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Abstract The main advances regarding the use of the Choquet and Sugeno integrals in
multi-criteria decision aid over the last decade are reviewed. They concern mainly a bipolar
extension of both the Choquet integral and the Sugeno integral, interesting particular sub-
models, new learning techniques, a better interpretation of the models and a better use of
the Choquet integral in multi-criteria decision aid. Parallel to these theoretical works, the
Choquet integral has been applied to many new fields, and several softwares and libraries
dedicated to this model have been developed.

Keywords Choquet integral · Sugeno integral · Capacity · Bipolarity · Preferences

1 Introduction

Despite its birth more than fifty years ago, the Choquet integral (Choquet 1953) has not been
studied and applied in decision making under uncertainty till the end of the eighties (see the
pioneering work of Schmeidler 1986), and till the beginning of the nineties for multi-criteria
decision aid (MCDA).

If in decision under uncertainty, the use of the Choquet integral immediately received
a firm theoretical basis through providing axiomatic characterizations (Schmeidler 1989),
the first works in MCDA remained on a rather intuitive and experimental level. Perhaps the
idea of Murofushi of using the Shapley value as an importance index (Murofushi 1992), and
later his proposal of interaction index (Murofushi and Soneda 1993), were the starting point
for a more theoretical basis for the use of Choquet integral in MCDA. The survey paper
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of Grabisch (1996) provides a good snapshot of the situation in 1996, where these ideas of
Shapley value and interaction index are developed, and perhaps has led people to use more
and more the Choquet integral in MCDA.

More than one decade has passed since this first survey paper, and the field has been
growing incredibly during this short period of time. The aim of the present survey paper is
precisely to make a new snapshot of the situation, in order to make clear what are the main
advances, and what are the theoretical and practical tools we have now at our disposal for
tackling in a better way practical problems in MCDA.

The content and structure of the paper are dictated by the new advances obtained. It also
draws on the analysis of the gaps that were identified in 1996. To this purpose, let us first
detail the situation at that time, as given in Grabisch (1996):

– Properties for aggregation of the Choquet and Sugeno integrals were well known, as well
as their relationship with classical aggregation operators.

– Interaction among criteria and global importance of criteria were well explained through
the concepts of interaction index and Shapley value.

– Automatic learning methods were known, to determine an optimal model given a set of
input/output data.

– Already many applications used these tools (mainly conducted in Japan).

What was lacking is the following:

1. Even if the semantics attached to capacities and the Choquet integral model was almost
clear, the actual construction of the model was limited to either a blind and rather restric-
tive optimization method, or to ad hoc manipulations limited to toy problems. Moreover,
the determination of the utility functions in a way that is consistent w.r.t. the Choquet
integral was missing.

2. The exponential complexity of the model made its practical use very difficult. It was
necessary to look for simpler models, since most of the time the full complexity of the
model was not needed. Moreover, the interpretation in terms of decision making of these
simpler models should be made clear.

3. Most of the time, scores to be aggregated were considered as nonnegative quantities,
with 0 being the least possible score (unipolar model). But many studies in psychology
show that models in decision making should be bipolar, with value 0 indicating a neutral
level demarcating “good” from “bad” scores. Considering this fact, is the definition of
the Choquet integral still valid or rich enough?

4. The Sugeno integral was considered as the ordinal version of the Choquet integral, but
its properties related to decision making were not well known, nor its exact situation in
the realm of ordinal aggregation functions. Also, it was not possible to consider negative
scores for aggregation (see the previous item).

5. If the Shapley value and the interaction index are useful tools for an introspective analysis
of the model, are they sufficient? Can they explain all aspects? In particular, the degree
to which a criterion is a veto or a favor is also needed.

6. The use of the Choquet integral in MCDA requires an in-depth analysis of the result of
this model on several alternatives. The recommendation proposed by the multi-criteria
model must be explained to the decision maker (DM). Moreover, an important question
in practice is to know on which criterion an improvement should be done in order to get
the maximal possible improvement of the overall score.

7. Lastly, powerful softwares and real-size applications were lacking.

Amazingly, all of the above aspects have been addressed and almost completely solved in
the past decade, as this survey (see also Grabisch and Labreuche 2008) will make clear:



Ann Oper Res (2010) 175: 247–286 249

Sect. 2 addresses the first point (construction of the model), Sect. 2.7 presents important
non-exponential submodels, Sect. 3 presents bipolar cardinal models, Sect. 4 addresses the
ordinal case, Sect. 5 presents tools for the analysis of models, Sect. 6 presents methods for
the exploitation of the models on several options, and lastly Sect. 7 presents some applica-
tions and software tools.

Size limitation forbid us to fully develop the above topics (this would take a whole book).
We will try instead to focus on the main points and give references for further details.

Throughout the paper, the set of criteria is denoted by N := {1, . . . , n}. Min and max are
denoted by ∧,∨ respectively. For convenience, subsets of N will be denoted by uppercase
letters, e.g. A⊂ N , and their cardinality by the corresponding lowercase, e.g., a = |A|.

2 Construction of a model based on the Choquet integral

Throughout this section, we suppose that scores, utility or value functions, etc., are nonneg-
ative (unipolar case). The real-valued case will be addressed in Sect. 3 (bipolar case).

2.1 General framework and measurement scales

We consider a set X = X1 × · · · × Xn of potential alternatives (e.g., candidates, cars, etc.),
each alternative x := (x1, . . . , xn) being described by a vector of n descriptors or attributes
(e.g., technical ability, purchase price, performances, etc.) taking values in sets X1, . . . ,Xn.
The decision maker is supposed to have a preference over X, expressed by a binary re-
lation �, that is reflexive and transitive (possibly complete). The fundamental problem of
decision theory is to build a numerical representation of �. In the framework of this paper,
this representation has the form

x � y ⇒ F(u1(x1), . . . , un(xn)) ≥ F(u1(y1), . . . , un(yn)), (2.1)

where F is the Choquet integral (or the Sugeno integral in the ordinal case), ui : Xi → S

(i = 1, . . . , n) are called utility functions or value functions (the latter term will be used in
the sequel, since the former refers more to decision under uncertainty and risk), and S ⊆ R+
is a common scale1 on which the preferences of the DM are represented.

We call the pair (Xi, ui) a criterion (abusing terminology, Xi is also sometimes called
a criterion), and N := {1, . . . , n} is the index set of criteria. For convenience, we define the
overall value function U : X → S by U(x) := F(u1(x1), . . . , un(xn)).

More generally, when F is any increasing function from Sn to S, (2.1) is the so-called
decomposable model of measurement theory (Krantz et al. 1971), and F is called an aggre-
gation function. For details about the justification of the use of Choquet integral for F , see
Grabisch and Labreuche (2005b), Grabisch (2005).

We can distinguish two types of scales when dealing with nonnegative real numbers:

• Bounded unipolar scale: this is the case when S is a closed bounded interval, e.g., [0,1].
Two typical examples of such scales are the scales of credibility of an event (belief or
certainty degree, probability, etc.), and the scale of membership degree of an element
to a fuzzy set (see, e.g., the excellent synthesis of fundamental aspects of fuzzy sets in

1Employing the usual informal terminology. In measurement theory, the scale is a homomorphism between
the set of objects to be measured and, e.g., the real numbers. Hence, the word “scale” should refer to the
mapping ui instead of S.
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Dubois et al. 2000a). The boundaries 0 and 1 represent respectively the absence of the
property (no credibility, no membership), and the total satisfaction of the property (full
credibility, that is, the event is true; full membership, that is, the element belongs to the
set in the classical sense). By contrast to bipolar scales (see Sect. 3), there is no opposite
nor symmetric notion to the considered property.

Coming back to our framework of MCDA, saying that ui is a bounded unipolar scale
implies the existence in Xi of two elements denoted by Ui and Pi , which have an absolute
meaning: Ui is an element of Xi which is thought by the DM as completely unsatisfactory
relatively to his concerns w.r.t. criterion i, and Pi is an element of Xi that is considered
as perfectly satisfactory (Labreuche and Grabisch 2003; Grabisch and Labreuche 2005b;
Grabisch 2005). We set for convenience ui(Ui ) = 0 and ui(Pi ) = 1.

• Unbounded unipolar scale: in this case S is no more bounded from above, hence S is
taken to be R+. Typical examples are the scales of priority and importance (e.g., of oblig-
ations, laws, things to do, etc.). These notions are unipolar because no opposite notion
exists. Moreover, it is always possible to find obligations more prioritary or more impor-
tant than a given one, so that no upper bound exists.

In the framework of MCDA, the difference with the previous bounded case is that the
element Pi does not exists in Xi . Instead we assume the existence in Xi of an element
denoted by Si , which the DM considers as good and completely satisfying if he could
obtain it on criterion i, even if more attractive elements could exist. This special element
corresponds to the satisficing level in the theory of bounded rationality of Simon (1956).
We set for convenience ui(Si ) = 1.

In the rest of this section, any of these two scales can be used, but the same type of scale
must be used for all criteria. For ease of notation, the unsatisfactory element on attribute Xi

will be denoted by 0i , and the notation 1i will indicate either the upper bound Pi (bounded
unipolar scale) or the satisficing element Si (unbounded unipolar scale).

We introduce the following convenient notation: for two alternatives x, y ∈ X and a sub-
set A ⊆ N , the compound alternative z := (xA, y−A) is defined by zi := xi if i ∈ A, and
zi := yi otherwise.

2.2 From the weighted sum to the Choquet integral

Most MCDA methods use as aggregation function the weighted arithmetic mean (weighted
sum), i.e., F(a1, . . . , an) := ∑n

i=1 wi ai , with wi ≥ 0 and
∑n

i=1 wi = 1. It is well known
however that in many situations, the weighted sum cannot represent the preferences of the
decision maker. Let us try to illustrate this, and to motivate the definition of the Choquet
integral.

Example 2.1 Let a, b, c be three alternatives evaluated on 2 criteria as follows:

u1(a) = 0.4, u1(b)= 0, u1(c)= 1,

u2(a) = 0.4, u2(b)= 1, u2(c)= 0,

where scores are given in [0,1]. Suppose that the decision maker (DM) says a � b ∼ c. Let
us find w1,w2 so that the weighted sum represents the preference. We get:

b ∼ c ⇔ w1 =w2,

a � b ⇔ 0.4(w1 +w2) > w2

equivalent to 0.8w2 > w2, which is impossible.
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To understand the underlying reason of this failure, we should notice that for the weighted
sum, w1 is the overall score achieved by an alternative having a totally satisfactory score on
the first criterion (1), and not acceptable on the others (0). Obviously, our DM is more
attracted by alternatives being well balanced on the two criteria. It would be possible to
take into account this preference if one allows to define weights not only on each crite-
rion, but also on groups of criteria. In our very simple example, this amounts to defining
a weight w12 on both criteria, which represents the score assigned to an alternative being
totally satisfactory on both criteria. This alternative being obviously the best one, it is nat-
ural to assign to it the maximal score 1, hence w12 = 1. In order to model the fact that the
DM considers alternatives being satisfactory only on one criterion as not attractive, we may
set, e.g., w1 = w2 = 0.3. Let us try to rewrite the weighted sum, taking into account this
new weight w12. Keeping in mind the interpretation of weights, we are led to the following
computation:

– a has equal scores on both criteria, which corresponds to the situation depicted by w12, up
to the factor 0.4. Supposing the model to be homogeneous, we may put U(a)= 0.4w12 =
0.4.

– b and c correspond respectively to the situations depicted by w2,w1, hence U(b) =w2 =
0.3, and U(c) = w1 = 0,3.

The model indeed represents the preference of the DM. It is easy to see that by choosing
appropriate values for w1,w2,w12, any preference among a, b, c can be represented this
way.

The above example works well because the alternatives a, b, c fit exactly to the situations
depicted by the weights. What if this is no more the case, for example considering an alter-
native d such that u1(d) = 0.2 and u2(d) = 0.8? We may consider that the DM prefers d to
b and c, and a to d . To solve the problem, we consider that d is the sum of two fictitious
alternatives d ′, d ′′ defined by:

u1(d
′) = 0.2, u1(d

′′) = 0,

u2(d
′) = 0.2, u2(d

′′) = 0.6.

Supposing that our model is additive for such alternatives, the overall score of d is the sum of
the overall scores of d ′ and d ′′. But it is possible to compute them, because d ′, d ′′ correspond
to situations depicted by the weights. We obtain:

U(d ′) = 0.2w12 = 0.2,

U(d ′′) = 0.6w2 = 0.18,

U(d) = U(d ′)+U(d ′′) = 0.38.

Observe that we obtain the desired ranking: a � d � b ∼ c.
This method of computing the overall score is in fact nothing else than the Choquet

integral, and the weights on groups of criteria define a capacity or fuzzy measure.

2.3 Basic definitions

Definition 2.2

1. A function ν : 2N → R is a game if it satisfies ν(∅) = 0.
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2. A game μ which satisfies μ(A) ≤ μ(B) whenever A ⊆ B (monotonicity) is called a
capacity (Choquet 1953) or fuzzy measure (Sugeno 1974). The capacity is normalized if
in addition μ(N)= 1.

A capacity is additive if for all disjoint A,B ⊆ N , we have μ(A ∪ B) = μ(A) + μ(B).
A capacity is symmetric if for any subsets A,B , |A| = |B| implies μ(A) = μ(B). The con-
jugate or dual of a capacity μ is a capacity μ defined by

μ(A) := μ(N)−μ(A), ∀A ⊆ N.

Definition 2.3 Let us consider f : N → R+ (or equivalently a vector in R
n+). The Choquet

integral of f w.r.t. a capacity μ is given by

Cμ(f ) :=
n∑

i=1

[fσ(i) − fσ(i−1)]μ({σ(i), . . . , σ (n)}),

where fi stands for f (i), σ is a permutation on N such that fσ(1) ≤ · · · ≤ fσ(n), and
fσ(0) := 0.

The above definition is also valid if μ is a game. A fundamental property is:

Cμ(1A,0−A) = μ(A), ∀A⊆ N. (2.2)

Two particular cases are of interest.

– If μ is additive, then the Choquet integral reduces to a weighted arithmetic mean:

Cμ(f ) =
∑

i∈N

μ({i})fi.

– If μ is symmetric, the Choquet integral reduces to the so-called Ordered Weighted Aver-
age (OWA) introduced by Yager (1988):

Cμ(f )=
∑

i∈N

(μn−i+1 −μn−i )fσ(i)

with μi := μ(A), such that |A| = i, and σ is defined as before.

Definition 2.4 Let us consider f : N → R+. The Sugeno integral (Sugeno 1974) of f w.r.t.
a capacity μ is given by

Sμ(f ) :=
n∨

i=1

[
fσ(i) ∧μ({σ(i), . . . , σ (n)})],

with same notation as above.

Note that the above definition also works if f,μ are valued on some ordinal scale (pos-
sibly finite).

We introduce two important linear transformations over capacities.
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Definition 2.5 Let ν be a game on N .

1. The Möbius transform of ν, denoted by mν , is the unique solution of the equation

ν(A)=
∑

B⊆A

mν(B), ∀A ⊆N,

given by

mν(A) =
∑

B⊆A

(−1)|A\B|ν(B).

2. The interaction transform of ν, denoted by I ν , is defined by

I ν(A) :=
∑

B⊆N\A

(n− b − a)!b!
(n− a + 1)!

∑

K⊆A

(−1)|A\K|ν(B ∪K), ∀A ⊆N. (2.3)

The meaning of the interaction transform will be detailed in Sect. 5.1. All details con-
cerning these transformations as well as others can be found in Grabisch et al. (2000), Den-
neberg and Grabisch (1997a, 1999) (for summaries see Grabisch 2000, 2002). The value of
I ν for singletons plays a special role, and is called the Shapley value (Shapley 1953), usually
denoted by φi(ν), i ∈ N :

φi(ν) := I ν({i})=
∑

A⊆N\i

(n− a − 1)!a!
n! [ν(A∪ i)− ν(A)].

2.4 Construction of a model based on the MACBETH approach

This section is based on Labreuche and Grabisch (2003). Our main ingredient for the con-
struction of the model is the existence of the two special elements 0i and 1i on each Xi

representing the scale S (see Sect. 2.1).
The MACBETH approach (Bana e Costa and Vansnick 1994, 1999) is a MCDA method-

ology enabling the construction of value functions and weights in the weighted sum in a
meaningful way in the sense of measurement theory. It is based on the existence of two ref-
erence levels, such as the two previously presented ones. The construction of the Choquet
model is obtained by a generalization of the MACBETH approach and is done in two steps:
the construction of value functions u1, . . . , un by using intra-criterion information, and the
construction of F , or more precisely of the capacity μ, by using inter-criteria information.

Construction of value functions In the literature, the value function on an attribute Xi is
often constructed by asking questions directly regarding the preference of the DM on the
set Xi rather than his preferences on X. This is completely justified when the aggregation
function is a weighted sum since each criterion can be isolated thanks to the preferential
independence property. This is no longer true with the Choquet integral since criteria interact
together. The construction of the value function on Xi must then be performed by only
asking information regarding elements of X. We consider a particular subset of X:

Xi� := {(01, . . . ,0i−1, xi,0i+1, . . . ,0n | xi ∈ Xi}.
Using our notation, elements of Xi� are denoted more conveniently by (xi,0−i ). The MAC-
BETH approach allows, by assuming that the DM is able to give information using intensity



254 Ann Oper Res (2010) 175: 247–286

of preference, to build an interval scale vi encoding the attractiveness of elements of Xi�.
Since interval scales are determined up to a shift and dilation, i.e., v′

i := αvi + β with α > 0
encodes the same information as vi , assuming (1i ,0−i ) � 0, we choose the unique vi satis-
fying

vi(0) = 0, vi(1i ,0−i ) = 1

where 0 := (01, . . . ,0n). Due to this normalization, we define ui(xi) := vi(xi,0−i ), for all
i ∈ N . Hence all value functions are built, with the property they all coincide for the 0i levels
and for the 1i levels. For this reason, they are called commensurate.2

Construction of the Choquet integral We consider another subset of X:

X�{0,1} := {(1A,0−A) | A ⊆N}.

Again, we use the MACBETH approach, under the same assumptions, to build an interval
scale u{0,1} on X�0,1, encoding the attractiveness of its elements. Among all possible interval
scales, we choose the one satisfying

u{0,1}(0)= 0, u{0,1}(1) = 1

where 1 = (11, . . . ,1n). Note that since (1i ,0−i ) ∈ Xi� ∩ X�{0,1}, vi(1i ,0−i ) = 1, and both
scales vi and u{0,1} have the same 0, it is necessary to have u{0,1}(1i ,0−i ) > 0, otherwise the
DM is inconsistent (since we assumed (1i ,0−i ) � 0).

We assume that the DM satisfies a dominance property for alternatives in X�{0,1}, i.e., if
A ⊆ B , we have u{0,1}(1A,0−A) ≤ u{0,1}(1B,0−B). Let us define μ(A) := u{0,1}(1A,0−A) for
all A ⊆N . Then clearly μ is a normalized capacity on N .

From the above assumptions, it can be proved that u{0,1}(1A,0−A) = F(1A,0−A) for all
A ⊆N , i.e., F is an extension on Sn of the capacity μ.

The fact that F can be taken as the Choquet integral Cμ is now justified by (2.2). Since
μ is determined by the above procedure, and the value functions are built, the construction
is complete.

2.5 The Choquet integral as a parsimonious linear interpolator

In the previous section, we have taken for granted that F was the Choquet integral. In this
section, we show that it is in some sense the best possible choice.

Coming back to the previous section, we have determined numbers
u{0,1}(1A,0−A) for all A ⊆ N , which are the values of F on the vertices of the hypercube
[0,1]n. Determining F on the whole hypercube then becomes a problem of interpolation.
As many types of interpolation exist, we are looking here for a linear interpolation using the
fewest possible points (parsimonious linear interpolation). For a given x := (x1, . . . , xn) in

2A more precise definition would be the following. Two scales ui , uj on criteria i and j are said to be
commensurate if for every xi , xj such that ui(xi ) = uj (xj ), the degrees of satisfaction felt by the DM on
criteria i and j are equal. One convenient way to achieve this is the use of two absolute levels existing on each
scale as above, provided the scales are interval scales. The commensurateness issue is crucial for the method
we present here. Note however that this assumption is not necessary in (2.1) and other models of conjoint
measurement and multiattribute utility theory.
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[0,1]n, let us denote by V(x) the set of vertices used for the linear interpolation, which is
written as

F(x)=
∑

A⊆N |(1A,0−A)∈V(x)

[

α0(A)+
n∑

i=1

αi(A)xi

]

F(1A,0−A), (2.4)

where αi(A) ∈ R, i = 0, . . . , n, ∀A ⊆ N . To keep the meaning of interpolation, we impose
that the convex hull conv(V(x)) contains x, and any x ∈ [0,1]n should belong to a unique
polyhedron conv(V(x)) (except for common facets), and that continuity should hold. To
ensure a minimal number of vertices for these polyhedra, they should be (n+1)-dimensional
simplices.

Still many different triangulations using simplices are possible, but there is one which is
of particular interest, since it leads to an interpolation where all constant terms α0(A) are
null. This triangulation uses the n! canonical simplices of [0,1]n:

conv(Vσ )= {x ∈ [0,1]n | xσ(1) ≤ · · · ≤ xσ(n)}, for some permutation σ on N.

Proposition 2.6 The linear interpolation (2.4) using the canonical simplices is written as

F(x) =
n∑

i=1

[xσ(i) − xσ(i−1)]μ({σ(i), . . . , σ (n)}), ∀x ∈ conv(Vσ ), (2.5)

where μ(A)= F(1A,0−A). Moreover, F is continuous on [0,1]n.

We recognize in (2.5) the Choquet integral. Lovász (1983) discovered this formula by
considering the problem of extending the domain of pseudo-Boolean functions to R

n.
Later, Singer (1984) proved the above result (uniqueness of the interpolation). The fact
that the so-called Lovász extension is the Choquet integral was observed by Marichal
(1998, 2002).

2.6 Construction of the capacity by optimization methods

The construction presented in Sect. 2.4 allows us to construct both the value functions and
the capacity. It is complete, well founded, and can be done in practice. However, although
the construction of value functions has a complexity in O(n) and thus is always possible,
the construction of the capacity has an exponential complexity, hence is tractable only for
small values of n. Moreover, since the options of X�{0,1} do not correspond to real alterna-
tives, the DM may not feel comfortable when comparing these options. He may prefer to
use more realistic options. Hence, the interest of the method described in Sect. 2.4 to con-
struct the capacity is more theoretical than practical. An alternative is to make best use of
the information provided by the DM on some set of alternatives, or any other kind of infor-
mation (importance of criteria, interaction, etc.). In other words, once the value functions
have been determined, the construction of the capacity reduces to an optimization problem
under constraints.

There are various choices for the objective function and the constraints, which we sum-
marize below (see Grabisch et al. 2008b for a more detailed survey). The general form
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is:

Minimize g(μ, . . .)

Subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(A∪ i)−μ(A)≥ 0, ∀i ∈ N,∀A⊆ N \ i,

μ(N)= 1,

Cμ(u(x))− Cμ(u(x ′)) ≥ δC,

...

φi(μ)− φj (μ)≥ δS,

...

constraints on Iμ,

...

The variables of the optimization problem are the 2n − 1 unknown values of μ. Since
the transforms presented in Definition 2.5 are linear and invertible, the values of the
Möbius transform mμ or the interaction transform Iμ can be used for variables as well,
without altering the linear character of the constraints. In particular, if one uses k-
additive capacities instead of general capacities (see Sect. 2.7.1), then the Möbius trans-
form is the best suited representation since it allows to considerably reduce the num-
ber of variables. In some cases, one may have additional variables, such as thresholds,
etc.

The first set of constraints simply depicts the monotonicity of the capacity, thus it should
always be present. The second constraint is the normalization of the capacity. It is neces-
sary only if idempotency is required, i.e., Cμ(a, a, . . . , a) = a, for any a ∈ R+. The third
set of constraints depicts the preference of the decision maker. Here we put for convenience
u(x) := (u1(x1), . . . , un(xn)). It translates (2.1) with a threshold δC , which has to be fixed
arbitrarily. The fourth set of constraints translates information concerning the importance
of criteria. As it will be explained in Sect. 5.1, the Shapley value represents the overall im-
portance of each criterion, and this set of constraints permits to translate statements like
“criterion i is more important than criterion j”. The last set of constraints concerns inter-
action among criteria (see again Sect. 5.1). Most of the time, it only concerns interaction
between two criteria, and could take various forms (sign of the interaction, difference above
a given threshold, etc.). Note that only the first set of constraints is mandatory, while all the
others may be absent.

An important remark is that in some cases the problem may be infeasible due to contra-
dictory constraints provided by the decision maker (e.g., violation of dominance), or because
the model is not powerful enough to take into account the preference of the decision maker
(e.g., bi-capacities may be required, see Sect. 3). It is possible to get rid of infeasibility by
reconsidering the information provided by the decision maker (Labreuche and Le Huédé
2006).

We give some examples of objective functions.

– Minimizing the total squared error. Suppose that for a subset X0 of alternatives, we know
the overall score y(x) that should be assigned to an alternative x ∈ X0. Then a natural
criterion is to minimize the total squared error between the desired output y(x) and the
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output of the model Cμ(u(x)):

g(μ) =
∑

x∈X0

[Cμ(u(x))− y(x)]2.

This is a quadratic program, not always strictly convex, hence it does not have in general a
unique solution (see an investigation on this aspect in Miranda and Grabisch 1999). Usu-
ally, the set of constraints reduces to monotonicity and normalization of μ. This approach
has been first proposed by Tanaka and Murofushi (1989), and extensively used by Gra-
bisch for classification problems (Grabisch and Nicolas 1994), and subjective evaluation
(Grabisch et al. 2002).

Although the use of such a criterion is somewhat odd in decision theory (usually y(x)

is not known) and much more related to the field of estimation theory, it has been widely
applied. In order to avoid the use of quadratic solvers which need a huge amount of
memory (in O(22n), if general capacities are used) and sometimes give strange results,
there exist several other approaches which are less greedy (generally in O(2n) for memory
allocation), although suboptimal:
– HLMS (Heuristic Least Mean Squares) is a gradient descent type algorithm taylored

for the Choquet integral, and proposed by Grabisch (1995). It has the advantage over
the quadratic approach to be able to work with very few learning data, and to provide
less extremal solutions (i.e., closer to the uniformly distributed capacity). However, the
algorithm uses the values of μ as variables, and only monotonicity constraints can be
taken into account, hence it is not possible to handle k-additive models. A statistical
comparison of HLMS and the quadratic approach is described in Grabisch and Raufaste
(2008).

– There exist numerous algorithms based on genetic algorithms, most of them being
restricted to λ-measures (see Sect. 2.7). A good representative of such a family, not
restricted to λ-measures, is given by Wang et al. (1999). Grabisch (2003b) proposed a
version handling k-additive capacities, while Combarro and Miranda (2009) proposed
an original approach exploiting the convexity of the set of capacities.

– Lastly we mention Kwon and Sugeno (2000) and Sugeno and Kwon (1995) who pro-
pose, in order to avoid the exponential complexity, to replace the Choquet integral w.r.t.
a single capacity μ by a sum of p Choquet integrals w.r.t. μ1 . . . ,μp defined on subsets
C1, . . . ,Cp of N , such that C1, . . . ,Cp form a covering of N . The idea stems from the
work of Fujimoto about inclusion-exclusion covering (Fujimoto and Murofushi 2000).

– Maximum separation of alternatives. This method proposed by Marichal and Roubens
(2000) consists in maximizing the difference in overall scores among alternatives: if the
decision maker prefers (in the strict sense) x to x ′, then this should be reflected in the
model by two sufficiently different outputs. The objective function is simply g =−ε, and
the third set of constraints becomes:

Cμ(u(x))− Cμ(u(x ′))≥ δC + ε.

This gives a linear program, hence very easy to solve with standard algorithms. However,
as the least squares approach, this method does not necessarily give a unique solution.
Moreover, the solution can be sometimes considered as too extreme.

Based on this method, Meyer and Roubens (2005), Marichal et al. (2005) have built
a MCDA method called TOMASO. It starts from ordinal information, which is trans-
formed into cardinal information (see Sect. 4) by computing the number of times a given
alternative is better than other ones for a given criterion.
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– Minimum variance method. The idea of the minimum variance method (Kojadinovic
2007a) is to produce a “least specific” capacity (i.e., closest to the uniformly distributed
capacity) compatible with the preference of the decision maker. The objective function is
similar to a variance:

g(μ) = 1

n

∑

i∈N

∑

S⊆N\i

(n− s − 1)!s!
n!

(∑

T⊆S

mμ(T ∪ i)− 1

n

)2

,

and the constraints are the three first sets of constraints. Minimizing g amounts to maxi-
mizing the extended Havrda and Charvat entropy of order 2 (Havrda and Charvat 1967).
It is a strictly convex quadratic program, with a unique solution. It has similar features
as HLMS, since it can work with very few learning data (here, these are preferences over
alternatives), and does not produce extreme solutions.

2.7 Particular submodels

There are two main drawbacks of the Choquet integral, which are interrelated: its expo-
nential complexity (2n − 2 real values are needed to define a normalized capacity), and the
difficulty to interpret these values, and consequently to analyze the behavior of the Choquet
integral. Several particular families of capacities, hence inducing submodels, have been pro-
posed to solve this issue, the most important ones being the k-additive capacities (Grabisch
1997a), the p-symmetric capacities (Miranda et al. 2002), and the k-tolerant and k-intolerant
capacities (Marichal 2004), which are presented below. Note that a very commonly used
family is that of λ-measures, introduced by Sugeno (1973, 1977). Although convenient,
they are merely distorted probabilities, and thus are too restrictive for MCDA.

2.7.1 k-additive capacities

Definition 2.7 (Grabisch 1997a) A capacity μ is k-additive if its Möbius transform satisfies
mμ(A) = 0 for all A ⊆ N such that |A| > k, and there exists A ⊆ N , |A| = k, such that
mμ(A) �= 0.

An important property is that μ is k-additive if and only if (i) for all A⊆ N , |A| = k, we
have Iμ(A) = mμ(A), and (ii) for all A ⊆N , |A| > k, we have Iμ(A)= 0.

1-additive capacities are ordinary additive capacities. The k-additivity property fixes the
degree of interaction between criteria: 1-additivity does not permit interaction, 2-additivity
allows interaction up to 2 criteria, etc.

A k-additive capacity needs only
∑k

i=1

(
n

i

)
coefficients to be defined, instead of 2n −2. In

practice, 2-additivity is probably the best compromise between low complexity and richness
of the model.

As we already know, the Choquet integral w.r.t. 1-additive capacities is a weighted arith-
metic mean.

The expression of the Choquet integral w.r.t. 2-additive capacities is of particular interest.
For any 2-additive capacity μ, and any real-valued function f on N , we obtain (see Grabisch
1997b)

Cμ(f ) =
∑

i,j∈N |Iij >0

(fi ∧ fj )Iij +
∑

i,j∈N |Iij <0

(fi ∨ fj )|Iij |
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+
∑

i∈N

fi

[

φi − 1

2

∑

j �=i

|Iij |
]

(2.6)

where φi is the Shapley value of μ, and Iij := Iμ({i, j}) is the interaction index between
criteria i and j . The formula is remarkable for two reasons:

– It explains well the meaning of the interaction index and Shapley value (see Sect. 5.1):
a positive interaction induces a conjunctive aggregation of scores (necessarily both scores
have to be high to produce a high overall score), while a negative interaction induces a
disjunctive aggregation (it is sufficient that one score is high). Clearly, the Shapley value
is the linear part of the model, while interaction is the nonlinear part.

– Coefficients are nonnegative, and moreover, if the capacity is normalized, they sum up
to 1. In other words, this means that the Choquet integral is a convex combination of the
scores fi on all criteria, and of all disjunctive and conjunctive combinations of scores on
pairs of criteria. Hence, the coefficient of a given term can be interpreted as the percentage
of contribution of such term to the overall score. This feature is highly appreciated in
practice (see Sects. 6.1 and 7.3).

There is an alternative expression of the Choquet integral w.r.t. 2-additive capacities:

Cμ(f )=
n∑

i=1

φifi −
∑

{i,j }⊆N

Iij

2
|fi − fj |.

Remarkably the weights of the linear part are the coefficients of the Shapley value. One
sees that if Iij > 0, the more fi is different from fj , the more the interaction phenomenon
penalizes the overall assessment Cμ(f ). More precisely, if fi > fj , the good evaluation of f

on criterion i is penalized to a degree Iij /2 by the worse evaluation on criterion j . If Iij < 0,
the more fi is different from fj , the more the interaction phenomenon increases the overall
assessment. More precisely, if fi < fj , the bad evaluation of f on criterion i is saved to a
degree |Iij |/2 by the better evaluation on criterion j .

2.7.2 p-symmetric capacities

k-additive capacities generalize the notion of additivity. Similarly, p-symmetric capacities,
introduced by Miranda et al. (2002), generalize symmetric capacities, and also offer a hier-
archy of more and more complex models.

A subset A is a subset of indifference for μ if for all B1,B2 ⊆ A such that |B1| = |B2|,
we have μ(C ∪B1) = μ(C ∪B2), for all C ⊆ N \A. Observe that any subset of a subset of
indifference is also a subset of indifference, and that any singleton is a subset of indifference.

Definition 2.8 A capacity μ on N is p-symmetric if the (unique) coarsest partition of N into
subsets of indifference contains exactly p subsets A1, . . . ,Ap . The partition {A1, . . . ,Ap} is
called the basis of μ.

In the above definition, a partition π is coarser than another partition π ′ if all subsets of
π are union of some subsets of π ′.

Clearly, a 1-symmetric capacity is a symmetric capacity. Considering a basis {A1, . . . ,

Ap}, any subset B ⊆ N can be identified with a p-dimensional vector (b1, . . . , bp), with
bi := |B ∩ Ai |. Hence, a p-symmetric capacity needs

∏p

i=1(|Ai | + 1) coefficients to be
defined.



260 Ann Oper Res (2010) 175: 247–286

The Choquet integral for 1-symmetric capacities is just an OWA (see Sect. 2.3). For
p-symmetric capacities with basis {A1, . . . ,Ap}, the formula becomes:

Cμ(f ) =
p∑

i=1

Cμ|Ai
(f|Ai

)+
∑

B|B �⊆Aj ,∀j

mμ(B)
∧

i∈B

fi,

where mμ is the Möbius transform of the p-symmetric capacity, μ|Ai
is the restriction of μ

to Ai , i.e.,

μ|Ai
(C) := μ(C), ∀C ⊆ Ai,

and x|Ai
is the restriction of x to Ai .

The above expression is slightly simpler than the one given in Miranda et al. (2002).
An important observation is that for i = 1, . . . , p, μ|Ai

is a symmetric nonnormalized ca-
pacity on Ai , therefore Cμ|Ai

is a classical OWA operator on Ai , with nonnegative weights

wi1 , . . . ,wi|Ai | satisfying
∑|Ai |

j=1 wij = μ(Ai).

2.7.3 k-intolerant capacities

Suppose a Choquet integral Cμ is used to aggregate scores on criteria, and suppose the output
value Cμ(f ) of f is always bounded above by the kth lowest coordinate fσ(k) of f . Then,
clearly, this Choquet integral has a somehow intolerant behavior. The lower the value of k,
the more intolerant the behavior. This suggests the following definition (Marichal 2004),
where as before σ is a permutation on N such that fσ(1) ≤ · · · ≤ fσ(n).

Definition 2.9 A Choquet integral Cμ (or equivalently its underlying capacity μ) is at
most k-intolerant if Cμ(f ) ≤ fσ(k). It is k-intolerant if, in addition, Cμ(f ) �≤ fσ(k−1), where
fσ(0) := 0 by convention.

It can be shown that Cμ is at most k-intolerant if and only if μ(A)= 0, ∀A ⊆N such that
|A| ≤ n− k.

The dual notion of k-tolerant capacities can be introduced as well: then Cμ ≥ fσ(k), which
is equivalent to μ(A)= 1, ∀A⊆ N such that |A| ≥ k.

Another form of intolerance can be expressed through the concept of veto criterion (Gra-
bisch 1997b).

Definition 2.10 A criterion i ∈ N is a veto for a Choquet integral Cμ (or equivalently its
underlying capacity μ) if Cμ(f ) ≤ fi , for all f ∈ R

n+.

It can be shown that i is a veto for μ if and only if μ(A) = 0 whenever A �� i. More
generally, a coalition A of criteria is a veto if Cμ(f ) ≤ ∧

i∈A fi , for all f ∈ R
n+, which is

equivalent to μ(B)= 0 whenever B �⊇A.
The dual notion of veto is called favor. A coalition A of criteria i is a favor for μ if

Cμ(f ) ≥ ∨
i∈A f (i), for all f ∈ R

n+, which is equivalent to μ(B)= 1 whenever A∩B �= ∅.

3 Bipolar models

We have seen in Sect. 2 the case of the Choquet integral on unipolar scales. These scales
are not always appropriate. In particular, the DM may not feel comfortable with the ref-
erence elements Ui since they correspond to very extreme preference states (Grabisch and
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Labreuche 2005b; Grabisch 2005). Bipolar scales are alternative measurement scales, for
which the extreme preference states are not explicitly considered. The Choquet integral de-
fined in Sect. 2.3 aggregates nonnegative scores measuring the preferences of the DM on
unipolar scales. As we will see in this section, there are many ways to extend the Choquet
integral to bipolar scales, i.e., to R

n.

3.1 Bipolar scale

A scale on Xi is said to be bipolar if there exists in Xi a particular element or level 0i , called
neutral level,3 such that the elements of Xi preferred to 0i are considered as “good”, while
the elements of Xi less preferred than 0i are considered as “bad” for the DM. A unipolar
scale (see Sect. 2.1) has no neutral level. Bipolar scales depict attractiveness or desirability.
The notion opposite to the attractiveness exists and corresponds to repulsiveness. The neutral
level is the absence of attractiveness and repulsiveness. A bipolar scale is encoded in R,
where the zero value corresponds to the neutral element, the positive values to the attractive
elements of Xi , and the negative values to the repulsive elements. One has ui(0i ) = 0. The
satisficing level Si defined in Sect. 2.1, is the second reference level used on bipolar scales.
For convenience, we will denote it again by 1i . The existence of these absolute neutral
and satisficing levels is debatable, however it has roots in psychology (Slovic et al. 2002)
and in the theory of bounded rationality of Simon (1956) (see Grabisch and Labreuche
2005b and Grabisch 2005 for more details), and it has been supported by many applications
(Bana e Costa and Vansnick 1997). We will also see an example in Sect. 7.1. For a detailed
presentation of bipolarity, see Grabisch et al. (2008a).

3.2 Motivating example

The examples presented in the literature to show the flaws of the weighted sum and to
motivate the Choquet integral are usually based on conditional relative importance among
criteria. A classical example is the assessment of students with the help of three criteria:
mathematics, statistics and language skills. Each course can be naturally represented on a
bipolar scale where the neutral level is the aspiration level of the director of the school.
Assuming an evaluation scale from −10 to 10, consider four students a, b, c, d with the
following marks:

u1(a) = 8, u1(b) = 8, u1(c) =−5, u1(d) =−5,

u2(a) = 6, u2(b) = 5, u2(c) = 6, u2(d) = 5,

u3(a) =−3, u3(b) =−2, u3(c) =−3, u3(d) =−2.

The director expresses the following preferences

b � a � c � d. (3.1)

The comparison b � a results from the fact that, since a and b are both good in mathematics,
the director prefers the student that is better in language. The comparison a � c is trivial.
Finally c � d since for two students bad in mathematics, the director prefers the student that
is better in statistics.

3This should not be confused with our notation of the unsatisfactory level of Sect. 2.
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Clearly, the weighted sum fails to represent (3.1). In order to check whether the Choquet
integral succeeds, let us first define the asymmetric Choquet integral in R

n:

Cμ(f ) := Cμ(f +)− Cμ(f −)

where f + := f ∨ 0 (componentwise), and f − = (−f )+. Observe that the formula in Defin-
ition 2.3 is still valid for the asymmetric integral with real-valued integrands. It is easy to see
that any normalized capacity fulfilling μ({1,2}) = μ({1}) = 0.7 and μ({2,3}) = μ({2}) =
0.3 satisfies to relation (3.1).

Since the justification given by the director on relations (3.1) is not restricted to the
students a, b, c, d , the same preferences are obtained for other students a′, b′, c′, d ′

u1(a
′) = 4, u1(b

′) = 4, u1(c
′) =−1, u1(d

′)=−1,

u2(a
′) = 6, u2(b

′) = 5, u2(c
′) = 6, u2(d

′)= 5,

u3(a
′) =−3, u3(b

′) =−2, u3(c
′) =−3, u3(d

′)=−2.

Hence

b′ � a′ � c′ � d ′. (3.2)

Strangely enough, these preferences cannot be represented by an asymmetric Choquet in-
tegral since b′ � a′ is equivalent to μ({1,2}) + μ({2}) < 1, and c′ � d ′ is equivalent to
μ({1,2}) + μ({2}) > 1. We conclude that, by changing a little bit the above example pre-
sented as a motivating example to the Choquet integral, a limitation of this model is obtained.

3.3 Notion of bi-capacity and bipolar Choquet integral

The previous example shows a situation where the decision strategies of the DM are condi-
tional on some criteria being good or bad. The decision behavior of the DM is thus bipolar.
Due to (2.2), the capacity focuses only on the positive part of the bipolar scale in the asym-
metric Choquet integral. Hence the latter cannot represent bipolar decision strategies. The
limitation of this model thus comes from the notion of capacity. The idea is to define a con-
cept that gathers all combinations of positive and negative values on the criteria. Instead of
focusing the attention on all binary acts (1A,0−A), for all A ⊆N , it seems more appropriate
to look at all ternary acts (1A,−1B,0−(A∪B)), for all disjoint subsets A,B of N .

Let

Q(N) := {(A,B) ∈ 2N × 2N | A∩B = ∅}.
Many independent works have led to the definition of functions on Q(N). A ternary
voting game is a function v : Q(N) → {−1,1}, and is used to model abstention in vot-
ing games (Felsenthal and Machover 1997). Bi-cooperative games defined as functions
v : Q(N) → R satisfying v(∅,∅) = 0 are extension of ternary voting games (Bilbao et al.
2000). The generalization has recently been independently rediscovered in the context of
MCDA:

Definition 3.1 Labreuche and Grabisch 2006a A bi-capacity is a function v : Q(N) →
R satisfying v(∅,∅) = 0, v(A,B) ≤ v(A′,B) whenever A ⊆ A′ (monotonicity w.r.t. the
first argument), and v(A,B) ≥ v(A,B ′) whenever B ⊆ B ′ (monotonicity w.r.t. the second
argument). A bi-capacity v is said to be normalized if v(N,∅) = 1, v(∅,N) =−1.
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Note that the concept of bipolar capacity, which is close to that of bi-capacity, has been
independently introduced (Greco et al. 2002). Bipolar capacities and bi-capacities turn out
to be similar in the context of MCDA (see Grabisch and Labreuche 2005c).

The dual of a bi-capacity v is a bi-capacity v defined by

v(A,B) := −v(B,A), ∀(A,B) ∈ Q(N).

Let �A := {f ∈ R
n, fA ≥ 0, f−A < 0}.

Definition 3.2 Labreuche and Grabisch 2006a For any A ⊆N , f ∈ �A, the bipolar Choquet
integral of f w.r.t. a bi-capacity v is given by

B Cv(f ) := Cμ(|f |)
where μ(C) := v(C ∩A,C \A).

Note that μ is not in general a capacity but a game, since it is not necessarily monotonic.
The fundamental equation (2.2) is generalized as follows:

B Cv(1A,−1B,0−(A∪B)) = v(A,B), ∀(A,B) ∈ Q(N). (3.3)

3.4 Representation of the motivating example

Relation (3.2) is equivalent to the following two inequalities (Labreuche and Grabisch
2006a)

v({1,2},∅)− v({1,2}, {3}) > v({2},∅),

v({2}, {3}) > 0.

Since there is no contradiction between these two inequalities, the preferential informa-
tion given in relation (3.2) can be represented by a Choquet integral w.r.t. a bi-capacity.
An essential question is whether there exists again a slight modification of the same deci-
sion strategies such that the resulting preferences b′′ � a′′ � c′′ � d ′′, for some alternatives
a′′, b′′, c′′, d ′′, cannot be represented by the bi-capacity model. To see this, one can general-
ize the idea behind preference orderings (3.1) and (3.2) in terms of two general rules

(R1) For a student good at mathematics (criterion i), language (criterion j+) is more im-
portant than statistics (criterion j−).

(R2) For a student bad in mathematics (criterion i), statistics (criterion j−) is more impor-
tant than language (criterion j+).

In these preferences, the relative importance of language compare to statistics is conditional
on the student being good or bad in mathematics. Throughout this subsection, we will denote
by i, j+, j− the indices in rules (R1) and (R2).

It has been shown in Labreuche and Grabisch (2007) that the Choquet integral w.r.t. a
bi-capacity fails to represent (R1) and (R2) in general. Bi-capacities have been introduced
to represent complex preferences that cannot be modeled with a capacity. Likewise, one may
seek for a more general model than bi-capacity able to represent rules (R1) and (R2). Such
a model, that can be described by an aggregation function F : Rn → R, must be continuous
and non-decreasing. It should also be piecewise linear as a natural generalization of the
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Choquet integral. As a matter of fact, there does not exist any aggregation function satisfying
both the previous three conditions and rules (R1) and (R2) (Labreuche and Grabisch 2007).
More precisely, the following result holds.

Proposition 3.3 (Labreuche and Grabisch 2007) Assume that F : R
n → R is continuous,

non-decreasing and piecewise linear. Let �+ ⊆ {f ∈ R
n , fi ≥ 0}, �− ⊆ {f ∈ R

n , fi ≤ 0}
such that F is linear in �+ and in �−. If there exists a nonempty open set B ⊆ R

2 and
f−{i,j+,j−} ∈ R

n−3 such that

�+ ∩�− ⊇ {(0i , gj+ , gj− , f−{i,j+,j−}), ∀(gj+ , gj−) ∈ B}
then rules (R1) and (R2) cannot be represented by F in the two domains �+ and in �− (i.e.,
criterion j+ is more important than criterion j− in �+, and criterion j+ is less important
than criterion j− in �−).

This proposition proves that if, for two neighbor domains �+ and �− such that the value
of criterion i can be arbitrarily small independently of criteria j+ and j− in both �+ and
�−, then rules (R1) and (R2) cannot be satisfied in both �+ and �−. This explains why
bi-capacities cannot represent relation (3.2). In short, rules (R1) and (R2) cannot be satisfied
if criterion i is the one closest to the neutral level among criteria i, j+, j−.

One cannot gain a lot by extending bi-capacities to more complex models. Actually, bi-
capacities enable to represent the following rules.

(R1′) If the value w.r.t. criterion i is attractive (> 0), and i is not the closest to the neutral
level among criteria i, j+, j−, then criterion j+ is more important than criterion j−.

(R2′) If the value w.r.t. criterion i is repulsive (< 0), and i is not the closest to the neutral
level among criteria i, j+, j−, then criterion j+ is less important than criterion j−.

One can interpret this restriction in the following way. When criterion i has the closest value
to the neutral level among criteria i, j+ and j−, the distinction between i being attractive or
repulsive is not so meaningful to the DM and shall be removed from rules (R1) and (R2).

3.5 Particular models

The number of terms in a bi-capacity, which is |Q(N)| = 3n, is much larger than that for
a capacity, which is 2n. So, the submodels of the bi-capacities containing much less terms
than bi-capacities are of particular interest.

First of all, if a bi-capacity v satisfies v(A,B) = v(N \B,N \A) for all (A,B) ∈ Q(N),
then B Cv is the asymmetric Choquet integral of the capacity μ given by μ(C)= v(C,∅) for
all C ⊆ N (Labreuche and Grabisch 2006a).

The Šipoš integral (Šipoš 1979)—also called symmetric Choquet integral—is defined by

Čμ(f ) := Cμ(f +)− Cμ(f −),

for all f ∈ R
n. If a bi-capacity v satisfies v(A,B) =−v(B,A) for all (A,B) ∈ Q(N), then

B Cv is the Šipoš integral of the capacity μ given by μ(C)= v(C,∅) for all C ⊆ N .
Tversky and Kahneman have proposed a model that encompasses both the symmetric

and asymmetric Choquet integrals, known as the Cumulative Prospect Theory (CPT) model
(Tversky and Kahneman 1992):

CPT(f ) := Cμ1(f
+)− Cμ2(f

−),
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where μ1 and μ2 are two capacities. If a bi-capacity v satisfies v(A,B) − v(A,B ′) =
v(A′,B) − v(A′,B ′) for any (A,B), (A,B ′), (A′,B), (A′,B ′) ∈ Q(N), then B Cv becomes
the CPT model with the two capacities μ1 and μ2 given by μ1(C) = v(C,∅) and μ2(C) =
−v(∅,C) for all C ⊆N .

The CPT model fails to represent the preferences given in Sect. 3.2 and all decision
strategies that are conditional on some criteria being good or bad (i.e., that depend on the
sign of some criteria). It is thus necessary to define other submodels of bi-capacities. It
can be noticed that in most MCDA problems with sign-dependent decision strategies, the
bipolar nature is not generally compulsory on all criteria. Let us denote by P ⊆ N the set
of criteria for which the DM’s behavior is clearly of bipolar nature. In the example given
in Sect. 3.2, P is reduced to criterion Mathematics. The approach proposed in Labreuche
and Grabisch (2004) is to allow more degrees of freedom on the criteria P compared to
the remaining criteria N \ P that do not need bipolarity. This is done by enforcing some
symmetry conditions on the criteria N \P , which state that the interaction between positive
and negative values vanishes for these criteria. More precisely, the interaction between two
criteria i and j , where i is attractive and j is repulsive, in the presence of bi-coalition
(A,B) ∈ Q(N \ {i, j}) is defined by:

δ
A,B
{i},{j }(v) = v(A∪ {i},B ∪ {j})− v(A∪ {i},B)− v(A,B ∪ {i})+ v(A,B).

Definition 3.4 A bi-capacity v is said to be symmetric outside P (called P -nonsymmetric)
if δ

A,B
{i},{j }(v)= 0 for all (A,B) ∈ Q(N \ {i, j}) and all {i, j} ⊆N \ P .

This is derived from a property satisfied by the asymmetric Choquet integral and the CPT
model. Set

QP (N) := t{(A∪A′,B ∪B ′), (A,B) ∈ Q(P ), (A′,B ′) ∈ Q(N \ P )

with A′ = ∅ or B ′ = ∅}.

Let vP be the restriction of v on QP (N). vP contains 3n−p × (2p+1 − 1) terms and is thus
bipolar on P and unipolar on N \P . The next lemma shows that v is determined only from
the knowledge of vP .

Lemma 3.5 (Labreuche and Grabisch 2004) If v is P -nonsymmetric, then for all (A,B) ∈
Q(P ) and all (A′,B ′) ∈ Q(N \ P )

v(A∪A′,B ∪B ′) = vP (A∪A′,B)+ vP (A,B ∪B ′)− vP (A,B).

Usual bi-capacities are recovered when P = N . Moreover, ∅-nonsymmetric bi-capacities
correspond to the CPT model.

3.6 Construction of the value functions based on the MACBETH approach

3.6.1 Case of the Šipoš integral

This section is based on Grabisch et al. (2003). The construction of the value function for
the Šipoš integral is quite similar to that presented in Sect. 2.4. The only difference is the use
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of the two reference levels 0i and 1i . To construct the value function on Xi , the following
set is introduced:

Xi� := {(01, . . . ,0i−1, xi,0i+1, . . . ,0n | xi ∈ Xi}.
As in Sect. 2.4, a unique scale vi is constructed on Xi� by enforcing vi(0) = 0 and
vi(1i ,0−i ) = 1. It remains to define the value function on attribute i as follows:

∀xi ∈ Xi, ui(xi) := vi(xi,0−i ). (3.4)

We need to justify the previous construction and in particular relation (3.4). The two interval
scales vi and Č ◦ u, where u = (u1, . . . , un), on Xi� are equivalent. Hence there exists α > 0
and β such that for all xi ∈ Xi ,

Čμ(u1(01), . . . , ui−1(0i−1), ui(xi), ui+1(0i+1), . . . , un(0n)) = α vi(xi,0
i
)+ β.

Hence Čμ(ui(xi),0−i )= αui(xi)+ β for all xi ∈ Xi . Since the value functions take positive
and negative values on bipolar scales, we obtain

∀a ∈ R, Čμ(ai,0−i ) = αa + β. (3.5)

This relation holds for the Šipoš integral with α = μ({i}) and β = 0 so that the previous
construction (3.4) is valid.

3.6.2 Case of the general bipolar Choquet integral

The construction made for the Šipoš integral cannot be used for the bipolar Choquet inte-
gral since relation (3.5) is not true for B Cv . The reason is that the coefficients α and β for
B Cv(ai,0−i ) depend on the sign of a.

This leads to constructing the positive and negative part of ui separately (Labreuche
and Grabisch 2006a). Let us denote by X+

i the elements of Xi that are more attractive
than 0i , and by X−

i the elements of Xi that are more repulsive than 0i . As a consequence,
we introduce the two subsets X�+i and X�−i of X defined by

X�+i := {(xi,0−i ), xi ∈ X+
i }, X�−i := {(xi,0−i ), xi ∈ X−

i }.
A unique scale v+

i is constructed on Xi�+ by enforcing v+
i (0) = 0 and v+

i (1i ,0−i ) = 1. We
obtain ui(xi) := v+

i (xi,0−i ) for all xi ∈ X+
i .

Concerning the negative part of the scale, we need to assume the existence in X−
i of

an element denoted by −1i that is considered as bad and unsatisfactory. It is symmetric
to the level 1i and corresponds to a reference level. A unique scale v−

i is constructed on
Xi�− by enforcing v−

i (0) = 0 and v−
i (−1i ,0−i ) =−1. We obtain ui(xi) := v−

i (xi,0−i ) for
all xi ∈ X−

i .
Hence the value function ui is thoroughly determined on Xi and the positive and negative

parts are identical at 0i since v−
i (0) = v+

i (0).

3.7 The bipolar Choquet integral as a parsimonious linear interpolator

As for the classical Choquet integral, the bipolar Choquet integral is also a parsimo-
nious linear interpolator on the hypercube [−1,1]n, between all points of the form
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(1A,−1B,0−(A∪B)), for all (A,B) ∈ Q(N) (Grabisch 2004b). Indeed, the bipolar Choquet
integral w.r.t. a bi-capacity v is a symmetrization of the classical Choquet integral on [0,1]n
over [−1,1]n. More precisely, any f ∈ [−1,1]n is mapped to [0,1]n taking its absolute
value |f |, and a game μ is defined from v and f by μ(C) := v(C ∩ A,C \ A), where
A := {i ∈ N | fi ≥ 0}.

4 The ordinal case: the Sugeno integral

In many applications, scores on criteria are expressed on a finite ordinal scale or a qual-
itative scale. Most of the time, this ordinal information is turned in an arbitrary way into
cardinal information, or is treated as such (e.g., A, B, C, D, E are coded by numbers 1, 2, 3,
4, 5, and then these numbers are treated as real numbers in the calculations). From a mea-
surement theoretical point of view (see, e.g., Roberts 1979), numbers on an ordinal scale
cannot be handled by standard arithmetic operators, like sum, product, difference, etc. Only
comparisons can be done, which considerably reduces our possibility of building models.
Moreover, the finiteness of the scale adds further technical intricacies.

There are basically two attitudes for solving this problem.

– The first one consists in trying to turn the ordinal problem into a cardinal one. The naive
(and most often used) way of converting levels of an ordinal scale into numbers illustrates
this approach. A sounder way to proceed is to get cardinal information from the ordinal
one, for example by counting the number of times an alternative is better or worse than
the other ones on a given criterion. This number can then be used as a (cardinal) score
on this criterion, and the Choquet integral can be used with these new scores. This is
basically what was proposed by Roubens (2001), and in the TOMASO method (Meyer
and Roubens 2005; Marichal et al. 2005). Note however that the scores obtained in this
way have a very different meaning from the original ones, in particular, they are relative
to the set of alternatives.

– The second tries to directly deal with the ordinal scores and the poor algebra underlying
them, with limitations due to finiteness.

In this survey paper, we develop the latter attitude, so as to highlight the limits of this ap-
proach.

4.1 Why the Sugeno integral

A fundamental result obtained by Marichal (2009) shows that if one restricts to the use of
max and min as operators, then the Sugeno integral is the only solution for aggregating
scores. Specifically, let us call lattice weighted polynomial P (f1, . . . , fn) any expression
formed with ∨,∧, parentheses, constants, and variables f1, . . . , fn defined on some lat-
tice L. Obviously, a Sugeno integral Sμ(f ) on N , where f is the vector of scores expressed
on some ordinal scale, is an example of weighted lattice polynomial (see Definition 2.4).
What is remarkable is that conversely, any lattice polynomial satisfying P (0, . . . ,0) = 0
and P (1, . . . ,1) = 1 is necessarily a Sugeno integral.

We refer the reader to survey papers (Dubois et al. 2001a; Murofushi and Sugeno 2000)
and to (Marichal 2000, 2001) for properties of the Sugeno integral, especially in a deci-
sion making perspective. We mention that in the context of decision under uncertainty,
an axiomatic construction similar to the one of Savage has been done by Dubois et al.
(2000b, 2001b).
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4.2 The symmetric Sugeno integral

We have defined for the Choquet integral its symmetric and asymmetric versions for real-
valued integrands, i.e., which may take negative values. The same should be done for the
Sugeno integral, but a first question is: what is a negative number on an ordinal scale?
This amounts to first define a zero level, then to perform some order-reversing symmetry
around this zero level. The second question is: how to extend min and max operators on this
symmetrized scale so as to keep good properties? Curiously, this second question happens
to be much more difficult than one might think (see details in Grabisch 2003a, 2004a).

Let us call L+ some ordinal scale, with least element denoted by 0, and define L :=
L+ ∪ L−, where L− is a reversed copy of L+, i.e. for any a, b ∈ L+, we have a ≤ b iff
−b ≤ −a, where −a,−b are the copies of a, b in L−. Moreover, the two elements 0,−0
are merged into a single one denoted by 0. Hence, the zero level of L is 0, and levels above
or below it are the positive or negative values of the scale.

We want to endow L with operations �, � satisfying (among possible other condi-
tions):

(C1) �, � coincide with ∨,∧ respectively on L+,
(C2) −a is the symmetric of a, i.e. a � (−a)= 0.

Hence we may extend to L what exists on L+ (e.g. the Sugeno integral), and a difference
operation could be defined. The problem is that conditions (C1) and (C2) imply that �

would be non-associative in general. Indeed, take 0 < a < b and consider the expression
(−b) � b � a. Depending on the place of parentheses, the result differs since ((−b) � b) �

a = 0 � a = a, but (−b) � (b � a) = (−b) � b = 0.
It can be shown that the best solution (i.e., associative on the largest domain) for � is

given by:

a � b :=

⎧
⎪⎨

⎪⎩

−(|a| ∨ |b|) if b �= −a and |a| ∨ |b| = −a or =−b,

0 if b =−a,

|a| ∨ |b| otherwise.

(4.1)

Except for the case b = −a, a � b equals the absolutely larger one of the two elements a

and b.
The extension of ∧, viewed as the counterpart of multiplication, is simply done on the

principle that the rule of sign should hold: −(a � b) = (−a) � b, ∀a, b ∈ L. It leads to an
associative operator, defined by:

a � b :=
{
−(|a| ∧ |b|) if signa �= signb,

|a| ∧ |b| otherwise.
(4.2)

Mimicking the definition of the symmetric Choquet integral, the symmetric Sugeno integral
is defined as follows:

Šμ(f ) := Sμ(f +) � (−Sμ(f −)),

for any L-valued f , with same notation as in Sect. 2.3.
There is no suitable definition of asymmetric integral, since the conjugate of a capacity

is difficult to define in a proper way on an ordinal scale.
Lastly, we mention Denneberg and Grabisch (2004), who have proposed a general for-

mulation of the Sugeno integral on arbitrary symmetric scales.
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4.3 Construction of the model

As for the Choquet integral, we need a procedure to build our model, hence the value func-
tions and the capacity.

It is possible to follow an approach similar to the one presented in Sect. 2, by the use of
neutral and satisfactory levels and particular sets of alternatives Xi�, i ∈ N , and X�{0,1} (see
a full description in Grabisch and Labreuche 2005b). However, a special difficulty arises
here since for any alternative (xi,0−i ) in Xi�, its evaluation by the Sugeno integral is:

Sμ(u(xi,0−i )) = ui(xi)∧μ({i}).
Then, if ui(xi) ≥ μ({i}), the value of ui(xi) cannot be observed since it is “hidden” by
μ({i}), which acts like a threshold (compare the situation with the Choquet integral, where
μ({i}) is simply a multiplicative factor).

Greco et al. (2004) have proposed another approach based on decision rules, which does
not use neutral nor satisfactory levels, because commensurate scales are no more neces-
sary in their framework. Moreover, this result gives a characterization of the Sugeno integral
solely based on the preference relation. This result having been stated without proof, Bouys-
sou et al. have proposed a proof of this deep result (Bouyssou et al. 2006). Specifically, the
preference relation ≺ is said to be strongly 2-graded if for all x, y, z,w ∈ X, all ai ∈ Xi , and
all i ∈ N

x � z

and
y � w

and
z � w

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(ai, x−i ) � z

or
(xi, y−i )� w.

The characterization is the following.

Proposition 4.1 Let � be a binary relation on X. This relation can be represented by the
Sugeno integral (see (2.1)) if and only if � is transitive and complete, it satisfies the order-
denseness condition (i.e., it exists a countable subset Y ⊆ X that is dense in X for �), and
it is strongly 2-graded.

4.4 Identification of capacities

In situations where value functions are known, the problem of the identification of capacities
when the model is a Sugeno integral in an ordinal context, or even when L = [0,1] or
[−1,1], appears to be rather different from the case of the Choquet integral. The main reason
is that we are not able to write the identification problem as a minimization problem stricto
sensu, since the notion of difference between values, hence of error, is not defined in a way
which is suitable on an ordinal scale, to say nothing about “squared errors” or “average
values”.

Even if we take L as a real interval, which permits to define a squared error criterion
as for the Choquet integral, the minimization problem obtained is not easy to solve, since
it involves non-linear, non-differentiable operations ∨,∧, �, �. In such cases, only meta-
heuristic methods can be used, as genetic algorithms, simulated annealing, etc. There exist
some works in this direction, although most of the time used for the Choquet integral, which
is questionable (Wang et al. 1999; Grabisch 2003b).
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An alternative to this option is to find the set of capacities (possibly empty) which enable
the representation of the preference of the decision maker over a set of alternatives of interest
by the Sugeno integral. A detailed study of this problem has been done by Rico et al. (2005)
for the Sugeno integral. We also mention the work of Słowiński et al. (2002) based on
decision rules.

4.5 Drawbacks, and how to get rid of them

Making decision with the Sugeno integral has some drawbacks, which are clearly put into
light by the following result (Murofushi 2001). Let us consider w.l.o.g. L := [0,1], and � be
a weak order (complete, reflexive, transitive) on [0,1]n, and for a, b ∈ [0,1]n, denote a ≥ b

if ai ≥ bi for all i ∈ N , and a > b if a ≥ b and ai > bi for some i ∈ N , and a � b if ai > bi

for all i ∈ N . We say that � satisfies monotonicity if a ≥ b implies a � b, the strong Pareto
condition if a > b implies a � b, and the weak Pareto condition if a � b implies a � b.
Then the following holds.

Proposition 4.2 Let μ be a capacity on N , and �μ the weak order induced on [0,1]n by
the Sugeno integral Sμ (i.e., a �μ b if Sμ(a) ≥ Sμ(b)).

(i) �μ always satisfies monotonicity.
(ii) �μ satisfies the weak Pareto condition if and only if μ is 0-1 valued.

(iii) �μ never satisfies the strong Pareto condition.

Note that the Choquet integral always satisfies the weak Pareto condition, and the strong
one if and only if μ is strictly monotone.

The main reason of these poor properties is that the Sugeno integral may remain con-
stant over large domains, so it is not discriminative for decision since many alternatives
will receive the same overall score. A natural solution to make it more discriminative is to
use lexicographic approaches. For example, the lexicographic approach applied on the min
or max leads to the well known leximin and leximax (Moulin 1988), which are far more
discriminative than min and max:

x ≺lmin y ⇔ (xσ(1), . . . , xσ(n)) ≤l (yσ(1), . . . , yσ(n)),

where ≤l denotes the lexicographic order, and similarly for the leximax ≺lmax. Dubois and
Fargier (2005), and Fargier and Sabbadin (2005), have proposed a clever way of defining
the lexicographic Sugeno integral (see also Grabisch 2006 and Murofushi 2001 for other
approaches and a survey). Basically, considering m×n matrices u,v, we can compare them
by the complete preorder ≺maxmin defined by

u �maxmin v ⇔
n∨

i=1

m∧

j=1

uij ≤
n∨

i=1

m∧

j=1

vij .

Observe that the Sugeno integral has exactly this max-min form, with m = 2. Now, the order
�lmax(≺lmin), obtained by ordering the columns of the matrix by ≺lmin, and then by using the
�lmax order on them, is a refinement of ≺maxmin, and thus defines a lexicographic Sugeno
integral, much more discriminating than the original Sugeno integral.

If the ordinal scale is finite, by using a suitable encoding of the scale on the real line,
it is shown in Dubois and Fargier (2005) that the �lmax(≺lmin) ordering amounts to compare
alternatives by a Choquet integral. This result generalizes the one of Moulin, saying that
under the same conditions, the leximin and leximax are equivalent to a sum, and shows that,
even on the ordinal case, we are eventually back to the Choquet integral.
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5 Intrinsic analysis of models

The aim of this section is to provide tools for analysing the obtained model, that is, for in-
terpreting the capacity in terms of importance of criteria, interaction, and typical decision
behaviors. We restrict here to the Choquet integral, the main reason being that similar at-
tempts done for the Sugeno integral did not provide, up to this time, sufficiently convincing
results.

5.1 Importance and interaction indices

5.1.1 Case of capacities

The complexity of the notion of capacity comes from the fact that it is defined by 2n values.
The behavior of the DM does not appear clearly when looking at the values taken by the
capacity.

One is interested in particular in knowing what is the importance of a given criterion in
the decision. We may say that a criterion i is important if whenever added to some coalition
A of criteria, the score of (1A∪{i},0−A∪{i}) is significantly larger than the score of (1A,0−A).
Hence, an importance index should compute an average value of the quantity δA

i (μ) :=
μ(A ∪ {i})− μ(A) for all A ⊆ N \ {i}. Another requirement is that the sum of importance
indices should be a constant, say 1. Lastly, the importance index should not depend on the
numbering of the criteria. These three requirements plus a linearity assumption, which states
that the importance index should be a weighted arithmetic mean of the δA

i (μ) coefficients,
uniquely determines the importance index, known as the Shapley importance index (Shapley
1953)

φi(μ)=
∑

A⊆N\{i}

|A|!(n− |A| − 1)!
n! (μ(A∪ {i})−μ(A)).

This value turns out to be exactly equal to the average weight of criterion i in the Choquet
integral over all possible profiles in [0,1]n (Marichal 1998; Kojadinovic 2007b). Note that
the Shapley value is a particular case of the interaction index (2.3): φi(μ)= Iμ({i}).

One would also like to quantify the way two criteria i and j interact together. Recall
that μ(A) is the overall score of an option that is perfectly satisfactory (with score 1) on
criteria A and completely unacceptable (with score 0) on the remaining criteria. Let A ⊆
N \ {i, j}. Consider an option that is very good on criteria A and unacceptable on criteria
N \ (A ∪ {i, j}). One wonders whether it is really beneficial for this option to be good at
both criteria i and j . Values δA

i (μ) = μ(A∪ {i})−μ(A), δA
j (μ) = μ(A∪ {j})−μ(A) and

δA
ij (μ) = μ(A ∪ {i, j}) − μ(A) correspond to the added value for this option to be good at

criterion i but not at criterion j , to be good at criterion j but not at criterion i and to be good
at both criteria i and j respectively. When δA

ij (μ) > δA
i (μ)+ δA

j (μ), improving both i and j

gives strictly more than improving i and j separately. In this case, criteria i and j deserve to
be well-satisfied together. We say in this case that there is complementarity among criteria i

and j . When δA
ij (μ) < δA

i (μ) + δA
j (μ), it is not interesting to improve both criteria i and j

together. We say in this case that there is substitutability among criteria i and j . We observe
that δA

{i,j }(μ) := δA
ij (μ)− δA

i (μ)− δA
j (μ)= μ(A∪{i, j})−μ(A∪{i})−μ(A∪{j})+μ(A).

The interaction index is a weighted arithmetic mean of these differences over all A ⊆ N \
{i, j} (Murofushi and Soneda 1993)

Iij (μ)=
∑

A⊆N\{i,j }

|A|!(n− |A| − 2)!
(n− 1)! δA

{i,j }(μ).
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A positive interaction describes complementarity among criteria, and a negative interaction
depicts substitutability among criteria (Grabisch 1996, 1997b). The interaction index Iij (μ)

can also be interpreted as the variation of the mean weight of criterion i in the Choquet inte-
gral when criterion j switches from the least satisfied criterion to the best satisfied criterion
(Kojadinovic 2007b). There are two axiomatizations of the interaction index (Grabisch and
Roubens 1999; Fujimoto et al. 2006). Note that the interaction index Iij (μ) is a particular
case of the interaction index (2.3): Iij (μ) = Iμ({i, j}).

5.1.2 Case of bi-capacities

As for capacities, due to the complexity of the bi-capacity model, involving 3n coefficients,
it is important in practice to be able to analyze a bi-capacity in terms of decision behaviors,
namely importance of criteria and interaction among them.

Let us first define the importance φi(v) for a bi-capacity v. Unlike capacities where we
have previously seen that we come up quite easily to a unique definition, many definitions
seem suitable for bi-capacities (see Felsenthal and Machover 1997; Grabisch and Labreuche
2005a; Bilbao et al. 2009; Labreuche and Grabisch 2006b; Kojadinovic 2007b). Note that
the last two proposals are identical. Cooperative Game Theory is a good approach to se-
lect the most appropriate definition. In this setting, the bi-capacity v is interpreted as a
bi-cooperative game. More precisely, in the context of cost sharing problems, v(A,B) is
the stand alone price of serving agents in A ∪ B when A have decided to contribute posi-
tively to the game and B have decided to contribute negatively to the game (Labreuche and
Grabisch 2008). Unlike usual games, where at the end all players join the grand coalition,
it is not assumed here that all players have decided to be positive contributors. We denote
by S the set of players that have decided to be positive contributors, and by T the set of
players that have decided to be negative contributors. The remaining players N \ (S ∪ T )

have chosen not to participate to the game. As a result, the share of the total cost among
the players depends on the bi-coalition (S,T ). We denote by ϕ

S,T
i (v) the payoff allotted

to player i. This share is uniquely obtained by extending the requirements characterizing
the Shapley value, and by adding a monotonicity requirement (Labreuche and Grabisch
2008)

ϕ
S,T
i (v) =

∑

K⊆(S∪T )\{i}

k!(s + t − k − 1)!
(s + t)!

× [v(S ∩ (K ∪ {i}), T ∩ (K ∪ {i}))− v(S ∩K,T ∩K)].
From this expression, the payoff for positive contributors (i.e., players in S) is non-negative,
the payoff for negative contributors (i.e., players in T ) is non-positive, and the payoff
for the remaining players is zero. The idea is thus to define the importance of criterion
i relatively to bi-coalition (S,T ) as φ

S,T
i (v) = |ϕS,T

i (v)| in order to obtain non-negative
values. One can then define the mean importance of criterion i as the average value
of φ

S,T
i (v) over all bi-coalitions (S,T ) such that S ∪ T = N (Labreuche and Grabisch

2006b):

φi(v) = 1

2n−1

∑

S⊆N,i∈S

φ
S,N\S
i (v)

=
∑

(A,B)∈Q(N\{i})

(a + b)!(n− a − b − 1)!
2a+bn! (v(A∪ {i},B)− v(A,B ∪ {i})).
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This value turns out to be exactly the average weight of criterion i in the bipolar Choquet
integral (Labreuche and Grabisch 2006b; Kojadinovic 2007b).

The interaction index Iij (v) can be obtained from the importance indices by using the
recursive axiom of Grabisch and Roubens (1999):

Iij (v) =
∑

(A,B)∈Q(N\{i})

(a + b)!(n− a − b − 2)!
2a+b(n− 1)!

(
δ

A,B
{i,j },∅(v)− δ

A,B
∅,{i,j }(v)

)

where δ
A,B
{i,j },∅(v) = v(A ∪ {i, j},B) − v(A ∪ {i},B) − v(A ∪ {j},B) + v(A,B) and

δ
A,B
∅,{i,j }(v) = v(A,B ∪ {i, j}) − v(A,B ∪ {i}) − v(A,B ∪ {j}) + v(A,B). The interaction

index Iij (v) can be interpreted in terms of the variation of the mean weight of criterion i in
the bipolar Choquet integral when criterion j varies (Kojadinovic 2007b).

5.2 The index of average improvement

This section is based on Grabisch and Labreuche (2001). The main concern here is to know
on which criteria acts should be improved on average so as to reach the highest possible
global score. As an example of application, acts could be employees in a company. Their
overall level is evaluated from their skills or know-how in different fields. The company is
interested in helping these people to reach the highest possible level so that they will work
more efficiently. So, we wish to construct an index of importance WA (where A ⊆ N is a
coalition of criteria) that will be large if improving the score of acts in criteria in A yields in
general a large improvement of the overall evaluation. Such an index WA should be defined
and characterized with the help of axioms that are very intuitive for a DM. Basically, we
wish to construct such an index for the Choquet integral. However the Choquet integral
has a complicated expression and is not directly understandable by a DM. Hence, WA must
be defined for general aggregation functions F in L2([0,1]n), and characterized by axioms
based on special evaluation functions that are much more intuitive than the Choquet integral.
The main axiom (called Step Evaluation) considers a special family of aggregators that can
only take the values 0 and 1. For these {0,1}-evaluation functions, a natural expression
for WA comes up. The expression of WA(F) is also natural when F is the weighted sum,
which provides the second axiom. From these two axioms, one can deduce the expression
of WA(F) for any F , assuming that WA(F) is linear and continuous w.r.t. F :

WA(F)= 3 · 2|A|
∫

f∈[0,1]n

∫

gA∈[fA,1]
[F(gA,f−A)− F(f )]df dgA,

where gA ∈ [fA,1] means that for any i ∈ A, gi ∈ [fi,1].
This expression is then computed for the Choquet integral:

Wi(Cμ) = 6
∑

K⊂N\{i}

(|K| + 1)!(n− |K|)!
(n+ 2)! [μ(K ∪ {i})−μ(K)].

This final expression is close to the Shapley index. Interestingly, (Marichal and Mathonet
2007, Corollary 19) have shown that the Wi(Cμ) coefficients are also exactly the dominant
coefficients in the best approximation of the Choquet integral by a linear function.



274 Ann Oper Res (2010) 175: 247–286

5.3 Andness and orness

The andness and orness degrees have been introduced by Dujmović (1974) for root-mean
powers, and express the relative location of a given aggregation function with respect to
minimum and maximum, respectively. More precisely, for any aggregation function F on
[0,1]n,

andness(F ) := max − F

max − min
,

orness(F ) := F − min

max − min
,

where F indicates the expected value of F on [0,1]n, assuming that the inputs are inde-
pendent and uniformly distributed (similarly for min and max). Clearly, these degrees are in
[0,1], and andness(F )+ orness(F ) = 1 always holds. From the relation min = 1

n+1 and the
fact that min and max are dual aggregation functions, one obtains

andness(F ) := n

n− 1
− n+ 1

n− 1
F,

orness(F ) := − 1

n− 1
+ n+ 1

n− 1
F .

Marichal (2004) has shown that the orness degree for the Choquet integral is

orness(Cμ)=
∑

T⊆N
0<t<n

1

(n− 1)
(
n

t

)μ(T )

=
∑

T⊆N

n− t

(n− 1)(t + 1)
mμ(T )

where mμ is the Möbius transform of μ.

5.4 Tolerance and intolerance

In Sect. 2.7.3, we have presented the notions of k-(in)tolerant capacities, and of veto or favor
criteria. We give in this section complementary notions, leading to useful indices, introduced
by Marichal (2007).

The notion of veto and favor being rather extreme, they rarely occur in practice, and it is
more useful to define a degree of veto and favor. This can be achieved by considering the
fact that, for every x ∈ [0,1]n, if criterion i is a veto, then Cμ(0i , x−i ) = 0 = min(0i , x−i ),
and if i is a favor then Cμ(1i , x−i ) = 1 = max(1i , x−i ). Then the degrees of veto and favor
for criterion i are respectively defined by

veto(Cμ, i) := E(max(0i ,Z−i ))−E(Cμ(0i ,Z−i ))

E(max(0i ,Z−i ))−E(min(0i ,Z−i ))
,

favor(Cμ, i) := E(Cμ(1i ,Z−i ))−E(min(1i ,Z−i ))

E(max(1i ,Z−i ))−E(min(1i ,Z−i ))
,
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where E denotes expectation, assuming that the random inputs Z1, . . . ,Zn are independent
and uniformly distributed. This gives, after computation (Marichal 2007),

veto(Cμ, i)= 1 −
∑

T⊆N\i

1

(n− 1)
(
n−1

t

)μ(T )

= 1 −
∑

T⊆N\i

n

(n− 1)(t + 1)
mμ(T ),

favor(Cμ, i)=
∑

T⊆N\i

1

(n− 1)
(
n−1

t

)μ(T ∪ i)− 1

n− 1

=
∑

T⊆N\i

n

(n− 1)(t + 1)
[mμ(T ∪ i)+mμ(T )] − 1

n− 1
.

Just as for veto and favor indices, it seems interesting to introduce indices measuring
the degree to which a Choquet integral is k-tolerant or k-intolerant. The basic property
used for defining a degree of being k-intolerant is Cμ(x) = 0 for all x ∈ [0,1]n such that
xσ(k) = 0, while for k-tolerance the equivalent property is Cμ(x) = 1 for all x ∈ [0,1]n such
that xσ(n−k+1) = 1. This leads to the following definitions, for any 0 ≤ k < n:

intolk(Cμ) = n− k + 1

(n− k)
(
n

k

)
∑

K⊆N
|K|=k

E(Cμ(0K,Z−K)),

tolk(Cμ) = n− k + 1

(n− k)
(
n

k

)
∑

K⊆N
|K|=k

E(Cμ(1K,Z−k))− 1

n− k
,

which gives, after computation

intolk(Cμ)= 1 − 1

n− k

n−k∑

t=0

1
(
n

t

)
∑

T⊆N
|T |=t

μ(T ),

tolk(Cμ)= 1

n− k

n∑

t=k

1
(
n

t

)
∑

T⊆N
|T |=t

μ(T )− 1

n− k
.

6 Analysis of the models based on alternatives

This section is devoted to the latest phase of a decision aiding process where the multi-
criteria model has already been constructed from interview with the DM. In this last phase,
the model is evaluated against several options that are brought by the DM. Yet, it is often
the case that the DM needs more than just an evaluation of his options. He wants to have
an explanation of these evaluations and in particular of the ordering of the options resulting
from these evaluations. It often happens that, looking at the evaluations, the DM wants to
work on an option so as to improve it. He needs thus to have recommendations on the criteria
on which the improvement is the most beneficial.
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6.1 Explanation of the result of the Choquet integral

This section is based on Labreuche (2005, 2006). The DM wants to have an explanation of
the result of the evaluation made by the model. Consider two profiles g, h ∈ R

n. Assuming
without loss of generality that F(g) > F(h), the recommendation of the model F is that
option g is preferred to h. The DM wants to have an argumentation of the reason of this
preference.

The central ingredient here is the notion of argument. The arguments that can be used
are the elementary decision behaviors P represented in the aggregation function. Consider
a family of aggregation functions parametrized by coefficients α = {αi}i∈P :

Fα(f )=
∑

i∈P

αiFi(f ) (6.1)

where for all i ∈ P , αi ≥ 0 and
∑

i∈P αi = 1. By (2.6), the 2-additive model can be put into
this form. It is also the case of the general Choquet integral, even if this representation is
not unique and not always simple to obtain. The Fi functions are min/max combinations of
the criteria for the Choquet integral. Each elementary decision behavior Fi is very simple to
understand and corresponds to an argument. Hence P is identified to the set of arguments
that can be given to the DM. An argument i ∈ P is said to be positive (resp. negative)
regarding the comparison Fα(g) > Fα(h) if Fi(g) > Fi(h) (resp. Fi(g) < Fi(h)).

The complexity of the argumentation to be presented to the DM depends basically on how
tight the comparison between g and h is. For instance, if gi > hi for all i ∈ N (Situation I),
then relation Fα(g) > Fα(h) is trivial and it is not necessary to use the specificities of the
values α in the generated argumentation. Now, if Fα̂(g) ≤ Fα̂(h) where α̂i = 1/|P | for all
i ∈ P (Situation II), there are more negative arguments than positive ones. Thus relation
Fα(g) > Fα(h) implies that the positive arguments are generally speaking stronger than the
negative arguments, i.e., the weights αi of the positive arguments are on average larger than
that of the negative arguments. More generally, depending on α, f and g, there are several
patterns of argumentation that can be generated to the DM. These types are called anchors
(Labreuche 2006). Situations I and II are two instances of anchors. We denote by �(α,g,h)

the set of anchors that can be used in the comparison Fα(g) > Fα(h). An anchor ψ can be
basically used to specify the reason for discarding some arguments of P . This reason might
be the existence of reference parameters αψ : P → R assigned to the anchor ψ . This is the
case of Situation II where αψ := α̂ for this anchor.

The set of arguments that can be used by an anchor ψ ∈ � is denoted by P (ψ) ⊆ P .
One has P (ψ) = ∅ in the anchor of Situation I, and P (ψ) = P for Situation II. When
presenting to the DM the argumentation associated to an anchor ψ , it is usually not necessary
to mention all arguments P (ψ). In order to determine the very arguments that are at the root
of the result of the comparison of g and h, the elementary decision behaviors are “removed”
from the explanation one at a time while the decision remains the same. This means that the
parameters α are replaced by the reference ones for some elements of P (ψ). We define the
weights α ⊗A αψ by (α ⊗A αψ)d = αd if d ∈ A, and = (αψ)d otherwise. Then one looks
for A ⊆ P (ψ) with the lowest cardinality for which Fα⊗Aαψ

(g) > Fα⊗Aαψ
(h) (Labreuche

2006). Such subset A is displayed to the DM for the anchor ψ .

6.2 Recommendation of the criteria on which improvement is the most beneficial

It is quite usual in MCDA that the options that are evaluated are not fixed and that the DM
wishes to obtain recommendations on how to improve an option of interest. Section 7.1 gives
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an example of this situation. The DM wants to know on which criteria an improvement of
the option should be done in order to get the maximal possible improvement of the overall
score. The option is described by a profile f = (f1, . . . , fn) ∈ R

n. Most of the time the DM
wants to know how to improve option f into a new profile f ′ such that the overall evaluation
F(f ′) reaches a given expectation level (Montmain 2007):

min c(f,f ′) under

⎧
⎪⎨

⎪⎩

f ′ ∈ R
n,

∀i ∈ N, f ′
i ≥ fi,

Fμ(f ′) = e

where F is the aggregation function, e is the expectation level, and c(f,f ′) quantifies the
cost to improve option f into a new profile f ′. The previous optimization problem provides
the new profile f ′ that should be reached. The drawback of this approach is that the DM is
often not able to easily construct a new option corresponding to the profile f ′ (see Sect. 7.1).
He will thus proceed iteratively by transforming f into f1, then f1 into f2, and so on,
until the expectation level e is reached. The recommendation the DM wants to have is an
indication of the criteria of f that should be improved in priority. As we have seen, we have
no idea of the intensity of improvement that the DM will obtain.

To solve this problem, an index denoted by ωA(F )(f ) quantifying the worth for the
profile f to be improved in criteria among A ⊆ N , subject to the evaluation function F ,
has been proposed in Labreuche (2004). As shown by the following example, one shall not
restrict the subsets A to singletons. Consider the case of an expert that is very intolerant,
described by the min aggregation function F(f ) = mini∈N fi . If all criteria are equally sat-
isfied, then improving only one criterion will not change the overall evaluation, so that it is
useless to work on a single criterion, whereas it is worth improving all of them at the same
time.

Let V be the set of piecewise continuous functions defined on [0,1]n. This space is
endowed with the norm ‖u‖V = supx∈[0,1]n |u(x)|. The index ωA is seen as an operator from
V onto itself.

The index ωA is defined axiomatically for any F ∈ V . First of all, if F is con-
stant over criteria A, then ωA(F )(f ) = 0. Moreover, if F does not depend on crite-
rion i, then ωA∪{i}(F )(f ) = ωA(F )(f ). When F can be decomposed into n functions Fi

of each criterion, another requirement describes an optimistic decomposability of ωA(F )

from the ωi(Fi). Lastly, an invariance property ωA(F ) for {0,1}-valued functions F is
described. Previous requirements combined with linearity, symmetry and continuity (i.e.
supF∈V, F �=0

‖ωA(F)‖V

‖F‖V
< ∞) of ωA uniquely defines ω (Labreuche 2004):

ω∧
A(F )(f ) :=

∫ 1

0

[
F((1 − τ)fA + τ, fN\A)− F(f )

]
dτ. (6.2)

This expression gives the mean value of the difference F(gA,fN\A)− F(f ) only for gA on
the diagonal from fA to 1A. Therefore, (6.2) gives the mean impact of uniformly improving
all criteria of A at the same time, where one assumes that all possible levels of improvement
(from sticking to fA up to reaching the ideal profile 1A) have the same probability to occur.

By relaxing the decomposability axiom to its most general form, one obtains infinitely
many operators ω satisfying the axioms. All operators are identical when A reduces to a
singleton. However, the index ω∧ gives the largest values among all previous operators ω
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for any F ∈ V , f ∈ [0,1]n and A ⊆ N (Labreuche 2004). Hence (6.2) favors the coalitions
with large cardinality. Finally note that (6.2) can be extended so as to take into account the
improvement cost c:

ω∧
A(F )(f ) :=

∫ 1

0

F((1 − τ)fA + τ, fN\A)− F(f )

c(f, ((1 − τ)fA + τ, fN\A))
dτ.

7 Applications and softwares

The Choquet integral is more and more used by researchers around the world as a versa-
tile tool that models interaction among criteria. Let us cite a few (among many others) new
applications of the Choquet integral that have been carried out during the last ten years:
policy capturing in strategic decision making (Liginlal and Ow 2005), analysis of root dis-
persal where interactions model the competition among wood species in forests (Näther and
Wälder 2007), computation of the number of citations (Torra and Narukawa 2009), clinical
diagnosis (Saito et al. 2007), detection of line arrows in technical drawings (Wendling and
Tabbone 2003), monitoring of the improvement of an overall industrial performance (Berrah
et al. 2008), selection of groups of genes with high classifying power in gene expression
data analysis (Fragnelli and Moretti 2008), evaluation of discomfort in sitting position when
driving a car (Grabisch et al. 2002), to cite a few.

All details about these applications can be found in the referenced papers. For space
limitations, in Sect. 7.1 below we only develop one specific industrial application (Pignon
and Labreuche 2007).

There exist softwares providing a toolbox for the Choquet integral and related no-
tions, which can also be used in applications since they contain identification methods. In
Sects. 7.2 and 7.3, we develop two of them, namely Kappalab and Myriad. Another recently
available toolbox has been developed by Beliakov. It is called fmtools, and is available at
http://www.deakin.edu.au/~gleb/fmtools.html.

7.1 A class of industrial applications: design of complex systems

An interesting class of applications is the design of an industrial product or a complex sys-
tem. One can think of the body of a car, a chemical process, or a military information ar-
chitecture (Pignon and Labreuche 2007). Such a complex system is characterized by input
parameters z1, . . . , zp , e.g., the size of the components of a car body, the parameters control-
ling a chemical process, or the precise definition of all entities in the military force and their
links. The set of all possible values of the vector of variables (z1, . . . , zp) is denoted by �.
A system is thus defined by an element γ ∈ �. Not all elements of � lead to admissible
systems for the customer since some requirements of the customer must usually be fulfilled.
The set of elements �F ⊆ � for which the associated system satisfies these requirements are
the feasible values of the input parameters.

Yet, all elements of �F are not indifferent to the customer. The company needs to con-
struct a model of the preferences of the customer based on his decision criteria. These cri-
teria are often a refinement of the requirements. The set of attributes is again denoted by
X1, . . . ,Xn, and the set of alternatives is X = X1 × · · · × Xn. For the body of a car, these
attributes describe how the body buckles during a crash test, where the crash test is often
simulated with the help of a numerical code. For a chemical process, they quantify the qual-
ity (purity, concentration, . . . ) of the result of the process. For the military architecture, they

http://www.deakin.edu.au/~gleb/fmtools.html
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quantify the fulfillment of the operational mission and are obtained thanks to large simula-
tions on architecture-labs (Pignon and Labreuche 2007). Let T : �F →X be the transforma-
tion that provides the values on the attributes of the system obtained from a vector γ ∈ �F
of the input parameters. As we have just seen, the determination of T (f ) for f ∈ �F is not
easy for complex systems. It requires complex simulations or experiments, and is thus costly
and time consuming.

The overall evaluation of a system characterized by γ ∈ �F is

F(u(T (γ ))) = F(u1(T1(γ )), . . . , un(Tn(γ )))

where T1, . . . , Tn are the n components of T , u1, . . . , un are the value functions and F is the
aggregation function.

The preferences of the customer are usually complex and require an elaborate multi-
criteria model.

First of all, bipolar scales are most of the time well-suited for this kind of problems.
The three reference levels are meaningful for complex systems. Indeed, the neutral value 0i

corresponds to the performance of today’s generation of systems. It is indeed neither good
nor bad to perform as today’s systems. The satisficing value 1i is the targeted aspiration level
to be reached. One is satisfied if this level is reached by the new product, even if it would
be possible to do better than this level. Finally, the anti-satisficing value −1i corresponds to
the level of performance of the previous generation of systems. Reaching this level would
be considered as a decline.

Concerning the aggregation part of the evaluation model, a weighted sum is generally not
sufficient. Among the criteria of the customer, one usually have operational and monetary
ones. For a customer that aims to possess a complex system, the performance of the product
is compulsory. A low cost cannot compensate for bad operational performance. As a re-
sult, the operational criteria act as veto. Many other interactions such as conditional relative
importance of criteria are most often encountered.

Once the model has been constructed from interviews with the customer, this model
will help the company in designing the best system for the customer at the best price. It is
important that the recommendations resulting from the multi-criteria model are explained
to the customer. This means that for γ, γ ′ ∈ �F , one needs to understand the comparison of
T (γ ) with T (γ ′) by �, e.g., why T (γ ) � T (γ ′) (Labreuche 2005, 2006).

The company would like at the end to determine

Argmaxγ∈�F F(u1(T1(γ )), . . . , un(Tn(γ ))).

This is a very complex operation since we have seen that T is not known explicitly, and it is
very complex to perform one computation of T . There are two possible solutions. The first
one consists in approximating T by a model, e.g., a second order model. Statistics provide
powerful tools for such approximations, such as experiment design. Experiment design is
well-suited for our problem since it tries to minimize the number of computations of T . An
alternative approach is to use optimization algorithms, such as steepest descent to iteratively
converge to the optimal solution. In the steepest descent method, one needs to know the
direction where it will be more rewarding to change the current vector γ ∈ �F . The ωi

indicator described in Sect. 6.2 has been designed to help the company in determining the
right direction for the modification of the current solution.
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7.2 The KAPPALAB tool

Kappalab, which is an acronym for “laboratory for capacities”, is a free package designed
for the GNU R statistical system. It can be downloaded from the Comprehensive R Archive
Network (http://cran.r-project.org) or from http://www.stat.auckland.ac.nz/~ivan/kappalab,
and simply needs the R system to be installed. It provides a toolbox under a Matlab-like
environment, that is, the user can do various operations by using an on-line high level lan-
guage. Among other possibilities, one can:

– enter or construct a capacity, compute its Möbius or interaction transform and back, its
Shapley value, perform some tests on a given capacity (e.g., monotonicity);

– compute the Choquet or Sugeno integral for general or k-additive capacities, even if they
are expressed by their Möbius or interaction transform;

– construct a model for data fitting, using any of the techniques described in Sect. 2.6,
including TOMASO.

Kappalab allows to work up to n = 32. However, due to memory limitation, for such high
values of n, only 2 or 3-additive capacities can be considered. For general capacities, one
can work comfortably with up to n = 10 criteria. A detailed example of its utilization can
be found in Grabisch et al. (2008b).

7.3 The MYRIAD tool

MYRIAD is a multi-criteria decision aiding software developed by THALES4 based on the
Choquet integral. It aims at first helping the DM to construct the model, and then to analyse
a set of options on the constructed model (Labreuche and Le Huédé 2005). MYRIAD has a
user-friendly graphical interface. Even if this tool is available for the moment only for the
THALES customers, we briefly present it since it covers most aspects of decision aid and it
includes the major theoretical advances on the Choquet integral. Here are the main features
of this tool.

– For the construction of the model:
– enter any hierarchy of criteria (see Fig. 1);
– choice of the model among the 2-additive capacities and general capacities;
– analysis of the inconsistencies of the preferential information (Labreuche and Le Huédé

2006);
– sensitivity analysis of the values of the capacity (see Fig. 2);
– possibility to model context-dependent value functions (Labreuche 2007).

– For the analysis of several options on the multi-criteria model obtained in the previous
step:
– display of the assessment scores of two options on the criteria hierarchy;
– graphical representation of the results of the aggregation computations (see Fig. 3). One

can “plot” the result of the aggregation Fα on an option f in a pie-chart in which each
segment represents an elementary behavior Fk in (6.1). The aperture of the segment
related to Fk is 2παk , and this segment is covered at rate Fk(f ). Hence, the surface
covered by this segment is αkFk(f ) so that the overall covering of the disk is precisely
Fα(f ). This graphical representation makes it easy to understand why result Fα(f ) is

4THALES is a world leader in Mission-critical information systems for the Aerospace, Defence and Security
markets.

http://cran.r-project.org
http://www.stat.auckland.ac.nz/~ivan/kappalab
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Fig. 1 Hierarchy of criteria

Fig. 2 Sensitivity analysis on the parameters of the capacity

rather high (the disk is pretty filled up) or low (the disk is almost empty). It is displayed
in the graphical interface (see Fig. 3);

– generation of a textual argumentation of the result of the aggregation computations (see
Sect. 6.1);

– determination of the criteria to be improved first (see Sect. 6.2).

8 Some directions for future research

As described above, many developments around the Choquet and Sugeno integrals have
occurred in the last decade. Nevertheless, these developments leave open many questions.
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Fig. 3 Pie chart representing a 2-additive Choquet integral

In particular, the discovery of the new bipolar models opens many new questions on their
better understanding and management. Here is a non-exhaustive list of some future works
still to be done.

– Axiomatization of the Choquet integral in the context of MCDA based on �, in the same
spirit as Greco et al. (2004) and Bouyssou et al. (2006), Bouyssou and Marchant (2007a,
2007b), is still missing.

– Define ordinal models that do not have the usual drawback of lacking of discriminatory
power (see, e.g., the drowning effect, Dubois et al. 2001a).

– Bi-capacities are very attractive in practice due to their ability to represent bipolar decision
behavior. Unfortunately, it is not easy to use them in real applications since one would
need much more preferential information than what the DM can bear. Simplified sub-
models and smart algorithms are still needed.

We hope that these questions will receive satisfactory answers in that next decade.
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