be
used later.

Function NeighbourhoodChange() compares the new value f (x ′) with the incum-
bent value f (x) obtained in the neighbourhood k (line 1). If an improvement is obtained, k

is returned to its initial value and the new incumbent updated (line 2). Otherwise, the next
neighbourhood is considered (line 3).

3.1 Variable Neighbourhood Descent (VND)

The Variable Neighbourhood Descent (VND) method is obtained if the change of neigh-
bourhoods is performed in a deterministic way. Its steps are presented in Algorithm 5. In
the descriptions of all algorithms that follow, we assume that an initial solution x is given.
Most local search heuristics in their descent phase use very few neighbourhoods (usually
one or two, i.e., k′

Max ≤ 2). Note that the final solution should be a local minimum with re-
spect to all k′

max neighbourhoods; hence the chances to reach a global one are larger when
using VND than with a single neighbourhood structure. Moreover, this sequential order of
neighbourhood structures in VND above, one can develop a nested strategy. Assume, for ex-
ample, that k′

max = 3. Then a possible nested strategy is: perform VND above for the first two
neighbourhoods, in each point x ′ that belongs to the third (x ′ ∈ N3(x)). Such an approach is
applied, e.g., in Brimberg et al. (2000), Hansen and Mladenović (2001b).
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Function VND(x, k′
max);

repeat1

k ← 1;2

repeat3

x ′ ← arg miny∈N ′
k
(x) f (x) /* Find the best neighbor in Nk(x) */;4

NeighbourhoodChange(x, x ′, k) /* Change neighbourhood */;5

until k = k′
max;

until no improvement is obtained ;

Algorithm 5: Steps of the basic VND

Function RVNS(x, kmax, tmax);
repeat1

k ← 1;2

repeat3

x ′ ← Shake(x, k);4

NeighborhoodChange(x, x ′, k);5

until k = kmax;
t ← CpuTime()6

until t > tmax;

Algorithm 6: Steps of the reduced VNS

3.2 Reduced VNS

The Reduced VNS (RVNS) method is obtained if random points are selected from Nk(x)

and no descent is made. Rather, the values of these new points are compared with that of
the incumbent and updating takes place in case of improvement. We assume that a stop-
ping condition has been chosen, among various possibilities, e.g., the maximum CPU time
allowed tmax, or the maximum number of iterations between two improvements. To simplify
the description of the algorithms we always use tmax below. Therefore, RVNS uses two pa-
rameters: tmax and kmax. Its steps are presented in Algorithm 6. With the function Shake
represented in line 4, we generate a point x ′ at random from the kth neighbourhood of x,
i.e., x ′ ∈ Nk(x).

RVNS is useful in very large instances, for which local search is costly. It has been ob-
served that the best value for the parameter kmax is often 2. In addition, the maximum number
of iterations between two improvements is usually used as a stopping condition. RVNS is
akin to a Monte-Carlo method, but is more systematic (see, for example, Mladenović et al.
2003b where the results obtained by RVNS were 30 continuous min-max problem). When
applied to the p-Median problem, RVNS gave solutions as good as the Fast Interchange
heuristic of Whitaker (1983) while being 20 to 40 times faster (Hansen et al. 2001).

3.3 Basic VNS

The Basic VNS (BVNS) method (Mladenović and Hansen 1997) combines deterministic and
stochastic changes of neighbourhood. Its steps are given in Algorithm 7.

Often successive neighbourhoods Nk will be nested. Observe that point x ′ is generated
at random in Step 4 in order to avoid cycling, which might occur if a deterministic rule
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Function VNS(x, kmax, tmax);
repeat1

k ← 1;2

repeat3

x ′ ← Shake(x, k) /* Shaking */;4

x ′′ ← FirstImprovement(x ′) /* Local search */;5

NeighbourhoodChange(x, x ′′, k)/*Change neighbourhood*/;6

until k = kmax;
t ← CpuTime()7

until t > tmax;

Algorithm 7: Steps of the basic VNS

Fig. 1 Basic VNS

were applied. In Step 5 the first improvement local search (Algorithm 3) is usually adopted.
However, it can be replaced with best improvement (Algorithm 2).

Example We illustrate the basic step on a minimum k-cardinality tree instance taken from
Jornsten and Lokketangen (1997) (see Fig. 2). The minimum k-cardinality tree problem on
graph G (k-card for short) consists in finding a subtree of G with exactly k edges whose
sum of weights is minimum.

The steps of BVNS are given in Fig. 3. In Step 0 the objective function value, i.e., the sum
of edge weights, is equal to 40; it is indicated in the right-hand bottom corner of the figure.
This first solution is a local minimum with respect to the edge-exchange neighbourhood
structure (one edge in, one out). After shaking, the objective function is 60, and after another
local search, we return to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and, after a local search, an improved solution is obtained with a value
of 39, etc. In Step 8, we find the optimal solution with an objective function value equal
to 36.
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Fig. 2 4-cardinality tree
problem

Fig. 3 Steps of the basic VNS for solving 4-card tree problem

3.4 General VNS

Note that the Local search Step 5 may also be replaced by VND (Algorithm 5). Using this
general VNS (VNS/VND) approach has led to the most successful applications reported
(see, for example, Andreatta and Ribeiro 2002; Brimberg et al. 2000; Canuto et al. 2001;
Caporossi and Hansen 2000, 2004; Caporossi et al. 1999a, 1999c; Hansen and Mladenović
2001b; Hansen et al. 2006; Ribeiro and de Souza 2002; Ribeiro et al. 2002). Steps of the
general VNS (GVNS) are given in Algorithm 8 below.

3.5 Skewed VNS

The skewed VNS (SVNS) method (Hansen et al. 2000) addresses the problem of exploring
valleys far from the incumbent solution. Indeed, once the best solution in a large region has
been found, it is necessary to go some way to obtain an improved one. Solutions drawn at
random in distant neighborhoods may differ substantially from the incumbent and VNS can
then degenerate, to some extent, into the Multistart heuristic (in which descents are made
iteratively from solutions generated at random, a heuristic which is known not to be very
efficient). Consequently, some compensation for distance from the incumbent must be made
and a scheme called Skewed VNS is proposed for this purpose. Its steps are presented in
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Function GVNS(x, k′
max, kmax, tmax);

repeat1

k ← 1;2

repeat3

x ′ ← Shake(x, k);4

x ′′ ← VND(x ′, k′
max);5

NeighborhoodChange(x, x ′′, k);6

until k = kmax;
t ← CpuTime()7

until t > tmax;

Algorithm 8: Steps of the general VNS

Function NeighbourhoodChangeS(x, x ′′, k,α);
if f (x ′′) − αρ(x, x ′′) < f (x) then1

x ← x ′′; k ← 12

else
k ← k + 13

end

Algorithm 9: Steps of neighbourhood change for the skewed VNS

Function SVNS(x, kmax, tmax, α);
repeat1

k ← 1; xbest ← x;2

repeat3

x ′ ← Shake(x, k);4

x ′′ ← FirstImprovement(x ′);5

KeepBest(xbest, x);6

NeighbourhoodChangeS(x, x ′′, k,α);7

until k = kmax;
x ← xbest;8

t ← CpuTime();9

until t > tmax;

Algorithm 10: Steps of the Skewed VNS

Algorithms 10 and 11, where the KeepBest(x, x ′) function simply keeps whichever is the
better of x and x ′: if f (x ′) < f (x) then x ← x ′.

SVNS makes use of a function ρ(x, x ′′) to measure the distance between the incumbent
solution x and the local optimum found x ′′. The distance used to define the Nk , as in the
above examples, could be used also for this purpose. The parameter α must be chosen in or-
der to accept the exploration of valleys far away from x when f (x ′′) is larger than f (x) but
not too much larger (otherwise one will always leave x). A good value is to be found experi-
mentally in each case. Moreover, in order to avoid frequent moves from x to a close solution,
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Function BI-VNS(x, kmax, tmax);
repeat1

k ← 1;2

xbest ← x;
repeat3

x ′ ← Shake(x, k);4

x ′′ ← FirstImprovement(x ′);5

KeepBest(xbest, x
′′);6

k ← k + 1;7

until k = kmax ;
x ← xbest;8

t ← CpuTime()9

until t > tmax ;

Algorithm 11: Steps of the basic best improvement VNS

one may take a large value for α when ρ(x, x ′′) is small. More sophisticated choices for a
function of αρ(x, x ′′) could be made through a learning process.

3.6 Some extensions of basic VNS

Several easy ways to extend the basic VNS are now discussed. The basic VNS is a first
improvement descent method with randomization. Without much additional effort it can be
transformed into a descent-ascent method: in NeighbourhoodChange() function, re-
place also x by x ′′ with some probability, even if the solution is worse than the incumbent.
It can also be changed into a best improvement method: make a move to the best neighbour-
hood k∗ among all kmax of them. Its steps are given in Algorithm 11.

Another variant of the basic VNS can be to find a solution x ′ in the “Shaking” step as the
best among b (a parameter) randomly generated solutions from the kth neighborhood. There
are two possible variants of this extension: (i) to perform only one local search from the best
among b points; (ii) to perform all b local searches and then choose the best. We now give
an algorithm of a second type suggested by Fleszar and Hindi (2004). There, the value of
parameter b is set to k. In this way, no new parameter is introduced (see Algorithm 12).
It is also possible to introduce kmin and kstep, two parameters which control the change of
neighbourhood process: in the previous algorithms instead of k ← 1 set k ← kmin and instead
of k ← k + 1 set k ← k + kstep. The steps of Jump VNS are given in Algorithms 13 and 14.

3.7 Variable neighbourhood decomposition search

While the basic VNS is clearly useful for obtaining an approximate solution to many com-
binatorial and global optimization problems, it remains a difficult or lengthy take to solve
very large instances. As often, the size of the problems considered is in practice more lim-
ited by the tools available to solve them than by the needs of the potential users of these
tools. Hence, improvements appear to be highly desirable. Moreover, when heuristics are
applied to very large instances, their strengths and weaknesses become clearly apparent.
Three improvements of the basic VNS for solving large instances are now considered.

The variable neighbourhood decomposition search (VNDS) method (Hansen et al. 2001)
extends the basic VNS into a two-level VNS scheme based upon decomposition of the prob-
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Function FH-VNS(x, kmax, tmax);
repeat1

k ← 1;2

repeat3

for � = 1 to k do4

x ′ ← Shake(x, k);5

x ′′ ← FirstImprovement(x ′);6

KeepBest(x, x ′′);7

end
NeighbourhoodChange(x, x ′′, k);8

until k = kmax;
t ← CpuTime()9

until t > tmax;

Algorithm 12: Steps of the Fleszar-Hindi extension of the basic VNS

Function J-VNS(x, kmin, kstep, kmax, tmax);
repeat1

k ← kmin;2

repeat3

x ′ ← Shake(x, k);4

x ′′ ← FirstImprovement(x ′);5

NeighbourhoodChangeJ(x, x ′′, k, kmin, kstep);6

until k = kmax;
t ← CpuTime()7

until t > tmax;

Algorithm 13: Steps of the Jump VNS

Function NeighborhoodChangeJ(x, x ′, k, kmin, kstep);
if f (x ′) < f (x) then1

x ← x ′; k ← kmin;2

else
k ← k + kstep;3

end

Algorithm 14: Neighbourhood change or move or not function

lem. Its steps are presented in Algorithm 15, where td is an additional parameter and repre-
sents the running time given for solving decomposed (smaller sized) problems by VNS.

For ease of presentation, but without loss of generality, we assume that the solution x

represents the set of some elements. In Step 4 we denote with y a set of k solution attributes
present in x ′ but not in x (y = x ′ \x). In Step 5 we find the local optimum y ′ in the space of y;
then we denote with x ′′ the corresponding solution in the whole space S (x ′′ = (x ′ \ y)∪ y ′).
We notice that exploiting some boundary effects in a new solution can significantly improve
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Function VNDS(x, kmax, tmax, td );
repeat1

k ← 2;2

repeat3

x ′ ← Shake(x, k); y ← x ′ \ x;4

y ′ ← VNS(y, k, td ); x ′′ = (x ′ \ y) ∪ y ′;5

x ′′′ ← FirstImprovement(x ′′);6

NeighborhoodChange(x, x ′′′, k);7

until k = kmax;
until t > tmax;

Algorithm 15: Steps of VNDS

the solution quality. This is why, in Step 6, we find the local optimum x ′′′ in the whole space
S using x ′′ as an initial solution. If this becomes time-consuming, then at least a few local
search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation scheme
(which has been used in combinatorial optimization at least since the 1960s; see, for ex-
ample, Griffith and Stewart (1961) in the VNS framework.

3.8 Parallel VNS

Parallel VNS (PVNS) methods are another extension. Several ways of parallelizing VNS
have recently been proposed for solving the p-Median problem. In García-López et al.
(2002) three of them are tested: (i) parallelize local search; (ii) augment the number of
solutions drawn from the current neighbourhood and make a local search in parallel from
each of them and (iii) do the same as (ii) but update the information about the best solution
found. The second version gives the best results. It is shown in Crainic et al. (2004) that
assigning different neighbourhoods to each processor and interrupting their work as soon
as an improved solution is found gives very good results. The best-known solutions have
been found on several large instances taken from TSP-LIB Reinelt (1991). Three Parallel
VNS strategies are also suggested for solving the Travelling purchaser problem in Ochi et
al. (2001). See Moreno-Pérez et al. (2005) for details.

3.9 Primal-dual VNS

For most modern heuristics, the difference in value between the optimal solution and the
obtained one is completely unknown. Guaranteed performance of the primal heuristic may
be determined if a lower bound on the objective function value is known. To this end, the
standard approach is to relax the integrality condition on the primal variables, based on a
mathematical programming formulation of the problem. However, when the dimension of
the problem is large, even the relaxed problem may be impossible to solve exactly by stan-
dard commercial solvers. Therefore, it seems a good idea to solve dual relaxed problems
heuristically as well. In this way we obtain guaranteed bounds on the primal heuristics per-
formance. The next problem arises if we want to reach an exact solution within a Branch and
bound framework, since having the approximate value of the relaxed dual does not allow us
to branch easily, e.g., by exploiting complementary slackness conditions. Thus, the exact
value of the dual is necessary.
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Function PD-VNS(x, k′
max, kmax, tmax);

BVNS(x, k′
max, kmax, tmax) /* Solve primal by VNS */;1

DualFeasible(x, y) /* Find (infeasible) dual such that fP = fD */;2

DualVNS(y) /* Use VNS do decrease infeasibility */;3

DualExact(y) /* Find exact (relaxed) dual */;4

BandB(x, y) /* Apply branch-and-bound method */;5

Algorithm 16: Steps of the basic PD-VNS

In Primal-dual VNS (PD-VNS) (Hansen et al. 2007a) one possible general way to at-
tain both the guaranteed bounds and the exact solution is proposed. Its steps are given in
Algorithm 16.

In the first stage an heuristic procedure based on VNS is used to obtain a near optimal so-
lution. In Hansen et al. (2007a) it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15 000 facilities
and 15 000 users. In the second phase, this approach is designed to find an exact solution to
the relaxed dual problem. Solving SPLP is accomplished in three stages: (i) find an initial
dual solution (generally infeasible), using the primal heuristic solution and complementary
slackness conditions; (ii) improve the solution by applying VNS to the unconstrained non-
linear form of the dual; (iii) solve the dual exactly using a customized “sliding simplex”
algorithm which applies “windows” to the dual variables, substantially reducing the size
of the problem. In all the problems tested, including instances much larger than previously
reported in the literature, the procedure was able to find the exact dual solution in reason-
able computing time. In the third and final phase armed with tight upper and lower bounds,
obtained respectively from the heuristic primal solution in phase one and the exact dual
solution in phase two, we apply a standard branch-and-bound algorithm to find an optimal
solution of the original problem. The lower bounds are updated with the dual sliding simplex
method and the upper bounds, whenever new integer solutions are obtained at the nodes of
the branching tree. In this way it is possible to solve exactly problem instances with up to
7 000 × 7 000 for uniform fixed costs and 15 000 × 15 000 otherwise.

3.10 Variable neighborhood formulation space search

Traditional ways to tackle an optimization problem consider a given formulation and search
in some way through its feasible set X. The fact that the same problem may often be for-
mulated in different ways allows search paradigms to be extended to include jumps from
one formulation to another. Each formulation should lend itself to some traditional search
method, its ‘local search’ which works totally within this formulation, and yields a final
solution when started from some initial solution. Any solution found in one formulation
should easily be translatable to its equivalent in any other formulation. We may then move
from one formulation to another, using the solution resulting from the former’s local search
as an initial solution for the latter’s local search. Such a strategy will, of course, be useful
only in situations where local searches in different formulations behave differently.

This idea was recently investigated in Mladenović et al. (2005) using an approach which
systematically changes the formulations for solving circle packing problems (CPP). It is
shown there that the stationary point of a non-linear programming formulation of CPP in
Cartesian coordinates is not necessarily also a stationary point in a polar coordinate system.
A method Reformulation Descent (RD) is suggested which alternates between these two
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Function FormulationChange(x, x ′, φ,φ′, �);
if f (φ′, x ′) < f (φ,x) then1

φ ← φ′; x ← x ′; � ← �min2

else
� ← � + �step;3

end

Algorithm 17: Formulation change function

Function VNFSS(x,φ, �max);
repeat1

� ← 1 /* Initialize formulation in F */;2

while � ≤ �max do3

ShakeFormulation(x,x ′,φ,φ′,�) /* (φ′,x ′)∈(N�(φ),N (x)) at random*/;4

FormulationChange(x,x ′,φ,φ′,�) /* Change formulation */;5

end
until some stopping condition is met ;

Algorithm 18: Reduced variable neighborhood FSS

formulations until the final solution is stationary with respect to both. The results obtained
were comparable with the best known values, but they were achieved some 150 times faster
than by an alternative single formulation approach. In the same paper, the idea suggested
above of Formulation space search (FSS) is also introduced, using more than two formu-
lations. Some research in this direction has been reported in Mladenović (2005), Plastria et
al. (2005), Hertz et al. (2008). One algorithm which uses the variable neighborhood idea in
searching through the formulation space is given in Algorithms 17 and 18.

In Fig. 4 we consider the CPP case with n = 50. The set consists entirely of mixed
formulations, in which some circle centres are given in Cartesian coordinates while the
others are given in polar coordinates. The distance between two formulations is then the
number of centres whose coordinates are expressed in different systems in each formulation.
FSS starts with the RD solution, i.e., with rcurr = 0.121858. The values of kmin and kstep are
set to 3 and the value of kmax is set to n = 50. We did not gain any improvement with
kcurr = 3,6 and 9. The next improvement was obtained for kcurr = 12. This means that a
“mixed” formulation with 12 polar and 38 Cartesian coordinates is used. Then we turned
again to the formulation with 3 randomly chosen circle centres, which was unsuccessful; but
we obtained a better solution with 6, etc. After 11 improvements we ended with a solution
with radius rmax = 0.125798.

4 Developing VNS

4.1 Getting started

This section is devoted to newcomers. Its purpose is to help students in making a first very
simple version of VNS, which would not necessarily be competitive with later more sophisti-
cated versions. Most of the steps are common to the implementation of other metaheuristics.
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Fig. 4 Reduced FSS for PCC problem and n = 50

A step-by-step procedure:

1. Getting familiar with the problem. Think about the problem at hand. In order to un-
derstand it better, make a simple numerical example and spend some time in trying to
solve it by hand in your own way. Try to understand why the problem is hard and why a
heuristic is needed.

2. Read Literature. Read about the problem and the solution methods in the literature.
3. Test instances (read data). Use your numerical example as a first instance for testing

your future code, but if it is not large enough, take some instance from the web, or make a
routine for generating random instances. In the second case, read how to generate events
using uniformly distributed numbers from the (0,1) interval (since each programming
language has statements for getting such random numbers).

4. Data structure. Think about the way in which the solution of the problem will be rep-
resented in the memory. Consider two or more representations of the same solution to
see if they can reduce the complexity of some routines, i.e., analyze the advantages and
disadvantages of each possible presentation.

5. Initial solution. Having established a routine for reading or generating instances of the
problem, the next step is to obtain an initial solution. For the simple version, any random
feasible solution may be used, but the usual way is to develop some greedy constructive
heuristic. This is normally not hard to do.

6. Objective value. Make a procedure for calculating the objective function value for a
given solution. Notice that at this stage, we already have all ingredients for a Monte-Carlo
method: the generation of a random solution and calculation of the objective function
value. Get a solution to your problem by the Monte Carlo heuristic (i.e., repeat steps 5
and 6 many times and keep the best one).
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7. Shaking. Make a procedure for Shaking. This is a key step of VNS. However, it is easy
to implement and usually requires only a few lines of computer code. For example, in
solving the multi-source Weber problem, the easiest perturbation of the current solution
is to re-allocate a randomly chosen entity � from its cluster to another one, also chosen at
random. In fact, in this case, the shaking step (or jump, in the kth neighbourhood) would
need only three lines of the computer code:

For i = 1 to k

a(1 + n · Rnd 1) = 1 + m · Rnd 2
EndFor

This solution is saved in an array a(�) ∈ {1, . . . ,m} which denotes the membership or
allocation of entity � (� = 1, . . . , n); Rnd 1 and Rnd 2 denote random numbers uniformly
distributed from the (0,1) interval. Compare the results obtained by the Reduced VNS
(take kmax = 2) with those of the Monte Carlo method.

8. Local search. Choose an off-the-shelf local search heuristic (or develop a new one).
In building a new local search, consider several usual moves which define the neigh-
bourhood of the solution, such as drop, add, swap, interchange, etc. In addition, for the
efficiency (speed) of the method, it is very important to pay special attention to updating
of the incumbent solution. In other words, it is usually not necessary to use a procedure
for calculating the objective function values for each point in the neighbourhood, i.e., it
is often possible to reach these values by very simple calculations.

9. Comparison. Include the local search routine into RVNS to get the basic VNS, and
compare it with other methods from the literature.

4.2 More tips

Sometimes the basic VNS does not provide very good results and it must then be refined in
one of the following ways.

1. First vs. best improvement. Experimentally compare first and best improvement strate-
gies within a local search. Previous experience suggest the following: if your initial solu-
tion is chosen at random, use the first improvement rule, but if some constructive heuristic
is used, use the best improvement rule.

2. Reduce the neighbourhood. The reason for the bad behaviour of any local search may
be unnecessary visits to all the solutions in the neighbourhood. Try to identify “promis-
ing” subsets of the neighbourhood and visit these only; ideally, find a rule which auto-
matically removes solutions from the neighborhood solutions whose objective values are
no better than the current one.

3. Intensified shaking. In developing a more effective VNS, one must spend some time in
checking how sensitive is the objective function to small change (shaking) of the solution.
The trade-off between intensification and diversification of the search in VNS is balanced
in a Shaking procedure. For some problem instances, a completely random jump in the
kth neighborhood is too diversified. In such cases, some intensify shaking procedure is
in order. For instance, a k-interchange neighbourhood may be reduced by repeating k

times random add followed by best drop moves. A special case of intensified shaking
is the so-called Large neighbourhood search, where k randomly chosen attributes of the
solutions are destroyed (dropped), and then the solution is re-built in the best way (by
some constructive heuristic).

4. VND. Analyze several possible neighbourhood structures, estimate their sizes, order
them, try them out and keep the most efficient ones. In other words, develop a VND
and replace the local search routine with this VND to get a general VNS.
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5. Experiments with parameter settings. The single central parameter of VNS is kmax,
which should be tuned experimentally. However, the procedure is not usually very sen-
sitive to kmax and, in order to obtain a parameter-free VNS, one can fix its value at the
value of some input parameter, e.g., for the p-median, kmax = p; for the minimum sum-
of-square clustering kmax = m, etc.

5 Applications

Applications of VNS, or of hybrids of VNS combined with other metaheuristics, are diverse
and numerous. In this section, we review some of them.

5.1 Industrial applications

Regarding the first industrial applications, the oil industry has provided many problems.
These include the design of an offshore pipeline network (Brimberg et al. 2003), the pooling
problem (Audet et al. 2004) and the scheduling of walkover rigs for Petrobras (Aloise et al.
2006).

5.2 Design problems in communication

Costa et al. (2002) apply a variable neighbourhood decomposition search (VNDS) for the
optimization of a power plant cable layout. Mladenović et al. (2003b) use VNS for solving a
spread spectrum radar polyphase code design problem. Degila and Sansò (2004) propose a
VNS to deal with the topological design of a yotta-bit-per-second (1 yotta = 1024) multidi-
mensional network based upon agile optical cores which provides fully meshed connectivity
with direct optical paths between edge nodes which are electronically controlled. Lapierre
et al. (2004) consider the application of a Tabu Search/VNS hybrid for designing distribu-
tion networks with transshipment centres. Meric et al. (2004) apply VNS for optical routing
in networks using latin routers. Dias et al. (2006) use a General VNS (GVNS) to improve
the quality of the solution obtained with a Greedy Randomized Adaptive Search Proce-
dure (GRASP) for the ring star problem. In Loudni et al. (2006) a difficult real-life network
problem of France Telecom R&D, the on-line resources allocation for ATM networks with
rerouting is solved by VNS/LDS+CP.

The application of VNS in the design of SDH/WDM networks is proposed in Melián et
al. (2008); it is improved with the use of an adaptive memory mechanism in Melián (2006)
and by applying a pilot method in Höller et al. (2008). Tagawa et al. (2007) deal with the
robust design of Surface Acoustic Wave (SAW) filters. Ribeiro et al. (2007) consider VNS
and other metaheuristics for optimization problems in computer communications.

5.3 Location problems

Location problems have also attracted much attention from the VNS researchers and prac-
titioners. Among discrete models the p-median has been the most studied and has played a
central rule in the development of a VNS metaheuristic. Brimberg and Mladenović (1996)
give the earliest applications of VNS. Hansen et al. (2001) introduces a variable neighbour-
hood decomposition search solving the p-median problem. García-López et al. (2002) is the
first parallel version of the VNS. Hansen and Mladenović (2008) complete the comparative
analysis in Alba and Domínguez (2006) with a detailed comparison of several versions of
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VNS with other metaheuristics for the p-median problem. See Mladenović et al. (2007a) for
the role of VNS in solving the p-median problem.

Other discrete location problems solved with VNS are the p-centre problem (Mladen-
ović et al. 2003a), the maximum capture problem (Benati and Hansen 2002) and several
variants of the p-median problem. Domínguez-Marín et al. (2005) deal with solving the
discrete ordered median problem, Fathali and Kakhki (2006) apply VNS to the p-median
problem with pos/neg weights, Fleszar and Hindi (2008) solve the capacitated p-median
problem and Pérez et al. (2007) propose a hybrid which combines VNS with Path Relinking
for the p-hub median problem. Osman and Ahmadi (2007) investigate different search and
selection strategies, including the variable neighbourhood descent (VND) for the capaci-
tated p-median problem with single source constraint. Moreno-Pérez et al. (2003) propose a
variable neighbourhood tabu search hybrid and consider its application to the median cycle
problem.

Among continuous models, the multi-source Weber problem is first addressed in Brim-
berg et al. (2000) and in Brimberg et al. (2004) with constant opening costs. Brimberg et
al. (2006a) use VNS in a decomposition strategy for large-scale instances. Brimberg et al.
(2008a) apply VNS to the maximum return-on-investment plant location problem with mar-
ket share. Ljubic (2007) proposes a hybrid VNS for a connected facility location prob-
lem which combines the facility location problem and the Steiner tree problem in graphs.
Hansen et al. (2007a) apply a primal-dual VNS for the simple plant location problem. Fi-
nally, Bischoff and Dächert (2009) use VNS and other heuristics for a generalized class of
continuous location-allocation problems and Jabalameli and Ghaderi (2008) propose hybrid
algorithms which combine Genetic Algorithm (GA) and VNS for the uncapacitated contin-
uous location-allocation problem.

Drezner et al. (2005) analyse the difficulty in the instances of quadratic assignment prob-
lems for metaheuristic approaches and Zhang et al. (2005) use a VNS with permutation
distance. Han et al. (2007) use a hybrid of VNS with Ant Colony Optimization and Liu and
Abraham (2007) a fuzzy hybrid of VNS with Particle Swarm Optimization (PSO) method.
Geiger and Wenger (2009) solve a practical assignment problem in higher education using a
VNS approach. Mitrovic-Minic and Punnen (2009) propose a very large-scale VNS for the
Multi-Resource Generalized Assignment Problem.

Yang et al. (2007) apply optimization strategies based on Simulated Annealing and VNS
for the base station location problem in a WCDMA (Wideband Code-Division Multiple
Access) network. Pacheco et al. (2008) use VNS to solve the classical maximum covering
location problem for locating health resources. Wollenweber (2008) uses several hybrids
with VNS for a multi-stage facility location problem with staircase costs and splitting of
commodities.

5.4 Data mining

VNS proved to be a very efficient tool in cluster analysis. In particular, the J-Means heuris-
tic combined with VNS appears to be state-of-the-art for the heuristic solution of minimum
sum-of-square clustering (Hansen and Mladenović 2001b; Belacel et al. 2002, 2004a). Com-
bined with stabilized column generation (du Merle et al. 1999) it leads to the most efficient
exact algorithm at present for this problem (du Merle et al. 2000). Such an approach has also
been applied by Hansen and Perron (2007) to solve the L1 embeddability problem for data
sets. Brusco et al. (2009) use a VNS to select variables in Principal Component Analysis.

Belacel et al. (2004b) use VNS Metaheuristic for Fuzzy Clustering cDNA Microarray
Gene Expression Data. Negreiros and Palhano (2006) propose a constructive procedure fol-
lowed by a VNS to solve the capacitated centred clustering problem. Brusco and Steinley
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(2007a) compare a VNS method with the classical k-means for the clustering of two-mode
proximity binary matrices and Brusco and Steinley (2007b) compare heuristic procedures
for Minimum Within-Cluster Sums of Squares Partitioning. Benati (2008) applies VNS to
categorical data fuzzy clustering. Other clustering problem applications appear in Brusco et
al. (2008). Hansen et al. (2009) use a primal-dual VNS to solve large p-median clustering
problems.

Another important data mining task which has been managed with VNS is classification.
Pacheco et al. (2007) use VNS in the variable selection and determination of the linear dis-
crimination function coefficients. Karam et al. (2007) perform arbitrary-norm hyperplane
separation by VNS. The same problem has also been attacked with VNS in Plastria et al.
(2009). Hansen et al. (2007b) apply VNS for colour image quantization. Belacel et al. (2007)
propose a VNS heuristic for learning the parameters of the multiple criteria classification
method PROAFTN from data. Carrizosa et al. (2007) use VNS for the selection of the Glob-
ally Optimal Prototype Subset for Nearest-Neighbour Classification. Plastria et al. (2009)
describe two local descent methods that are embedded into a VNS scheme to solve a lin-
ear classification problem. A specific clustering VNS algorithm is proposed in design of
balanced MBA student teams in Desrosiers et al. (2005).

5.5 Graph problems

In addition to some design problems in communications and most of the location problems,
VNS has been applied to other combinatorial optimization problems on graphs. A VNS is
proposed for the max-cut problem in a graph and compared with other metaheuristics in
Festa et al. (2002) and an hybridization between a memetic algorithm and VNS is proposed
for the same problem by Duarte et al. (2005). Moreno-Pérez et al. (2003) propose a variable
neighbourhood tabu search (VNTS) hybrid for the median cycle problem. Hansen et al.
(2004) propose and test a basic VNS which combines greedy with the simplicial vertex
test in its descent step for the maximum clique problem. For the graph colouring problem,
Avanthay et al. (2003) propose an adaptation of the VNS metaheuristic, Galinier and Hertz
(2006) present a survey of local search methods which includes VNS and Hertz et al. (2008)
analyze the variable space search methodology which extends the Formulation Space Search
(FSS). Brimberg et al. (2008b) propose a new heuristic based on VNS for the k-cardinality
subgraph problem, in contrast with the constructive heuristics proposed in the literature.
Brimberg et al. (2009) use a VNS to solve the heaviest k-subgraph problem. Amaldi et al.
(2009) propose a VNS to tackle the minimum fundamental cycle basis problem.

Several graph problems involving trees have also been tackled with VNS. VNS is used in
Canuto et al. (2001) as a post-optimization procedure for a multistart local search algorithm
for the prize-collecting Steiner tree problem, based on the generation of initial solutions by a
primal-dual algorithm using perturbed node prizes. Ribeiro et al. (2002) use a hybrid VNS-
GRASP with perturbations for the Steiner problem in graphs. Mladenović and Urošević
(2003) propose the use of a VNS for the edge weighted k-cardinality tree problem Urošević
et al. (2004) propose a variable neighbourhood decomposition search (VNDS) for the same
problem and Brimberg et al. (2006b) for the vertex weighted k-cardinality tree problem.
Ribeiro and de Souza (2002) propose the use of VNS for the degree constrained minimum
spanning tree problem and de Souza and Martins (2008) use a Skewed VNS enclosing a
second order algorithm for the same problem. Hu et al. (2008) propose a VNS approach
which uses three different neighbourhood types to solve the generalized minimum spanning
tree problem. A VNS is used in Martins and de Souza (2009) to solve the minimum spanning
tree problem with minimum degree constraints in all nodes except the leaves. Finally, VNS is
used to solve the minimum labelling spanning tree problem in Consoli et al. (2009a, 2009b).
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5.6 Knapsack and packing problems

Another important class of problems solved with VNS and its variants and hybrids are the
knapsack and packing problems. In Puchinger et al. (2006) a relaxation guided VNS is ap-
plied to the multidimensional knapsack problem and to its core problems. The paper by
Puchinger and Raidl (2008) constitutes an excellent illustration of a dynamic ordering of the
neighborhood structures embedded in a variable neighborhood descent algorithm which is
used to solve also the multidimensional knapsack problem. VNS has also been successfully
applied to the bin packing problem (Fleszar and Hindi 2002) and to the strip packing prob-
lem (Beltrán et al. 2004). Parreño et al. (2008) present a VNS algorithm for the container
loading problem.

Circle and sphere packing have also been approached with VNS. Mladenović et al. (2005)
introduce the reformulation descent which is applied to circle packing problems and Mlade-
nović et al. (2007b) the formulation space search for the same problems. Kucherenko et al.
(2007) use VNS to solve the kissing number problem, i.e., the problem of determining the
maximum number of D-dimensional spheres of radius r that can be adjacent to a central
sphere of radius r .

5.7 Mixed integer problems

Heuristics may help in finding a feasible solution or an improved and possibly optimal solu-
tion to large and difficult mixed integer programs. The local branching method of Fischetti
and Lodi (2003) does this, in the spirit of VNS. For further developments see Fischetti et
al. (2004) and Hansen et al. (2006). Gutjahr et al. (2007) use the VNS approach for noisy
problems and its application to project portfolio analysis.

5.8 Time tabling

Timetabling and related manpower organization problems can be well solved with VNS.
Cote et al. (2005) use a simplified variable neighbourhood descent in a hybrid multi-
objective evolutionary algorithm for the uncapacitated exam proximity problem. Sevkli and
Sevilgen (2006) propose a VNS approach for the orienteering problem and Archetti et al.
(2007) propose VNS to solve the team orienteering problem (TOP), that is, the generaliza-
tion to the case of multiple tours of the orienteering problem, known also as the selective
traveling salesman problem. Schilde et al. (2009) use a VNS to solve a bi-objective orien-
teering problem.

5.9 Scheduling

In recent years also several scheduling problems have been efficiently solved with VNS ap-
proaches. They include single machine and parallel machines, multiobjective scheduling,
job shop scheduling, flow shop, resource-constrained project scheduling and other schedul-
ing problems.

5.9.1 Single machine scheduling

Gupta and Smith (2006) use a VNS algorithm for single machine total tardiness scheduling
with sequence-dependent setups. Lin and Ying (2008) propose a hybrid Tabu-VNS meta-
heuristic approach for single-machine tardiness problems with sequence-dependent setup
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times. Liao and Cheng (2007) propose a VNS for minimizing single machine weighted
earliness and tardiness with common due date. Tseng et al. (2009) employ a VNS for large-
size instances of the single machine total tardiness problem with controllable processing
times. Wang and Tang (2009) propose a population-based variable neighbourhood search
for the single machine total weighted tardiness problem.

5.9.2 Parallel machine scheduling

Anghinolfi and Paolucci (2007) propose a hybrid metaheuristic approach which integrates
several features from tabu search, simulated annealing and VNS for a parallel machine to-
tal tardiness scheduling problem. De Paula et al. (2007) apply VNS for solving parallel
machines scheduling problems with sequence-dependent setups. Chen and Chen (2009)
propose an approach which integrates the principles of the variable neighbourhood de-
scent approach and tabu search for the unrelated parallel-machine scheduling problem with
sequence-dependent setup times. Behnamian et al. (2009b) use an ACO, SA and VNS hybrid
for parallel machines scheduling problems with sequence-dependent setup times.

5.9.3 Multiobjective scheduling

Gagné et al. (2005) use compromise programming with Tabu-VNS metaheuristic for the
solution of multiple-objective scheduling problems. Qian et al. (2006) deal with multi-
objective flow shop scheduling, using differential evolution.

5.9.4 Job shop scheduling

Sevkli and Aydin (2006a, 2006b) use VNS algorithms for job shop scheduling problems.
Sevkli and Aydin (2007) propose parallel VNS algorithms and Gao et al. (2008) propose
a hybrid GA/VND and Pan et al. (2007b) a PSO/VNS hybrid heuristic for these problems.
Liu et al. (2006) propose a variable neighborhood particle swarm optimization for multi-
objective flexible job-shop scheduling problems. Aydin and Sevkli (2008) consider sequen-
tial and parallel VNS algorithms for job shop scheduling. A VNS is applied by Roshanaei et
al. (2009) to tackle the job shop scheduling problem with setup times. Zobolas et al. (2009b)
propose a hybrid method that combines VNS with Differential Evolution and a Genetic Al-
gorithm to solve the job shop scheduling problem.

5.9.5 Flow shop scheduling

Blazewicz et al. (2005) use VNS for late work minimization in a two-machine flow shop
with common due date. In Pan et al. (2007a) VNS and three other metaheuristic approaches
are proposed for a no-wait flow shop problem. In Blazewicz et al. (2008) VNS and two
other metaheuristics are presented for the two-machine flow shop problem with weighted
late work criterion and common due date. Zobolas et al. (2009a) design a GA/VNS hybrid
to minimize makespan in permutation flow shop scheduling problems. In Tasgetiren et al.
(2004) a simple but very efficient local search, based on VNS, is embedded in the PSO al-
gorithm in order to solve the permutation flow shop sequencing problem. Liao et al. (2007)
apply VNS for flow shop scheduling problems and Tasgetiren et al. (2007) consider the
makespan and total flow time minimization in the permutation flow shop sequencing prob-
lem. Czogalla and Fink (2008) examine the application of a PSO with variable neighbour-
hood descent as an embedded local search procedure for the continuous flow-shop schedul-
ing problem. Rahimi-Vahed et al. (2009) devise a hybrid multi-objective algorithm based on
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shuffled frog-leaping algorithm and VNS for a bi-criteria permutation flow shop schedul-
ing problem. Chyu and Chen (2009) propose several VNS for a lump-sum payment model
for the resource-constrained project scheduling problem. Behnamian et al. (2009a) com-
bine VNS with simulated annealing in a population based hybrid for a realistic flow shop
problem. Jarboui et al. (2009) add a VNS to an estimation of the distribution algorithm for
minimizing the total flow time in permutation flow shop scheduling problems. A VNS is
used in Rahimi-Vahed et al. (2009) to find Pareto optimal solutions for a permutation flow
shop scheduling problem.

5.9.6 Resource-constrained project scheduling

Fleszar and Hindi (2004) propose a solution for the resource-constrained project scheduling
problem by a VNS and Kolisch and Hartmann (2006) include VNS in an experimental in-
vestigation of heuristics for resource-constrained project scheduling. Bouffard and Ferland
(2007) improve simulated annealing with VNS to solve the resource-constrained scheduling
problem.

5.9.7 Car sequencing

Prandtstetter and Raidl (2008) use a hybrid VNS for the car sequencing problem and Gavra-
nović (2008) applies VNS to car-sequencing problems with colours. Ribeiro et al. (2008a)
propose a set of heuristics based on the paradigms of the VNS and ILS metaheuristics for a
multi-objective real-life car sequencing problem with painting and assembly line constraints
and Ribeiro et al. (2008b) provide an efficient implementation of the VNS/ILS heuristic for
this real-life car sequencing problem. Joly and Frein (2008) use VNS to tackle an industrial
car sequencing problem considering paint and assembly shop objectives. Good results were
obtained in Estellon et al. (2006, 2008) by applying VNS-related heuristics for real-life car
sequencing problems.

5.9.8 Other scheduling problems

Davidović et al. (2005) use VNS heuristics for multiprocessor scheduling with communi-
cation delays. Higgins et al. (2006) apply VNS to the scheduling of brand production and
shipping within a sugar supply chain and Lejeune (2006) also consider supply chain plan-
ning. Liang and Chen (2007) tackle the redundancy allocation of series-parallel systems,
using a VNS algorithm.

Remde et al. (2007) use reduced VNS and hyperheuristic approaches to tackle subprob-
lems in an Exact/Hybrid heuristic for Workforce Scheduling. Xhafa (2007) considers a hy-
brid evolutionary metaheuristic based on memetic algorithms and VNS to job scheduling on
computational grids. Liang et al. (2007) apply VNS to redundancy allocation problems.

Lusa and Potts (2008) use a VNS algorithm for the constrained task allocation problem.
Almada-Lobo et al. (2008) report the use of a VNS approach to production planning and
scheduling in the glass container industry. Dahal et al. (2008) apply a constructive search and
VNS to tackle a complex real world workforce scheduling problem. Abraham et al. (2008)
propose a VNS/PSO hybrid for the scheduling problem in distributed data-intensive com-
puting environments. Liao and Liao (2008) apply an ACO algorithm which uses a variable
neighbourhood search as the local search to make it more efficient and effective for schedul-
ing in agile manufacturing. Naderi et al. (2008) propose a VNS which uses advanced neigh-
bourhood search structures for flexible flow line problems with sequence dependent setup
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times. Tavakkoli-Moghaddam et al. (2009) combine a memetic algorithm with a nested VNS
to solve the flexible flow line scheduling problem with processor blocking and without in-
termediate buffers.

5.10 Vehicle routing problems

5.10.1 TSP and extensions

VNS is used for the travelling salesman problem (TSP) and its extensions. Hansen and
Mladenović (1999, 2006) consider basic VNS for the euclidean TSP. Burke et al. (2001)
apply guided VNS methods for the asymmetric TSP. VNS for the Pickup and Delivery TSP
is considered in Carrabs et al. (2007). Hu and Raidl (2008) study the effectiveness of neigh-
bourhood structures within a VNS approach for the Generalized TSP. Felipe et al. (2009)
use a VNS approach to solve a double TSP with multiple stacks. A multi-start variant of
VNS is applied by Mansini and Tocchella (2009) to solve the travelling purchaser problem
with budget constraints.

5.10.2 VRP and extensions

Standard versions of the vehicle routing problem (VRP) have been solved by VNS or hy-
brids. A variable neighborhood descent is applied to the vehicle routing problem with back-
hauls in Crispim and Brandao (2001). Rousseau et al. (2002) use a variable neighbourhood
descent to take advantage of different neighbourhood structures for the vehicle routing prob-
lem. An interesting development of reactive VNS for the vehicle routing problem with time
windows appears in Bräysy (2003). Polacek et al. (2004) use a VNS for the multi depot ve-
hicle routing problem with time windows. A hybrid metaheuristic merging VNS and Tabu
Search applied to the location-routing problem with non-linear costs can be found in Mele-
chovsky et al. (2005). Repoussis et al. (2006) propose a reactive greedy randomized variable
neighbourhood Tabu search for the vehicle routing problem with time windows. Irnich et al.
(2006) introduce sequential search as a generic technique for the efficient exploration of
local-search neighbourhoods such as VNS and consider its application to vehicle-routing
problems. Kytöjoki et al. (2007) propose an efficient VNS heuristic for very large scale ve-
hicle routing problems. Geiger and Wenger (2007) use VNS within an interactive resolution
method for multi-objective vehicle routing problems. Fleszar et al. (2009) propose an ef-
fective VNS for the open vehicle routing problem. Liu and Chung (2009) apply a variable
neighborhood tabu search to the vehicle routing problem with backhauls and inventory.

5.10.3 Practical applications

VNS has also been useful for practical applications of routing problems. Cowling and
Keuthen (2005) examine iterated approaches of the Large-Step Markov Chain and VNS
type and investigate their performance when used in combination with an embedded search
heuristic for routing optimization. A VNS-based on-line method is proposed and tested in
Goel and Gruhn (2008) for the general vehicle routing problem. The solution methodol-
ogy proposed by Repoussis et al. (2007) hybridizes in a reactive fashion systematic diver-
sification mechanisms of Greedy Randomized Adaptive Search Procedures with VNS for
intensifying local searching regarding a real life vehicle routing problem.
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5.10.4 Arc routing and waste collection

Hertz and Mittaz (2001) use a variable neighbourhood descent algorithm for the undirected
capacitated arc routing problem. Polacek et al. (2008) develop a basic VNS algorithm to
solve the capacitated arc routing problem with intermediate facilities. Nuortio et al. (2006)
use VNS in an improved route planning and scheduling of waste collection and transport
and Del Pia and Filippi (2006) use a variable neighbourhood descent algorithm for a real
waste collection problem with mobile depots.

5.10.5 Fleet sheet problems

Yepes and Medina (2006) present a three-step local search algorithm based on a probabilistic
VNS for the vehicle routing problem with a heterogeneous fleet of vehicles and soft time
windows. Paraskevopoulos et al. (2008) present a reactive variable neighbourhood Tabu
search for the heterogeneous fleet vehicle routing problem with time windows. Schmid et
al. (2008) propose two hybrid procedures based on a combination of an exact algorithm and
a VNS approach for the distribution of ready-mixed concrete using a heterogeneous fleet
of vehicles. Imran et al. (2009) use a VNS-based heuristic to solve the heterogeneous fleet
vehicle routing problem.

5.10.6 Extended vehicle routing problems

Polacek et al. (2007) use VNS to assign customers to days and determine routes for a travel-
ling salesperson for scheduling periodic customer visits. Zhao et al. (2008) apply a variable
large neighbourhood search (VLNS) algorithm, which is a special case of VNS for an in-
ventory/routing problem in a three-echelon logistics system. Vogt et al. (2007) present a
heuristic for this problem based on a variable neighbourhood Tabu search for the single ve-
hicle routing allocation problem. Hemmelmayr et al. (2009) propose a VNS heuristic for
periodic routing problems. Liu and Chung (2009) propose a variable neighbourhood Tabu
search for the vehicle routing problem with backhauls and inventory and Liu et al. (2008)
propose a modified VNS for solving vehicle routing problems with backhauls and time win-
dows. Subramanian and Dos Anjos Formiga Cabral (2008) present an iterated local search
procedure, which uses a variable neighbourhood descent method to perform the local search,
for the vehicle routing problem, with simultaneous pickup and delivery and a time limit.

5.11 Problems in biosciences and chemistry

VNS has been useful in recently emerging areas in Bioscience and Chemistry such as Bio-
informatics. Andreatta and Ribeiro (2002) propose VNS heuristics for the phylogeny prob-
lem and Ribeiro and Vianna (2005) use a GRASP with a VND heuristic for this problem
with a new neighbourhood structure. Kawashimo et al. (2006) apply VNS to DNA Sequence
Design and Liberti et al. (2009) propose a double VNS with smoothing for the molecular
distance geometry problem. Santana et al. (2008) illustrate another example of hybridization
of metaheuristics through the combination of VNS and Estimation Distribution Algorithms
(EDAs). They present the first attempt to combine these two methods testing it on the pro-
tein side chain placement problem. Belacel et al. (2004b) use VNS for Fuzzy Clustering
of cDNA microarray gene expression data and Dražić et al. (2008) use a continuous VNS
heuristic for finding the three-dimensional structure of a molecule. Montemanni and Smith
(2008) consider the construction of constant GC-content DNA vodes via a VNS Algorithm.
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A VNS is tested by Polo-Corpa et al. (2009) for curve fitting in experimental data processing
in chemistry.

A Multi-Start VNS hybrid (MSVNS) is applied, in Pelta et al. (2008), to the protein
structure comparison problem which is a very important problem in the bio-informatics area.
The Maximum Contact Map Overlap (Max-CMO) model of protein structure comparison
models the proteins as a graph of the contacts between the protein residues to perform the
comparison. The proposed MSVNS method is currently the best heuristic algorithm for the
Max-CMO model, both in terms of optimization and in terms of the biological relevance of
its results. The method is biologically relevant, since the algorithm has proven to be good
enough to detect similarities at SCOP’s family and CATH’s architecture levels.

5.12 Continuous optimization

Several continuous optimization problems have also been successfully approached with
VNS. Mladenović et al. (2008) propose a General VNS for continuous optimization and
Dražić et al. (2006) a VNS-based software for Global Optimization. Audet et al. (2008) deal
with Nonsmooth optimization through Mesh Adaptive Direct Search and VNS. Brimberg
et al. (2006a) use VNS in a decomposition strategy for large-scale continuous location-
allocation problems. Solving the unconstrained optimization problem by VNS has been
successfully achieved in Toksari and Güner (2007). Ling et al. (2008) use a modified VNS
metaheuristic for max-bisection problems. Sevkli and Sevilgen (2008) consider the PSO
hybridized with Reduced VNS for continuous function optimization.

5.13 Other optimization problems

Some further optimization problems solved with VNS include the study of the dynamics
of handwriting (Caporossi et al. 2004), the problem of multi-item, single level, capacitated,
dynamic lot-sizing with set-up times (Hindi et al. 2003), the linear ordering problem (García
et al. 2006), the minimum cost berth allocation problem (Hansen et al. 2008c) and the run
orders problem in the presence of serial correlation (Garroi et al. 2009).

Mori and Tsunokawa (2005) use a variable neighbourhood Tabu search for capacitor
placement in distribution systems. Haugland (2007) develops a randomized search heuristic,
which in some sense resembles VNS, for the subspace selection problem. Hemmelmayr et
al. (2008) apply solution approaches based on integer programming and VNS to organize
the delivery of blood products to Austrian hospitals for the blood bank of the Austrian Red
Cross for Eastern Austria. Claro and Sousa (2008) propose a hybrid approach, combining
Tabu Search and VNS for a mean-risk multistage capacity investment problem. Mladenović
et al. (2009) use a VNS based heuristic to solve the problem of reducing the bandwidth of a
matrix.

VNS is used to solve satisfiability problems. Hansen et al. (2000) use VNS for the
weighted maximum satisfiability problem. Ognjanović et al. (2005), Jovanović et al. (2007)
and Sevkli and Aydin (2007) use VNS for the probabilistic satisfiability problem. Hansen
and Perron (2008) use VNS to solve the subproblem in a column generation approach which
merges the local and global approaches to probabilistic satisfiability. Loudni and Boizumault
(2008) apply the (VNS/LDS+CP) hybrid for solving optimization problems in anytime con-
texts. The (VNS/LDS+CP) procedure combines a VNS scheme with Limited Discrepancy
Search (LDS) using Constraint Propagation (CP).
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5.14 Discovery science

In all these applications VNS is used as an optimization tool. It can also lead to results in
“discovery science”, i.e., help in the development of theories. This has been done for graph
theory in a long series of papers with the common title “Variable neighborhood search for
extremal graphs” and reporting on the development and applications of the system Auto-
GraphiX (AGX) (Caporossi and Hansen 2000, 2004; Aouchiche et al. 2005a). This system
addresses the following problems:

– Find a graph satisfying given constraints;
– Find optimal or near optimal graphs for an invariant subject to constraints;
– Refute a conjecture;
– Suggest a conjecture (or repair or sharpen one);
– Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to consider all of these problems as parametric combinatorial optimiza-
tion problems on the infinite set of all graphs (or in practice some smaller subset) with a
generic heuristic. This is done by applying VNS to find extremal graphs, with a given num-
ber n of vertices (and possibly also a given number of edges). Then a VND with many
neighbourhoods is used. Those neighborhoods are defined by modifications of the graphs
such as the removal or addition of an edge, rotation of an edge, and so forth. Once a set of
extremal graphs, parameterized by their order, is found, their properties are explored with
various data mining techniques, leading to conjectures, refutations and simple proofs or
ideas of proof.

The current list of titles of papers in the series “VNS for extremal graphs” is given in
Table 1 below.

Another list of papers, not included in this series is given in the following Table 2.
Papers in these two lists cover a variety of topics:

(i) Principles of the approach (1.1, 1.5) and its implementation (1.14);
(ii) Applications to spectral graph theory, e.g., bounds on the index for various families

of graphs, graphs maximizing the index subject to some conditions (1.3, 1.11, 1.16,
1.17, 2.7);

(iii) Studies of classical graph parameters, e.g., independence, chromatic number, clique
number, average distance (1.13, 1.21, 1.22, 1.24, 1.25, 1.26, 2.8);

(iv) Studies of little known or new parameters of graphs, e.g., irregularity, proximity and
remoteness (1.9, 2.9)

(v) New families of graphs discovered by AGX, e.g., bags, which are obtained from com-
plete graphs by replacing an edge by a path, and bugs, which are obtained by cutting
the paths of a bag (1.15, 1.27);

(vi) Applications to mathematical chemistry, e.g., study of chemical graph energy, and of
the Randić index (1.4, 1.6, 1.7, 1.10, 1.18, 1.19, 2.2, 2.3, 2.6);

(vii) Results of a systematic study of 20 graph invariants, which led to almost 1500 new
conjectures, more than half of which were proved by AGX and over 300 by various
mathematicians (1.20);

(viii) Refutation or strengthening of conjectures from the literature (1.8, 2.1, 2.6);
(ix) Surveys and discussions about various discovery systems in graph theory, assessment

of the state-of-the-art and the forms of interesting conjectures together with proposals
for the design of more powerful systems (2.4, 2.5).
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Table 1 List of papers in the series “VNS for extremal graphs”

Author(s) Title

1.1 Caporossi and Hansen (2000) The AutoGraphiX system

1.2 Caporossi et al. (1999a) Finding graphs with extremal energy

1.3 Cvetkovic et al. (2001) On the largest eigenvalue of
color-constrained trees

1.4 Caporossi et al. (1999c) Chemical trees with extremal connectivity
index

1.5 Caporossi and Hansen (2004) Three ways to automate finding conjectures

1.6 Hansen and Mélot (2003) Analysing bounds for the connectivity index

1.7 Fowler et al. (2001) Polyenes with maximum HOMO-LUMO gap

1.8 Aouchiche et al. (2001) Variations on Graffiti 105

1.9 Hansen and Mélot (2005) Bounding the irregularity of a graph

1.10 Gutman et al. (2005) Comparison of irregularity indices for
chemical trees

1.11 Belhaiza et al. (2007) Bounds on algebraic connectivity

1.12 Hansen et al. (2005b) A note on the variance of bounded degrees
in graphs

1.13 Aouchiche and Hansen (2005) ‘À propos de la maille’ (French)

1.14 Aouchiche et al. (2005a) The AutoGraphiX 2 system

1.15 Hansen and Stevanović (2005) On bags and bugs

1.16 Aouchiche et al. (2008) Some conjectures related to the largest
eigenvalue of a graph

1.17 Aouchiche et al. (2005c) Further conjectures and results about the
index

1.18 Aouchiche et al. (2006) Conjectures and results about the Randic
index

1.19 Aouchiche et al. (2007d) Further conjectures and results about the
Randic index

1.20 Aouchiche et al. (2007a) Automated comparison of graph invariants

1.21 Aouchiche et al. (2009a) Conjectures and results about the
independence number

1.22 Aouchiche et al. (2009b) Extending bounds for independence to
upper irredundance

1.23 Hansen and Vukičević (2006) On the Randic index and the chromatic
number

1.24 Sedlar et al. (2007a) Conjectures and results about the clique
number

1.25 Sedlar et al. (2007b) Products of connectivity and distance
measures

1.26 Aouchiche et al. (2007c) ‘Nouveaux rèsultats sur la maille’ (French)

1.27 Aouchiche et al. (2007b) Families of extremal graphs

6 Conclusions

The general schemes of variable neighborhood search have been presented, discussed and
illustrated by examples. In order to evaluate the VNS research program, one needs a list
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Table 2 A further list of papers on AGX

Author(s) Title

2.1 Caporossi et al. (1999b) Trees with palindromic Hosoya polynomials

2.2 Gutman et al. (1999) Alkanes with small and large Randić
connectivity indices

2.3 Hansen (2002) Computers in graph theory

2.4 Hansen and Mélot (2002) Computers and discovery in algebraic
graph theory

2.5 Caporossi et al. (2003) Graphs with maximum connectivity index

2.6 Hansen (2005) How far is, should and could be
conjecture-making in graph theory an
automated process?

2.7 Hansen et al. (2005a) What forms do interesting conjectures have
in graph theory?

2.8 Aouchiche et al. (2005b) AutoGraphiX: A survey

2.9 Aouchiche and Hansen (2007a) Automated results and conjectures on
average distance in graphs

2.10 Aouchiche and Hansen (2007b) On a conjecture about the Randic index

2.11 Stevanovic et al. (2008) On the spectral radius of graphs with a
given domination number

2.12 Aouchiche and Hansen (2008a) Bounding average distance using minimum
degree

2.13 Aouchiche and Hansen (2008b) Nordhaus-Gaddum relations for proximity
and remoteness in graphs

of the desirable properties of metaheuristics. The following eight of these are presented in
Hansen and Mladenović (2003):

(i) Simplicity: the metaheuristic should be based on a simple and clear principle, which
should be widely applicable;

(ii) Precision: the steps of the metaheuristic should be formulated in precise mathematical
terms, independent of possible physical or biological analogies which may have been
the initial source of inspiration;

(iii) Coherence: all steps of the heuristics for particular problems should follow naturally
from the principle of the metaheuristic;

(iv) Efficiency: heuristics for particular problems should provide optimal or near-optimal
solutions for all or at least most realistic instances. Preferably, they should find optimal
solutions for most problems of benchmarks for which such solutions are known, when
available;

(v) Effectiveness: heuristics for particular problems should take a moderate computing
time to provide optimal or near-optimal solutions;

(vi) Robustness: the performance of heuristics should be consistent over a variety of in-
stances, i.e., not merely fine-tuned to some training set and less good elsewhere;

(vii) User-friendliness: heuristics should be clearly expressed, easy to understand and,
most important, easy to use. This implies they should have as few parameters as pos-
sible, ideally none;

(viii) Innovation: preferably, the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of application.
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This list has been completed with three more items added by one member of the present
team and his collaborators:

(ix) Generality: the metaheuristic should lead to good results for a wide variety of problems;
(x) Interactivity: the metaheuristic should allow the user to incorporate his knowledge to

improve the resolution process;
(xi) Multiplicity: the metaheuristic should be able to present several near optimal solutions

from which the user can choose one.

As argued here and above, VNS possesses, to a great extent, all of the above properties.
This has led to heuristics which are among the very best ones for many problems. Interest in
VNS is clearly growing at speed. This is evidenced by the increasing number of papers pub-
lished each year on this topic (ten years ago, only a few; five years ago, about a dozen; and
about 50 in 2007). Moreover, the 18th EURO Mini conference held in Tenerife in November
2005 was entirely devoted to VNS. It led to special issues of IMA Journal of Management
Mathematics in 2007 (Melián and Mladenović 2007), and European Journal of Operational
Research (Hansen et al. 2008a) and Journal of Heuristics (Moreno-Vega and Melián 2008)
in 2008. In retrospect, it appears that the good shape of the VNS research program is due to
the following decisions, strongly influenced by Karl Popper’s philosophy of science (Pop-
per 1959): (i) in devising heuristics favour insight over efficiency (which comes later) and
(ii) learn from the heuristics mistakes.
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Brimberg, J., Hansen, P., & Mladenović, N. (2006a). Decomposition strategies for large-scale continuous
location–allocation problems. IMA Journal of Management Mathematics, 17, 307–316.
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Hansen, P., Mladenović, N., & Urošević, D. (2004). Variable neighborhood search for the maximum clique.
Discrete Applied Mathematics, 145(1), 117–125.

Hansen, P., Aouchiche, M., Caporossi, G., Mélot, H., & Stevanović, D. (2005a). What forms do interesting
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