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Abstract The Technicians and Interventions Scheduling Problem for Telecommunications
embeds the scheduling of interventions, the assignment of teams to interventions and the
assignment of technicians to teams. Every intervention is characterized, among other at-
tributes, by a priority. The objective of this problem is to schedule interventions such that
the interventions with the highest priority are scheduled at the earliest time possible while
satisfying a set of constraints like the precedence between some interventions and the min-
imum number of technicians needed with the required skill levels for the intervention. We
present a Greedy Randomized Adaptive Search Procedure (GRASP) for solving this prob-
lem. In the proposed implementation, we integrate learning to the GRASP framework in
order to generate good-quality solutions using information brought by previous ones. We
also compute lower bounds and present experimental results that validate the effectiveness
of this approach.
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1 Introduction

In this paper we describe a heuristic approach for solving a Technicians and Interventions
Scheduling Problem for Telecommunications which we abbreviate as TIST.

The subject (Dutot and Laugier 2005) was proposed by France Telecom1 for the 5th chal-
lenge of the French Society of Operations Research and Decision Analysis.2 At France
Telecom, supervisors have to decide for each day which technicians will work together for
the day and which interventions they will have to perform. With the growth of interven-
tions due to the expansion of the new services associated with Internet such as VoIP or
television broadcasts—and to maintain their competitiveness with restricting the numbers
of technicians—the supervisors have to tackle more and more complicated schedules. The
aim of the TIST is to provide efficient schedules that can help the supervisors in their job.

The interventions are characterized by criteria such as priority and length of time. Some
interventions are linked to other interventions that must be completed first. That constitutes
a set of preceding constraints to be satisfied by any scheduling. The interventions are also
composed of different types of tasks which require a given number of technicians with a
certain skill level in a given domain. The technicians are specialized in different domains
with different skill levels and they have a list of non-working days. Therefore it is necessary
to assign interventions to teams of technicians with the required skill levels and who are
available the scheduled day. In addition, any intervention has a given cost if an external
company is hired to do it. The total cost of the subcontracted interventions cannot exceed
a given budget. Note that interventions can be subcontracted only if their successors, in
the precedence constraint, are subcontracted too. The objective of the TIST is to schedule
interventions such that the interventions with the highest priority are scheduled at the earliest
time possible. This problem has two related combinatorial aspects: the scheduling of the
interventions (depending on the precedence constraint) and the assignment of the technicians
to the teams (depending on the scheduled day).

We propose an algorithm centered on GRASP (Greedy Randomized Adaptive Search
Procedure) for solving the TIST. The GRASP Metaheuristic is a multi-start process which
consists in iteratively executing a construction phase and an improvement phase. The con-
struction phase builds a feasible solution by selecting interventions according to an insertion
criterion, then the neighborhood of this solution is explored with local search in the im-
provement phase until a local minimum is found. One possible shortcoming of the classical
GRASP scheme is the independence of each of the iterations which discards the information
brought by the encountered solutions. The specificity of the proposed GRASP implementa-
tion is that it embeds learning3 in order to direct the search towards good-quality solutions.
Indeed, at each iteration, the insertion criteria used for constructing the feasible solution are
updated by considering information brought by previous solutions. As shown in this paper,
this specificity has an important impact on the results of our method. Globally, our approach
is divided in three phases: first, a preprocessing phase which selects the interventions to be
subcontracted and deletes them from the problem; then an initialization phase which iden-
tifies good insertion criteria for the construction phase; and finally the search phase which
uses GRASP to find the best possible solution.

The remainder of the paper is organized as follows: in Sect. 2, we describe the problem
and introduce the notations; Sect. 3 is devoted to the presentation of the different components

1French telecommunications company.
2http://www.g-scop.fr/ChallengeROADEF2007/ or http://www.roadef.org/.
3A bibliography on others learning-based GRASP methods is reported in Pitsoulis and Resende (2001).

http://www.g-scop.fr/ChallengeROADEF2007/
http://www.roadef.org/
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of our approach; then, in Sect. 4, we expose a lower bound computation, implemented to
evaluate the quality of the obtained results. The whole computational experiments are given
in Sect. 5.

2 Problem description

In this section, we first describe the problem informally. Then we present the different nota-
tions used in the paper to refer the data of the problem, and we conclude with a mathematic
formulation of the TIST.

2.1 Global description

The problem deals with interventions that have to be assigned to teams of technicians. Tech-
nicians are described by their available days and skills, and interventions are characterized
by their priority, execution time, predecessors (interventions which have to be completed
before) and required number of technicians of each skill level in each domain. The aim is
to build teams of technicians for each day and assign interventions to those teams while
verifying all the constraints of the schedule and minimizing the objective function

28t1 + 14t2 + 4t3 + t4

where tk is the ending time of the last intervention of priority k for k = 1,2,3 and t4 is the
ending time of the whole schedule.

A schedule has to satisfy a list of constraints for the assignment of technicians and for the
assignment of interventions. We consider that each working day is in the interval [0,Hmax]
and that it is not possible to exceed this limit. Consequently, an intervention cannot be per-
formed before time 0 or after time Hmax and cannot be done in several days. An intervention
has to be done by only one team at one time, several teams cannot share the same interven-
tion. There are days off for the technicians and obviously, no intervention can be assigned
to a technician who is not working during the current day. A strong constraint is that the
teams cannot change during one day, so a technician belongs to only one team each day.
This constraint is due to the limited number of available cars and to the time it would take
to get several teams back to a central point to mix the teams.

A team has to satisfy the requirements to perform an intervention. Thus, for each inter-
vention we have to assign enough qualified technicians to satisfy all the requirements. For
example, an intervention requiring one technician of level 2 in the domain d1 can be done
by one technician of level 2, 3 or 4 in domain d1, but cannot be done by two technicians of
level 1 in domain d1. The required number of technicians at a given level for an intervention
is cumulative since a technician of a given level is also qualified for all the smaller levels of
the same competence domain. For example, if a technician has a skill level of 3 in a given
domain then he can work on interventions requiring only a skill level of two in this domain.

Finally, it is possible to subcontract interventions to an external company. Each inter-
vention has a specific cost to hire an external company to do it and the total cost of the
subcontracted interventions cannot exceed a total budget. Let us note that the mathematical
model we expose in Sect. 2.3 does not consider subcontracted interventions. Indeed, this
part of the problem is tackled with a preprocessing heuristic which is described in Sect. 3.1.
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2.2 Notations

In this section we introduce a set of notations used throughout the paper. First we define the
constants for the problem:

– Hmax is the length of time of each day (Hmax = 120 in the subject).
– T (I) is the execution time of intervention I .
– cost(I ) is the cost of intervention I .
– A is the total budget allowed for the subcontracted interventions.
– P (t, j) is equal to 1 if technician t is working on day j , 0 otherwise.
– C(t, i) is the skill level of technician t in domain i.
– R(I, i, n) is the required number of technicians of level n in domain i to complete the

intervention I .
– Pred(I ) is the list of interventions which have to be completed before starting interven-

tion I .

We also use some variables listed below:

– s(I ) is the starting time of intervention I .
– e(t, j) is the team number of technician t for the day j . Team number 0 is a special team

composed of the non-working technicians.
– d(I) is the day when intervention I is scheduled.

From the previous description and the previous notations, an intervention requiring for
domain i at least one technician of level three and one technician of level two will have its
requirements noted: R(I, i,1) = 2, R(I, i,2) = 2, R(I, i,3) = 1, R(I, i,4) = 0.

Here are the constants used for the mathematical model:

– Pr(k, I ) is equal to 1 if the priority of intervention I is k and 0 otherwise.
– P(I1, I2) is equal to 1 if intervention I1 is a predecessor of intervention I2 and 0 otherwise.

Finally we also use the following variables in the mathematical model:

– x(I, j, h, ε) is equal to 1 if team ε works on intervention I on day j at the starting time h

and 0 otherwise.
– y(j, ε, t) = 1 if technician t is in team ε on day j and 0 otherwise.
– tk , k = 1,2,3 is the ending time of the last scheduled intervention of priority k.
– t4 is the ending time of the whole schedule.

2.3 Mathematical model

As we explained in Sect. 2.1, the following mathematical model does not consider the sub-
contracted interventions. This problem (denoted P ′) can be stated as follows:

minimize 28t1 + 14t2 + 4t3 + t4

subject to
∑

j,h,ε

x(I, j, h, ε) = 1, ∀I (1)

y(j,0, t) = 1 − P (t, j), ∀j, t (2)
∑

ε

y(j, ε, t) = 1, ∀j, t (3)

x(I, j, h,0) = 0, ∀I, j, h (4)
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min(h2+T (I2)−1,Hmax)∑

h1=max(h2−T (I1)+1,0)

x(I1, j, h1, ε) + x(I2, j, h2, ε) ≤ 1, ∀I1, I2, h2, j, ε (5)

∑

j,h,ε

(jHmax + h) (x(I1, j, h, ε) − x(I2, j, h, ε)) + T (I1)x(I1, j, h, ε) ≤ 0,

∀I1, I2 | P(I1, I2) = 1 (6)

x(I, j, h, ε) = 0, ∀I, j, h, ε | h + T (I) > Hmax (7)
∑

h

R(I, i, n)x(I, j, h, ε) ≤
∑

t |C(t,i)≥n

y(j, ε, t), ∀I, i, n, ε, j (8)

∑

j,h,ε

(jHmax + h + T (I))Pr(k, I )x(I, j, h, ε) ≤ tk, ∀I, k = 1,2,3 (9)

∑

j,h,ε

(jHmax + h + T (I)) x(I, j, h, ε) ≤ t4, ∀I. (10)

Constraint (1) ensures that each intervention is made by one team only on one day at
one time. Constraint (2) says that if a technician t is not working on day j , he is in team
0. Constraint (3) specifies that a technician belongs to only one team each day. Constraint
(4) guarantees that no interventions are made by the non-working team. Constraint (5) en-
sures that two interventions assigned on the same day to the same team are done at different
times. Constraint (6) says that all the predecessors of a given intervention have to be com-
pleted before starting this intervention. Constraint (7) ensures that the working days are
strictly limited to Hmax, maximum number of time slices per day. Constraint (8) specifies
that a team working on intervention I has to meet the requirements concerning levels of
competence for I . Finally, constraint (9) specifies that tk is the ending time of the last sched-
uled intervention of priority k, k = 1,2,3 and constraint (10) specifies that t4 is the ending
time of the whole schedule.

3 General approach

The proposed algorithm is centered on a GRASP method. In this section, we explain the
function and the principles of each part of the approach.

A first part consists in dealing with the problem of selecting which interventions will
be subcontracted or not according to the available budget. Preliminary experiments showed
us that this problem is not so trivial. Thus we decided to tackle it with a preprocessing
heuristic detailed in Sect. 3.1. This choice is justified by the challenge context: we had to
design a robust and fast algorithm in a three months limited period. As mentioned in the
section devoted to the computational results, some complementary experiments made after
the challenge confirm that the choice of these interventions has an impact on the results of
our approach. This difficult problem is thus the scope of further studies we plan to conduct.
Once the interventions to be subcontracted are selected, they are deleted once for all from
the problem, and our GRASP algorithm described in Sect. 3.2 is then applied on the problem
(P ′). We conclude this section with an overview of our approach in Sect. 3.3.

3.1 Choosing the interventions to be subcontracted

The subcontracted interventions problem is tackled by using a preprocessing heuristic which
selects interventions to be excluded. These interventions are cleaned from the problem once
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Algorithm 1 mintec(I )

Require: Intervention I .
Ensure: Upper bound on the minimum number of technicians required for I .

1: ε := empty team;
2: T := subset of technicians satisfying at least one requirement of I .
3: for each technician t in T do
4: sk(t, I ) := number of skill levels satisfied by t for all the domains in I .
5: end for
6: reorder T according to the decreasing order of sk(t, I );
7: while ε does not satisfy the requirements of I do
8: add a new technician t ∈ T to ε;
9: update T := T − {t};

10: end while
11: for each pair of technicians {t ,t ′} in ε do
12: for each technician t ′′ in T do
13: if {t ,t ′} can be replaced by {t ′′} for satisfying the requirements then
14: replace {t ,t ′} by {t ′′} in ε and return the number of technicians in ε;
15: end if
16: end for
17: end for

for all. The heuristic is based on the minimum number of technicians required for each
intervention and the duration of the interventions.

The first phase consists in computing mintec(I ), which is an upper bound of the mini-
mum number of technicians required for a given intervention I . This value is obtained by
solving heuristically the following integer linear problem:

minimize
∑

t∈Ωt

xt

subject to
∑

t |C(t,I )≥n,t∈Ωt

xt ≥ R(I, i, n), ∀i, n

xt ∈ {0,1}, t ∈ Ωt,

where Ωt is the set of indexes of technicians and xt denotes whether technician t works on
intervention I or not. The heuristic used to compute mintec(I ) is exposed in Algorithm 1.

In the second phase, we determine a subset of interventions to be subcontracted. The ben-
efit for subcontract of I is evaluated by wI = mintec(I ) × T (I), where T (I) is the duration
of intervention I . Then, the problem of finding this subset turns out to be the precedence
constrained knapsack problem (PCKP) (Kellerer et al. 2004) and can be stated as follows:

maximize
∑

I∈ΩI

wIxI

subject to
∑

I∈ΩI

cost(I ) · xI ≤ A

xI ≤ xI ′ , ∀I, I ′ ∈ ΩI | P(I, I ′) = 1

xI ∈ {0,1}, I ∈ ΩI ,
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where ΩI is the set of indexes of interventions and xI denotes whether I is subcontracted
or not. This problem is solved with a greedy algorithm which consists in selecting the in-
terventions of maximum ratio wI/cost(I ) with no successors not subcontracted, while the
total cost does not exceed the budget A.

This approach was done in the challenge context and is probably not optimal. Never-
theless, the experimentation showed that the above strategy provides better results than the
following ones:

– Fix the maximum possible variables to reduce the problem. That corresponds to set wI =
1 for all interventions.

– Take into account the priority of the interventions: wI = 28 if I is of priority 1, wI = 14
if I is of priority 2 etc.

3.2 GRASP algorithm

The terminology GRASP refers to a class of procedures in which randomized greedy
heuristics and local search techniques are employed. GRASP has been applied to a wide
range of combinatorial optimization problems such as scheduling (Xu and Chiu 2001),
routing (Atkinson 1998), graph theory (Resende and Ribeiro 1997), assignment prob-
lems (Fleurent and Glover 1999), etc. The reader can refer for instance to Resende and
Ribeiro (2003) or Festa and Resende (2002) for complete annotated bibliographies.

A classical GRASP implementation generally repeats the following steps until a stopping
condition is satisfied:

– Construction phase: Generate a feasible solution with a greedy randomized algorithm.
– Improvement phase: Apply a local search to the current solution.
– Update phase: Update the best known solution.

The stopping condition can be a maximum number of iterations or a limited CPU time for
instance.

3.2.1 Construction phase

In a classical GRASP implementation, the construction phase consists in determining a set
of candidate elements that can be added to the partial solution while keeping feasibility.
The selection of the next element for incorporation is determined according to an inser-
tion weight: the element corresponding to the highest weights are inserted first. Usually, the
weights are given by a greedy function that evaluates the increase of the objective function
due to the insertion of the candidates. In our case, they are first initialized at a given value
(linked to the cost of the associated priority in the objective function) then updated at each
iteration by considering the previous encountered solutions. The classical GRASP method-
ology considers a restricted candidate list (RCL) composed of α% of the candidates with
the greatest insertion weight, where α ∈ [0,100]. The candidates are then randomly chosen
in the RCL for insertion in the current partial solution. In our approach, the RCL is com-
posed of all the interventions, which corresponds to fixing the variable α to the value 100.
The interventions are inserted according to the decreasing order of the insertion weights and
chosen randomly in case of equality.
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Selecting a candidate Initially, the weight of a candidate is fixed to the coefficient of its
priority in the objective function for interventions of priority 1, 2, 3 and we arbitrarily fix a
coefficient of 1 for the interventions of priority 4. Thus, candidates of priority 1 (respectively,
2, 3) have a weight of 28 (resp., 14, 4) and candidates of priority 4 have a weight of 1. The
criterion of the greedy algorithm consists in selecting the candidate with the larger weight.
The use of random allows the algorithm to decide which candidate to choose when two or
more candidates have the same weight. Note that a given candidate cannot be scheduled if
one of its predecessors at least is not scheduled.

Then, for a given candidate, the greedy algorithm attempts to assign it according to the
following three criteria: (1) the earliest day possible; (2a) the team which requires the less
additional technicians to perform the intervention; (2b) the minimum starting time possible.
The process is repeated until all the candidates are scheduled. We give in Sect. 5 some results
obtained when using only one of these criteria. We next explain how the algorithm respects
these three criteria.

Computing the earliest day possible When trying to insert the current candidate I in the
solution, the condition (1) looks for adding it as soon as possible to limit the increase of
the last day in the schedule. The first step consists in computing the minimum starting date
(d(I), s(I )) of I . This is achieved by searching for the maximum day dmax among all its
predecessors, then taking the maximum ending time s(Imax) + T (Imax) such that Imax ∈
Pred(I ) and Imax is scheduled on day dmax. If s(Imax)+T (Imax)+T (I) > Hmax then d(I) =
dmax + 1 otherwise d(I) = dmax.

Computing the minimum required number of technicians for inserting a candidate Criteria
(2a) and (2b) have to take into account the available technicians on d(I) and the existing
teams of technicians on d(I). To respect the criterion (2a), a first phase consists in evaluating
the number of technicians needed to construct a new team for I . This is achieved by applying
the heuristic described in the Algorithm 1.

The second phase of the method consists in considering all the existing teams, and in
computing for each of them the minimum starting date for I . The algorithm checks if the
skills required by the intervention I are satisfied by a given team ε. If it is the case, there
is no need to add a technician to ε. On the contrary, the minimum number of technicians
to add to ε is again determined heuristically by applying the Algorithm 1 considering that
team ε is not empty at the beginning. Let techsε(I ) be the required number of technicians
needed for assigning I to team ε (ε = 0 if a new team has to be created).

Computing the minimum starting time The next step of the algorithm consists in comput-
ing the value of the minimum starting time sε(I ) if I is affected to a given team ε. This
is possible by scanning the list of the current interventions of ε and checking when it is
possible to insert I without enjambment with the interventions already scheduled.

Defining the priority between (2a) and (2b) The order of the criteria (2a) and (2b) depends
of the value of d(I) obtained previously. It also depends on the ending time of the last
scheduled intervention with the same priority as I for priorities 1, 2, 3 and to the ending
time of the whole schedule for priority 4 (i.e., tk , where k designate the priority of the
candidate I ). If d(I)×Hmax + s(I )+T (I) < tk then the condition (2a) is considered before
the condition (2b). Otherwise the condition (2b) has the priority. That can be justified by the
fact that if the schedule of I leads to an increase of the ending time of the same priority as I

or an increase of the whole schedule, then it is better to try to minimize the deterioration by
looking for the minimum starting time possible.
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Fig. 1 Solution with objective 17820 for instance data8 of instances set A

Hence to favor condition (2a) the algorithm chooses the team ε with the minimum value
of techsε(I ). If several teams have the same value, the chosen team is the one for which the
value of sε(I ) is minimum. On the contrary, if it is the condition (2b) that is favored, then the
algorithm chooses the team ε with the minimum value of sε

I , and the one with the minimum
value of techsε(I ) if there are at least two teams with the same value sε

I .

Using a permutation of the weights in the greedy algorithm Some preliminary experiments
underlined that the choice of the weight of an intervention is not so trivial. Let us note w(I)

as the weight of intervention I . In the previous description, we suppose that w(I) is equal
to the coefficient of the priority of I in the objective function. That corresponds to apply the
highest priority first order. Figure 1 presents a solution generated by the greedy algorithm
where the weights of the interventions are 28 for interventions of priority 1, 14 for priority 2,
4 for priority 3 and 1 for priority 4. This solution was obtained for one of the instances used
in our computational experiments. In this figure, interventions of priority 1 are represented
by dark boxes, those of priority 2 are represented by intermediate boxes, those of priority 3
are represented by clear boxes and there is no intervention of priority 4. Each line represents
a technician, with the first technician represented by the top line and the last technician
represented by the bottom line. Each black box corresponds to an unavailable day for a
technician and each vertical line corresponds to the end of a day. The objective value of this
solution is 17820.

However it is possible to affect the weights of the interventions in a different way. Sup-
pose that interventions of priority 4 have a weight of 28, those of priority 3 have a weight
of 14, those of priority 1 have a weight of 4 and those of priority 2 have a weight of 1. That
corresponds to use the permutation (4, 3, 1, 2) of the weights. Figure 2 gives the solution
generated by the greedy algorithm with these weights. The objective value of this solution
is 17355. Note that the weights of the interventions are obviously not used to evaluate a
solution but only to guide the greedy algorithm.

This example clearly shows that for this instance, it should be better to fix a greater
weight to the interventions of priority 3 and thus to use the permutation or priority order (4,
3, 1, 2).

Updating the weights One possible drawback of the standard GRASP framework is that it
discards information about encountered solutions. In the proposed implementation, we use
information brought by previous solutions to direct the search towards potentially improving
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Fig. 2 Solution with objective 17355 for instance data8 of instances set A

Algorithm 2 update phase
Require: The list of interventions. A priority order p.

1: for each priority prio do
2: I := last scheduled intervention of priority prio;
3: w(I) = w(I) + wp(I);
4: for each intervention J ∈ Pred(I ) do
5: w(J ) = w(J ) + wp(I);
6: end for
7: end for

solutions. This is carried out, at each iteration, by updating the weights of the candidates in
considering the characteristics of the previous solutions. Let us note as wp(I) the weight
associated with intervention I according to the priority order p. For example, let us suppose
that p = (3,2,1,4), then wp(I) = 28 if the priority of I is 3, wp(I) = 14 if the priority of
I is 2, etc. At the end of the greedy algorithm, the weights of the interventions are updated
from the pieces of knowledge (Taillard et al. 2001) associated with the solution generated.
This update consists in adding the value wp(I) to the last interventions of each priority and
to all their predecessors. Consequently, the greedy algorithm will attempt to schedule those
interventions earlier at the next iteration. The objective is to decrease the ending time of
each priority. As shown in Sect. 5, this update clearly helps our algorithm to improve the
quality of its final solutions. Algorithm 2 illustrates this update procedure.

Since it is difficult to determine a priori the best permutation of the weights, we define a
first phase described in the next section that consists in initializing the memory by evaluating
each of the 24 possible permutations.

3.2.2 Initialization phase

The aim of this phase is to identify the best initial weights associated to the interventions.
This is carried out by searching the priority order that leads to the best behavior of the greedy
algorithm. For this purpose, we apply the greedy algorithm of the construction phase several
times for each possible permutation of the weights (28, 14, 4, 1) as follows:

– apply several times the greedy algorithm for each of the 24 possible permutations of the
weights associated with the priorities.
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– repeat the same process only for the 12 permutations that lead to the best solutions.
– repeat the same process only for the 6 permutations that lead to the best solutions.

When this phase is completed, we keep the 2 permutations that obtain the best solutions.
Each one provides a promising initial assignation of the weights for the construction phase.
The GRASP is then executed iteratively with each of these 2 configurations in order to
enforce the diversification (Sect. 3.3 describes this way of exploration). Let us note that
during this phase, the solutions provided by the greedy algorithm are used for updating the
best known solution.

3.2.3 Improving phase

In this section, we describe our local search for improving solutions. In this problem, af-
ter fixing the assignment of interventions to the teams and the process order of interven-
tions of each team, we can determine the feasibility of the schedule. Moreover, the optimal
start times of interventions can be determined easily since the graph which represents the
process order of interventions and the precedence constraints is a weighted directed acyclic
graph (Cormen et al. 2001). Hence we search the assignment of interventions to teams and
the process order of interventions by local search and check the feasibility and determine
the optimal start times.

We propose two local search algorithms, which we call critical path and packing phases.
In both, we use the swap neighborhood and the insertion neighborhood. In both phases, we
consider only feasible moves, that is, if a neighborhood solution violates a constraint, the
solution does not accepted. With respect to the assignment of technicians to each team, we
maintain the minimal technicians for the assigned interventions and for convenience, we
consider an empty team consisting of technicians who are available on the day but does not
work on any interventions. Hence available technicians of a day belong to either an empty
team where no intervention is assigned or to the teams whose technicians are minimal for
the assigned interventions.

A swap operation exchanges the assignment and the order of two interventions. In this
operation, reassignment of technicians is not considered since it is not a trivial problem. On
the other hand, if the neighborhood solution is accepted in the move, technicians may be
rearranged in a greedy way to preserve the minimality of teams by moving technicians to
the empty team.

An insert operation removes an intervention and inserts it into another position. In this
operation, after removing the intervention, it may remove technicians in a greedy way from
the team where the intervention was assigned to maintain the minimality, and the team where
the intervention is being inserted is merged with the empty team in order to make it easier to
satisfy the constraints. If the insertion operation is accepted, technicians in the merged team
may be removed in a greedy way to preserve the minimality.

Critical path phase The aim of the critical path phase is to decrease the ending times of
each priority and that of the whole schedule (i.e., t1, t2, t3 and t4) simultaneously.

We define a critical path for a priority as a maximal sequence (I1, I2, . . . , Il) of inter-
ventions such that intervention Il gives the ending time of the priority and each consecutive
interventions Iq and Iq+1 (q = 1, . . . , l − 1) satisfy

d(Iq) = d(Iq+1) and s(Iq) + T (Iq) = s(Iq+1)

or

d(Iq) + 1 = d(Iq+1), s(Iq+1) = 0 and s(Iq) + T (Iq) + T (Iq+1) > Hmax.
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Intervention Iq+1 cannot be scheduled unless intervention Iq is scheduled at earlier period.
From the definition of a critical path, intervention I1 has to be scheduled at earlier period in
order to decrease the ending time of the priority. The local search finds a critical path for each
priority and tries to schedule intervention I1 at earlier period by searching the neighborhood.

Packing phase In the packing phase, the algorithm schedules interventions more efficiently
without increasing the ending time of each priority.

We consider a measure of the efficiency for team ε of day j . Let J = {I1, I2, . . . , Il} be
the interventions which are assigned to team ε. Let S(ε, i, n) be the available number of
technicians for level n and domain i for team ε (i.e., S(ε, i, n) = ∑

t |e(t,j)=ε �C(t, i)/n�).
Let N(J, i, n) be the required number of technicians for level n and domain i for a team to
execute the interventions J (i.e., N(J, i, n) = maxI∈J R(I, i, n)). Let

Wskill(ε, J ) =
∑

I∈J

∑

i,n

(N(J, i, n) − R(I, i, n))T (I )

and

Wtime(J ) = Hmax −
∑

I∈J

T (I ),

and we estimate the wasted skill (resp., the wasted time) for team ε and interventions J by
Wskill(ε, J ) (resp., Wtime(J )). Then, we estimate the efficiency for assigning interventions J

to team ε by the function

f (ε, J ) = Wskill(ε, J ) + αWtime(ε),

where α is set to a very large value (i.e., the efficiency is estimated by a lexicographic order
of time and skill).

In this phase, the local search estimates a solution by the summation of f (ε, J ) for all
teams of all day, and it accepts a neighborhood solution in the move of the local search if
the solution is feasible and it does not increase the current ending time of priority.

3.3 Overview of the approach

We summarize our approach in the Algorithm 3. This algorithm describes the three phases
we exposed in the previous sections. The preprocessing heuristic that selects the interven-
tions to be subcontracted is represented by the function Greedy_Hired on line 2. This func-
tion returns a sub-problem in which a part of the variables has been fixed (i.e., with sev-
eral interventions deleted). Then, the second phase that consists in determining the 2 best
configurations of the weights associated with the priorities is represented by the function
Initialize_Weights called on line 3. conf 1 and conf 2, correspond to the 2 assignations of
the weights provided. The GRASP algorithm is described between the lines 5 and 10. The
GRASP method consists in repeating the application of the greedy algorithm with the 2
selected permutations, then updating the memory and finally applying the local search algo-
rithm when the best solution is improved. The process stops when the allowed CPU time is
passed.



Ann Oper Res (2011) 183: 143–161 155

Algorithm 3 Solve_TIST(PB, MAX_CPU_Allowed)
Require: An instance PB of TIST to solve; The total allowed CPU time.

1: Best_Solution = 	
2: SPB = Greedy_Hired(PB);
3: (perm1,perm2) = Initialize_Weights(SPB);
4: while MAX_CPU_Allowed is not reached do
5: Solution1 = Greedy_Randomized_Construction(SPB, conf 1);
6: Solution2 = Greedy_Randomized_Construction(SPB, conf 2);
7: Update the memory
8: Improve = Update_Best_Solution(Solution1,Solution2,Best_Solution);
9: if Improve = True then

10: Best_Solution = Local_Search(SPB,Best_Solution);
11: end if
12: end while
13: return Best_Solution;

4 Lower bound

In this section, in order to evaluate the performance of the proposed algorithm, we consider a
lower bound of the problem P ′ where subcontracted interventions have already determined
and have been excluded. To compute a lower bound for P ′, we consider 8 relaxed problems
with restricted interventions and compute a lower bound on the ending time of the schedule
(which is often called a makespan) for each problem. Finally, the lower bound for P ′ is
computed by using them.

We consider the following problems

– MSP(1) which has only priority 1 interventions and their predecessors for P ′.
– MSP(2) which has only priority 2 interventions and their predecessors for P ′.
– MSP(3) which has only priority 3 interventions and their predecessors for P ′.
– MSP(1,2) which has priority 1 and 2 interventions and their predecessors for P ′.
– MSP(2,3) which has priority 2 and 3 interventions and their predecessors for P ′.
– MSP(3,1) which has priority 3 and 1 interventions and their predecessors for P ′.
– MSP(1,2,3) which has priority 1, 2 and 3 interventions and their predecessors for P ′.
– MSP(1,2,3,4) which has all interventions for P ′.

Let T1, T2, T3, T1,2, T2,3, T3,1, T1,2,3 and T1,2,3,4 be lower bounds of their makespan re-
spectively. Then the following problem gives a lower bound for P ′:

minimize 28t1 + 14t2 + 4t3 + t4

subject to T1 ≤ t1, T2 ≤ t2, T3 ≤ t3

T1,2 ≤ max{t1, t2}, T2,3 ≤ max{t2, t3}, T3,1 ≤ max{t3, t1}
T1,2,3 ≤ max{t1, t2, t3}
T1,2,3,4 ≤ t4,

where t1, t2 and t3 are the ending time for priority 1, 2 and 3, respectively, and t4 is the ending
time of whole schedule. It is easy to see that any feasible solution (i.e., t1, t2, t3 and t4) must
satisfy each constraint.
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We propose three lower bounds for the makespan problem; The box lower bound is com-
puted in a combinatorial way. The assignment lower bound is obtained by a linear program-
ming problem which is a relaxation of P ′. The trivial lower bound is derived from trivial
conditions. We take the best lower bound from them and strengthen it by a post processing.

4.1 The box lower bound

The box lower bound, which is a lower bound on the days (not time), is computed for
each domain i and level n, and the largest among them is adopted. The similar method was
proposed by Lodi et al. (2004) for the two-dimensional level packing problem.

For each domain i and level n, we consider a rectangle whose height is R(I, i, n) and
width is T (I) for each intervention I . The area of a rectangle is the multiplication of the
needed amount of skill and time for the intervention. In order to compute the box lower
bound, the area of a rectangle may be partitioned. Let Ad(j, i, n) be the number of techni-
cians who can work at day j and has a skill level n in domain i. We arrange all rectangles
by the height and split them by every Hmax from the left and take the minimum rectangles
which contain each Hmax blocks. Figure 3(a) shows such a situation and the dotted part is
the empty space of the minimum rectangles. Each minimum rectangle means the work for
the interventions which may be contained partially is executed by a team whose number of
technicians is the height of the minimum rectangle. Next we build the minimum rectangles
up and compute μ∗ = min{μ ∈ Z | H ≤ ∑μ

j=1 Ad(j, i, n)} for the total height H . The μ∗ is a
lower bound on the days which are needed for the schedule. Figure 3(b) shows the situation
where μ∗ = 2.

Since this is a lower bound of days and we do not know the time, the gap can be at most
Hmax (1 day) in the sense of time. Hence we split a day into halves and apply the procedure
assuming Hmax/2 is a day. We continue the process with Hmax/3, Hmax/4, . . . , 1, and take
the best lower bound among them.

4.2 The assignment lower bound

In order to compute the assignment lower bound, we repeat guessing the number of days
μ where the assignment lower bound lies and solving a linear programming problem corre-
sponding to μ until the guess is a hit. We can know whether the guess is a hit or not from
the optimal solution of the linear programming. In the case that the guess is not a hit, we can
also know whether the guess is large or small.

For the number of days μ which we guess (i.e., we guess the makespan M is in
[μHmax, (μ + 1)Hmax]), the available working time Uμ(t,M) until time M for each tech-
nician t can be computed easily. Note that Uμ(t,M) is represented as M − lHmax for some

Fig. 3 An example of the procedure for the box lower bound
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l ≤ μ or 0. We consider the following linear programming ALP(μ):

minimize M (11)

subject to
∑

t |C(t,i)≥n

xI,t ≥ R(I, i, n), ∀I,∀i,∀n (12)

∑

I

T (I )xI,t ≤ Uμ(t,M), ∀t (13)

0 ≤ xI,t ≤ 1, ∀I,∀t, (14)

where xI,t represents the assignment of I to t . The feasible region of ALP(μ) is included by
that of ALP(μ + 1) and, hence, the optimal objective value becomes smaller for larger μ. If
the problem is infeasible or the optimal value M∗ of ALP(μ) is larger than (μ+ 1)Hmax, we
can see the assignment lower bound is larger. If the optimal value M∗ of ALP(μ) is smaller
than μHmax, we can see the assignment lower bound is smaller. The process is repeated until
the guess hits and the last M∗ turns out to be the assignment lower bound.

4.3 The trivial lower bound

The trivial lower bound is derived from the following necessary conditions. (1) The maxi-
mum execution time for all interventions is a lower bound. (2) The sum of execution time for
a sequence of the interventions where each successive interventions has precedence relation
is a lower bound. The maximum value of all such sequences can be computed in linear time.

4.4 Postprocess

A lower bound can be strengthened, because a makespan must be a value which consists of
combination of T (I) and Hmax. We compute all possible makespan by the dynamic program-
ming, and take the least value larger than or equal to the given lower bound as a strengthened
lower bound.

5 Experimental results

Our algorithm was tested on data sets provided by France Telecom for the 5th challenge
of the French Society of Operations Research and Decision Analysis. There are three data
sets available, each data set contains 10 instances with a different number of interventions,
technicians, domains and levels. The first data set called data-setA does not consider the
problem of subcontracted interventions. It contains instances from 5 to 100 interventions,
from 5 to 20 technicians, from 3 to 5 domains and from 2 to 4 levels. The instances of
the data-setB are much harder to solve and they do consider the problem of subcontracted
interventions. This data-set contains instances from 120 to 800 interventions, from 30 to
150 technicians, from 4 to 40 domains and from 3 to 5 levels. Finally, the data-setX is the
data-set on which the evaluation for the challenge ranking was based. It contains instances
from 100 to 800 interventions, from 20 to 100 technicians, from 6 to 20 domains and from
3 to 7 levels.
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Table 1 Evaluation of the
insertion criteria Data set (1) (2) (1) + (2)

A 196395 196829 196049

B 405015 401445 399300

X 921940 921900 919085

Table 2 Evaluation of the
memory usage Data set Memory-less Memory

A 236205 196049

B 562890 399300

X 1287990 919085

5.1 Preliminary experimentations

The choice of the insertion criteria for the construction of the feasible solutions is central
in GRASP implementation. In Sect. 3.2.1 we proposed two main criteria for inserting new
interventions: the criteria (1) which corresponds to the earliest day possible and the crite-
rion (2) which combines both criterion (2a) and (2b) corresponding respectively to the team
which requires the less additional technicians to perform the intervention and the minimum
starting time possible. We propose to evaluate the impact of each of the criteria in the global
behaviour of the algorithm. Table 1 exposes the sum of the objective values found with the
use of criteria (1), criteria (2) and the combination of (1) and (2).

The results reported in Table 1 confirm that the combination of both criteria is globally
better than choosing the criterion (1) or the criterion (2) separately. Moreover, this experi-
mentation showed that the combination of (1) and (2) provides globally 16 better solutions
and 3 worse solutions than the use of criterion (1) and it provides 13 better solutions and 3
worse solutions than the use of criterion (2).

We also made preliminary experimentations in order to evaluate the impact of memory
usage in our GRASP algorithm. We expose in Table 2 the comparison of the results ob-
tained with a memory-less version of our algorithm (i.e. without the update of the insertion
weights according to the previous encountered solutions) and the exposed version which
uses adaptive memory to construct the new feasible solutions.

The obtained results clearly show the positive contribution of the memory usage in our
algorithm since the memory-less version obtained very poor quality solutions.

5.2 Final results

We provide in the Table 3 the official results which were published on the website of the
challenge. The computer used contains an AMD Processor of 1.8 GHz and 1 GB of DDR-
RAM. The execution time was limited to 1200 seconds for all the algorithms. The descrip-
tion of the data per column is the following: inst.: The name of the instance. int.: The number
of interventions. tec.: The number of technicians. dom.: The number of domains. lev.: The
number of levels. The column GRASP has three values: value: the objective value of the
GRASP-based algorithm, LB: the lower bound value without the subcontracted interven-
tions and gap: the gap in percentage between the lower bound and the objective value. The
column Best objective has two values: value: The best objective value found among all the
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Table 3 Results obtained on the benchmarks provided by France Telecom

Inst. Int. Tec. Dom. Lev. GRASP Best objective

value LB gap value gap

1-setA 5 5 3 2 2340 2265 3.2 2340 0

2-setA 5 5 3 2 4755 4215 11.35 4755 0

3-setA 20 7 3 2 11880 11310 4.79 11880 0

4-setA 20 7 4 3 13452 10995 18.26 13452 0

5-setA 50 10 3 2 28845 26055 9.67 28845 0

6-setA 50 10 5 4 18870 17775 5.8 18795 0.39

7-setA 100 20 5 4 30840 27405 11.13 30540 0.97

8-setA 100 20 5 4 17355 16166 6.85 16920 2.50

9-setA 100 20 5 4 27692 25618 7.48 27692 0

10-setA 100 15 5 4 40020 35405 11.53 38296 4.3

Average 9.01 0.81

1-setB 200 20 4 4 43860 38385 12.48 34395 21.58

2-setB 300 30 5 3 20655 16605 19.6 15870 23.16

3-setB 400 40 4 4 20565 17460 15.09 16020 22.1

4-setB 400 30 40 3 26025 19035 26.85 25305 2.76

5-setB 500 50 7 4 120840 106290 12.04 89700 25.76

6-setB 500 30 8 3 34215 24450 28.54 27615 19.28

7-setB 500 100 10 5 35640 28470 20.11 33300 6.56

8-setB 800 150 10 4 33030 32820 0.63 33030 0

9-setB 120 60 5 5 29550 26310 10.96 28200 4.56

10-setB 120 40 5 5 34920 32790 6.09 34680 0.68

Average 15.24 12.64

1-setX 600 60 15 4 181575 140025 22.88 151140 16.76

2-setX 800 100 6 6 7260 6840 5.78 7260 0

3-setX 300 50 20 3 52680 49650 5.75 50040 5.01

4-setX 800 70 15 7 72860 59560 18.25 65400 10.23

5-setX 600 60 15 4 172500 126465 26.68 147000 14.78

6-setX 200 20 6 6 9480 6180 34.81 9480 0

7-setX 300 50 20 3 46680 45000 3.59 33240 28.79

8-setX 100 30 15 7 29070 20590 29.17 23640 18.67

9-setX 500 50 15 4 168420 101985 39.44 134760 19.98

10-setX 500 40 15 4 178560 99705 44.16 137040 23.25

Average 23.05 13.74

challengers solutions and gap: the gap in percentage between this best objective and our
objective value. Average: The average of the gaps.

There were 17 teams participating to the final stage of the challenge in total and our
algorithm was ranked to the first position in the Junior category and to the fourth position
in the All category. The evaluation was based only on the data-setX. The ranking was made
on the average value of the gaps between our solution and the best solution among all the
challengers for each instance.
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Table 3 shows that the gap between the upper bound provided by the GRASP and the
lower bound is quite constant for all the instances except for some instances of the data-
set X.

5.3 Results analysis

The experimentations we have made later showed us that, for some of these instances, our
algorithm never reached the GRASP phase and that the solutions provided are the solutions
found during the initialization phase. This might be a good reason why the gap in this case
is bigger than the one for the others data sets.

A point that can be extracted from those experiments is that the choice of the subcon-
tracted interventions is not optimum. Indeed, some values of our lower bounds of the re-
maining problem are under the best solutions among all the challengers (upper bounds of
the whole problem). We made some new experiments which confirm this point of view: for
the instance 9 of the data-set B, we selected a different set of subcontracted interventions
and then we executed the same algorithm. It appeared that it found a lower bound of 25695
instead of 26310 and an objective value of 27960 instead of 29550 whereas the best solution
found among all the challengers is 28200.

6 Conclusion

In this paper, we presented a Technician and Intervention Scheduling Problem for Telecom-
munications and gave a mathematical formulation.

We proposed a heuristic algorithm based on three main stages: (1) the fixing of some
variables which is done by the “knapsack ratio heuristic” for subcontracted interventions,
(2) the initializing of the memory (weights allocated to the interventions) which is carried
out by the search of the best orders to insert interventions and (3) the greedy randomized
adaptive search procedure and the local search embedded which seek to improve the initial
solutions by updating the initial weights of interventions.

We gave lower bounds which confirm the effectiveness of our approach. The experimen-
tations have clearly showed that the choice of the “knapsack ratio heuristic” is the main weak
spot of this approach. Nevertheless, as we pointed out with the instance 9 of the data-set B,
a different fixing heuristic can provide better solutions.

Finally, the greedy adaptive memory algorithm shows to be a promising tool for solving
this problem especially if we improve the first step of our global approach. That is the aim
of further work we are planning to conduct.
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