
Ann Oper Res (2009) 172: 71–96
DOI 10.1007/s10479-008-0507-y

Variable neighbourhood search for the minimum
labelling Steiner tree problem

Sergio Consoli · Kenneth Darby-Dowman ·
Nenad Mladenović · José Andrés Moreno-Pérez

Published online: 15 January 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a study on heuristic solution approaches to the minimum labelling
Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning
tree problem. Given an undirected labelled connected graph, the aim is to find a spanning
tree covering a given subset of nodes of the graph, whose edges have the smallest number of
distinct labels. Such a model may be used to represent many real world problems in telecom-
munications and multimodal transportation networks. Several metaheuristics are proposed
and evaluated. The approaches are compared to the widely adopted Pilot Method and it is
shown that the Variable Neighbourhood Search that we propose is the most effective meta-
heuristic for the problem, obtaining high quality solutions in short computational running
times.

Keywords Metaheuristics · Combinatorial optimization · Minimum labelling Steiner tree
problem · Variable neighbourhood search · Graphs

Introduction

Since the early years of Operational Research (OR), there has been much interest in com-
binatorial optimization (CO) problems formulated on graphs and their practical applica-

Sergio Consoli was supported by an E.U. Marie Curie Fellowship for Early Stage Researcher Training
(EST-FP6) under grant number MEST-CT-2004-006724 at Brunel University (project NET-ACE).
José Andrés Moreno-Pérez was supported by the projects TIN2005-08404-C04-03 of the Spanish
Government (with financial support from the European Union under the FEDER project) and
PI042005/044 of the Canary Government.

S. Consoli (�) · K. Darby-Dowman · N. Mladenović
CARISMA and NET-ACE, School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
e-mail: sergio.consoli@brunel.ac.uk

J.A. Moreno-Pérez
Facultad de Matemáticas, DEIOC, IUDR, Universidad de La Laguna, 4a planta Astrofisico Francisco
Sánchez s/n, 38271 Santa Cruz de Tenerife, Spain

mailto:sergio.consoli@brunel.ac.uk

72 Ann Oper Res (2009) 172: 71–96

Fig. 1 Example of an input
graph of the MLSteiner problem

tions (Avis et al. 2005). Most of these problems are NP-hard; thus, there is a need for heuris-
tics and approximate solution approaches with performance guarantees.

In this paper, we focus on the minimum labelling Steiner tree (MLSteiner) problem. Given
a graph with labelled (or colored) edges, one seeks a spanning tree covering a subset of nodes
(basic nodes) of the graph, whose edges have the least number of distinct labels (or colors).

This problem has many applications in real-world problems. For example, in telecom-
munications networks, a node may communicate with other nodes by means of different
types of communications media. Considering a set of basic nodes that must be connected,
the construction cost may be reduced, in some situations, by connecting the basic nodes with
the smallest number of possible communications types (Tanenbaum 1989).

Another example is given by multimodal transportation networks (Van-Nes 2002).
A multimodal transportation network can be represented by a graph where a color is as-
signed to each edge, denoting a different company managing that edge, and each node rep-
resents a different location. It is often desirable to provide a complete service between a
basic set of locations, without cycles, using the minimum number of companies, in order to
minimize the cost.

The minimum labelling Steiner tree problem is formally defined as a network or graph
problem as follows:

The minimum labelling Steiner tree problem (MLSteiner problem):
− Let G = (V ,E,L) be a labelled, connected, undirected graph, where V is the set of

nodes, E is the set of edges, that are labelled on the set L of labels (or colors).
− Let Q ⊆ V be a set of nodes that must be connected (basic nodes).

⇒ Find an arbitrary spanning tree T of the subgraph connecting all the basic nodes
Q such that |LT | is minimized (where LT is the set of colors used by T).

Figure 1 shows an example of an input graph, where the solid vertices represent the basic
nodes. The minimum labelling Steiner tree solution of this example is shown in Fig. 2.

In order to solve the MLSteiner problem, it is easier to work firstly with feasible solutions
instead of spanning trees. A feasible solution is defined as a set of colors C ⊆ L, such that
all the edges with labels in C represent a connected subgraph of G which spans all the basic
nodes Q. If C is a feasible solution, then any spanning tree of C has at most |C| labels.

Ann Oper Res (2009) 172: 71–96 73

Fig. 2 Minimum labelling
Steiner tree solution for the graph
of Fig. 1

Thus, in order to solve the MLSteiner problem, we first seek a feasible solution with the
smallest number of colors (Cerulli et al. 2006).

In this paper, we propose several new metaheuristics for the MLSteiner problem: Greedy
Randomized Adaptive Search Procedure (GRASP), Discrete Particle Swarm Optimization
(DPSO), Variable Neighbourhood Search (VNS), and Group-Swap Variable Neighbourhood
Search (GS-VNS), which is a hybridization between Variable Neighbourhood Search and
Simulated Annealing. Computational results for these approaches are compared with those
from the Pilot Method (PM) by Cerulli et al. (2006), which is considered to be the best
performing heuristic in the current literature, and with those from an exact method.

The structure of the paper is as follows. We first describe the problem, its origins, and we
review the associated literature. As the minimum labelling Steiner tree problem is a direct
extension of the well-known Steiner tree problem and of the minimum labelling spanning
tree problem, we discuss these basic problems. Details of the methods considered are pre-
sented in Sect. 2. Section 3 contains a computational analysis and evaluation and, finally,
conclusions are described in Sect. 4. For a survey on the basic concepts of metaheuristics
and combinatorial optimization, the reader is referred to Voß et al. (1999) and Blum and
Roli (2003).

1 Origin of the problem

The minimum labelling Steiner tree problem was introduced by Cerulli et al. (2006). It is a
graph combinatorial optimization problem extending the well-known Steiner tree (Steiner)
problem and the minimum labelling spanning tree (MLST) problem.

Given a graph with positive-weighted edges, and with a subset of basic nodes (or termi-
nals), the Steiner tree problem consists of finding a minimum-weight tree spanning all the
basic nodes. This problem dates back to Fermat, who formulated it as a geometric problem:
find a point p in the Euclidean plane minimizing the sum of the distances to three given
points. This was solved before 1640 by Torricelli (Krarup and Vajda 1997). Subsequently,
Steiner worked on the general problem for n points. More details appear in Hwang et al.
(1992). Expositions on the difficulty of the Steiner problem can be found in Karp (1975)

74 Ann Oper Res (2009) 172: 71–96

and Garey et al. (1977), while several heuristics for the Steiner problem in graphs are re-
ported in Voß (2000) and Grimwood (1994).

A large number of real-world applications of the Steiner problem exist, most of them
relate to network design (Winter 1987) and telecommunications (Voß 2006). Steiner prob-
lems arising in the layout of connection structures in networks, such as topological network
design, location, and in VLSI (Very Large Scale Integrated) circuit design, are discussed
in Francis et al. (1992) and Korte et al. (1990). Furthermore, analogies can be drawn be-
tween minimum Steiner trees and minimum energy configurations in certain physical sys-
tems (Miehle 1958).

The minimum labelling spanning tree (MLST) problem is used where, given a graph with
colored (labelled) edges, one seeks a spanning tree with the least number of colors (labels).
The MLST problem may also be used to represent many real-world problems in telecom-
munications networks (Raghavan and Anandalingam 2003) and multimodal transportation
networks (Van-Nes 2002). This problem was first introduced by Chang and Leu (1997),
interested by its applications in communications network design. They established its NP-
hard complexity, and proposed a polynomial time heuristic, the maximum vertex covering
algorithm. Several further modifications of this heuristic are included in Krumke and Wirth
(1998), Wan et al. (2002), and Xiong et al. (2005b), together with discussions on conver-
gence.

Other heuristic approaches to the MLST problem have been proposed in the litera-
ture. Cerulli et al. (2005) presented a comparison of metaheuristics: Tabu Search, Simulated
Annealing, Pilot Method, and an ad-hoc implementation of Variable Neighbourhood Search
(VNS). Among them, the best results were obtained by the Pilot Method.

Genetic algorithms (GAs) were also applied to the MLST problem in Xiong et al.
(2005a). In addition, Xiong et al. (2006) presented some improved approaches, obtained
by modifying the Pilot Method and the GAs. They named their best performing implemen-
tation as Modified Genetic Algorithm (MGA).

In Consoli et al. (2008a, 2008b), a Greedy Randomized Adaptive Search Procedure and
different versions of Variable Neighbourhood Search were proposed. A comparison with
the results provided by the best performing methods from the literature, the Pilot Method
by Cerulli et al. (2005) and the Modified Genetic Algorithm by Xiong et al. (2006), showed
that these heuristics based on GRASP and VNS obtained the best performance, producing
high-quality solutions in short computational running times.

The MLSteiner problem was first considered by Cerulli et al. (2006) as an extension of
the Steiner problem and the MLST problem. They also compared their Pilot Method with
some other metaheuristics for the MLSteiner problem: Tabu Search, Simulated Annealing,
and some implementations of Variable Neighbourhood Search. From their analysis, the Pilot
Method was shown to be the best performing heuristic for the problem (Cerulli et al. 2006).

The success of the heuristic solution approaches for the MLST problem proposed
by Consoli et al. (2008a, 2008b) provided the motivation for considering the implemen-
tation of similar approaches for the MLSteiner problem, and this is the focus of the work
reported in this paper.

2 Description of the algorithms

In this section, we introduce an exact method for the MLSteiner problem, and analyze the Pi-
lot Method by Cerulli et al. (2006). We then describe the main features of other metaheuris-
tics that we propose for the MLSteiner problem: a Greedy Randomized Adaptive Search

Ann Oper Res (2009) 172: 71–96 75

Procedure, a Discrete Particle Swarm Optimization, a Variable Neighbourhood Search, and
a hybrid approach that we call Group-Swap Variable Neighbourhood Search.

Before going into the details of these algorithms, it is useful to define the concept of
a Steiner component (Cerulli et al. 2006). Given an undirected, connected, labelled input
graph, a Steiner component is a connected component of the input graph containing at least
one basic node. We will make use of this concept throughout the paper.

2.1 Exact method

This exact approach to the MLSteiner problem is based on a backtracking procedure. Given
a labelled connected undirected graph G = (V ,E,L) with n vertices, m edges, � labels, and
a subset Q ⊆ V of basic nodes, the exact method performs a branch and prune procedure in
the partial solution space based on a recursive procedure, Test. The details are specified in
Algorithm 1.

The procedure Test starts from an empty set of colors and iteratively builds a solution by
adding colors one by one until all the basic nodes, Q ⊆ V , are connected. In this method,
all the possible combinations of colors are considered, and so its running time is computa-
tionally burdensome. The running time grows exponentially with the dimension of the graph
(number of nodes and colors), and the reduction in the density of the graph.

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m edges, �

labels, and Q ⊆ V basic nodes;
Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used colors;
- Let H = (V ,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Let C∗ ← L be the global set of used colors;
- Let H∗ = (V ,E(C∗)) be the subgraph of G restricted to V and edges with labels in C∗,
where E(C∗) = {e ∈ E : L(e) ∈ C∗};
- Let Comp(C) be the number of Steiner components of C, i.e., the number of connected
components of the subgraph (Q,E(C));
begin

Call Test(C);
⇒ Take any arbitrary spanning tree T of H∗ = (V ,E(C∗)).

end

Procedure Test(C):
if |C| < |C∗| then

Update Comp(C);
if Comp(C) = 1 then

Move C∗ ← C;
else if |C| < |C∗| − 1 then

foreach c ∈ (L − C) do
Try to add color c : Test(C ∪ {c});

end
end

end

Algorithm 1: Exact method for the MLSteiner problem

76 Ann Oper Res (2009) 172: 71–96

In order to speed up this method, the following procedure is adopted. Let C∗ ⊆ L be
a current solution, and C ′ ⊆ L be an incomplete solution to evaluate. If the dimension of
C ′ is equal to |C∗| − 2, we should try to add all the colors one by one to check if it is
possible to find a better solution for C∗ with a smaller dimension, that is, |C∗| − 1. Instead
of trying to add all the colors one by one to complete C ′, we only consider the colors with
a frequency at least equal to the actual number of connected components minus 1 (in other
words, we consider only the candidate colors which may yield a connected graph if added
to the incomplete solution C ′). If this requirement is not satisfied, the incomplete solution
can be rejected, speeding up the search process.

If either the problem size is small or the optimal objective function value is small, the
running time of this exact method is acceptable and it is possible to obtain the exact solution.

2.2 Pilot method

The Pilot Method (PM) metaheuristic was first introduced by Duin and Voß (1999) for the
Steiner tree problem, and was applied with success to several combinatorial optimization
problems (Voß et al. 2004). The core idea of this metaheuristic is to exhaust tentatively all
the possible choices with respect to a reference solution, called the master solution, by means
of a basic constructive heuristic. For each possible choice, the basic heuristic (or application
process) works as a building block for the master solution, by adding components until a
feasible solution is obtained. When all the possible choices have been evaluated, the master
solution is updated with the best choice, and the procedure proceeds iteratively until the user
termination conditions are reached. Further details are included in Voß et al. (2004).

Cerulli et al. (2005) applied the Pilot Method to the MLST problem, and following the
same procedure to the MLSteiner problem (Cerulli et al. 2006). They also performed a
comparison between PM and other ad hoc metaheuristics (Tabu Search, Simulated Anneal-
ing, and Variable Neighbourhood Search) for different instances of the MLSteiner prob-
lem (Cerulli et al. 2006). From their computational analysis, the Pilot Method obtained the
best results.

The details of the Pilot Method proposed by Cerulli et al. (2006) for the MLSteiner prob-
lem are specified in Algorithm 2. PM starts from the null solution (an empty set of colors) as
master solution, M . Then for each element i /∈ M , it tries to extend tentatively a copy of M

to a (fully grown) feasible solution including i, built by the application process. The applica-
tion process is a greedy procedure, which at each step, inserts in the partial solution the color
producing the minimum number of Steiner components at that specific step, and stopping
when a feasible solution is obtained. At the end of the execution of the application process, a
local search mechanism is included to try to greedily drop colors (i.e., the associated edges),
from the least frequently occurring color to the most frequently occurring one, whilst re-
taining feasibility. The number of colors produced by the feasible solution obtained from
M ← M ∪ {i} is used as objective function for each candidate i /∈ M . When all the possible
candidate colors with respect to the master solution have been evaluated, a candidate i∗ with
minimum objective function value is added to the master solution (M ← M ∪ {i∗}). On the
basis of this new master solution M , new iterations of the Pilot Method are started ∀i /∈ M ,
providing a new solution element i∗, and so on.

This mechanism is repeated for all the successive stages of the Pilot Method, until no
further colors need to be added to the master solution (i.e., a feasible master solution is pro-
duced). Alternatively, some user termination conditions, such as the maximum allowed CPU
time or the maximum number of iterations, may be imposed in order to allow the algorithm
to proceed until these conditions are satisfied. The last master solution corresponds to the
best solution to date and it is produced as the output of the method.

Ann Oper Res (2009) 172: 71–96 77

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m edges, �

labels, and Q ⊆ V basic nodes;
Output: A spanning tree T ;
Initialization:
- Let M ← 0 be the initially empty master solution;
- Let H = (V ,E(M)) be the subgraph of G restricted to V and edges with labels in M ,
where E(M) = {e ∈ E : L(e) ∈ M};
- Let Comp(M) be the number of Steiner components of H = (V ,E(M));
- Let M∗ ← L and C ← 0 sets of colors;
- Let H∗ = (V ,E(M∗)) be the subgraph of G restricted to V and edges with labels in M∗,
where E(M∗) = {e ∈ E : L(e) ∈ M∗};
- Let i∗ be the best candidate move;
begin

while (not termination conditions) OR (Comp(M) > 1) do
Set C ← M ;
foreach i ∈ (L − M) do

Add label i to the master solution: M ← M ∪ {i};
Update H = (V ,E(M)) and Comp(M);
while Comp(M) > 1 do

Select the unused color u ∈ (L − M) that minimizes Comp(M ∪ {u});
Add label u to the solution: M ← M ∪ {u};
Update H = (V ,E(M)) and Comp(M);

end
Local-Search(M);
if |M| < |M∗| then

Update the best candidate move i∗ ← i;
Keep the solution produced by the best move: M∗ ← M ;

end
Restore the current master solution: M ← C;
Update H = (V ,E(M)) and Comp(M);

end
Update the master solution with the best move: M ← M ∪ {i∗};

end
while Comp(M) > 1 do

Select the unused color u ∈ (L − M) that minimizes Comp(M ∪ {u});
Add label u to the solution: M ← M ∪ {u};
Update H = (V ,E(M)) and Comp(M);

end
⇒ Take any arbitrary spanning tree T of H = (V ,E(M)).

end

Procedure Local-Search(M):
for j = 1 to |M| do

if Comp(M − {j}) = 1 then
Delete label j from the set M , i.e. M ← M − {j};
Update H = (V ,E(M)) and Comp(M);

end
end

Algorithm 2: The Pilot Method for the MLSteiner problem (Cerulli et al. 2006)

78 Ann Oper Res (2009) 172: 71–96

Note that when the application process is applied to complete a partial solution, in case
of ties in the minimum number of Steiner components, a label is selected at random within
the set of labels producing the minimum number of components. Furthermore, note that no
external parameters need to be tuned by the user for the PM.

Considering an input graph G = (V ,E,L) with |L| = � number of labels, the overall
computational time of the application process is O(�) since up to � labels may be added.
Since up to � master solutions can be considered by this procedure, and up to � local choices
can be evaluated for each master solution, the overall computational running time of PM is
O(�2) times the computational time of the application process, leading to an overall com-
plexity O(�3).

2.3 Greedy Randomized Adaptive Search Procedure

The GRASP (Greedy Randomized Adaptive Search Procedure) methodology was developed
in the late 1980s, and the acronym was coined by Feo and Resende (1989). It was first used
to solve set covering problems, but was then extended to a wide range of combinatorial
optimization problems (Pitsoulis and Resende 2002).

GRASP is an iterative metaheuristic consisting of two phases: a construction phase, fol-
lowed by a local search phase. The construction phase builds a feasible solution by applying
a randomized greedy procedure. The randomized greedy procedure builds a solution by it-
eratively creating a candidate list of elements that can be added to the partial solution, and
then randomly selecting an element from this list.

The candidate list (RCLα : Restricted Candidate List of length α) is created by evaluating
the elements not yet included in the partial solution. A greedy function, depending on the
specifications of the problem, is used to perform this evaluation. Only the best elements,
according to this greedy function, are included in RCLα . The size α of the candidate list
can be limited either by the number of elements, or by their quality with respect to the best
candidate element.

At each iteration, one new element is randomly selected from RCLα , added to the current
solution, and the candidate list is updated. The construction phase stops when a feasible
solution is obtained. The obtained solution is not necessarily locally optimal, so a local
search phase is included to try to improve it. This phase uses a local search mechanism
which, iteratively, tries to replace the current solution with a better neighbouring solution,
until no better solution can be found. Different strategies may be used in order to evaluate
the neighbourhood structure. This two-phase process is iterative, continuing until the user
termination condition such as the maximum allowed CPU time, the maximum number of
iterations, or the maximum number of iterations between two successive improvements is
reached. The final result of GRASP is the best solution obtained in all the computations.

The solutions obtained by GRASP are usually of good quality because it offers fast local
convergence (high intensification capability) as a result of the greedy aspect of the procedure
used in the construction phase, and of the local search mechanism; and also a wide explo-
ration of the solution space (high diversification capability) for the randomization used in
the selection of a new element from RCLα . Success of a particular GRASP implementation
depends on a number of different factors, such as the efficiency of the randomized greedy
procedure used, the choice of the neighbourhood structure, and the neighbourhood search
technique. Details can be found in Resende and Ribeiro (2003), including several new com-
ponents extending the basic scheme of GRASP (e.g., parameter variations, bias functions,
memory and learning, reactive GRASP, and hybrid schemas).

The GRASP that we propose for the MLSteiner problem is specified in Algorithm 3. For
the construction phase of GRASP, we make use of a value-based restricted candidate list in

Ann Oper Res (2009) 172: 71–96 79

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m edges, �

labels, and Q ⊆ V basic nodes;
Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used colors for each iteration;
- Let H = (V ,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ ← L be the global set of used colors;
- Let H ′ = (V ,E(C′)) be the subgraph of G restricted to V and edges with labels in C′,
where E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C) be the number of Steiner components of C, i.e. the number of connected
components of the subgraph (Q,E(C));
- Let RCLα ← 0 be the restricted candidate list of length α;
begin

repeat
Set C ← 0 and update H = (V ,E(C));
Construction-Phase(C);
Local-Search(C);
if |C| < |C′| then

Move C′ ← C;
Update H ′ = (V ,E(C′));

end
until termination conditions ;
⇒ Take any arbitrary spanning tree T of H ′ = (V ,E(C′)).

end

Procedure Construction-Phase(C):
Set RCLα ← L and α = �;
Add a random color c ∈ RCLα to the set of used colors: C ← C ∪ {c};
Update H = (V ,E(C)) and Comp(C);
while Comp(C) > 1 do

Set RCLα ← {∀c ∈ L/ minimizes Comp(C ∪ {c})};
Add a random color c ∈ RCLα to the set of used colors: C ← C ∪ {c};
Update H = (V ,E(C)) and Comp(C);

end

Algorithm 3: Greedy Randomized Adaptive Search Procedure for the MLSteiner problem

order to select the colors to be placed in RCLα . This is an extension of the classic greedy
criterion used in GRASP, consisting of placing in the list only the candidate colors having a
greedy value (the number of Steiner components in the case of the MLSteiner problem) not
greater than a user-defined threshold (Resende and Ribeiro 2003). In our implementation,
complete randomization is used to choose the initial color to add. This corresponds to setting
the threshold to +∞, meaning that the candidate list is filled with all the colors of the graph
(length α = total number of colors). For the remaining colors to add, the list is formed by
considering only the colors that result in the minimum number of Steiner components at the
specific step, in order to further intensify the search process. This means fixing the threshold
as the minimum number of Steiner components produced by the candidate colors at the
specific step (i.e., only the colors producing the least number of Steiner components at that
step constitute the candidate list).

80 Ann Oper Res (2009) 172: 71–96

At the end of the construction phase of GRASP, the successive local search phase consists
of trying to greedily drop some labels (i.e., the associated edges) from the current solution,
whilst retaining feasibility. It yields a further improvement to the intensification phase of the
algorithm.

2.4 Discrete Particle Swarm Optimization

Over the years, evolutionary algorithms have been widely used as robust techniques for solv-
ing hard combinatorial optimization problems. Their behavior is directed by the evolution
of a population searching for the optimum. Particle Swarm Optimization (PSO) is an evo-
lutionary algorithm proposed by Kennedy and Eberhart (1995). As is the case with genetic
algorithms, PSO is a population-based technique, inspired by the social behavior of individ-
uals (or particles) inside swarms occurring in nature, such as flocks of birds or schools of
fish. However, unlike genetic algorithms, it has no crossover and mutation operators, is easy
to implement, and requires few parameter settings and low computational memory.

The standard PSO (Kennedy and Eberhart 2001) considers a swarm S containing ns

particles (S = 1,2, . . . , ns) in a d-dimensional continuous solution space. Each ith particle
of the swarm has a position xi = (xi1, xi2, . . . , xij , . . . , xid) associated with it, and a velocity
vi = (vi1, vi2, . . . , vij , . . . , vid). The position xi represents a solution for the problem, while
the velocity vi gives the change rate for the position of particle i in the next iteration. Indeed,
considering an iteration k, the position of particle i is adjusted according to

xk
i = xk−1

i + vk
i . (1)

Each particle i of the swarm communicates with a social environment or neighbourhood
N(i) ⊆ S, which may change dynamically and represents the group of particles with which
particle i communicates. In nature, a bird adjusts its position in order to find a better po-
sition, according to its own experience and the experience of its companions. In the same
manner, consider an iteration k of the PSO algorithm. Each particle i updates its velocity
reflecting the attraction of its best position so far (bi) and the best position (gi) of its social
neighbourhood N(i), following the equation:

vk
i = c1ξvk−1

i + c2ξ
(
bi − xk−1

i

) + c3ξ
(
gi − xk−1

i

)
. (2)

The parameters ci are positive constant weights applied to the three factors that influence
the velocity of the particle i, while the term ξ refers to a random number with uniform
distribution in [0,1] that is independently generated at each iteration.

Since the original PSO is applicable to optimization problems with continuous variables,
several adaptations of the method to discrete problems, known as Discrete Particle Swarm
Optimization (DPSO), have been proposed (Kennedy and Eberhart 1997). In this paper, we
make use of the DPSO procedure introduced by Moreno-Pérez et al. (2007).

This DPSO considers a swarm S containing ns particles (S = 1,2, . . . , ns) whose posi-
tions xi evolve in the discrete solution space, jumping from a solution to another. In such a
case, the notion of velocity used in the standard PSO loses its meaning, and it is not con-
sidered. Furthermore, the weights of the updating equation used in the standard PSO are
interpreted as probabilities that at each iteration, each particle has a random behavior, or
acts in a manner guided by the effect of attractors. The effect of the attraction of a position
causes the given particle to jump toward this attractor. An inspiration from nature for this
process is found in frogs, which jump from lily pad to lily pad in a pool.

Ann Oper Res (2009) 172: 71–96 81

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m
edges, � labels, and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let C ← 0 be a set of colors, initially empty;
- Let H = (V ,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Set the size ns of the swarm S;
begin

Generate the initial swarm S with positions at random:
X = [x0, x1, . . . , xns] ←Generate-Swarm-At-Random(G);
Update the vector of the best positions B = [b0, b1, . . . , bns] ← X;
Extract the best position among all the particles: g∗ ← Extract-The-Best(S, X);
repeat

for i = 1 to ns do
if i = 1 then Initialize the best position of the social neighbourhood of i:
gi ← �;
else Update the best position of the social neighbourhood of i: gi ← gi−1;
Select at random a number between 0 and 1: ξ=Random(0, 1);
if ξ ∈ [0,0.25[then selected ← xi ;
else if ξ ∈ [0.25,0.5[then selected ← bi ;
else if ξ ∈ [0.5,0.75[then selected ← gi ;
else if ξ ∈ [0.75,1[then selected ← g∗;
Combine particle i and the selected particle: xi ← Combine(xi , selected);
Local-Search(i, xi);
if |xi | < |bi | then Update the best position of the given particle i: bi ← xi ;
if |xi | < |gi | then Update the best position of the social neighbour. of i:
gi ← xi ;
if |xi | < |g∗| then Update the global best position to date: g∗ ← xi ;

end
until termination conditions ;
Set C ← g∗;
Update H = (V ,E(C));
⇒ Take any arbitrary spanning tree T of H = (V ,E(C)).

end

Procedure Combine(xi , selected):
Let Comp(xi) be the number of Steiner components of xi ;
Select a random integer between 0 and |xi |: ψ=Random(0, |xi |);
for j = 1 to ψ do

Select at random a number between 0 and 1: ξ=Random(0, 1);
if ξ ≤ 0.5 then

Select at random a color c′ ∈ xi ;
Delete label c′ from the position of the given particle: xi ← xi − {c′};

else
Select at random a color c′ ∈ selected;
Add label c′ to the position of the given particle i: xi ← xi ∪ {c′};

end
end
Update Comp(xi);
while Comp(xi) > 1 do

Select at random an unused color u ∈ (L − xi);
Add label u to the position of the given particle i: xi ← xi ∪ {u};
Update Comp(xi);

end

Algorithm 4: Discrete Particle Swarm Optimization for the MLSteiner problem

82 Ann Oper Res (2009) 172: 71–96

Given a particle i, three attractors are considered: its own best position (bi), the best po-
sition of its social neighbourhood (gi), and the global best position (g∗). Indeed, considering
a generic iteration k, the update equation for the position xi of a particle i is

xk
i = c1x

k−1
i ⊕ c2bi ⊕ c3gi ⊕ c4g

∗. (3)

The meaning of this equation is that the ith particle with position xi performs random jumps
with respect to its current position with probability c1, improving jumps approaching bi

with probability c2, improving jumps approaching gi with probability c3, and improving
jumps approaching g∗ with probability c4. In order to implement this operation, a random
number ξ is generated in order to select the type of jump to be chosen. A jump approaching
an attractor consists of modifying a feature of the current solution with the corresponding
feature of the selected attractor (or giving an arbitrary value in the case of the random jump).
For the MLSteiner problem, the features of a solution are the colors that are included in the
solution, while the parameters c1, c2, c3, and c4, are set to 0.25. Further details of the DPSO
that we propose for the MLSteiner problem are specified in Algorithm 4.

The position of a particle in the swarm is encoded as a feasible solution to the MLSteiner
problem. The initial positions X = [x0, x1, . . . , xns] of the swarm S, containing ns particles,
are generated by starting from empty sets of colors and adding at random colors until feasible
solutions emerge. Then for each particle of the swarm, a random number ξ between 0 and
1 is selected. Considering the ith particle of the swarm, if ξ belongs to [0,0.25[the current
position of the given particle is selected (selected ← xi) in order to perform a random jump.
Otherwise, if ξ is in [0.25,0.5[the best position to date (bi) of the given particle is selected
(selected ← best_s(p)) as attractor for the movement of xi . Instead, if ξ ∈ [0.5,0.75[, the
selected attractor is the best position gi of the social neighbourhood, interpreted as the best
position obtained within the swarm in the current iteration. For the remaining case, if ξ ∈
[0.75,1[the selected attractor is the best position to date obtained by all the particles, which
is called the global best position to date (g∗).

Afterward, the ith particle with current position xi performs a jump approaching the
selected attractor by means of the procedure Combine. This procedure first selects a random
integer ψ between 0 and |xi |. Successively, it either drops some colors from xi , or randomly
picks up some colors from the selected attractor and adds to xi , until ψ colors have been
added or deleted with respect to xi . Note that if an infeasible xi is obtained at this stage,
further colors are added at random to xi in order to restore feasibility. At the end of the
procedure Combine, a local search procedure is applied to the resulting particle (Local-
Search(i, xi)), in order to try to delete some colors from xi whilst retaining the feasibility.
Then all the attractors (bi , gi , g∗) are updated, and the same procedure is repeated for all the
particles in the swarm. The entire algorithm continues until the user termination conditions
are satisfied.

2.5 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is an effective metaheuristic introduced by Hansen
and Mladenović (1997). The basic idea behind this method is to define a neighbourhood
structure for the solution space, and to explore different increasingly distant neighbourhoods
whenever a local optimum is reached by a prescribed local search.

At the starting point, a set of kmax (a parameter) neighbourhoods (Nk , with k =
1,2, . . . , kmax), is selected. A stopping condition is determined (either the maximum allowed
CPU time, or the maximum number of iterations, or the maximum number of iterations be-
tween two successive improvements), and an initial feasible solution found (at random, in

Ann Oper Res (2009) 172: 71–96 83

our case). Denoting by Nk(C), the set of solutions in the kth neighbourhood of the solu-
tion C, the simplest and most common choice is a structure in which the neighbourhoods
have increasing cardinality: |N1(C)| < |N2(C)| < · · · < |Nkmax(C)|. The process of chang-
ing neighbourhoods when no improvement occurs diversifies the search. In particular, the
choice of neighbourhoods of increasing cardinality yields a progressive diversification.

Although a VNS for the MLSteiner was implemented by Cerulli et al. (2006), our imple-
mentation is motivated by the successful VNS proposed for the MLST problem in Consoli
et al. (2008a). The two approaches mainly differ in the implementation of the neighbour-
hood structures, in the way the initial solution is obtained, and in the maximum size of
the shaking phase kmax, among others. The VNS by Cerulli et al. (2006) uses three differ-
ent neighbourhood structures (k—Switch Neighbourhood, k—Covering Neighbourhood, k—
Mixed Neighbourhood (see Cerulli et al. 2006 for more details), in order to check whether
one neighbourhood is better than another. For each neighbourhood, the procedure starts
from an initial feasible solution provided by a greedy algorithm, and then tries to find an
improved solution by selecting one of the considered neighbourhoods. After a specified
number of iterations, another neighbourhood is chosen to be explored in subsequent itera-
tions. For each neighbourhood, the parameter kmax varies during the execution, determined
by kmax = min(|C|, |L|

4), where C is the current feasible solution and L is the set of labels.
In contrast, our VNS implementation for the MLSteiner is specified as follows.

Before going into detail, consider the following notation. Given a labelled graph G =
(V ,E,L), with n vertices, m edges, � labels, and Q ⊆ V basic nodes, each solution is
encoded by a binary string, i.e. C = (c1, c2, . . . , c�) where

ci =
{

1 if color i is included in the solution C

0 otherwise
(∀i = 1, . . . , �).

Now, let us define the solution space, S, as the set of all the possible solutions, and let

ρ(C1,C2) = |C1 − C2| =
�∑

i=1

λi (4)

define the Hamming distance between any two solutions C1 and C2, where λi = 1 if color i

is included in one of the solutions but not in the other, and 0 otherwise, ∀i = 1, . . . , �. The
kth neighbourhood induced by (S,ρ), of a given solution C, may be defined as

Nk(C) = {S ⊂ L : (ρ(C,S)) = k} (∀k = 1, . . . , kmax). (5)

The value of kmax represents the maximum size of the neighbourhood structure. It is an
important parameter to tune in order to obtain an optimal balance between intensification and
diversification capabilities. Choosing a small value for kmax produces a high intensification
capability and a small diversification capability, resulting in a fast algorithm, but with a
high probability of being trapped at a local minimum. Conversely, a large value for kmax

decreases the intensification capability and increases the diversification capability, resulting
in a slower algorithm, but able to escape from local minima. According to our experience,
the value kmax = (|C| + |C|/3) gives a good trade-off between these two factors.

In order to construct the neighbourhood of a solution C, the algorithm starts by deleting
colors from C. After all the colors are removed, additional colors are included at random
in C, from the set of unused colors (L − C), if a further expansion of the neighbourhood
structure is required (case k > |C|). In case of infeasibility, that may be produced by the

84 Ann Oper Res (2009) 172: 71–96

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m edges, �

labels, and Q ⊆ V basic nodes;
Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the global set of used colors;
- Let H = (V ,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ be a set of colors;
- Let H ′ = (V ,E(C′)) be the subgraph of G restricted to V and edges with labels in C′,
where E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of Steiner components of C′, i.e. the number of connected
components of the subgraph (Q,E(C′));
begin

C = Generate-Initial-Solution-At-Random();
repeat

Set k = 1 and kmax > |C|;
while k < kmax do

C′ = Shaking-Phase(Nk(C));
Local-Search(C′);
if |C′| < |C| then

Move C ← C′;
Set k = 1 and kmax > |C|;

else
Increase the size of the neighbourhood structure: k = k + 1;

end
end

until termination conditions;
Update H = (V ,E(C));
⇒ Take any arbitrary spanning tree T of H = (V ,E(C)).

end

Function Shaking-Phase(Nk(C)):
Set C′ ← C;
for i = 1 to k do

if i ≤ |C| then
Select at random a color c′ ∈ C′;
Delete label c′ from the set of used colors: C′ ← C′ − {c′};

else
Select at random an unused color c′, i.e., c′ ∈ (L − C);
Add label c′ to the set of used colors: C′ ← C′ ∪ {c′};

end
Update H ′ = (V ,E(C′)) and Comp(C′);

end
while Comp(C′) > 1 do

Select at random an unused color u ∈ (L − C′) that minimizes Comp(C′ ∪ {u});
Add label u to the set of used colors: C′ ← C′ ∪ {u};
Update H ′ = (V ,E(C′)) and Comp(C′);

end

Algorithm 5: Variable Neighbourhood Search for the MLSteiner problem

Ann Oper Res (2009) 172: 71–96 85

Fig. 3 Basic schema of Variable Neighbourhood Search

deletion of colors in the shaking phase, further colors may be added following the greedy
criterion of adding the color with the minimum number of Steiner components at the specific
step, in order to restore feasibility.

The main loop of this basic VNS is shown in Algorithm 5, and illustrated in Fig. 3.
After defining the neighbourhood structure and obtaining the initial random solution C,
the algorithm applies a shaking phase, letting parameter k vary throughout the execution.
The shaking phase consists of the random selection of a solution C ′ in the neighbourhood
Nk(C) of the current solution C, with the intention of providing a better starting point for
the successive local search phase. It represents the core idea of VNS, that of changing the
neighbourhood structure when the local search is trapped at a local minimum.

The successive local search is not restricted to Nk(C), but considers the entire solution
space S. As in PM and GRASP, it tries to delete colors one by one from the current solution,
whilst maintaining feasibility. At this stage, if no improvements are obtained (|C ′| ≥ |C|),
the neighbourhood is increased (k = k +1), resulting in a higher diversification of the search
process. Otherwise, if |C ′| < |C|, the algorithm moves to the improved solution (C ← C ′),
restarting the search with the smallest neighbourhood (k = 1). The algorithm proceeds until
the established stopping conditions are reached.

2.6 Group-Swap Variable Neighbourhood Search

Several variants of VNS have been proposed in order to improve its performance in some
circumstances (Hansen and Mladenović 2003). For example, Pérez-Pérez et al. (2007) pro-
posed a hybridization between VNS and a path-relinking metaheuristic to solve the p-hub
median problem, while Pacheco et al. (2007) mixed VNS and Tabu search for variable selec-
tion and the determination of the coefficients for these variables that provide the best linear
discrimination function, with the objective of obtaining a high classification success rate.

Although hybridizing a metaheuristic may increase the complexity of the implementa-
tion, we consider a more advanced VNS version for the MLSteiner problem, with a view to
obtaining improved results. For this purpose, we use a Group-Swap VNS (GS-VNS), which
is a variant of the one proposed for the MLST problem (Consoli et al. 2008b), in order
to improve the diversification of the search process. The motivation for introducing a high
diversification capability is to obtain a better performance in large problem instances.

The details of GS-VNS are specified in Algorithm 6. The algorithm starts from an initial
feasible solution (CBEST) generated at random. As in the previous algorithms, a local search
procedure is applied which tries to delete colors one by one from the specific solution, whilst

86 Ann Oper Res (2009) 172: 71–96

Input: A labelled, undirected, connected graph G = (V ,E,L), with n vertices, m edges, �

labels, and Q ⊆ V basic nodes;
Output: A spanning tree T ;
Initialization:
- Let CBEST ← 0, C ← 0, and C′ ← 0 be sets of colors, initially empties;
- Let HBEST = (V ,E(CBEST)) be the subgraph of G restricted to V and edges with labels
in CBEST , where E(CBEST) = {e ∈ E : L(e) ∈ CBEST };
- Let H = (V ,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of Steiner components of C, i.e., the number of connected
components of the subgraph (Q,E(C));
- Let COMPL ← (L − CBEST) the complementary space of the best solution CBEST ;
begin

CBEST = Generate-Initial-Solution-At-Random();
Local-Search(CBEST);
repeat

Perform the swapping of the best solution: C = Group-Swap(CBEST);
Set k = 1 and kmax = |C|;
while k < kmax do

C′ = Shaking-Phase(Nk(C));
Local-Search(C′);
if |C′| < |C| then

Move C ← C′;
Set k = 1 and kmax = |C|;

else Increase the size of the neighbourhood structure: k = k + 1;
end
if |C| < |CBEST | then Move CBEST ← C;

until termination conditions;
Update HBEST = (V ,E(CBEST));
⇒ Take any arbitrary spanning tree T of HBEST = (V ,E(CBEST)).

end

Function Group-Swap(CBEST):
Set C ← 0;
while (Comp(C) > 1) AND ((COMPL − C) �= 0) do

Geometric Group-Swap cooling schedule for the temperature:

TGroupSwap(|C| + 1) = TGroupSwap(0)

α|C| , where TGroupSwap(0) = α = |CBEST |;
foreach c ∈ (COMPL − C) do

Calculate the probabilities P(c), normalizing the values given by the Boltzmann

function: exp
(
−Comp(C∪{c})−Compmin

TGroupSwap(|C|+1)

)
, where Compmin is the minimum number

of Steiner components at the specific step;
end
Select at random a color u ∈ (COMPL − C) following the probabilities values P(·);
Add label u to the set of used colors: C ← C ∪ {u};
Update H = (V ,E(C)) and Comp(C);

end

Algorithm 6: Group-Swap Variable Neighbourhood Search for the MLSteiner problem

Ann Oper Res (2009) 172: 71–96 87

maintaining feasibility. Then the Group-Swap (GS) operation is applied. It consists of ex-
tracting a solution from the complementary space of the current solution. Given the solution
CBEST , its complementary space (COMPL) is defined as the set of all the colors that are not
contained in CBEST , that is (L − CBEST). To yield the solution, the Group-Swap applies a
constructive heuristic to the subgraph of G with labels in (COMPL). In our implementa-
tion, we use the Probabilistic MVCA heuristic, already applied in (Consoli et al. 2008b).
The Probabilistic MVCA uses an idea similar to the basic one of the Simulated Annealing
metaheuristic (Aarts et al. 2005): the introduction of probabilities for the choice of the next
colors to add to incomplete solutions. The introduction of this probabilistic element makes
GS-VNS a hybridization between VNS and Simulated Annealing.

The Probabilistic MVCA begins from an initial solution, and successively selects a can-
didate move at random. This move is accepted if it leads to a solution with a better objective
function value than the current solution, otherwise the move is accepted with a probabil-
ity that depends on the deterioration � of the objective function value. Consider a color
x. The deterioration � of the objective function value is (Comp(x) − Compmin), where
Comp(x) represents the number of Steiner components obtained by inserting x in the partial
solution, and Compmin is the minimum number of Steiner components at the specific step.
Thus, following the criteria of Simulated Annealing, the acceptance probability is computed
according to the Boltzmann function as exp(−�/T), using a temperature T as control pa-
rameter (Kirkpatrick et al. 1983). Probability values assigned to each color are inversely
proportional to the number of Steiner components they give. The colors with a lower num-
ber of Steiner components will have a higher probability of being chosen. Conversely, colors
with a higher number of Steiner components will have a lower probability of being chosen.
Thus, the possibility of choosing less promising labels to be added to incomplete solutions
is allowed, producing an improvement to the diversification of the search process.

The value of the parameter T is initially high, which allows many worse moves to be
accepted, and is gradually reduced following a geometric cooling schedule:

TGroupSwap(|C| + 1) = TGroupSwap(|C|)
α

= TGroupSwap(0)

α|C| , (6)

where experimentally we have found that TGroupSwap(0) = α = |CBEST | produces good re-
sults. This cooling schedule is very fast for the MLSteiner problem, yielding a good balance
between intensification and diversification. At each step the probabilities of selecting colors
giving a smaller number of Steiner components will be higher than the probabilities of se-
lecting colors with a higher number of Steiner components. Furthermore, these differences
in probabilities increase step by step as a result of the reduction of the temperature given
by the cooling schedule. It means that the difference between the probabilities of two colors
giving different numbers of Steiner components is higher as the algorithm proceeds.

The Group-Swap operation stops if either a feasible solution C is obtained, or the set of
unused colors contained in the complementary space is empty, (i.e., (COMPL − C) = 0),
producing a final infeasible solution. After the Group-Swap operation, a shaking phase is
applied to the resulting solution, denoted by C. It consists of the random selection of a point
C ′ in the neighbourhood Nk(C) of the current solution C. For our implementation, given
a solution C, we consider its kth neighbourhood Nk(C) as all the different sets of colors
that are possible to obtain from C by removing k colors, where k = 1,2, . . . , kmax. In a
more formal way, the kth neighbourhood of a solution C is defined as Nk(C) = {S ⊂ L :
(|C| − |S|) = k}, where k = 1,2, . . . , kmax.

At each shaking, kmax is set to the number of colors of the current feasible solution whose
neighbourhood is being explored (kmax = |C|). Since deletion of colors often gives an infea-
sible solution, additional colors may be added in order to restore feasibility. Addition of

88 Ann Oper Res (2009) 172: 71–96

Fig. 4 Example illustrating the steps of Group-Swap VNS

colors at this step is according to the Probabilistic MVCA heuristic, i.e., the same non-
deterministic heuristic used in the Group-Swap operation to yield a solution. Afterward, a
local search is applied to the solution obtained from the shaking (C ′) and, if no improve-
ments are obtained, i.e. if |C ′| ≥ |C|, the neighbourhood structure is increased (k = k + 1),
yielding a progressive diversification (|N1(C)| < |N2(C)| < · · · < |Nkmax(C)|). Otherwise,
the algorithm moves to the solution C ′ restarting the search with the smallest neighbour-
hood (k = 1). After the entire shaking phase, the Group-Swap operation is applied again
to the actual best solution (CBEST) and the algorithm continues iteratively with the same
procedure until the user termination conditions are satisfied.

Figure 4 shows an example of GS-VNS. Given an initial random solution X0, the algo-
rithm searches for new solutions in its increasingly distant neighbourhoods. In this example,
no better solutions are detected, and the current solution remains X0. The Group-Swap pro-
cedure is applied to X0, extracting a feasible solution, X

swap

0 , from its complementary space
(L − X0). Then the algorithm searches for new solutions in the neighbourhoods of X

swap

0 .
In this example, a better solution X1 is found. The algorithm continues with this procedure
until the termination conditions are reached. In the example, the final solution is denoted
by X2.

3 Computational results

To test the performance and the efficiency of the algorithms presented in this paper, we
randomly generate instances of the MLSteiner problem with respect to the number of nodes
(n), the density of the graph (d), the number of labels (�), and the number of basic nodes (q).

Ann Oper Res (2009) 172: 71–96 89

In our experiments, we consider 48 different datasets, each one containing 10 instances of
the problem (yielding a total of 480 instances), with n = 100; 500, � = 0.25n; 0.5n; 1.25n,
and q = 0.2n; 0.4n. The number of edges, m, is obtained indirectly from the density d ,
whose values are chosen to be 0.8, 0.5, and 0.2. The complexity of the instances increases
with the dimension of the graph (i.e., increasing n, q , and/or �), and the reduction in the
density of the graph. All the considered data are available from the authors in Consoli (2007).

For each dataset, solution quality is evaluated as the average objective value among the 10
problem instances. A maximum allowed CPU time, that we call max-CPU-time, is chosen
as the stopping condition for all the metaheuristics, determined experimentally with respect
to the dimension of the problem instance. For the Discrete Particle Swarm Optimization,
we consider a swarm of 100 particles and we use a variable number of iterations for each
instance, determined such that the computations take approximately max-CPU-time for the
specific dataset. Selection of the maximum allowed CPU time as the stopping criterion is
made in order to have a direct comparison of the metaheuristics with respect to the quality
of their solutions.

Our results are reported in Tables 1–4. The algorithms have been implemented using
the C++ programming language. All the computations have been made on a Pentium Cen-
trino microprocessor at 2.0 GHz with 512 MB RAM. In each table, the first three columns
show the parameters characterizing the different datasets (n, �, d), while the values of q

determine the different tables. The remaining columns give the computational results of the
considered algorithms, identified with the abbreviations: EXACT (Exact method), PM (Pilot
Method), GRASP (Greedy Randomized Adaptive Search Procedure), DPSO (Discrete Par-
ticle Swarm Optimization), VNS (Variable Neighbourhood Search), GS-VNS (Group-Swap
Variable Neighbourhood Search).

All the metaheuristics run for the max-CPU-time specified in each table and, in each
case, the best solution is recorded. The computational times reported in the tables are the
average times at which the best solutions are obtained. For the exact method, a time limit
of 3 hours is used. If an exact solution is not found within this time limit for any instance
within a dataset, a not found status (NF) is reported. All the reported times have precision of
±5 ms. For each dataset in the tables, the performance of an algorithm is considered better
than another one if either it obtains a smaller average objective value, or an equal average
objective value but in a shorter computational running time. It is interesting to note that in all
the problem instances for which the exact method obtains the solution, also VNS, GS-VNS,
and DPSO yielded the exact solution.

Table 1 and Table 2 examine relatively small instances of the MLSteiner problem (n =
100, with q = 0.2n and q = 0.4n, respectively). Looking at these tables, all the heuristics
performed well for the considered problem instances. However, PM produces the worst
solutions with respect to solution quality and computational running times. DPSO is slower
than the remaining metaheuristics, as a result of a poor intensification capability and an
excessive diversification capability for these instances, while GRASP is faster than DPSO,
but it may produce slightly worse solutions with respect to solution quality, as in the instance
[n = 100, � = 125, d = 0.2] in Table 1. GRASP exhibits an opposite behavior to that of
DPSO, being characterized by a limited diversification capability which sometimes does not
allow the search process to escape from local optima. The performance of VNS and GS-VNS
are both comparable for these small instances of the problem, obtaining the best solutions in
terms of solution quality and running times with respect to the other algorithms. In particular,
VNS is slightly faster than GS-VNS, and it can be considered the best performing heuristic
for these problem instances.

90 Ann Oper Res (2009) 172: 71–96

Table 1 Computational results for n = 100 and q = 0.2n (max-CPU-time for heuristics = 5000 ms)

Parameters Average objective function values

n � d EXACT PM GRASP DPSO VNS GS-VNS

100 25 0.8 1 1 1 1 1 1

0.5 1.5 1.5 1.5 1.5 1.5 1.5

0.2 2.1 2.1 2.1 2.1 2.1 2.1

50 0.8 1.9 1.9 1.9 1.9 1.9 1.9

0.5 2 2 2 2 2 2

0.2 3.2 3.2 3.2 3.2 3.2 3.2

100 0.8 2 2 2 2 2 2

0.5 3 3 3 3 3 3

0.2 4.6 4.6 4.6 4.6 4.6 4.6

125 0.8 2.8 2.8 2.8 2.8 2.8 2.8

0.5 3.3 3.3 3.3 3.3 3.3 3.3

0.2 5.2 5.4 5.3 5.2 5.2 5.2

TOTAL: 32.6 32.8 32.7 32.6 32.6 32.6

Parameters Computational times (milliseconds)

n � d EXACT PM GRASP DPSO VNS GS-VNS

100 25 0.8 14.7 14.1 6.7 1.6 1.5 1.5

0.5 26.3 20.3 6.3 3.2 4.7 4.8

0.2 16.2 15.6 4.7 6.1 4.6 6.2

50 0.8 59.4 56.1 9.4 6.4 1.6 7.9

0.5 66.3 67.2 6.1 10.9 4.7 7.8

0.2 40.6 75.1 15.6 15.7 1.5 9.5

100 0.8 306.3 270.3 40.6 75.1 28.2 43.8

0.5 251.6 275.1 7.6 31.2 7.3 12.6

0.2 0.9 · 103 314.1 32.8 45.3 32.9 40.4

125 0.8 78.2 381.2 14.1 48.4 15.3 32.8

0.5 451.5 443.9 93.8 157.7 96.9 218.8

0.2 4.7 · 103 518.8 68.8 322 136 162.4

TOTAL: 6.9 · 103 2.5 · 103 306.5 723.6 335.2 548.5

Table 3 and Table 4 show larger instances of the problem (n = 500, with q = 0.2n and
q = 0.4n, respectively). The motivation to introduce a high diversification capability in GS-
VNS is to obtain a better performance in large problem instances. Inspection of Table 4
shows that this aim is achieved. VNS always obtains the solutions with the best quality, but
it loses a lot, sometimes, in terms of computational running time with respect to GS-VNS
(see, for example, the instances [n = 500, � = 125, d = 0.2] in Table 3, [n = 500, � = 500,
d = 0.2] in Table 4, and [n = 625, � = 500, d = 0.2] in Table 4, among others). GS-VNS ex-
hibits an optimal tuning between solution quality and computational running time for these
larger problem instances, although sometimes slightly lacks in terms of intensification of
the search space with respect to the VNS approach. As in the previous analysis, GRASP and
DPSO show the same relative behavior for the considered instances: excessive diversifica-
tion and poor intensification capabilities for DPSO and, conversely, excessive intensification

Ann Oper Res (2009) 172: 71–96 91

Table 2 Computational results for n = 100 and q = 0.4n (max-CPU-time for heuristics = 6000 ms)

Parameters Average objective function values

n � d EXACT PM GRASP DPSO VNS GS-VNS

100 25 0.8 1 1 1 1 1 1

0.5 1.9 1.9 1.9 1.9 1.9 1.9

0.2 3 3 3 3 3 3

50 0.8 2 2 2 2 2 2

0.5 2.2 2.2 2.2 2.2 2.2 2.2

0.2 4.3 4.4 4.3 4.3 4.3 4.3

100 0.8 3 3 3 3 3 3

0.5 3.6 3.6 3.6 3.6 3.6 3.6

0.2 NF 6.5 6.4 6.4 6.4 6.4

125 0.8 3 3 3 3 3 3

0.5 4 4 4 4 4 4

0.2 NF 7 6.9 6.9 6.9 6.9

TOTAL: – 41.6 41.3 41.3 41.3 41.3

Parameters Computational times (milliseconds)

n � d EXACT PM GRASP DPSO VNS GS-VNS

100 25 0.8 24.7 15.6 6.3 9.3 1.6 4.6

0.5 29.7 21.7 6.4 6.4 1.6 1.5

0.2 36.9 29.8 3.2 23.6 3 9.3

50 0.8 60.9 53 7.2 20.4 3.1 7.9

0.5 117.2 76.6 15.1 34.3 17.2 23.4

0.2 314.1 111 34.4 45.1 28.1 29.7

100 0.8 175 260.9 10.9 39.2 9.4 17.4

0.5 389.1 312.5 38.4 96.8 32.3 39.7

0.2 NF 472 79.8 350 79.7 99.9

125 0.8 354.6 440.7 18.7 57.6 23.4 20.3

0.5 479.6 507.8 73.4 67.1 60.9 70.4

0.2 NF 811 177.8 411 191.7 197

TOTAL: – 3.1 · 103 471.6 1.2 · 103 459.8 521.1

and poor diversification capabilities for GRASP. PM confirms the worst performance for all
the problem instances in terms of solution quality and computational running time.

In addition, to confirm this evaluation, the algorithms are ranked for each dataset, assign-
ing a rank of 1 to the best performing algorithm, rank 2 to the second best one, and so on.
Obviously, if the exact method records a NF for a dataset, the worst rank is assigned to it in
the specified dataset. The average ranks of the algorithms, among the considered datasets,
are shown in Table 5, in which the algorithms are ordered from the best one to the worst one
with respect to the average ranks.

According to the ranking, VNS is the best performing algorithm, followed respectively
by GS-VNS, GRASP, DPSO, PM, and EXACT. To analyze the statistical significance of
differences between these ranks, we follow the same procedure proposed in Consoli et al.
(2008a) which make use of the Friedman Test (Friedman 1940) and its corresponding Ne-

92 Ann Oper Res (2009) 172: 71–96

Table 3 Computational results for n = 500 and q = 0.2n (max-CPU-time for heuristics = 500 · 103 ms)

Parameters Average objective function values

n � d EXACT PM GRASP DPSO VNS GS-VNS

500 125 0.8 1.1 1.1 1.1 1.1 1.1 1.1

0.5 2 2 2 2 2 2

0.2 3 3 3 3 3 3

250 0.8 2 2 2 2 2 2

0.5 2.9 2.9 2.9 2.9 2.9 2.9

0.2 NF 4.4 4.3 4.3 4.3 4.3

500 0.8 3 3 3 3 3 3

0.5 NF 3.9 3.9 4 3.9 3.9

0.2 NF 6.8 6.8 6.9 6.7 6.7

625 0.8 NF 3.8 3.8 3.8 3.8 3.8

0.5 NF 4.8 4.8 4.8 4.7 4.7

0.2 NF 8 8 7.9 7.9 8

TOTAL: – 45.7 45.6 45.7 45.3 45.4

Parameters Computational times (milliseconds)

n � d EXACT PM GRASP DPSO VNS GS-VNS

500 125 0.8 1.5 · 103 1.2 · 103 173.4 3.4 · 103 172.2 404.7

0.5 2.1 · 103 2.5 · 103 149.8 575 26.5 104.8

0.2 4.1 · 103 7.1 · 103 318.8 5.9 · 103 265.7 634.4

250 0.8 13.6 · 103 17.4 · 103 270 9.7 · 103 115.6 859.4

0.5 37.3 · 103 46.8 · 103 334.6 8.8 · 103 148.4 301.6

0.2 NF 48.1 · 103 14.5 · 103 36.7 · 103 11.9 · 103 17 · 103

500 0.8 300.8 · 103 304.4 · 103 2.3 · 103 22.1 · 103 1.8 · 103 1.9 · 103

0.5 NF 325.8 · 103 109.7 · 103 106.5 · 103 85.7 · 103 388.6 · 103

0.2 NF 425.2 · 103 17.9 · 103 170.4 · 103 27.7 · 103 29 · 103

625 0.8 NF 465.6 · 103 36.9 · 103 180.2 · 103 32.8 · 103 51.9 · 103

0.5 NF 403 · 103 2.5 · 103 110.4 · 103 6.7 · 103 9.4 · 103

0.2 NF 399.3 · 103 36.7 · 103 285.7 · 103 79.5 · 103 36.2 · 103

TOTAL: – 2446.4 · 103 221.8 · 103 940.4 · 103 246.8 · 103 536.3 · 103

menyi Post-hoc Test (Nemenyi 1963). For more details on the issue of statistical tests for
comparison of algorithms over multiple datasets, see Demśar (2006) and Hollander and
Wolfe (1999).

According to the Friedman test, a significant difference between the performance of the
metaheuristics, with respect to the evaluated ranks, exists (at the 5% of significance level).
Since the equivalence of the algorithms is rejected, the Nemenyi post-hoc test is applied in
order to perform pairwise comparisons. It considers the performance of two algorithms sig-
nificantly different if their corresponding average ranks differ by at least a specific threshold
critical difference. In our case, considering a significance level of the Nemenyi test of 5%,
this critical difference is 1.09. The differences between the average ranks of the algorithms
are reported in Table 6.

Ann Oper Res (2009) 172: 71–96 93

Table 4 Computational results for n = 500 and q = 0.4n (max-CPU-time for heuristics = 600·103 ms)

Parameters Average objective function values

n � d EXACT PM GRASP DPSO VNS GS-VNS

500 125 0.8 1.9 1.9 1.9 1.9 1.9 1.9

0.5 2 2 2 2 2 2

0.2 NF 4.1 4.1 4.1 4.1 4.1

250 0.8 2 2 2 2 2 2

0.5 3 3 3 3 3 3

0.2 NF 6.2 6.1 6.3 6.1 6.1

500 0.8 NF 3.7 3.7 3.7 3.7 3.7

0.5 NF 5 5 5 5 5

0.2 NF 9.9 9.9 9.9 9.8 9.8

625 0.8 NF 4 4 4 4 4

0.5 NF 5.8 5.8 5.7 5.7 5.7

0.2 NF 11.5 11.5 11.4 11.2 11.3

TOTAL: – 59.1 59 59 58.5 58.6

Parameters Computational times (milliseconds)

n � d EXACT PM GRASP DPSO VNS GS-VNS

500 125 0.8 218.8 1.1 · 103 231 778.2 187.5 93.9

0.5 2.8 · 103 2.6 · 103 230 4.3 · 103 184.2 218.7

0.2 NF 8.3 · 103 1.1 · 103 8.8 · 103 853 3.3 · 103

250 0.8 44.6 · 103 20.2 · 103 615.7 12.5 · 103 393.7 1.2 · 103

0.5 48.8 · 103 49.8 · 103 864.2 13.4 · 103 650 3.1 · 103

0.2 NF 48.7 · 103 20.4 · 103 122.2 · 103 38.1 · 103 24.8 · 103

500 0.8 NF 201.1 · 103 13.1 · 103 19.4 · 103 12.1 · 103 13.7 · 103

0.5 NF 193.1 · 103 5.5 · 103 19.6 · 103 4.9 · 103 5 · 103

0.2 NF 579.7 · 103 75.9 · 103 195.3 · 103 258.4 · 103 133.3 · 103

625 0.8 NF 384 · 103 6.9 · 103 18.5 · 103 6.2 · 103 6.5 · 103

0.5 NF 421.2 · 103 50.5 · 103 32.6 · 103 321.5 · 103 12.7 · 103

0.2 NF 397.9 · 103 95.4 · 103 232.1 · 103 115.9 · 103 68.6 · 103

TOTAL: – 2307.7 · 103 270.7 · 103 679.5 · 103 739.3 · 103 272.5 · 103

Table 5 Average ranks of the algorithms (ordering from the best one to the worst one)

VNS GS-VNS GRASP DPSO PM EXACT

1.38 2.48 2.56 3.88 5.21 5.49

From this table, it is possible to identify four groups of algorithms with different perfor-
mance. The best performing group consists of just VNS, because it obtains the smallest rank
which is significantly different from all the other ranks. The remaining groups are, in order,
GS-VNS and GRASP, then DPSO, and finally PM and EXACT. From this further analysis,
the results reinforce the conclusion that VNS is an effective metaheuristic for the MLSteiner
problem. Although a VNS for the MLSteiner, along with other heuristic approaches, was

94 Ann Oper Res (2009) 172: 71–96

Table 6 Pairwise differences of the average ranks of the algorithms (Critical difference = 1.09 for a signifi-
cance level of 5% for the Nemenyi test)

VNS GS-VNS GRASP DPSO PM EXACT

VNS – 1.1 1.18 2.5 3.83 4.11

GS-VNS – – 0.08 1.4 2.73 3.01

GRASP – – – 1.32 2.65 2.93

DPSO – – – – 1.33 1.61

PM – – – – – 0.28

EXACT – – – – – –

implemented by Cerulli et al. (2006), it has been shown that our VNS implementation is
fast, simple, and particularly effective for the MLSteiner problem, obtaining high-quality
solutions in short computational running times. The superiority of Variable Neighbourhood
Search with respect to the other algorithms is further evidenced by its ease implementation
and simplicity.

4 Conclusions

In this paper, we considered the minimum labelling Steiner tree (MLSteiner) problem, an
extension of the minimum labelling spanning tree problem to the case where only a subset of
specified nodes, the basic nodes, need to be connected. The MLSteiner problem is NP-hard
and, therefore, heuristics and approximate solution approaches with performance guarantees
are of interest.

We presented some metaheuristics for the problem: a Greedy Randomized Adaptive
Search Procedure (GRASP), a Discrete Particle Swarm Optimization (DPSO), a Variable
Neighbourhood Search (VNS), and a VNS-based version that we have called Group-Swap
Variable Neighbourhood Search (GS-VNS). Considering a wide range of problem instances,
we compared these metaheuristics with the Pilot Method (PM) by Cerulli et al. (2006), the
most popular MLSteiner heuristic in the literature. Based on this experimental analysis, all
the proposed procedures clearly outperformed PM and, in particular, the best performance
was obtained by VNS.

Although a VNS for the MLSteiner, along with other heuristic approaches, was imple-
mented by Cerulli et al. (2006), this paper shows that the VNS proposed here is fast, simple,
and particularly effective for the MLSteiner problem, obtaining high-quality solutions in
short computational running times. This analysis provides further evidence of the ability of
Variable Neighbourhood Search to deal with NP-hard combinatorial problems.

References

Aarts, E., Korst, J., & Michiels, W. (2005). Simulated annealing. In E. K. Burke & G. Kendall (Eds.), Search
methodologies: introductory tutorials in optimization and decision support techniques (pp. 187–210).
Berlin: Springer.

Avis, D., Hertz, A., & Marcotte, O. (2005). Graph theory and combinatorial optimization. New York:
Springer.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual com-
parison. ACM Computing Surveys, 35(3), 268–308.

Ann Oper Res (2009) 172: 71–96 95

Cerulli, R., Fink, A., Gentili, M., & Voß, S. (2005). Metaheuristics comparison for the minimum labelling
spanning tree problem. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The next wave on computing,
optimization, and decision technologies (pp. 93–106). New York: Springer.

Cerulli, R., Fink, A., Gentili, M., & Voß, S. (2006). Extensions of the minimum labelling spanning tree
problem. Journal of Telecommunications and Information Technology, 4, 39–45.

Chang, R. S., & Leu, S. J. (1997). The minimum labelling spanning trees. Information Processing Letters,
63(5), 277–282.

Consoli, S. (2007). Test datasets for the minimum labelling Steiner tree problem. [Online], available at
http://people.brunel.ac.uk/~mapgssc/MLSteiner.htm.

Consoli, S., Darby-Dowman, K., Mladenović, N., & Moreno-Pérez, J. A. (2008a). Greedy randomized adap-
tive search and variable neighbourhood search for the minimum labelling spanning tree problem. Euro-
pean Journal of Operational Research. doi:10.1016/j.ejor.2008.03.014.

Consoli, S., Darby-Dowman, K., Mladenović, N., & Moreno-Pérez, J. A. (2008b). Heuristics based on
greedy randomized adaptive search and variable neighbourhood search for the minimum labelling
spanning tree problem. Technical Report TR/01/07, Brunel University, West London, UK. Available:
http://hdl.handle.net/2438/737.

Demśar, J. (2006). Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Duin, C., & Voß, S. (1999). The Pilot method: A strategy for heuristic repetition with applications to the
Steiner problem in graphs. Networks, 34(3), 181–191.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, 8, 67–71.

Francis, R. L., McGinnis, L. F., & White, J. A. (1992). Facility layout and location: an analytical approach.
Englewood Cliffs: Prentice-Hall.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals
of Mathematical Statistics, 11, 86–92.

Garey, M. R., Graham, R. L., & Johnson, D. S. (1977). The complexity of computing Steiner minimal trees.
SIAM Journal on Applied Mathematics, 32, 835–859.

Grimwood, G. R. (1994). The Euclidean Steiner tree problem: simulated annealing and
other heuristics. Master’s thesis, Victoria University, Wellington, New Zealand, URL
http://www.isor.vuw.ac.nz/~geoff/thesis.html.

Hansen, P., & Mladenović, N. (1997). Variable neighbourhood search. Computers and Operations Research,
24, 1097–1100.

Hansen, P., & Mladenović, N. (2003). Variable neighbourhood search. In F. Glover & G. A. Kochenberger
(Eds.), Handbook of metaheuristics (pp. 145–184). Norwell: Kluwer. Chap 6.

Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd edn.). New York: Wiley.
Hwang, F. K., Richards, D. S., & Winter, P. (1992). The Steiner tree problem. Amsterdam: North-Holland.
Karp, R. M. (1975). On the computational complexity of combinatorial problems. Networks, 5, 45–68.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 4th IEEE international

conference on neural networks, Perth, Australia (pp. 1942–1948).
Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm algorithm. In IEEE

conference on systems, man, and cybernetics (Vol. 5, pp. 4104–4108).
Kennedy, J., & Eberhart, R. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,

220(4598), 671–680.
Korte, B., Prömel, H. J., & Steger, A. (1990). Steiner trees in VLSI-layout. In B. Korte, L. Lovász, H. J.

Prömel, & A. Schrijver (Eds.), Paths, flows, and VLSI-layout (pp. 185–214). Berlin: Springer.
Krarup, J., & Vajda, S. (1997). On Torricelli’s geometrical solution to a problem of Fermat. IMA. Journal of

Mathematics Applied in Business and Industry, 8(3), 215–224.
Krumke, S. O., & Wirth, H. C. (1998). On the minimum label spanning tree problem. Information Processing

Letters, 66(2), 81–85.
Miehle, W. (1958). Link-minimization in networks. Operations Research, 6, 232–243.
Moreno-Pérez, J. A., Castro-Gutiérrez, J. P., Martínez-García, F. J., Melián, B., Moreno-Vega, J. M., &

Ramos, J. (2007). Discrete particle swarm optimization for the p-median problem. In Proceedings of
the 7th metaheuristics international conference, Montréal, Canada.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, New Jer-
sey.

Pacheco, J., Casado, S., & Nuñez, L. (2007). Use of VNS and TS in classification: variable selection and
determination of the linear discrimination function coefficients. IMA Journal of Management Mathe-
matics, 18(2), 191–206.

http://people.brunel.ac.uk/~mapgssc/MLSteiner.htm
http://dx.doi.org/10.1016/j.ejor.2008.03.014
http://hdl.handle.net/2438/737
http://www.isor.vuw.ac.nz/~geoff/thesis.html

96 Ann Oper Res (2009) 172: 71–96

Pitsoulis, L. S., & Resende, M. G. C. (2002). Greedy randomized adaptive search procedure. In P. Pardalos &
M. G. C. Resende (Eds.), Handbook of applied optimization (pp. 168–183). Oxford: Oxford University
Press.

Pérez-Pérez, M., Almeida-Rodríguez, F., & Moreno-Vega, J. M. (2007). A hybrid VNS-path relinking for the
p-hub median problem. IMA Journal of Management Mathematics, 18(2), 157–171.

Raghavan, S., & Anandalingam, G. (2003). Telecommunications network design and management. New York:
Springer.

Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedure. In F. Glover &
G. Kochenberger (Eds.), Handbook in metaheuristics (pp. 219–249). Dordrecht: Kluwer.

Tanenbaum, A. S. (1989). Computer networks. Englewood Cliffs: Prentice-Hall.
Van-Nes, R. (2002). Design of multimodal transport networks: a hierarchical approach. Delft: Delft Univer-

sity Press.
Voß, S. (2000). Modern heuristic search methods for the Steiner tree problem in graphs. In D. Z. Du, J. M.

Smith, & J. H. Rubinstein (Eds.), Advances in Steiner tree (pp. 283–323). Boston: Kluwer.
Voß, S. (2006). Steiner tree problems in telecommunications. In M. Resende & P. Pardalos (Eds.), Handbook

of optimization in telecommunications (pp. 459–492). New York: Springer. Chap 18.
Voß, S., Martello, S., Osman, I. H., & Roucairol, C. (1999). Meta-heuristics. Advanced and trends local

search paradigms for optimization. Norwell: Kluwer.
Voß, S., Fink, A., & Duin, C. (2004). Looking ahead with the Pilot method. Annals of Operations Research,

136, 285–302.
Wan, Y., Chen, G., & Xu, Y. (2002). A note on the minimum label spanning tree. Information Processing

Letters, 84, 99–101.
Winter, P. (1987). Steiner problem in networks: a survey. Networks, 17, 129–167.
Xiong, Y., Golden, B., & Wasil, E. (2005a). A one-parameter genetic algorithm for the minimum labelling

spanning tree problem. IEEE Transactions on Evolutionary Computation, 9(1), 55–60.
Xiong, Y., Golden, B., & Wasil, E. (2005b). Worst case behavior of the mvca heuristic for the minimum

labelling spanning tree problem. Operations Research Letters, 33(1), 77–80.
Xiong, Y., Golden, B., & Wasil, E. (2006). Improved heuristics for the minimum labelling spanning tree

problem. IEEE Transactions on Evolutionary Computation, 10(6), 700–703.

	Variable neighbourhood search for the minimum labelling Steiner tree problem
	Abstract
	Introduction
	Origin of the problem
	Description of the algorithms
	Exact method
	Pilot method
	Greedy Randomized Adaptive Search Procedure
	Discrete Particle Swarm Optimization
	Variable Neighbourhood Search
	Group-Swap Variable Neighbourhood Search

	Computational results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

