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Abstract Clinical overbooking is intended to reduce the negative impact of patient no-
shows on clinic operations and performance. In this paper, we study the clinical scheduling
problem with overbooking for heterogeneous patients, i.e. patients who have different no-
show probabilities. We consider the objective of maximizing expected profit, which includes
revenue from patients and costs associated with patient waiting times and physician over-
time. We show that the objective function with homogeneous patients, i.e. patients with the
same no-show probability, is multimodular. We also show that this property does not hold
when patients are heterogeneous. We identify properties of an optimal schedule with het-
erogeneous patients and propose a local search algorithm to find local optimal schedules.
Then, we extend our results to sequential scheduling and propose two sequential schedul-
ing procedures. Finally, we perform a set of numerical experiments and provide managerial
insights for health care practitioners.

Keywords Clinical scheduling · Overbooking · Patient no-show · Multimodularity

1 Introduction

The majority of patient care in the U.S. (80–90%) is provided by outpatient clinics (Bo-
denheimer and Grumbach 2002; Centers for Medicare 2005). Clinic operations are typi-
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cally driven by appointment schedules, and appointment scheduling is often cited by clinic
managers as a major opportunity for improvement. Cayirli and Veral (2003) provide a com-
prehensive review of research in outpatient appointment scheduling. They state that most
analytical research does not consider factors such as patient no-shows, walk-ins and emer-
gency. Nevertheless, these factors have significant adverse effect on operational efficiency,
total revenue and patient satisfaction.

Among these factors, patient no-show is of particular concern because it wastes the avail-
able capacity of valuable resources (physician, staff, equipment) and limits clinic access to
the patient population. Cayirli and Veral (2003) mention that no-show rates are 5–30%.
However, Rust et al. (1995) report that for some health care settings, such as public pedi-
atric clinics, no-show rates can reach 80%. To reduce the negative impact of patient no-show,
clinic schedulers often overbook. However, naive overbooking can lead to longer patient
waiting times, clinic overtime, and deteriorating outcomes for patients who leave without
being seen (Kim and Giachetti 2006; Shonick and Klein 1977). Thus, modeling and analysis
must be used to develop a scheduling methodology that properly balances these competing
objectives.

An ideal overbooking model depends on four characteristics. The first is a valid patient
no-show description that captures the real pattern of patient behavior. The second is the
underlying service model that reflects the operational dynamics of the clinic. The third is an
objective function that reflects the performance concern of clinic managers. And the last is
an efficient algorithm that can generate schedules of desired quality in a timely fashion. We
give a brief review of existing clinic overbooking models categorized according to these four
characteristics. We also include some studies that do not explicitly consider overbooking but
that can be used to obtain overbooked schedules.

No-show probabilities can be correlated to factors such as reservation lead time and pa-
tient demographics, see Garuda et al. (1998) for details. Even though no-show usually differs
by patient, almost all overbooking studies assume that patients are homogeneous, i.e. all pa-
tients have the same no-show probability. Kaandorp and Koole (2007), Kim and Giachetti
(2006), Laganga and Lawrence (2007a, 2007b) and Liu and Liu (1998) consider a single
no-show rate for all patients in their models. In their study of patient no-shows on differ-
ent scheduling policies, Robinson and Chen (2008) also assume that patients have same
no-show rate. Muthuraman and Lawley (2008) provide an exception by explicitly modeling
different no-show probabilities.

With clinic dynamics, most researchers develop single server models (a schedule is cre-
ated for a single physician). Kim and Giachetti (2006) and Laganga and Lawrence (2007a,
2007b), Robinson and Chen (2008) assume that the service times of patients are determin-
istic while Kaandorp and Koole (2007) and Muthuraman and Lawley (2008) use queuing-
based models with exponential service times. Liu and Liu (1998) consider a model for mul-
tiple servers and investigate service times with exponential and general distributions.

The performance criteria considered in appointment scheduling models includes rev-
enue from patients, patient waiting time/cost, physician overtime/cost and physician idle
time/cost. Kim and Giachetti (2006) consider expected revenue and physician overtime.
Since the cost of patient waiting time is not included in their model, all patients are assumed
to arrive at the beginning of a clinic session, which implies a single block scheduling model.
Laganga and Lawrence (2007b) consider revenue from patients and costs of patient wait-
ing time and physician overtime, in both linear and quadratic objective functions. Kaandorp
and Koole (2007) and Robinson and Chen (2008) explicitly include the cost of physician
idle time, as do Liu and Liu (1998). Muthuraman and Lawley (2008) consider revenue from
patients and costs from patients waiting time and clinic overtime.
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In most cases, computing the optimal schedule is computationally intractable and thus
most scheduling algorithms are heuristics or simulation-based methods (Kaandorp and
Koole 2007; Laganga and Lawrence 2007a, 2007b; Liu and Liu 1998) except that Kim
and Giachetti (2006) and Robinson and Chen (2008) obtain optimal schedules using enu-
meration methods. The research by Kaandorp and Koole (2007) is of special interest be-
cause they show that their model is multimodular. Multimodularity is a property of func-
tions in discrete space, similar to convexity in continuous space, which guarantees that a
locally optimal solution is also globally optimal. In contrast to the work just mentioned,
Muthuraman and Lawley (2008) consider sequential scheduling in which the schedule is
constructed as patients seeking appointments call clinic schedulers. Patients must be given
their appointment time before the call ends, and thus once a patient appointment is added
to the schedule, it is typically not feasible to alter the time. In this case, the set of pa-
tients to be scheduled is not initially known and deciding when a schedule is complete
becomes a problem. Although the authors provide a scheduling algorithm and derive op-
timal stopping criteria, the optimal sequential schedule is not characterized. In this study,
we derive some properties of an optimal schedule, which can be used to design better algo-
rithms.

The existing studies do not adequately address the question of how the scheduling prob-
lem for heterogeneous patients is different from that of homogeneous patients and whether
modeling the heterogeneous nature of patient no-show can lead to superior schedules, partic-
ularly in a sequential setting where schedules have to be constructed as patients call-in. Even
though different no-show probabilities are taken into account in Muthuraman and Lawley
(2008), the patients are treated equally while scheduling. The decision to accept (or reject)
a patient is given by only looking at the increase (or decrease) in the objective function.
However, scheduling patients with high no-show probabilities leads to higher variabilities
in daily workload of clinics. In this study, we also investigate the effect of variability in
no-show rates on the quality of the resulting schedules.

The remainder of the paper is structured as follows. Section 2 provides the notation and
defines the basic problem. In Sect. 3, we study the structure of the optimization model and
prove that it is not multimodular in general. In Sect. 4, after deriving some important proper-
ties of optimal schedules, we propose a local search algorithm to obtain a good schedule and
discuss its extension to sequential scheduling settings. In Sect. 5, we present a computational
study to compare the proposed algorithms with the existing methods. Section 6 concludes
with some managerial insights that can improve patient scheduling and clinic performance
in practice.

2 Problem definition

We first state our assumptions and then present required notation. We assume that all patient
arrivals to the clinic are scheduled (no walk-ins) and that the patient population can be parti-
tioned into categories based on no-show probability. We further assume that the clinic day is
partitioned into a set of time slots and that patient appointment times coincide with the be-
ginning of a slot. We also assume that all arriving patients are punctual and that patients are
served according to a first-come-first-serve protocol. Finally, we assume that service times
are exponential and that they are independent and identically distributed across patients.
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Notation is as follows:

I set of slots
i slot set index, i ∈ {1, . . . , |I |}
ti length of slot i

J set of patient types based on no-show
j patient type, j ∈ {1, . . . , |J |}
Xi number of patients arriving at start of slot i

Yi number of patients in the system at the end of slot i, overflow from slot i to slot
i + 1

Li number of possible service completions in slot i

λ service rate
ci unit overflow cost from slot i to slot i + 1 (i �= |I |), ci ≥ 0
cI unit overflow cost for i = |I |, unit overtime cost, typically c|I | > ci

r revenue per patient, r > 0
pj probability that patient of type j arrives as scheduled, (p1 > · · · > p|J |)
nj number of patients of type j

S a schedule (∈ Z
|I |×|J |)

Si,j the value of (i, j)-th entry in S

Δi,j unit matrix such that (i, j)-th entry is 1, all others are 0
F(S) objective function value of S

R(S) overflow matrix of schedule S

Q(S) arrival matrix of schedule S

a ∼ b random variables a and b are iid

For a given schedule S, we mention that the value of (i, j)-th entry, Si,j , is the number
of patients of type j that are assigned to slot i. Also, Δi,j is used to denote a single patient
of show-up probability pj is added into slot i. Note that Xi + Yi−1 is the number of patients
in the system at the beginning of slot i and the number of patients served in slot i can never
exceed Xi +Yi−1. Therefore (1) is used to describe the queuing system dynamics over slots;
see Liu and Liu (1998) and Sect. 3.7.1 in Puterman (1994) for similar applications.

Yi = max{Yi−1 + Xi − Li,0}. (1)

For a given set of heterogeneous patients, we formulate the following overbooking model
to obtain an optimal schedule S that maximizes the expected total profit. In the objective
function of (2), the first term is the return from expected patient arrivals and the second term
is the cost associated with the expected number of patients overflowed from slots to slots of
a given schedule S.

max F(S) = r
∑

i∈I

E[Xi] −
∑

i∈I

ciE[Yi]

s.t.
∑

i∈I

Si,j ≤ nj ,

Si,j ∈ Z ∀i ∈ I, j ∈ J.

(2)

To compute probabilities for Xi and Yi , Muthuraman and Lawley (2008) introduce two
matrices, an arrival matrix [Qi,l] such that Qi,l is the probability that l patients arrive at
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the beginning of slot i, and an overflow matrix [Ri,k] such that Ri,k is the probability that k

patients overflow from slot i to slot i + 1. These are computed as follows:

Qi,l(S) = Pr(Xi = l) =
∑

π∈�

∏

j∈J

Si,j !
πj !(Si,j − πj )!p

πj

j (1 − pj )
Si,j −πj ,

where π = {π1, . . . , π|J |} with πj ∈ Z+ for j ∈ J ,
∑

j∈J πj = l and � is the set of all such
vectors.

Ri,m(S) =
{∑

l

∑
k(1 − FLi

(l + k))Qi,lRi−1,k if m = 0,
∑

l

∑
k fLi

(l + k − m)Qi,lRi−1,k if m ≥ 1,
(3)

fLi
(k) = e−λti

(λti)
k

k! ,

FLi
(k)

k−1∑

k̃=0

fLi
(k̃).

Given these equations, we can compute E[Xi] = ∑
l lQi,l and E[Yi] = ∑

k kRi,k .
Typically, optimization problems such as (2) arising from appointment service systems

are very difficult to solve since the objective functions are nonlinear and decision variables
are discrete. However, it has recently been shown that if the objective function is multimod-
ular over Z

n, a property similar to convexity in R
n, and constraints are simple upper or lower

bound constraints, a well-defined local search algorithm can be used to obtain (global) op-
timal solutions, see Hajek (1985), Altman et al. (2000) and Koole and van der Sluis (2003).
Based on these results, Kaandorp and Koole (2007) prove that their scheduling model for
homogeneous patients is multimodular and implement a local search algorithm to obtain an
optimal schedule. As a natural extension, it is important to see whether our overbooking
model is multimodular. If so, we can use the results to obtain an optimal scheduling method,
and if not we are justified in seeking heuristic approaches. Section 3 addresses this problem.

3 Structure of the overbooking scheduling model

In this section, we investigate the multimodularity of the scheduling model given in (2).
As an aid to the reader, we make the following informal note about multimodularity before
providing the definition. Let f be function on Z

m. When we join the integer points of f by
lines, we obtain a new function g on R

m. g is convex if and only if f is multimodular. This
implies that a local optimum is also a global optimum.

More formally, let ei be the ith standard unit vector of R
m. Then, we define a set of

vectors Γ = {v0, . . . ,vm} ∈ Z
m such that v0 = −e1, vi = ei − ei+1, for i = 1, . . . ,m − 1 and

vm = em.

Definition 1 A function f : Z
m → R is multimodular if for all x ∈ Z

m, u,v ∈ Γ , u �= v,

f (x + u) + f (x + v) ≥ f (x) + f (x + u + v). (4)
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Because of the connection between multimodular and convex functions, Koole and van
der Sluis (2003) propose a local search algorithm that searches all the neighbors of a partic-
ular point x in the form x + ∑

v∈U v where U is a subset of Γ . They show that their local
search will lead to an optimal solution of f . Later, Kaandorp and Koole (2007) use this
concept to obtain an optimal schedule for their scheduling model. In this section, we use the
following equivalent form

f (x + u) − f (x) ≥ f (x + v + u) − f (x + v) (5)

to verify the multimodularity of a function. We note that (5) can be interpreted as the im-
provement from perturbing x by u is greater or equal to that from perturbing x + v by u.
Because u and v are closely related to the unit vectors ei for some i, we first derive some
result on the improvement of f obtained from perturbing x by ei in our study. This result
will be frequently used in this section to help us simplify the proof of multimodularity.

Proposition 1 For a given schedule S0, we have

F(S0 + Δi∗,j1) − F(S0)

F (S0 + Δi∗,j2) − F(S0)
= pj1

pj2

(6)

for all i∗ ∈ I and j1, j2 ∈ J .

Proof Assume that W is a patient with no-show probability pj1 being added to slot i∗ in
schedule S0 such that the schedule is updated by S1 = S0 + Δi∗,j1 . We use X0

i and Y 0
i to

denote the number of arrivals in slot i and the size of overflow from slot i, respectively, for
schedule S0. Then, we define X1

i and Y 1
i for S1 similarly. Also, we introduce Pi(i

∗) to be
the conditional probability that the arrival of patient W increases the overflow from slot i to
i + 1 by 1.

Let W denote the arrival of patient W . Then, from (2), on the condition of W and the
fact that ¬W ⇒ Y 1 = Y 2, we have

F(S1) − F(S0) = rpj1 +
∑

i∈I

ciE[Y 1
i − Y 0

i ]

= rpj1 − (1 − pj1)
∑

i∈I

0 − pj1

∑

i∈I

ciE[Y 1
i − Y 0

i |W]

= pj1(r −
∑

i∈I

ciPi(i
∗)). (7)

It can be easily seen that if Pi(i
∗) is independent of pj1 for all i, we have F(S0 +Δi∗,j2)−

F(S0) = pj2(r − ∑
i∈I ciPi(i

∗)). Then, the conclusion follows.
In fact, we observe that the only situation where the arrival of patient W leads to one

more patient overflowing from slot i is the case where for each slot k such that i∗ ≤ k ≤ i, the
number of patients served is less than or equal to the number patients in slot k in schedule S0.
So, we have

Pi(i
∗) =

{∏i

k=i∗ Pr(Lk ≤ X0
k + Y 0

k−1) if i∗ ≤ i,

0 otherwise.
(8)

Since both Pi(i
∗) and r − ∑

i∈I ciPi(i
∗) are independent of the no-show probability of pa-

tient W , the desired results follows. �



Ann Oper Res (2010) 178: 121–144 127

Proposition 1 shows that the improvement of the objective function value by adding one
more patient is proportional to his or her show-up probability. Because this result is about the
value difference from unit changes, we call the result of (7) the local perturbation of a given
schedule. Next, we show that the concept of local perturbation can help us simplify the proof
of multimodularity significantly as compared to that of Kaandorp and Koole (2007). Because
(2) is a maximization problem, we use F to denote −F and verify that F is multimodular.
When |J | = 1, we use Si instead of Si,j and use p to denote the patient show-up probability
in our derivation.

Theorem 2 When |J | = 1, F is a multimodular function over Z
|I |.

Proof Because for the simple cases where u or v is −e1 or e|I |, (5) can easily be proven
using the argument similar to the following, we focus on the general case where neither u
nor v are standard unit vectors.

Without loss of generality, we let u = ek − ek+1 and v = el − el+1 such that 1 ≤ k < l ≤
|I | − 1. To make use of our local perturbation, for any particular schedule S, we define two
base schedules SL and SR for the left-hand side (LHS) and the right-hand side (RHS) of (5)
as

SL = S − ek+1 (9)

and

SR = S − ek+1 + el − el+1 (10)

with Sk+1 ≥ 1 and Sl+1 ≥ 1. In Fig. 1, we display the constructed schedules SL and SR along
with S, S + u, S + v and S + u + v.

By using SL and SR , both LHS and RHS can be interpreted as the difference of two local
perturbations. Correspondingly, we use XL

i ,XR
i , Y L

i , Y R
i to denote the number of arrivals

in slot i and the number of overflows from slot i in SL and SR , respectively. We also use
P L

i (i0) and P R
i (i0) to denote the overflow effect from adding one more patient to slot i0 in

schedule SL and SR on the condition of this patient’s arrival.

Fig. 1 Schedule S,S + u, S + v, S + u + v, SL and SR
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From (8), we have the following results for LHS of (5):

F(S + u) − F(S) = (F(S + u) − F(SL)) − (F(S) − F(SL))

= p

|I |∑

i=k

ciP
L
i (k) − p

|I |∑

i=k+1

ciP
L
i (k + 1)

= p

{
ckP

L
k (k) + Pr(Lk ≤ XL

k + Y L
k−1)

|I |∑

i=k+1

ci

i∏

h=k+1

Pr(Lh ≤ XL
h + Y L

h−1)

−
|I |∑

i=k+1

ci

i∏

h=k+1

Pr(Lh ≤ XL
h + Y L

h−1)

}

= p

{
ckP

L
k (k) + (P r(Lk ≤ XL

k + Y L
k−1) − 1)

|I |∑

i=k+1

ciP
L
i (k + 1)

}
. (11)

The first sum of the first equality evaluates overflow characteristics when the patient is added
to slot k and the second sum evaluates overflow characteristics when the patient is added to
slot k + 1. Then, using the result of Proposition 1 and the expression of (8), we obtain the
second and the third equalities. Further simplify these results, we obtain (11).

Similarly, we have the following result for RHS of (5).

F(S + u + v) − F(S + v)

= (F(S + u) − F(SR)) − (F(S) − F(SR))

= p

|I |∑

i=k

ciP
R
i (k) − p

|I |∑

i=k+1

ciP
R
i (k + 1)

= p

{
ckP

R
k (k) + (P r(Lk ≤ XR

k + Y R
k−1) − 1)

|I |∑

i=k+1

ciP
R
i (k + 1)

}
. (12)

Since SL and SR have same number of patients per slot up to and including slot l − 1
which is greater or equal to k, we have P L

k (k) = P R
k (k) = Pr(Lk ≤ XL

k + Y L
k−1) = Pr(Lk ≤

XR
k + Y R

k−1). Also, because Pr(Lk ≤ XL
k + Y L

k−1) − 1 ≤ 0, it is sufficient to show that

|I |∑

i=k+1

ciP
L
i (k + 1) ≤

|I |∑

i=k+1

ciP
R
i (k + 1)

to prove (5).
Observe that SR can be obtained from SL by reassigning one patient who is in slot l + 1

to slot l. Let W be a such patient. Then, we can compare (11) and (12) conditioned on
the arrival of W , W . Clearly, if ¬W , we have that (11) and (12) are same. If W , we have
XR

l ∼ XL
l + 1, XR

l+1 ∼ XL
l − 1, Y R

i ∼ Y L
i for i = k, . . . , l − 1 and XR

i ∼ XL
i for i �= l, l + 1.

Furthermore, if W , we also have

Pr(Ll ≤ XR
l + Y R

l−1) = Pr(Ll ≤ XL
l + Y L

l−1 + 1)

= Pr(Ll ≤ XL
l + Y L

l−1) + Pr(Ll = XL
l + Y L

l−1 + 1). (13)
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Fig. 2 Dynamics of slot queuing
system in SR and SL conditioned
on W and Ll ≤ XL

l
+ YL

l−1

Next, we compare the dynamics of queuing model in SL and SR in the case where Ll ≤
XL

l +Y L
l−1. Because XR

l ∼ XL
l + 1, Y R

l−1 ∼ Y L
l−1 and Ll ≤ XL

l +Y L
l−1, we have Y R

l ∼ Y L
l + 1.

Also, because XR
l+1 ∼ XL

l+1 − 1, we have XR
l+1 + Y R

l+1 ∼ XL
l+1 + Y L

l+1 and therefore Y R
l+1 ∼

Y L
l+1. From the fact that XR

j ∼ XL
j for j ≥ l + 1, we have XR

j + Y R
j−1 ∼ XL

j + Y L
j−1 for

j = l + 1, . . . , |I |. Clearly, from slot l + 1 to slot |I |, the queuing dynamics in schedule SR

and SL are identical, as shown in Fig. 2.
Let HR∗

i = ∏i

j=l+1 Pr(Lj ≤ XR
j + Y R

j−1) given Ll ≤ XL
l + Y L

l−1 and HR′
i =

∏i

j=l+1 Pr(Lj ≤ XR
j + Y R

j−1) given Ll = XL
l + Y L

l−1 + 1 for i ≥ l + 1. HR∗
i represents the

probability that W causes additional overflow from slot i and HR′
i represents the probability

that W causes no additional overflow flow from slot i. Further, HR∗
i Pr(Ll ≤ XL

l + Y L
l−1) =∏i

j=l Pr(Lj ≤ XL
j + Y L

j−1) for i ≥ l + 1. As a consequence, we obtain

|I |∑

i=k+1

ciP
R
i (k + 1)

=
l−1∑

i=k+1

ciP
L
i (k + 1) + clP

L
l−1(k + 1)(Pr(Ll ≤ XL

l + Y L
l−1) + Pr(Ll = XL

l + Y L + 1))

+ P L
l−1(k + 1)

( |I |∑

i=l+1

ciH
R∗
i Pr(Ll ≤ XL

l + Y L
l−1) +

|I |∑

i=l+1

ciH
R′
i Pr(Ll = XL

l + Y L + 1)

)

≥
l−1∑

i=k+1

ciP
L
i (k + 1) + clP

L
l−1(k + 1)Pr(Ll ≤ XL

l + Y L
l−1)

+ P L
l−1(k + 1)Pr(Ll ≤ XL

l + Y L
l−1)

|I |∑

i=l+1

ciH
R∗
i

=
|I |∑

i=k+1

ciP
L
i (k + 1). (14)

The first equality follows from (8) and (13). Then, the inequality follows from the fact that
ci ≥ 0 for i ∈ I and probabilities are non-zero. The last equality follows from the definition
of P L

i (k) in (8) again. �
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Table 1 All feasible schedules
of Example 1 Patients: type 1 Patients: type 2

Slot 1 Slot 2 Slot 1 Slot 2 F(S)

2 0 0 0 9.6744

1 0 1 0 7.8936

1 0 0 0 6.1118

1 0 0 1 7.827

1 1 0 0 9.541

2 0 0 1 10.6612

2 0 1 0 10.2756

1 1 1 0 10.5946

0 1 1 0 7.0052

0 0 1 0 3.0564

1 1 0 1 10.0514

0 1 0 0 4.4684

0 0 0 1 2.2336

0 0 0 0 0

0 1 0 1 5.2896

0 2 1 0 8.3358

0 2 0 0 6.112

0 2 0 1 6.0848

Since (2) is multimodular for |J | = 1, we can apply the local search method by Koole
and van der Sluis (2003) to obtain an optimal schedule. However, this is not the case when
|J | ≥ 2, i.e. the multimodular property does not hold. In Example 1, we describe an instance
in which (4) is not valid. In the remainder of this paper, we express a schedule S in the form
of a vector [S1,1, . . . , S1,|J |, . . . , S|I |,1, . . . , S|I ||J |] ∈ Z

|I ||J | when |J | ≥ 2 and we use “;” to
separate patients of different no-show types if necessary.

Example 1 Assume that we need to schedule patients of 2 types of no-show rates, p1 = 0.8
with n1 = 2 and p2 = 0.4 with n2 = 1, for 2 slots with c1 = 2 and c2 = 12, with the service
rate λ = 1 and revenue per patient r = 10. In Table 1, we list all feasible schedules and their
expected profits.

Consider the schedule S = [1,0;1,0], u = [−1,0;0,0] and v = [0,1;−1,0]. Then, we
have

S + u = [0,0;1,0], S + v = [1,1;0,0], S + u + v = [0,1;0,0].
From Table 1, their expected profits are as follows:

F(S) = 7.8936, F (S + u) = 3.0564, F (S + v) = 9.541, F (S + u + v) = 4.4684.

Since F(S) = −F(S) for any given schedule S, we have

F(S + u) + F(S + v) = −12.5974 < F(S) + F(S + u + v) = −12.362.

It shows that the scheduling model does not have the multimodular property when we need
to consider patients of two types of no-show rates.
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Next, we formalize this result in Theorem 3 and give the proof for the general cases.

Theorem 3 The function F is not multimodular over Z
|I ||J | for |J | ≥ 2.

Proof It is sufficient to show that for some u,v ∈ Γ , (5) does not hold. Let u = el − el+1

and v = el+k|J | − el+k|J |+1 for some l, k such that 1 ≤ l, l + k|J | + 1 ≤ |I ||J |. Denote j0 =
� l

|J |  + 1. Then, we observe that the operation corresponding to u (v, respectively) is to
move one patient of pj0 (pj0+k , respectively) from slot i0 + 1 = l + 1 − (j0 − 1)|J | and to
slot i0.

Similar to our proof for Theorem 2, for a particular schedule S, we define two base
schedules SL and SR for LHS and RHS of (5) as

SL = S − el+1 and (15)

SR = S − el+1 + el+k|J | − el+k|J |+1. (16)

We also use XL
i ,XR

i , Y L
i , and Y R

i to denote arrival and overflow in SL and SR respectively.
Comparing SL and SR , we observe that SR

i0,j0+k = SL
i0,j0+k + 1, SR

i0+1,j0+k = SL
i0+1,j0+k − 1

and SR
i,j = SL

i,j for all other (i, j). We can easily see that SR the scheduling resulting when
we reassign one patient of type j0 + k from slot i0 + 1 to slot i0 in schedule SL. Let W be a
such patient.

Again, we use P L
i (i0) and P R

i (i0) to denote the overflow effect from adding one more
patient to slot i0 in schedule SL and SR conditioned on W . If ¬W , SR = SL. So, we need
only consider the case where W shows up.

Similar to the proof of Theorem 2, for LHS of (5), we have

LHS = F(S + u) − F(S)

= ci0 Pr(Li0 ≤ XL
i0

+ Y L
i0−1) + (Pr(Li0 ≤ XL

i0
+ Y L

i0−1) − 1)

×
( |I |∑

i=i0+1

ci

i∏

k=i0+1

Pr(Lk ≤ XL
k + Y L

k−1)

)
. (17)

For RHS of (5), we have

RHS = F(S + u + v) − F(S + v)

= ci0 Pr(Li0 ≤ XR
i0

+ Y R
i0−1) + (Pr(Li0 ≤ XR

i0
+ Y R

i0−1) − 1)

×
( |I |∑

i=i0+1

ci

i∏

k=i0+1

Pr(Lk ≤ XR
k + Y R

k−1)

)
. (18)

Next, we compare the value of (17) and (18) conditioned on the physician’s performance
in slot i0, i.e. Li0 . Note that under W , we have XR

i0
+ Y R

i0
∼ XL

i0
+ Y L

i0
+ 1 and XR

i0+1 ∼
XL

i0+1 − 1.

Case (i) Li0 = XL
i0

+ Y L
i0−1 + 1. Because Pr(Li0 ≤ XR

i0
+ Y R

i0−1) = 1, (18) is equal to ci0 .
However, (17) is equal to

−
|I |∑

i=i0+1

ci

i∏

k=i0+1

Pr(Lk ≤ XL
k + Y L

k−1).
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So, LHS − RHS < 0 because c|I | > ci0+1 ≥ 0.

Case (ii) Li0 ≤ XL
i0

+ Y L
i0−1 . For this case, we have LHS = RHS = ci0 .

Because the probability of both cases is nonzero, we conclude that (5) does not hold
when |J | ≥ 2. �

Since the multimodular property does not hold for the general case, we do not expect to
obtain an optimal schedule without implementing an exhaustive search. These observations
motivate us to develop a local search algorithm that is efficient and can be used to obtain
schedules with good quality. We present our study on the solution methodology in Sect. 4.

4 Local search algorithm and sequential heuristics for clinical scheduling

Because our scheduling model for heterogeneous patients is not multimodular as shown in
Sect. 3, we first propose a local search algorithm to find good schedules in Sect. 4.1. The
main assumption of the proposed local search algorithm is that the set of patients is known in
advance. In many situations, clinics do not know the set of patients that should be scheduled
and appointment schedules are generated sequentially along with the patient call-in process.
So, in Sect. 4.2, we extend our study to sequential scheduling and propose two sequential
scheduling procedures.

4.1 Local search algorithm

First, we derive an important property of optimal schedules, that can be used to generate
initial schedules. Then, we define the neighborhood of a given schedule and propose domi-
nance rules to reduce the search space in a local search algorithm. Finally, we give the basic
steps of the proposed algorithm.

Theorem 4 shows that an optimal schedule always prefers patients with lower no-show
probabilities.

Theorem 4 Let S∗ be an optimal schedule of (2). Let j, j0 ∈ J with pj > pj0 and nj ,

nj0 > 0. If
∑

i∈I S∗
i,j0

≥ 1, then
∑

i∈I S∗
i,j = nj .

Proof Let j, j0 ∈ J with pj > pj0 and nj , nj0 > 0. Let S∗ be an optimal schedule such that
for some i0 ∈ I , S∗

i0,j0
> 0, and suppose

∑
i∈I S∗

i,j < nj .

Let S̃ = S∗ − Δi0,j0 . Then, F(S̃) ≤ F(S∗). From the proof of Proposition 1, we have
pj0r ≥ pj0(

∑
i∈I,i≥i0

ciPi(i0)) where Pi(i0) is the probability of overflow from slot i

incurred by adding one patient in slot i0 to S̃ on the condition of this patient’s ar-
rival. Consider the schedule Ŝ = S̃ + Δi0,j . Since pj0r ≥ pj0(

∑
i∈I,i≥i0

ciPi(i0)), we
have r ≥ (

∑
i∈I,i≥i0

ciPi(i0)), and thus pjr ≥ pj (
∑

i∈I,i≥i0
ciPi(i0)). From this, we get

pj (r − (
∑

i∈I,i≥i0
ciPi(i0)) > pj0(r − ∑

i∈I,i≥i0
ciPi(i0)). Thus, F(Ŝ) > F(S∗), a contra-

diction. �

Theorem 4 shows that patients with lower no-show probabilities contribute more than
those with higher no-show probabilities. We propose a local search algorithm that sched-
ules patients according to their no-show probabilities. Before explaining the local search
algorithm in detail, we define the neighborhood of a given schedule.
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Definition 2 We say schedule S1 is a neighbor of schedule S0 if it satisfies the following:

(1) S1 = S0 ± Δi0,j0 for some i0 ∈ I and j0 ∈ J , i.e. S1 is obtained by adding/removing one
patient of type j0;

(2) S1 = S0 − Δi0,j0 + Δi1,j0 where i0 �= i1, i.e. S1 is obtained by reassign one patient of
type j0 from slot i0 to slot i1;

(3) S1 = S0 − Δi0,j0 + Δi1,j0 − Δi1,j1 + Δi0,j1 where i0 �= i1 and j0 �= j1, i.e. S1 is obtained
by switching the slots for two patients of different no-show probabilities.

Note that the size of the neighborhood is O(max{|I ||J |, n}2) where n is the number of
patients in the schedule. However, in the course of local search, the size of the effective
neighborhood can further be reduced as follows:

Proposition 5 Let S0 be a given schedule that is feasible to (2):

(i) Assume that Sk = S0 − Δi0,jk + Δi1,jk for k = 1,2 and pj2 > pj1 . If F(S1) > F(S0),
then F(S2) > F(S1) > F(S0);

(ii) Assume that Sk = S0 − Δi0,j0 + Δi1,j0 − Δi1,jk + Δi0,jk for k = 1,2, and i0 < i1. If
F(S1) > F(S0) and pj2 > pj1 > pj0 , then F(S2) > F(S1) > F(S0); if F(S1) > F(S0)

and pj2 < pj1 < pj0 , then F(S2) > F(S1) > F(S0).

Proof It is very straightforward to show (i) using the results of Proposition 1 and Theorem
4. Here, we focus on the more difficult proof of (ii).

Let x and y be two patients of types j0 and j1, respectively. Let S|AB denote schedule S

on the condition that all patients in A arrive as scheduled and all patients in B are no-shows.
The expected profit of schedules S1 and S2 are calculated by conditioning the no-show
scenarios of patients.

F(S0) = (1 − pj0)(1 − pj1)F (S0|xy) + pj0(1 − pj1)F (S0|xy)

+ (1 − pj0)pj1F(S0|xy) + pj0pj1F(S0|xy),

F (S1) = (1 − pj0)(1 − pj1)F (S1|xy) + (1 − pj1)pj0F(S1|xy)

+ (1 − pj0)pj1F(S1|xy) + pj0pj1F(S1|xy).

Note that (S0|xy) = (S1|xy) and (S1|xy) = (S0|xy). Let S∗ = S0 −Δi0,j0 −Δi1,j1 and P ∗
i (k)

be the overflow probability from slot k defined in (8). It can be easily seen that (S0|xy) =
(S∗ + Δi1,j1 |y) and (S0|xy) = (S∗ + Δi0,j0 |x). Similar result holds for S1. Then, we have
the following:

F(S1) − F(S0) = pj0(1 − pj1)F (S∗ + Δi1,j0 |x) + (1 − pj0)pj1F(S∗ + Δi0,j1 |y)

− {pj0(1 − pj1)F (S∗ + Δi0,j0 |x) + (1 − pi0)pj1F(S∗ + Δi1,j1 |y)}
= pj0(1 − pj1){F(S∗ + Δi1,j0 |x) − F(S∗ + Δi0,j0 |x)}

+ (1 − pj0)pj1{F(S∗ + Δi0,j1 |y) − F(S∗ + Δi1,j1 |y)}
= pj0(1 − pj1)

{∑

i∈I

ciP
∗
i (i0) −

∑

i∈I

ciP
∗
i (i1)

}

+ (1 − pj0)pj1

{∑

i∈I

ciP
∗
i (i1) −

∑

i∈I

ciP
∗
i (i0)

}

=
{∑

i∈I

ci{P ∗
i (i0) − P ∗

i (i1)}
}{

pj0(1 − pj1) − (1 − pj0)pj1

}
.
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For the case where pj0 < pj1 , we observe that the second term in the last equality is always
negative because pj0 < pj1 and 1 − pj1 < 1 − pj0 . Since F(S1) − F(S0) > 0, the first term
of last equality should be negative. The first term is independent of no-show probabilities
of x, y and pj0(1 − pj2) − (1 − pj0)pj2 < pj0(1 − pj1) − (1 − pj0)pj1 . Therefore, F(S2) >

F(S1) > F(S0).
Similarly, we can prove the desired results for the case where pj0 > pj1 > pj2 . �

We observe that the results of Proposition 5 provide guidelines such that local move-
ments can be implemented according to patient no-show probabilities. In particular, using
Theorem 4 and Proposition 5, we can obtain better schedules with reduced computational
effort. Next, we describe our local search algorithm in details.

For a given schedule S, we define j i = arg max{pj : Si,j ≥ 1}, j
i
= arg min{pj : Si,j ≥ 1}

and j ∗ as the patient type with the lowest no-show probability to be scheduled. From Defi-
nition 2, we note that there are four types of neighbors of S obtained by the following local
movements: add, remove, reassign and switch, which are numbered by 1, . . . ,4 respectively.

Algorithm 1

(1) Initialization: S = ∅.
(2) Local Search:

For l = 1 to 4
if l = 1: (neighbors obtained by adding) F ∗

1 = max{F(S + Δi,j∗) : i ∈ I };
if l = 2: (neighbors obtained by removing) F ∗

2 = max{F(S − Δi,ji
) : i ∈ I };

if l = 3: (neighbors obtained by reassigning) F ∗
3 = max{F(S − Δi,ji

+ Δk,ji
) : i,

k ∈ I };
if l = 4: (neighbors obtained by switching) F ∗

4 = max{F 1
4 ,F 2

4 } where

F 1
4 = max{F(S − Δi,j i

+ Δk,ji
− Δk,j

k
+ Δi,j

k
) : 1 ≤ i < k ≤ |I |,pji

> pj
i
};

and

F 2
4 = max{F(S − Δi,j

i
+ Δk,j

i
− Δk,jk

+ Δi,jk
) : 1 ≤ i < k ≤ |I |,pji

< pj
i
}.

end for
(3) Find the best schedule, S∗, in the neighborhood of S, i.e. S∗ = arg max{F ∗

l : l =
1, . . . ,4}.

(4) If F(S∗) ≥ F(S), update current schedule S = S∗ and go back to Step (2). Otherwise,
go to Step (5).

(5) Return the local optimal schedule S.

In Algorithm 1, the number of neighbors search for a schedule need to be searched is
O(max{|I |2, n}), which is smaller than the actual neighborhood size.

Example 2 Consider the scheduling problem described in Example 1. Although we have
proven that the scheduling problem does not have the multimodular property and there is
no guarantee to obtain the optimal schedules, applying Algorithm 1 leads to the optimal
schedule.

Since p1 = 0.8 > p2 = 0.4, we first only consider patients of type 1. Starting from S0 =
(0,0;0,0), we compute its neighbors as those satisfying Definition 2. After comparing their
expected profits (as those in Table 1), we proceed to schedule S1 = (1,0;0,0) as the most
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improved one. Repeating this procedure, we advance to schedule S2 = (2,0;0,0). Since all
patients of type 1 are already included, we next consider adding the patient of type 2. We
then obtain schedule S3 = (2,0;0,1), which is the local optimal schedule. In fact, S3 is the
only (global) optimal schedule that maximizes the expected profit.

4.2 Sequential scheduling methods

As mentioned earlier, many clinics generate schedules in a sequential fashion. Typically, a
patient calls requesting an appointment. The scheduler will either add the patient to an ex-
isting schedule and give an appointment time or reject the patient. Muthuraman and Lawley
(2008) propose a myopic scheduling method, which sequentially assigns calling patients to
the slot that most increases the expected profit of the resulting schedule. It is called myopic
since it does not take the possibility of future call-ins into account when making the current
assignment. Patients are added to a schedule until the expected total profit starts decreasing.
Although the authors consider heterogeneous patients, their method does not differentiate
patients according to their no-show probabilities while generating schedules. However, bet-
ter schedules can be generated by considering the no-show probabilities of patients. We
propose two sequential scheduling algorithms that do this by using the properties explained
in Sect. 4.1.

Let S0 be a fixed schedule for n − 1 patients and assume that we need to schedule the
nth patient of type j . The patient will be inserted into the schedule if adding this patient
increases the objective function value. Corollary 6 shows that the decision of accepting (or
rejecting) a patient is independent of the patient’s no-show probability.

Corollary 6 For the myopic scheduling method in Muthuraman and Lawley (2008), the
decision to accept (or reject) the nth patient of type j is independent of pj .

Proof The myopic scheduling method in Muthuraman and Lawley (2008) is as follows:

Step 1. Set S0
i,j = 0 for all i ∈ I and j ∈ J .

Step 2. Wait for kth patient call.
Step 3. The kth patient call-ins in and the patient is of type j0.
Step 4. Compute F(S0 + Δi,j0) for i ∈ I and set i∗ = arg max{F(S0 + Δi,j0) : i ∈ I }.
Step 5. If F(S0 + Δi∗,j0) > F(S0), assign the kth patient to slot i∗ and update S0 =

S0 + Δi∗,j0 and go to Step 2. Otherwise, stop.

Assume that the nth patient is assigned to slot in. Let S = S0 + Δin,j . From Proposition 1,
we have F(S) − F(S0) = pj (r − ∑

i∈I ciPi(in)) where Pi(in) is independent of pj and
can be computed without the nth patient. Then, let i∗

n denote the slot index that yields the
minimal

∑
i∈I ciPi(in). It is clear that if

∑
i∈I ciPi(i

∗
n) ≤ r , we can assign patient n to slot i∗

n

to increase the expected total profit. Otherwise, patient n will be rejected. Therefore, the
decision on the nth patient is independent of pj . �

Based on the results in Proposition 1 and Corollary 6, it is anticipated that overbooking
many patients with high no-show probabilities cannot provide the most desirable results.
One major drawback of the myopic scheduling method by Muthuraman and Lawley (2008)
is that the objective function depends on the call-in sequence. Different call-in sequences
generate schedules which have high variability in the objective function. In order to show
the effect of call-in sequences, we consider two sequences. In the first sequence, there are
sufficiently many patients of type j1 before any patient of type j2 (pj1 > pj2 ). In the second
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Fig. 3 Ratio of expected total
profit F(S1)/F (S2) vs. p1 − p2

sequence, there are sufficiently many patients of type j2 before any patient of type j1. We
apply the myopic scheduling algorithm (Muthuraman and Lawley 2008) to generate sched-
ules S1 and S2, respectively. Clearly, S1 has patients of type j1 and S2 has patients of type j2.
Figure 3 shows F(S1)

F (S2)
as a function of pj1 − pj2 for 200 pairs of randomly generated call-in

sequences. The difference between F(S1) and F(S2) increases as p2 − p1 increases.
One may think that it is rare to have all patients at the beginning of the sequence with

high no-show probabilities. However, it is commonly observed that patients who make reser-
vations at earlier times tend to have higher no-show probabilities and they often use up the
physician’s capacity before patients with low no-show probabilities can be scheduled (Mur-
ray and Berwick 2003; Murray and Tantau 2000; Randolph et al. 2004). Therefore, a sequen-
tial scheduling method, which accepts all patients regardless of their no-show probabilities,
may not generate good schedules in terms of expected profit.

In sequential scheduling, there is an existing schedule and the patients who will call-in
should be scheduled or rejected. Assume that S0 is the existing schedule and there are n̄j

patients for all j ∈ J that should be scheduled or rejected. The following is the revised model
of (2) in the sequential scheduling setting, which adds new patients to an existing schedule:

max G(S) =r
∑

i∈I

∑

j∈J

Si,jpj −
∑

i∈I

ci

∑

k

kRi,k

s.t.
∑

i∈I

Si,j −
∑

i∈I

S0
i,j ≤ n̄j ,

Si,j − S0
i,j ≥ 0,

Si,j ∈ Z ∀i ∈ I, j ∈ J.

(19)

We give the following result as a corollary of Theorem 4 which can be easily proven using
similar argument to that of Theorem 4.

Corollary 7 Assume that S∗ is an optimal schedule to (19). For j, j0 ∈ J with pj > pj0 ,
either n̄j = ∑

i∈I (S
∗
i,j − S0

i,j ) or
∑

i∈I (S
∗
i,j0

− S0
i,j0

) = 0, i.e. S∗
i,j0

= S0
i,j0

for all i ∈ I .
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Corollary 7 shows that it is always better to include patients of low no-show probabilities
into an existing schedule before capacity limit is reached. Also, by Proposition 1 and Corol-
lary 7, our local search algorithm still works for any given existing schedule and patient set.
From Corollary 7 and the observation in Fig. 3, it is easy to see that limiting the number of
patients with high no-show probabilities in the schedule will be an effective way to improve
its performance. Following this line, we propose two sequential scheduling methods: the
restricted myopic scheduling and the forecasting-based scheduling methods.

The basic idea of the restricted myopic scheduling method is using upper bounds to
restrict the number of patients with high no-show probabilities in the schedule. We set upper
bounds, Bj , on the number of patients of type j for j �= 1 in the schedule such that B1 ≥
B2 ≥ · · · ≥ B |J |. Let bj be the number of patients of type j in the current schedule. The
basic steps of the restricted myopic scheduling method are as follows:

Restricted myopic sequential scheduling method

Step 1. Set bj = 0 and S0
i,j = 0 for all i ∈ I and j ∈ J .

Step 2. Wait for kth patient call.
Step 3. The kth patient call occurs and is of type j0.
Step 4. If bj0 + 1 > Bj0 , do not accept patient k and go to Step 2.
Step 5. Perform the traditional myopic scheduling algorithm to compute the best slot i0 for

patient k.
Step 6. If F(S0 + Δi0,j0) < F(S0), i.e. adding patient k decreases the expected total profit,

stop. Otherwise, update bj0 = bj0 + 1 and S0 = S0 + Δi0,j0 and go to Step 2.

The restricted myopic scheduling method is very simple to implement. However, this
method does not consider potential call-ins in the future. We propose another sequential
scheduling algorithm, which considers forecasted patient requests from current time to the
appointment day. Specifically, for each call-in patient, we generate a schedule from the ex-
isting schedule considering the forecasted future patients. We believe that the information
about anticipated patients contributes to the scheduling algorithm in two ways: (i) this infor-
mation can limit the number of patients with high no-show probabilities in the final schedule
and (ii) slot allocation decisions anticipate possible future patient call-ins.

In this study, we simply use average historical data to predict future patient demand.
Assume that we are generating forecasted patient demand for a day that is T minutes ahead
from current time. We can use the average of q pieces of historical patient demand data
that happened T or less minutes before virtual appointment days. We denote the forecasted
patient demand by n̄j for j ∈ J . To avoid overestimating future patient arrivals, we may
discount our forecasting by α with 0 ≤ α ≤ 1. When αn̄j is not an integer, we can round it
to the nearest integer.

Forecasting-based sequential scheduling method

Step 1. Set S0
i,j = 0 for all i ∈ I and j ∈ J .

Step 2. Wait for kth patient call.
Step 3. The kth patient call-ins in and the patient is of type j0.
Step 4. Predict future patient demand and obtain n̄j for j ∈ J .
Step 5. Perform the scheduling algorithm that considers requests αn̄1, . . . , αn̄j0−1,

αn̄j0 + 1, αn̄j0+1, . . . , αn̄|J | to generate a schedule S∗ from S0 for (19).



138 Ann Oper Res (2010) 178: 121–144

Step 6. If ∃i ∈ I such that S∗
i,j0

− S0
i,j0

≥ 1, assign the kth patient to slot i and update S0 =
S0 + Δi,j0 .

Step 7. If S∗
i,j − S0

i,j = 0 for i ∈ I and j ∈ J , stop. Otherwise, go to Step 2.

When α = 0, the forecasting-based scheduling method reduces to the myopic scheduling
method in Muthuraman and Lawley (2008).

Comparing these two sequential scheduling methods, the restricted myopic method is
conservative because it mostly considers available patient information while the forecasting
based method is aggressive since it heavily uses predicted information on potential patient
calls. Note that the successful application of both of them requires that the physician has
enough patient demand which is always the case in practice. In Sect. 5, we perform a com-
putational study to compare the proposed algorithms with the traditional myopic scheduling
algorithm in Muthuraman and Lawley (2008).

5 Computational study

We perform a computational study to test the performance of proposed algorithms. We con-
sider four experimental settings. In the first setting, we show the effect of considering het-
erogeneous patients instead of homogeneous patients. In the second setting, we compare the
proposed sequential scheduling algorithms with the traditional myopic scheduling algorithm
in Muthuraman and Lawley (2008). In the third setting, we analyze the effect of overflow
cost on expected profit. In the last setting, we describe our observation on the connection of
patient no-show rates and their placements in schedules.

Throughout our experiments, we assume that a clinic session is 4 hours and partitioned
into 8 equal length slots. The service rate λ, which is equal to 2, is constant during the
session. Unless explicitly mentioned, r = 100, ci = 40 for i �= |I | and c|I | = 200.

5.1 Homogeneous versus heterogeneous patients

A major contribution of this study is that the variability of no-show rates is taken into con-
sideration while designing the scheduling algorithms. Algorithm 1 is used to schedule het-
erogeneous patients. The heuristic algorithm proposed by Kaandorp and Koole (2007) is
used to schedule homogeneous patients. We consider three types of patients. p2 is set to
0.5, and p1 and p3 are randomly generated such that (p1 + p3)/2 = 0.5. We assume equal
number of patients in each group (n1 = n2 = n3 = n). We consider different values for n

(n = 1, . . . ,12) to analyze the effect of variance on expected total profit for different popu-
lation sizes. The variance of no-show rates is derived from the variance of p1, p2 and p3.

Figure 4 shows the results of 400 randomly generated problems. We observe that the ex-
pected profit obtained from the heterogeneous scheduling model dominates the one obtained
from the homogeneous scheduling model for all population sizes. The impact of variance
of no-show rates on expected profit becomes more significant as the number of patients
increases. Figure 5 highlights the difference for 6 and 12 patients. The consideration of
heterogeneous patients leads to greater improvements when variance is greater. Especially,
when n = 12, the improvement on total expected profit could reach up to 20%. Algorithm 1
schedules more patients with low no-show probabilities. However, the total number of pa-
tients scheduled is less. As a consequence, the variance in expected profit is less than the
one obtained by homogeneous model.
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Fig. 4 Expected total profit vs.
number of patients

Fig. 5 Impact of variance for
6 × 3 and 12 × 3 patients

5.2 Sequential scheduling

We compare the proposed sequential scheduling methods with the traditional myopic
scheduling method by Muthuraman and Lawley (2008). We set |J | = 2, p1 = 0.8 and
p2 = 0.2. We first randomly generate 100 call-in sequences that span over 30 days. We
assume that the call-in rate increases as the call-in time gets closer to the appointment time.
At the beginning, the call-in rate for patients of type j1 is smaller than the rate for patients
of type j2. As time goes on, it increases and finally becomes larger than that for patients of
type j2. Let λ̃1 and λ̃2 be the arrival rates of patients of types j1 and j2, respectively. Specif-
ically, once a call-in of type j1 is generated, we update λ̃1 = γ λ̃1 where γ is a randomly
generated positive number that is larger than 1. Similarly, we keep updating λ̃2 by a ran-
domly generated number that is less than 1. We generally set parameters in a way such that
the number of expected call-ins of both type 1 and 2 throughout 480 × 30 min are more than
the number of expected services, λ × 8 = 16. In our experiments, we set the initial values
λ̃1 = 1

600 and for λ̃2 = 1
300 . Random numbers are generated from (1,1 ± 0.05] respectively.
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Fig. 6 Restricted myopic
scheduling method vs. myopic
scheduling method

Fig. 7 Forecasting-based
method vs. traditional myopic
method

First, we consider the restricted myopic scheduling algorithm. Figure 6 shows the ex-
pected total profit for restricted myopic scheduling algorithm (for both B2 = 4 represented
by ∗, and B2 = 8 represented by ×) and the traditional myopic method for 100 randomly
generated sequences. The results from the restricted myopic method always dominates those
from the traditional myopic scheduling method of Muthuraman and Lawley (2008). The re-
sults from the proposed method are very stable (with less variance), while the traditional
myopic method gives results with high variance. As expected, the proposed method obtains
better results when the upper bound on the number of patients of type j2 is lower.

To predict potential patient calls-in for a call-in sequence, we randomly choose 4 other
sequences to predict numbers of call-ins and set α = 0.5 to discount risk. Figure 7 shows
the expected total profit for the forecasting-based sequential scheduling method (represented
by ∗) and the traditional myopic scheduling method for 100 randomly generated call-in se-
quences. The results show the advantage of using forecasted patient demand to generate
schedules sequentially. In cases where many potential patients with low no-show probabil-
ities are expected, it would be wiser to reserve the capacity for these patients rather than
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adding patients with high no-show probabilities into the schedule. Obviously, this argument
justifies the open-access scheduling model in which the capacity is kept until the day before
the appointment day or the appointment day since their no-show probabilities are low in
those days.

In fact, both our theoretical analysis in Sects. 2–4 and our computational study on the
performance of the restricted myopic scheduling method and the forecasting-based schedul-
ing method show that patients with low no-show probabilities should not be restricted by
open access model. Actually, our models show that allowing patients with low no-show
probabilities to make appointments ahead is effective.

5.3 Cost of patient waiting time

The expected revenue and overtime cost can typically be estimated by health care practi-
tioners. However, the value of patient waiting time is determined subjectively. Since the cost
associated with patient waiting time is not an actual cost paid by the clinics, it is important to
investigate the effect of different cost values on scheduling and expected profit. As discussed
in Sect. 2, patient waiting time is directly related to the size of overflow between slots. So,
we control the value of patient waiting time through changing the value of ci for i �= |I |.
Similarly, the cost of physician overtime can be controlled through changing the value of cI .
In our experiment, we assume ci = cj if i �= j for i, j ∈ I\{|I |}.

We consider two schedules generated by the traditional myopic scheduling method from
two calling sequences described in Sect. 4.2 because of their simple patient structures. For
these two sequences, we set p1 = 0.8 and p2 = 0.2. Figure 8 shows the effect of ci on ex-
pected total profit for both sequences. As overflow cost (ci ) increases, expected total profit
decreases for both schedules. However, the expected profit of the schedule for the second
call-in sequence decreases faster than that of the schedule for the first sequence. When ci

is small (which means that the physician time is more valuable than patient waiting time),
the performances of two schedules are close to each other. In such cases, differentiating
patients by their no-show probabilities is not very beneficial. When ci is increasing, the dif-
ference between the two schedules becomes larger. If the patient waiting time is considered
as a significant part of the performance measure, the number of patients with high no-show
probabilities should be restricted.

Fig. 8 Expected total profit
vs. ci



142 Ann Oper Res (2010) 178: 121–144

Fig. 9 Expected total profit
vs. cI

Fig. 10 A typical schedule with two types of patients

Laganga and Lawrence (2007b) mention that the net overbooking utility, which is the
expected net return generated by overbooking, is larger in the case where patients have
high no-show probabilities than in the case where patients have low no-show probabilities.
They further mention that this phenomenon is more significant when the cost of patient
waiting time and physician overtime are high. According to our computational results in
Figs. 8 and 9, the expected total profit of schedules generated using overbooking decreases
when cost of patient waiting time and physician overtime increases. Furthermore, the speed
of decrease is faster in the case where patients have higher no-show probabilities. These
results indicate that overbooking can compensate the loss from patient no-shows to some
extent. However, reducing patients’ no-show rates should have higher priority than applying
overbooking.

5.4 An observation on patients’ placement

In this section we describe our observation on patient no-show probabilities and their place-
ments in a typical schedule from our proposed scheduling approach when patient no-show
probabilities are heterogeneous. This observation yields a simple rule for fast scheduling
when we have heterogeneous patients.

Figure 10 shows a schedule created for two types of patients, n1 = 9 with p1 = 0.9 and
n2 = 5 with p2 = 0.4. In this figure, the solid square denotes an assignment for a patient with
p1 and the grey square denotes an assignment for a patient with p2. We note that patients
of the low no-show probability are packed into the early slots, while we have most patients
with the high no-show probability in later slots. Clearly, the reason of this observation is the
high value overtime cost. Based on it, we generalize a simple scheduling rule that is to place
patients of low no-show probabilities in the early slots and place patients of high no-shows
to the later slots.
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6 Concluding remarks and managerial insights

Various scheduling models with overbooking have been proposed to help health care
providers alleviate the negative effects of patient no-shows. However, to the best of our
knowledge, all existing studies either assume that patients are homogeneous in terms of their
no-show probabilities, or do not consider the impact of different no-show probabilities on
general performance measures. In this paper, we systematically study a clinical scheduling
model with overbooking for a set of heterogeneous patients, i.e. their no-show probabilities
are different. We prove that, unlike the overbooking model for homogeneous patients, the
model for heterogeneous patients is not multimodular. It is very difficult to obtain an op-
timal schedule since the local optimal solution is not guaranteed to be global optimal. We
develop a guided local search algorithm based on the properties of an optimal schedule. We
observe that homogeneous overbooking models using the mean value of show-up probabil-
ities are not enough to build high quality schedules. The variance of no-show probabilities
have a significant impact on the performance of overbooked schedules. Further, we show
the disadvantages of the traditional myopic sequential scheduling method and propose two
improved sequential scheduling algorithms that give better schedules.

Next, we provide some managerial insights based on our theoretical derivations and
computational results. These insights can help healthcare practitioners better manage clinic
scheduling when patients’ no-show probabilities are different but can be estimated.

1. Clustering patients according to their no-show probabilities and using our clinical
scheduling methods for heterogeneous patients will help to build schedules with better
performances.

2. Patients with low no-show probabilities are always preferable in schedule generation.
This result justifies the open-access scheduling approach, because no-show probabilities
increase as the interval between the call-in time and appointment time increases. How-
ever, appointments for patients with low no-show probabilities can be made earlier.

3. Overbooking is beneficial for open-access scheduling systems, because it reduces fluctu-
ations in clinic workload and helps to control demand over time.

4. The traditional myopic scheduling method proposed in Muthuraman and Lawley (2008)
performs well when there is enough patient with low no-show probabilities at the begin-
ning of the call-in sequence. Its performance can be improved significantly by restricting
the number of patients with high no-show probabilities in the schedule or using the in-
formation of potential patient call-ins.

5. If costs of patient waiting time and physician overtime are high, few patients with high
no-show probabilities should be scheduled.

6. To reduce overtime cost, patients with low no-show probabilities should be assigned into
early slots and patients with high no-show probabilities should be assigned to later slots.

Future research directions include extending our research to multiple physician (server)
systems, since several physicians collaborate and share the same set of patients. Another di-
rection is developing scheduling methods considering cancellations and unpunctual arrivals.
Finally, as Laganga and Lawrence (2007b), Muthuraman and Lawley (2008) point out, over-
booking models can also be used in other appointment-based service systems such as law
offices, counseling centers and photo studios.
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