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Abstract Cluster analysis is an important tool for data exploration and it has been applied
in a wide variety of fields like engineering, economics, computer sciences, life and medical
sciences, earth sciences and social sciences. The typical cluster analysis consists of four
steps (i.e. feature selection or extraction, clustering algorithm design or selection, cluster
validation and results interpretation) with feedback pathway. These steps are closely related
to each other and affect the derived clusters. In this paper, a new metaheuristic algorithm
is proposed for cluster analysis. This algorithm uses an Ant Colony Optimization to feature
selection step and a Greedy Randomized Adaptive Search Procedure to clustering algorithm
design step. The proposed algorithm has been applied with very good results to many data
sets.
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1 Introduction

Clustering is a very important problem that has been addressed in many contexts and by
researchers in many disciplines. It embraces various scientific disciplines, from mathematics
and statistics to biology and genetics, each of which uses different terms to describe the
topologies formed using this analysis. Other terms more or less synonymous with clustering
include unsupervised learning, numerical taxonomy, vector quantization and learning by
observation.

Clustering analysis identifies clusters (groups) embedded in the data, where each
cluster consists of objects that are similar to one another and dissimilar to objects in
other clusters (for high quality clusters, the inter-cluster similarity is low and the intra-
cluster similarity is high) (Jain et al. 1999; Mirkin 1996; Rokach and Maimon 2005;
Xu and Wunsch 2005). Clustering algorithms can be classified into two categories: hierar-
chical clustering and partitional clustering. The most well known of the partitional methods
is the classical k-means algorithm (Babu and Murty 1993; Ng 2000; Tarsitano 2003). For
hard or crisp clustering each object is assigned to only one cluster while a pattern may also
be allowed to belong to all clusters with a degree of membership in fuzzy clustering.

The typical cluster analysis consists of four steps (with a feedback pathway) which are
the feature selection or extraction, the clustering algorithm design or selection, the cluster
validation and the results interpretation (Xu and Wunsch 2005).

The basic feature selection problem (FSP) is an optimization one, where by the use of a
performance measure for each subset of features its ability to classify the samples is mea-
sured. The problem is to search through the space of feature subsets to identify the optimal
or near-optimal one with respect to the performance measure. In the literature many suc-
cessful feature selection algorithms have been proposed (Aha and Bankert 1996; Cantu-Paz
et al. 2004; Jain and Zongker 1997; Jouve and Nicoloyannis 2005; Kira and Rendell 1992;
Marinakis et al. 2008)). Feature extraction utilizes some transformations to generate useful
and novel features from the original ones.

The clustering algorithm design or selection step is usually combined with the selection
of a corresponding proximity measure and the construction of a criterion function. Pattern
proximity is usually measured by a distance function defined on pairs of patterns and a
variety of distance measures are in use (Jain et al. 1999; Rokach and Maimon 2005). After
the selection of the proximity measure, a clustering criterion function is formulated which
makes the partition of clusters a well defined optimization problem. However, it should be
noted that the problem is NP-hard as the clustering objective functions are highly non-linear
and multi-modal functions and as a consequence it is difficult to investigate the problem in
an analytical approach. Many heuristic, metaheuristic and stochastic algorithms have been
developed in order to find a near optimal solution in reasonable computational time. An
analytical survey of the clustering algorithms can be found in Jain et al. (1999), Rokach and
Maimon (2005), Xu and Wunsch (2005). In Al-Sultan (1995), Chu and Roddick (2000), Liu
et al. (2005), Sung and Jin (2000) algorithms based on Tabu Search are presented. Simulated
Annealing for clustering is used in Brown and Huntley (1992), Celeux and Govaert (1992),
Chu and Roddick (2000), Selim and Alsultan (1991) while in Cano et al. (2002) a clustering
algorithm based on Greedy Randomized Adaptive Search Procedure (GRASP) is applied.
Genetic algorithms are used in Babu and Murty (1993), Cowgill et al. (1999), Liu et al.
(2004), Maulik and Bandyopadhyay (2000), Meng et al. (2000), Sheng and Liu (2006),
Tseng and Yang (2000), Tseng and Yang (2001), Wu et al. (2003), Yeh and Fu (2007) while
an analytical review of the use of neural networks in clustering is given in Liao and Wen
(2007). Clustering algorithms based on Ant Colony Optimization are used in Azzag et al.
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(2006, 2007), Chen et al. (2005), He et al. (2006), Kao and Cheng (2006), Shelokar et al.
(2004), Sherafat et al. (2004), Tsang and Kwong (2006), Yang and Kamel (2006) while
in Janson and Merkle (2005), Kao et al. (2007), Paterlini and Krink (2006), Shen et al.
(2005a), Sun et al. (2006) clustering algorithms based on Particle Swarm Optimization are
applied. Clustering algorithms based on Artificial Immune Systems are presented in Li and
Tan (2006), Nasraoui et al. (2003), Younsi and Wang (2004). A hybrid technique based on
combining the K-means algorithm, Nelder-Mead simplex search (a classical local descent
algorithm), and particle swarm optimization, called K-NM-PSO, is proposed in Kao et al.
(2007).

Cluster validity analysis is the assessment of a clustering procedure’s output. Effective
evaluation standards and criteria are used in order to find the degree of confidence for the
clustering results derived from the used algorithms. There are three types of validation stud-
ies: an external assessment of validity compares the recovered structure to an a priori struc-
ture, an internal examination of validity tries to determine if the structure is intrinsically
appropriate for the data while a relative test compares two structures and measures their
relative merit. External indices, internal indices, and relative indices are used for these tests
(Jain et al. 1999; Xu and Wunsch 2005).

In the results interpretation step, experts in the relevant fields interpret the data partition
in order to guarantee the reliability of the extracted knowledge.

In this paper, a new hybrid metaheuristic algorithm based on an Ant Colony Optimiza-
tion (ACO) (Dorigo and Stutzle 2004) algorithm for the solution of the feature selection
problem and on a Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Re-
sende 1995) for the solution of the clustering problem is proposed. In order to assess the
efficacy of the proposed algorithm, this methodology is evaluated on datasets from the UCI
Machine Learning Repository. Also, the method is compared with the results of eight other
metaheuristic algorithms for clustering analysis that use a Tabu Search Based Algorithm
(Glover 1989) a Genetic Based Algorithm (Goldberg 1989) and a Particle Swarm Optimiza-
tion Algorithm (Kennedy and Eberhart 1995) and combination of them with the proposed
Ant Colony Optimization algorithm for the solution of the feature selection problem (Mari-
nakis et al. 2008) or for the clustering phase of the algorithm.

The rest of this paper is organized as follows: In the next section the proposed Hybrid
ACO-GRASP Algorithm is presented and analyzed in detail. In Sect. 3, the analytical com-
putational results for the datasets taken from the UCI Machine Learning Repository are
presented while in the last section conclusions and future research are given.

2 The proposed hybrid ACO-GRASP algorithm for clustering

2.1 Introduction

The proposed algorithm (Hybrid ACO-GRASP) for the solution of the clustering problem
is a two phase algorithm which combines an Ant Colony Optimization (ACO) (Dorigo and
Stutzle 2004) algorithm for the solution of the feature selection problem and a Greedy Ran-
domized Adaptive Search Procedure (GRASP) for the solution of the clustering problem.
In this algorithm, the activated features are calculated by the Ant Colony Optimization al-
gorithm (see Sect. 2.4) and the fitness (quality) of each ant is calculated by the clustering
algorithm (see Sect. 2.5).

The application of ACO in the feature selection problem is a research area that is still
relatively unexplored. Al-Ani (2005a, 2005b) presented a novel feature subset search pro-
cedure that utilizes Ant Colony Optimization and used this procedure to select features for
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speech segment and texture classification problems. Zhang and Hu (2005) proposed an algo-
rithm which utilizes the combination of wrapper and filter models: ant colony optimization
(ACO) and mutual information (MI). In both of these approaches a combination of a wrap-
per method, like ant colony optimization, and a filter evaluation function, like the mutual
information function, is used. In our proposed ACO-based metaheuristic algorithm, a dif-
ferent approach is applied that does not use the mutual information evaluation function to
estimate the local importance of each feature and this makes the algorithm more flexible and
less time consuming.

There is only one application, at least to our knowledge, that uses the GRASP algorithm
for clustering (Cano et al. 2002), where they used a very different approach than ours. More,
precisely GRASP algorithm is used for the initial solutions and for each solution k-means
algorithm is used for the calculation of the clusters.

In the following, initially the clustering problem is stated, then a general description of
the proposed algorithm is given while in the last two subsections each of the phases of the
algorithm are presented analytically.

2.2 The clustering problem

The problem of clustering N objects (patterns) into K clusters is considered. In particular
the problem is stated as follows:

Given N objects in Rn, allocate each object to one of K clusters such that the sum of
squared Euclidean distances between each object and the center of its belonging cluster
(which is also to be found) for every such allocated object is minimized. The clustering
problem can be mathematically described as follows:

Minimize J (w, z) =
N∑

i=1

K∑

j=1

wij‖xi − zj‖2 (1)

Subject to

K∑

j=1

wij = 1, i = 1, . . . ,N (2)

wij = 0 or 1, i = 1, . . . ,N,

j = 1, . . . ,K (3)

where:

– K is the number of clusters (given or unknown),
– N is the number of objects (given),
– xi ∈ Rn, (i = 1, . . . ,N) is the location of the ith pattern (given),
– zj ∈ Rn, (j = 1, . . . ,K) is the center of the j th cluster (to be found), where

zj = 1

Nj

N∑

i=1

wijxi (4)

where Nj is the number of objects in the j th cluster,
– wij is the association weight of pattern xi with cluster j , (to be found), where

wij =
{

1 if pattern i is allocated to cluster j, ∀i = 1, . . . ,N, j = 1, . . . ,K

0 otherwise.
(5)
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2.3 General description of the algorithm

Initially, as it was mentioned in Sect. 2.1, in the first phase of the algorithm a number of
features are activated, using the Ant Colony Optimization Algorithm. In order to find the
clustering of the samples (fitness or quality of the ACO algorithm) a GRASP algorithm
is used. The clustering algorithm has the possibility to solve the clustering problem with
known or unknown number of clusters. When the number of clusters is known Equation (4),
denoted as SSE, is used in order to find the best clustering. In the case that the number of
clusters are unknown two additional measures are used. The one measure is the minimization
of the distance between the centers of the clusters:

SSC =
K∑

i

K∑

j

(‖zi − zj‖)2. (6)

The second measure is a the minimization of a validity index (Ray and Turi 1999; Shen
et al. 2005b) given by:

validity = SSE

SSC
. (7)

It should, also, be noted that the selection of the best solution of the feature selection
problem cannot be performed based on the sum of squared Euclidean distances because
when the features are increased (or decreased) a number of terms are added (or subtracted)
in (4) and the comparison of the solutions is not possible, using only the SSE measure.
Thus, the validity measure is used. A pseudocode of the proposed algorithm is presented in
Table 1.

2.4 Ant colony optimization for the feature subset selection problem

Feature selection is used as the first step of the clustering task in order to reduce the
dimension of problem, decrease noise and improve the speed of the algorithm by the
elimination of irrelevant or redundant features. In this paper, Ant Colony Optimization
(Dorigo and Stutzle 2004) for the solution of the feature selection problem is used. The
Ant Colony Optimization (ACO) metaheuristic is a relatively new technique for solv-
ing combinatorial optimization problems (COPs). Based strongly on the Ant System
(AS) metaheuristic developed by Dorigo, Maniezzo and Colorni (Dorigo et al. 1996;
Dorigo and Stutzle 2004), ant colony optimization is derived from the foraging behaviour of
real ants in nature. The main idea of ACO is to model the problem as the search for a min-
imum cost path in a graph. Artificial ants walk through this graph, looking for good paths.
Each ant has a rather simple behaviour so that it will typically only find rather poor-quality

Table 1 Hybrid ACO-GRASP
for clustering do while stopping criteria not satisfied

call ACO algorithm(Solution)
call GRASP algorithm(Solution)
if Solution is better than Best_Solution_Found then

Best_Solution_Found ←− Solution
endif

enddo
return Best_Solution_Found
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Table 2 Ant colony optimization

Initialization
Creation of the initial population of Ants
Calculation of heuristic function ni for each feature i

Calculation of the initial pheromone τi for each feature i

Selection of the maximum number of generations
Main Phase
Do until the maximum number of generations has been reached:

Each ant begins its own tour from a different feature
For each ant in the population:

Do while stopping criteria are not satisfied:
Select the next feature based on the pheromone

and the heuristic function
Calculate the fitness function of each ant

using the GRASP algorithm for clustering
Apply a Local Search Procedure

Enddo
EndFor
Update the pheromone based on the solution of the best ant in the population
(Elitist Strategy for ACO)

Enddo
Return the best ant (the best solution).

paths on its own. Better paths are found as the emergent result of the global cooperation
among ants in the colony (Dorigo et al. 1996).

An ACO algorithm consists of a number of cycles (iterations) of solution construction.
During each iteration a number of ants (which is a parameter) construct complete solutions
using heuristic information and the collected experiences of previous groups of ants (Dorigo
and Stutzle 2004). These collected experiences are represented by a digital analogue of trail
pheromone which is deposited on the constituent elements of a solution. Small quantities
are deposited during the construction phase while larger amounts are deposited at the end
of each iteration in proportion to solution quality. Pheromone can be deposited on the com-
ponents and/or the connections used in a solution depending on the problem (Dorigo and
Stutzle 2004). A pseudocode of the proposed Ant Colony Optimization algorithm is pre-
sented in Table 2.

In the proposed algorithm, every candidate feature in ACO is mapped into a binary ant
where the bit 1 denotes that the corresponding feature is selected and the bit 0 denotes that
the feature is not selected. An initial population r of solutions is formed in order to find an
initial local optimum solution to use it in the calculation of the heuristic function ni of the
feature i. The ni is calculated from the r1 best solutions (r1 < r) of the initial population. We
would like to have an initial estimation of the most important features (Dorigo and Stutzle
2004). Thus, the features that exist in the r1 best solutions are identified and all the features
are weighted based on the times that each feature appears in the r1 best solutions. These
features have greater fixed value in the [ni] matrix, where [·] denotes the i element of the
matrix n.

In the algorithm, a number of ants are used that start to construct solutions simultane-
ously. Each ant begins from a different place in the feature vector and follows its own route.
Also, it has the possibility to visit all features and built solutions completely. Each ant is used
for a number of generations starting always from the same feature and choosing in each gen-
eration different features based on the quantity of pheromone that exists in each feature. The
initial quantity of the pheromone τi for the feature i is calculated from the formula (Dorigo
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and Stutzle 2004):

τi = ant_size

init_opt
(8)

where ant_size is the initial population of ants and init_opt is the quality of the optimum
solution of the initial population.

An ant located in the feature j decides if the feature i is selected or not by the formula
(Dorigo and Stutzle 2004):

pi = [τi]α[ni]β∑m

l=1[τl]α[nl]β (9)

where m is the number of features, [·] denotes the i element of the matrices τ , n and α,β

are two empirically selected parameters. If α = 0 the features that are selected in the initial
solutions are more likely to be selected and if β = 0 only pheromone is used without any
heuristic information. Afterwards, the fitness of each ant is calculated using the GRASP
algorithm for clustering and each ant chooses the next feature that will visit based on the
previous formula.

In the proposed algorithm, another restriction is added. This restriction prunes the ability
of each ant to create a path with all features activated. This is done because if all ants find
a solution with all the features the result will be the same solutions for all ants. Off course,
for each ant the optimal solution for all changes of the features is kept. When all ants have
completed their paths a simple local search is applied in each ant in order to optimize the
solutions. The local phase is very simple, features not activated in the current solution are
now activated and vice versa in order to find a better solution.

When all ants have constructed their first solution, the pheromone trails are updated.
A number of different approaches have been proposed for the pheromone update solutions
(Dorigo and Stutzle 2004). In the proposed algorithm, only the best ant leaves pheromone
in its own features (this strategy is called Elitist Strategy for ACO). Thus, the pheromone
quantity of each feature becomes (Dorigo and Stutzle 2004):

τi ←
{

(1 − q)τi + 1
ant_opt , if feature i is selected

(1 − q)τi, otherwise
(10)

where ant_opt is the quality of the best ant and q is an evaporation parameter that is used
in order not to have a continuous increase of the pheromone values in each feature. The
parameter q is used to avoid unlimited accumulation of the pheromone trails and it enables
the algorithm to forget bad decisions previously taken (Dorigo and Stutzle 2004).

2.5 Greedy randomized adaptive search procedure for the clustering problem

As it was mentioned earlier in the clustering phase of the proposed algorithm a Greedy
Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1995; Marinakis et
al. 2005a, 2005b; Resende and Ribeiro 2003) is used. GRASP is an iterative two phase
search algorithm which has gained considerable popularity in combinatorial optimization.
Each iteration consists of two phases, a construction phase and a local search phase. In the
construction phase, a randomized greedy function is used to built up an initial solution. This
randomized technique provides a feasible solution within each iteration. This solution is
then exposed for improvement attempts in the local search phase. The final result is simply
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Table 3 GRASP

do while stopping criteria not satisfied
Greedy Solution Phase

Choose the number of clusters
Choose the centers of the clusters randomly
Find the distances of each sample for all centers of the clusters
Order all the samples from smallest to the largest distance
Construct the RCL by using the first D samples of the ordering
Select randomly a sample for the RCL list
Calculate the new centers of the clusters
Readjust the RCL list
if all samples have been clustered then

Calculate the validation measures
endif

Local Search Phase
do while an improvement in the solution is occured

Calculate the distance of each sample for all the centers of the clusters
Assign a sample in a better cluster if possible
Calculate the new centers of the clusters
Calculate the validation measures

enddo
if Solution is better than Best_Solution_Found then

Best_Solution_Found ←− Solution
endif

enddo
return Best_Solution_Found

the best solution found over all iterations. In the first phase, a randomized greedy technique
provides feasible solutions incorporating both greedy and random characteristics. This phase
can be described as a process which stepwise adds one element at a time to the partial
(incomplete) solution. The choice of the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy function. The heuristic is adaptive
because the benefits associated with every element are updated during each iteration of the
construction phase to reflect the changes brought on by the selection of the previous element.
The probabilistic component of a GRASP is characterized by randomly choosing one of the
best candidates in the list but not necessarily the top candidate. The greedy algorithm is a
simple one pass procedure for solving the clustering problem. In the second phase, a local
search is initialized from the solution of the first phase, and the final result is simply the best
solution found over all searches (cf. multi-start local search). A pseudocode of the proposed
GRASP algorithm is presented in Table 3.

In the following the way the GRASP algorithm is applied for the solution of the clustering
problem is analyzed in detail. An initially solution is constructed step by step (by the term
initially solution we mean an initial clustering of the samples in the clusters) and, then, this
solution is exposed for development in the local search phase of the algorithm. The first
problem that we have to face was the selection of the number of the clusters. Thus, the
algorithm works with two different ways.

If the number of clusters is known a priori, then a number of samples equal to the number
of clusters are selected randomly as the initial clusters. In this case, as the iterations of
GRASP increased the number of clusters do not change. In each iteration, different samples
(equal to the number of clusters) are selected as initial clusters. Afterwards, the Restricted
Candidate List (RCL) is created. The RCL parameter determines the level of greediness
or randomness in the construction. In our implementation, the best promising candidate
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samples are selected to create the RCL. The samples in the list are ordered taking into
account the distance of each sample from all centers of the clusters and the ordering is from
the smallest to the largest distance. From this list, the first D samples (D is a parameter of the
problem) are selected in order to form the final Restricted Candidate List. This type of RCL
is a cardinality based RCL. The candidate sample for inclusion in the solution is selected
randomly from the RCL using a random number generator. Finally, the RCL is readjusted
in every iteration by recalculated all the distances based on the new centers and replacing
the sample which has been included in the sample by another sample that does not belong
to the RCL, namely the (D + m)th sample where m is the number of the current iteration.
When all the samples have been assigned to clusters three measures are calculated (the best
solution is calculated based on the sum of squared Euclidean distances between each object
and the center of its belonging cluster, see Sect. 2.3) and a local search strategy is applied
in order to improve the solution. The local search works as follows: For each sample the
probability of its reassignment in a different cluster is examined by calculating the distance
of the sample from the centers. If a sample is reassigned to a different cluster the new centers
are calculated. The local search phase stops when in an iteration no sample is reassigned.

If the number of clusters is unknown then initially a number of samples are selected
randomly as the initial clusters. Now, as the iterations of GRASP increased the number of
clusters changes and cannot become less than two. In each iteration a different number of
clusters can be found. The creation of the initial solutions and the local search phase work as
in the previous case. The only difference compared to the previous case concerns the use of
the validity measure in order to choose the best solution because as we have different number
of clusters in each iteration the sum of squared Euclidean distances varies significantly for
each solution.

3 Computational results

3.1 Data and parameter description

The performance of the proposed methodology is tested on 12 benchmark instances taken
from the UCI Machine Learning Repository. The datasets were chosen to include a wide
range of domains and their characteristics are given in Table 4. The data varies in term
of the number of observation from very small samples (Zoo with 101 observations) up to
larger data sets (Spambase with 4601 observations). Also, there are data sets with two, three,
four and seven clusters. In one case (Breast Cancer Wisconsin) the data set is appeared with
different size of observations because in this data set there is a number of missing values. The
problem of missing values was faced with two different ways. In the first way where all the
observations are used we took the mean values of all the observations in the corresponding
feature while in the second way where we have less values in the observations we did not
take into account the observations that they had missing values. Some data sets involve only
numerical features, and the remaining include both numerical and categorical features. For
each data set, Table 4 reports the total number of features and the number of categorical
features in parentheses.

The parameter settings for the Hybrid ACO-GRASP metaheuristic are:

– The number of ants used is equal to the number of features because in the initial iteration
each ant begins from a different feature.

– The number of iterations that each ant constructs a different solution, based on the
pheromone trails, is equal to 20.
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Table 4 Data sets characteristics
Data sets Observations Features Clusters

Australian Credit (AC) 690 14 (8) 2

Breast Cancer Wisconsin 1 (BCW1) 699 9 2

Breast Cancer Wisconsin 2 (BCW2) 683 9 2

Heart Disease (HD) 270 13 (7) 2

Hepatitis 1 (Hep1) 155 19 (13) 2

Ionosphere (Ion) 351 34 2

Spambase (spam) 4601 57 2

Iris 150 4 3

Wine 178 13 3

Zoo 101 17 7

Vehicle (Veh) 848 18 4

Segment (Seg) 2310 19 7

– q = 0.5.
– The size of RCL varies between 30 and 150.
– The number of GRASP’s iterations is equal to 100.

The algorithm was implemented in Fortran 90 and was compiled using the Lahey f95
compiler on a Centrino Mobile Intel Pentium M 750 at 1.86 GHz, running Suse Linux 9.1.

3.2 Results of the proposed algorithm

The objective of the computational experiments is to show the performance of the proposed
algorithm in searching for a reduced set of features with high clustering of the data. The
purpose of feature variable selection is to find the smallest set of features that can result in
satisfactory predictive performance. Because of the curse of dimensionality, it is often nec-
essary and beneficial to limit the number of input features in order to have a good predictive
and less computationally intensive model. In general there are 2number of features − 1 possible
feature combinations and, thus, in our cases the problem with the fewest number of feature
combinations is the Iris (namely 24 − 1), while the most difficult problem is the Spambase
where the number of feature combinations is 257 − 1.

The results of the proposed algorithm are given in Table 5. After the selection of the final
parameters, 10 different runs with the selected parameters were performed for each of the
datasets. In Table 5, the results of the best run of the proposed algorithm are given in the
second column, while in the third column the average results of the 10 runs of the algorithm
are presented, and in the last column the variance of the corrected clustered samples is
presented. As it can be seen, the proposed algorithm has achieved a very good performance
concerning the clustered samples. Also, taking into account the average and the variance, it
should be noted that there are no significant differences in the obtained results.

A comparison with the classic k-means and other metaheuristic approaches for the solu-
tion of the clustering problem is presented in Table 6. In this table, eight other algorithms
are used for the solution of the feature subset selection problem and for the clustering prob-
lem. In the first one in both phases (feature selection phase and clustering phase) an Ant
Colony Optimization algorithm is used (columns 4 and 5 of Table 6 of the first group) while
in the second one a Particle Swarm Optimization in both phases (feature selection phase
and clustering phase) algorithm is used (columns 6 and 7 of Table 6 of the first group).
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Table 5 Results of the algorithm
Instance Corrected clustered

Best Average Variance

BCW2 662(96.92%) 659.7(96.58%) 2.9

Hep1 134(86.45%) 132.2(85.29%) 1.73

AC 603(87.39%) 601.2(87.13%) 2.62

BCW1 676(96.70%) 673.8(96.39%) 3.51

Ion 291(82.90%) 288.3(82.13%) 2.45

spam 3993(86.78%) 3991.1(86.74%) 4.32

HD 232(85.92%) 230.1(85.22%) 2.76

Iris 145(96.67%) 143.3(95.53%) 2.67

Wine 176(98.87%) 175.3(98.48%) 0.45

Zoo 95(94.05%) 93.9(92.97%) 1.43

Veh 804(94.81%) 802.1(94.58%) 2.54

Seg 2108(91.25%) 2105.8(91.16%) 6.17

Subsequently, in the second group of algorithms and columns 2 and 3 of Table 6 a genetic
algorithm (Goldberg 1989) is used in the first phase of the algorithm while a Greedy Ran-
domized Adaptive Search Procedure is used in the second phase of the algorithm. In the
second group and in columns 4 and 5 of Table 6 a Tabu Search Algorithm (Glover 1989)
is used in the first phase and a GRASP algorithm is used in the second phase. The classic
k-means algorithm is used for the clustering problem using all features (columns 6 and 7 of
Table 6 of the second group). Finally, in the third group of algorithms and columns 2 and
3 of Table 6 the proposed ACO is used in the first phase of the algorithm while a Genetic
Algorithm is used in the second phase of the algorithm. In the third group and in columns 4
and 5 of Table 6 the proposed ACO Algorithm is used in the first phase and a Tabu Search
algorithm is used in the second phase. Finally, a genetic algorithm is used in both phases of
the problem (columns 6 and 7 of Table 6 of the third group).

The Tabu Search (Glover 1989, 1990) is running for 1000 iterations and with size of
the Tabu List equal to 10. The Genetic algorithm (Goldberg 1989; Holland 1975) is run-
ning for 20 generations, having a population size equal to 500, and using a single 1-point
crossover operator with probability equal to 0.8 and a mutation operator with a probability
equal to 0.25. In the clustering phase of these two algorithms the GRASP algorithm is used.
For the Particle Swarm Optimization (Kennedy and Eberhart 1995) algorithm: the number of
swarms is set equal to 1, the number of particles is set equal to 50, the number of generations
is set equal to 50 and the coefficients are c1 = 2, c2 = 2, wmax = 0.9 and wmin = 0.01.

From this table it can be observed that the Hybrid ACO-GRASP algorithm performs bet-
ter than the other algorithms in all instances. For this method the percentage of the correct
clustered samples varies between 82.90% to 98.87%, while for the Genetic-GRASP algo-
rithm the percentage of the correct clustered samples varies between 75.78% to 98.31%, for
the Tabu-GRASP algorithm the percentage of the correct clustered samples varies between
74.92% to 97.75%, for the ACO-Genetic the percentage of the correct clustered samples
varies between 76.92% to 97.75%, for the ACO-Tabu the percentage of the correct clus-
tered samples varies between 75.49% to 97.75%, for the ACO the percentage of the correct
clustered samples varies between 73.50% to 97.75%, for the Genetic the percentage of the
correct clustered samples varies between 73.21% to 97.75%, for the PSO the percentage of
the correct clustered samples varies between 74.35% to 97.75% and for the k-means the
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Table 6 Comparisons of the algorithm with other algorithms

Instance ACO-GRASP ACO PSO

Sel. feat. Correct clustered Sel. feat. Correct clustered Sel. feat. Correct clustered

BCW2 5 662(96.92%) 5 662(96.92%) 5 662(96.92%)

Hep1 9 134(86.45%) 9 133(85.80%) 10 132(85.16%)

AC 8 603(87.39%) 8 601(87.10%) 8 602(87.24%)

BCW1 5 676(96.70%) 8 674(96.42%) 8 674(96.42%)

Ion 2 291(82.90%) 16 258(73.50%) 12 261(74.35%)

spam 56 3993(86.78%) 41 3967(86.22%) 37 3960(86.06%)

HD 9 232(85.92%) 9 227(84.07%) 9 227(84.07%)

Iris 3 145(96.67%) 3 145(96.67%) 3 145(96.67%)

Wine 7 176(98.87%) 7 174(97.75%) 7 174(97.75%)

Zoo 6 95(94.05%) 8 89(88.11%) 11 88(87.12%)

Veh 5 804(94.81%) 11 751(88.56%) 13 754(88.91%)

Seg 7 2108(91.25%) 12 2018(87.35%) 15 2026(87.70%)

Instance Genetic-GRASP Tabu-GRASP k-Means

Sel. feat. Correct clustered Sel. feat. Correct clustered Sel feat. Correct clustered

BCW2 5 662(96.92%) 6 661(96.77%) 9 654(95.74%)

Hep1 9 134(86.45%) 10 132(85.16%) 19 121(78.06%)

AC 8 602(87.24%) 9 599(86.81%) 14 580(84.05%)

BCW1 5 676(96.70%) 8 674(96.42%) 9 672(96.13%)

Ion 17 266(75.78%) 4 263(74.92%) 34 248(70.65%)

spam 56 3938(85.59%) 34 3810(82.80%) 57 3958(86.02%)

HD 7 231(85.55%) 9 227(84.07%) 13 220(81.48%)

Iris 4 145(96.67%) 3 145(96.67%) 4 144(96%)

Wine 7 175(98.31%) 7 174(97.75%) 13 172(96.92%)

Zoo 10 90(89.10%) 9 91(90.09%) 17 82(81.18%)

Veh 6 733(86.43%) 8 723(85.25%) 18 718(84.66%)

Seg 11 2044(88.48%) 13 2031(87.92%) 19 1954(84.58%)

Instance ACO-Genetic ACO-Tabu Genetic

Sel. feat. Correct clustered Sel. feat. Correct clustered Sel feat. Correct clustered

BCW2 5 662(96.92%) 5 662(96.92%) 7 658(96.33%)

Hep1 9 134(86.45%) 9 134(86.45%) 8 132(85.16%)

AC 9 600(86.95%) 9 599(86.81%) 10 597(86.52%)

BCW1 5 675(96.56%) 8 674(96.42%) 7 672(96.13%)

Ion 11 270(76.92%) 9 265(75.49%) 12 257(73.21%)

spam 38 3971(86.30%) 35 3960(86.06%) 41 3944(85.70%)

HD 11 229(84.18%) 10 228(84.44%) 8 224(82.96%)

Iris 3 145(96.67%) 3 145(96.67%) 3 145(96.67%)

Wine 7 174(97.75%) 7 174(97.75%) 7 174(97.75%)

Zoo 7 92(91.08%) 9 90(89.10%) 12 84(83.16%)

Veh 6 773(91.15%) 8 769(90.68%) 10 731(86.20%)

Seg 9 2078(89.95%) 7 2069(89.56%) 8 2018(87.35%)
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percentage of the correct clustered samples varies between 70.65% to 96.92%. It should be
mentioned that in some instances the differences in the results between the Hybrid ACO-
GRASP algorithm and the other algorithms are very significant.

Mainly, for the four data sets that have the largest number of features and the largest
number of clusters compared to the other data sets, i.e. in the Ionosphere data set the per-
centage of the Hybrid ACO-GRASP algorithm is 82.90%, for the ACO-Genetic algorithm
is 76.92%, for the Genetic-GRASP algorithm is 75.78%, for the ACO-Tabu algorithm is
75.49%, for the Tabu-GRASP algorithm is 74.92%, for the PSO is 74.35%, for the ACO is
73.50%, for the Genetic is 73.21% and for the k-means is 70.65%, in the Spambase data
set the percentage of the Hybrid ACO-GRASP algorithm is 86.78%, for the ACO-Genetic
is 76.30%, for the ACO is 86.22%, for the PSO is 86.06%, for the ACO-Tabu is 86.06%,
for the k-means is 86.02%, for the Genetic is 85.70%, for the Genetic-GRASP algorithm is
85.59% and for the Tabu-GRASP algorithm is 82.80%, in the Vehicle data set the percent-
age of the Hybrid ACO-GRASP algorithm is 94.81%, for the ACO-Genetic is 91.15%, for
the ACO-Tabu is 90.68%, for the PSO is 88.91%, for the ACO is 88.56%, for the Genetic-
GRASP algorithm is 86.43%, for the Genetic is 86.20%, for the Tabu-GRASP algorithm is
85.25% and for the k-means is 84.66% and in the Segment data set the percentage of the Hy-
brid ACO-GRASP algorithm is 91.25%, for the ACO-Genetic is 89.95%, for the ACO-Tabu
is 89.56%, for the Genetic-GRASP algorithm is 88.48%, for the Tabu-GRASP algorithm is
87.92%, for the PSO is 87.70%, for the ACO is 87.35%, for the Genetic is 87.35% and for
the k-means is 84.58%. These results prove the significance of the solution of the feature
selection problem in the clustering algorithm as when a more sophisticated method (ACO)
for the solution of this problem was used the performance of the clustering algorithm was
improved. An important observation is the improvement that gives in the results the combi-
nation of ACO for feature selection and GRASP for clustering. We use the proposed ACO
algorithm in the feature selection phase of the algorithm and in one case a Genetic algorithm
in the clustering phase and in another case a Tabu Search algorithm in the clustering phase.
From this table it can be seen that the results of these algorithms are inferior compared to
the results of the proposed algorithm. This proves that each phase of the proposed algorithm
is necessary and equally important for the efficient performance of the algorithm.

It should, also, be mentioned that the algorithm was tested with two options: with known
and unknown number of clusters. In case that when the number of clusters was unknown
and thus in each iteration of the algorithm different initial values of clusters were selected
the algorithm always converged to the optimal number of clusters and with the same results
as in the case that the number of clusters was known.

4 Conclusions and future research

In this paper a new metaheuristic algorithm, the Hybrid ACO-GRASP, is proposed for solv-
ing the Clustering Problem. This algorithm is a two phase algorithm which combines an Ant
Colony Optimization (ACO) algorithm for the solution of the feature selection problem and
a Greedy Randomized Adaptive Search Procedure (GRASP) for the solution of the clus-
tering problem. A number of metaheuristic algorithms and the classic k-means were also
used for comparison purposes. The performance of the proposed algorithms is tested using
various benchmark datasets from UCI Machine Learning Repository. The objective of the
computational experiments, the desire to show the high performance of the proposed algo-
rithms, was achieved as the algorithms gave very efficient results. The significance of the
solution of the clustering problem by the proposed algorithm is proved by the fact that the
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percentage of the correct clustered samples is very high and in some instances is larger than
96%. Also, the focus in the significance of the solution of the feature selection problem is
proved by the fact that the instances with the largest number of features gave better results
when the ACO algorithm was used. Future research is intended to be focused in using dif-
ferent algorithms (e.g. Particle Swarm Optimization) both to the feature selection phase and
to the clustering algorithm phase.
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