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Abstract In this paper the Fixed Charge Transportation Problem is considered. A new
heuristic approach is proposed, based on the intensive use of Lagrangean relaxation tech-
niques. The more novel aspects of this approach are new Lagrangean relaxation and de-
composition methods, the consideration of several core problems, defined from the previ-
ously computed Lagrangean reduced costs, the heuristic selection of the most promising
core problem and the final resort to enumeration by applying a branch and cut algorithm to
the selected core problem. For problems with a small ratio of the average fixed cost to the
average variable cost (lower than or equal to 25), the proposed method can obtain similar or
better solutions than the state-of-art algorithms, such as the tabu search procedure and the
parametric ghost image processes. For larger ratios (between 50 and 180), the quality of the
obtained solutions could be considered to be halfway between both methods.

Keywords Transportation problem · Fixed costs · Heuristics · Integer programming ·
Lagrangean relaxation · Core problem

1 Introduction

In this paper the Fixed Charge Transportation Problem (FCTP) is considered. The problem
is a variant of the well known Linear Transportation Problem (LTP), and occurs when both
fixed and variable costs are simultaneously present. There is a wide variety of applications
of the FCTP, mainly in areas such as distribution, transportation, scheduling and location
(Adlakha and Kowalski 2003). Moreover, other applications of FCTP have been cited in
such problems as allocation of vehicles (Stroup 1967), solid-waste management (Walker
1976), process selection (Hirsch and Dantzig 1968) and teacher assignment (Hultberg and
Cardoso 1997).
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The FCTP is a special case of the fixed cost linear programming problem, already in-
troduced in the origins of the Operations Research (Hirsch and Dantzig 1968). Also, it is a
special case of the Fixed Cost Network Problem (FCNP), which has a central role in many
distribution and network design problems (Nemhauser and Wolsey 1988). The introduction
of fixed costs to linear programming, network or transportation problems renders the objec-
tive function concave and discontinuous in the origin and this implies that a local minimum
for these problems need not be a global minimum (Hirsch and Dantzig 1968).

In practice, the above facts imply that fixed cost problems are much more difficult to solve
than their corresponding linear versions. In fact, as shown in Guisewite and Pardalos (1990),
most minimization network problems with strictly concave objective function, including that
with fixed-charges, are NP-hard, even when the underlying graph is bipartite, as happens in
FCTP. On the other hand, Klose (2008) shows that a particular case of FCTP, the Single
Source FCTP, is NP-hard, which also proves the NP-hardness of FCTP.

Network design problems constitute one of the most important areas in combinatorial
optimization. These problems have numerous practical applications, mostly encountered in
telecommunication, transportation and supply chain network planning. Moreover, important
classical optimization problems can be seen as particular cases. See Magnanti and Wong
(1984), Balakrishnan et al. (1997) for excellent surveys and additional information on this
class of problems, as well as the text book by Ghiani et al. (2004). There are different
approaches to solve network design problems, although three ones have to be pointed up:
Branch and Bound, Lagrangean relaxation and heuristics. For multi-commodity network
design problems, Gendron et al. (1999) gives a survey of recent modeling and algorithmic
results, concluding that a efficient solution procedure should combine the three mentioned
approaches. For the case single-commodity FCNP, the following papers deal with these
approaches: Hochbaum and Segev (1989), Ortega and Wolsey (2003), Cruz et al. (1998)
and Kim and Hooker (2002). Next, we review these approaches in the context of FCTP.

There are numerous algorithms in the literature for the solution, either exact or approxi-
mate, of the FCTP. Given the great computational difficulty of this problem, many heuristic
methods have been developed over several decades. Hirsch and Dantzig (1968) proved that
there is an optimal solution of the fixed charge problems that is an extreme point of the
feasible region, and therefore the search for the optimal solution may be restricted to the
extreme points of this region. Many heuristic algorithms have been designed based on this
property, some of them being variants of the local search methods, such as the methods of
Steinberg (1970) and Walker (1976), and the most recent of Adlakha and Kowalski (2003).

Other heuristic methods that must be emphasized are the Lagrangean heuristic method
of Wright et al. (1989, 1991), the tabu search heuristic procedure (TS) of Sun et al. (1998)
and the recently proposed parametric ghost image processes (GIP) of Glover et al. (2005).

With respect to the exact algorithms, the most widely applied for the FCTP are the Branch
and Bound (B&B) ones. In Bell et al. (1999), Lamar and Wallace (1997), Palekar et al.
(1990), different penalties are specifically developed for the FCTP and used in the B&B
tasks of fathoming and guiding separation.

It is commonly accepted in the literature on the FCTP that exact solution algorithms are
not very useful in practice since, except for small dimension problems, the computation
time required is usually excessive (Sun et al. 1998). The main reason for this is that the most
commonly used relaxations taking part in B&B methods, such as Lagrangean and linear
relaxations, are weak for the FCTP. For example, the bound provided by Lagrangean relax-
ation in Wright et al. (1989, 1991) does not improve that provided by the linear relaxation,
as the special structure has the integrality property. In almost all references to the B&B al-
gorithms cited above, the relaxation used is simply the linear relaxation, which is very weak
for the FCTP.
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In this paper, a new heuristic approach for FCTP is proposed, which combines, in differ-
ent phases, Lagrangean relaxation, Branch and Bound and heuristics. The method is based
on the solution of certain core problems containing only a subset of the set of all variables.
The use of a core problem for reducing the size of the original problem has been done,
with remarkable success, in some large scale combinatorial problems, such as the Set Cov-
ering Problem (Caprara et al. 1999), the Capacitated Facility Location Problem (Avella et
al. 2005) and the P-Median Problem (Avella et al. 2007).

The algorithm consists of three phases. In phase 1 we apply either Lagrangean relaxation
or Lagrangean decomposition to obtain the both a lower bound and the Lagrangean reduced
costs of all variables. The relaxations used in this paper are new and they are stronger than
those used in other papers such as Wright et al. (1989, 1991). No attempt is made in this
phase to obtain good solutions, as the problem is still too difficult. In phase 2 we define,
from the previously computed reduced costs, one or several core problems with the same
structure as the original problem but fewer variables. Lagrangean relaxation or Lagrangean
decomposition is once again applied to each core problem and the best heuristic solution
attained in this phase is saved. Note that the solution in this phase is obtained by applying
only Lagrangean methods. In phase 3 we resort to enumeration, applying a standard branch
and cut algorithm, with limited time, to the core problem that produced the best solution in
phase 2, thus improving the final solution.

This paper is organized as follows. In Sect. 2 we give the formulation of the problem
and a overview of the proposed procedure. Section 3 develops the Lagrangean relaxation
and Lagrangean decomposition algorithms which are the base of the overall procedure. In
Sect. 4 the core problem is defined, and Sect. 5 presents the simple heuristics that will be
applied at different points of the algorithm. Section 6 gives an overall view of the method.
Section 7 gives details of the different parts of the algorithm proposed and analyzes its
computational performance on 72 FCTP test problems available in the literature. Finally,
Sect. 8 gives the conclusions and the future extensions.

2 Formulation and general framework

The mixed integer programming formulation for FCTP is well known (Balinski 1961):

Min
m∑

i=1

n∑

j=1

(cij xij + fij yij ) (1)

s.t.
n∑

j=1

xij = si i = 1, . . . ,m (2)

m∑

i=1

xij = dj j = 1, . . . , n (3)

xij ≤ uij yij i = 1, . . . ,m, j = 1, . . . , n (4)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n (5)

yij ∈ {0,1} i = 1, . . . ,m, j = 1, . . . , n (6)

with the following parameters and variables:
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m number of origins or supply points
n number of destinations or demand points
si supply of origin i, for each i = 1, . . . ,m

dj demand of destination j , for each j = 1, . . . , n

cij cost of shipping each unit from origin i to destination j

fij fixed cost incurred whenever there is a shipment from origin i to destination j

xij amount shipped from origin i to destination j

yij = 1 if xij > 0, and = 0 otherwise

Bounds uij in (4) can either be explicit, giving us a Capacitated FCTP, or they can be
taken as uij = min(si, dj ), giving us the standard FCTP (the only one dealt with in this
paper), although the formulation and the methods used are valid in both cases. It is well
known that a transportation problem can easily be converted into a balanced one that verifies∑m

i=1 si = ∑n

j=1 dj , so we suppose the data already verify this condition.
The proposed heuristic method is first outlined step by step, and then each step is de-

scribed in more detail.

Phase 1: Lagrangean relaxation. Apply either Lagrangean relaxation or Lagrangean de-
composition to the original problem in order to obtain the Lagrangean reduced
costs of all variables. No attempt is made in this phase to obtain good solutions, as
the problem is still too difficult.

Phase 2: Core problem. Define, from the previously computed reduced costs, one or sev-
eral core problems with the same structure as the original problem but fewer vari-
ables. Either Lagrangean relaxation or Lagrangean decomposition is once more
applied to each core problem, with its corresponding heuristic solution, and the
best solution attained in this phase is saved. Note that the solution in this phase
is obtained by applying only Lagrangean methods. The algorithm used up to this
phase we shall call Core 2.
The different core problems defined in this step depend on the values chosen for
two parameters, namely K and F . K is the minimum number of indexes (i, j) we
want in the core problem for any destination j , and F is a factor to compensate
the fixed and variable costs. The choice of these parameters has a great effect on
the final solution and will be examined in detail later.

Phase 3: Branch and Cut. Resort to enumeration by applying a branch and cut algorithm,
with limited time, to the core problem that produced the best solution in phase 2,
thus improving the final solution. The whole algorithm used up to this phase we
shall call Core 3.

3 Lagrangean relaxation

In this section Lagrangean relaxation is applied to FCTP. Lagrangean relaxation is a stan-
dard procedure in Integer Programming. See Beasley (1993), Guignard (2003), Nemhauser
and Wolsey (1988) for a complete description. The only references to the application of
Lagrangean relaxation to FCTP are Wright et al. (1989, 1991).

3.1 Choosing underlaying relaxations

Immediately after, lower and upper bounds will be obtained by means of Lagrangean re-
laxation. The procedure requires the optimization on certain sets containing the variables of
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the problem. In this paper, we only consider sets containing separately the binary y and the
continuous x variables. It is also possible to use sets containing simultaneously both types
of variables, but this will not be done in this paper.

Let F be the feasible set for FCTP, defined by

F = {(x, y) ∈ R2mn : (2) to (6)}

and let Yp = proj(F ) be the projection of F onto the space of the y variables, that is

Yp = {y ∈ {0,1}mn : there exists x ∈ Rmn/(x, y) ∈ F }

Set Yp is only defined implicitly, and is not easy to use in a subproblem since, as shown in
Göthe-Lundgren and Larsson (1994), the solution of a linear optimization problem on Yp

requires the solution of a series of Set Covering problems. As this should be done every time
the subproblem has to be solved, the approximation will be very inefficient. Instead, here
we consider a series of relaxations of the set Yp with an explicit representation, such that the
optimization of the corresponding subproblems are easier. For posterior references we will
use the following notations:

1. Yb = {0,1}nm is the binary set of dimension mn.
2. Yr = {y ∈ {0,1}nm : ∑n

j=1 uij yij ≥ si, i = 1, . . . ,m} is the row knapsack set. Set Yr is
separable, and for every i = 1, . . . ,m we have the knapsack set for row i

Yi =
{
(yij ) ∈ {0,1}n :

n∑

j=1

uij yij ≥ si

}
(7)

3. Yc = {y ∈ {0,1}nm : ∑n

i=1 uij yij ≥ dj , j = 1, . . . , n} is the column knapsack set. As in
the previous case, set Yc is separable and for every j = 1, . . . , n

Y j =
{
(yij ) ∈ {0,1}m :

m∑

i=1

uij yij ≥ dj

}
(8)

is the knapsack set for the column j .

Each of the previous sets are relaxations of Yp . In Nemhauser and Wolsey (1988) sets
Yr and Yc were introduced for the FCTP, and their possible use in a fractional cutting plane
algorithm is indicated. The following inclusions are verified:

Yp ⊆ Yr ⊆ Yb and Yp ⊆ Yc ⊆ Yb (9)

The smaller the set over which the optimization is performed, the stronger the corre-
sponding relaxation, yet the more difficult the solution of the subproblem is. Sets Yr and Yc

give an adequate trade-off of these questions, and will be used intensively throughout the
paper.

With respect to the continuous variables x, the feasible region in the variables x ∈ Rnm

given by constraints (2) to (5) will be denoted by X. So, a subproblem of linear optimization
over X reduces to the well known Linear Transportation Problem (LTP).

We distinguish two cases, according to whether only one set is considered or two sets are
simultaneously considered.
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3.2 Using simple relaxations

Once a set Y , such as that of Sect. 3.1, has been chosen, the redundant constraints y ∈ Y can
be added to the formulation which is as follows:

Minimize
m∑

i=1

n∑

j=1

cij xij +
m∑

i=1

n∑

j=1

fij yij

subject to x ∈ X (10)

y ∈ Y (11)

xij ≤ uij yij for all i, j (12)

Dualizing the linking constraints (12) with multipliers λij ≥ 0 the Lagrangean subprob-
lem takes the form:

(LR(λ)) Minimize
m∑

i=1

n∑

j=1

{cij xij + fij yij + λij (xij − uij yij )} (13)

subject to x ∈ X,y ∈ Y

This subproblem decomposes into two subproblems, one with variables x and constraints
(10), and another with variables y and constraints (11):

(LR1(λ)) Minimize
m∑

i=1

n∑

j=1

{(cij + λij )xij } (14)

subject to x ∈ X

(LR2(λ)) Minimize
m∑

i=1

n∑

j=1

{(fij − λijuij )yij } (15)

subject to y ∈ Y

Subproblem (LR1(λ)) is the well known linear Transportation Problem which can
be solved by special methods (Nemhauser and Wolsey 1988). The form of subproblem
(LR2(λ)) depends on the chosen set Y . Generally, in most papers where Lagrangean re-
laxation is applied to FCTP or FCNP, the dualized constraints also are (12), but the y-
subproblem is one trivial. For example, in Wright et al. (1989, 1991) and Cruz et al. (1998),
Lagrangean relaxation is applied following the above scheme, but using Y = Yb . In this case,
subproblem (RL2(λ)) is trivial and has the integrality property. This implies that the bound
obtained solving the Lagrangean dual problem does not improve that obtained with the lin-
ear relaxation. In this paper we obtain stronger relaxations using sets strictly contained in
Yb , which does not have the integrality property. So, with the row knapsack structure Yr , one
has the subproblem:
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(LR2(λ)) Minimize
m∑

i=1

n∑

j=1

{(fij − λijuij )yij }

subject to
n∑

j=1

uij yij ≥ si, i = 1, . . . ,m

yij ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . , n

Here, the subproblem decomposes into m binary knapsack subproblems, each with n

variables, and there are specific algorithms for their solution (Martello and Toth 1990).
Analogously, if we use the column knapsack set Yc , the corresponding subproblem

(LR2(λ)) decomposes into n knapsack subproblems, each with m variables.
Given any set Y , such as that previously considered, we will denote by LD(Y ) the re-

sulting Lagrangean dual, that is:

max
λ≥0

{ν(LR(λ))}

where ν(P ) indicates the optimal value of problem (P ). From the relations in (9), the fol-
lowing inequalities are clear:

ν(LP ) = ν(LD(Yb) ≤ ν(LD(Yr)) ≤ z (16)

where z is the optimal value of the problem and (LP ) is the linear relaxation. Similar in-
equalities are verified if ν(LD(Yr)) is replaced by ν(LD(Yc)). As usual, the dual problem
will be solved by a subgradient type algorithm.

3.3 Lagrangean decomposition

Adding the redundant constraints y ∈ Yr and y ∈ Yc to the formulation of FCTP, and making
variable splitting, one obtains the reformulation (with shortened matrix notation):

Minimize cx + fy1

subject to x ∈ X

y1 ∈ Yr

y2 ∈ Yc

x ≤ uy1 (17)

y1 = y2 (18)

Dualizing constraints (17) with non-negative multipliers λij ≥ 0, and constraints (18)
with non-constrained multipliers μij , for i = 1, . . . ,m, j = 1, . . . , n, one obtains a La-
grangean subproblem (LD(λ,μ)) that separates into three subproblems with variables
x ∈ X, y1 ∈ Yr and y2 ∈ Yc respectively:
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(LR1(λ)) Minimize (c + λ)x (19)

subject to x ∈ X

(LR3(λ,μ)) Minimize (f + μ − λu)y1 (20)

subject to y1 ∈ Yr

(LR4(λ,μ)) Minimize (−μ)y2 (21)

subject to y2 ∈ Yc

Here, the subproblem with variables y1 decomposes into m knapsack subproblems, and that
with variables y2 separates into n knapsack subproblems, as in Sect. 3.

Denoting as LD(Yr,Yc) the Lagrangean dual corresponding to this Lagrangean decom-
position, it is well known (Guignard 2003) that its value is always better than or equal to
that corresponding to the simple relaxations Yr or Yc , that is

max(ν(LD(Yr)), ν(LD(Yc))) ≤ ν(LD(Yr, Yc))

It is then possible to incorporate the information given by the two sets Yr and Yc to
the Lagrangean scheme, though at the cost of having 2mn multipliers. As in the case of
Lagrangean relaxation, the dual problem

max
λ≥0,μ

{ν(LD(λ,μ))}

will be solved by a subgradient type algorithm.

4 The core problem

Once the dual problem has been solved in phase 1, we have available the optimal multipliers
λij , in the case of Lagrangean relaxation, or (λij ,μij ) in the case of Lagrangean decompo-
sition. From these multipliers we are going to define a reduced core problem containing the
variables we expect to be in the optimal solution. Whenever the variable xij is in the core
problem, then the variable yij will also be present, so we will consider the pair (i, j), and
the core problem will be defined by a set of pairs:

S ⊂ {1, . . . ,m} × {1, . . . , n}

If Lagrangean relaxation is applied in phase 1, from (14) and (15), the Lagrangean re-
duced costs for variables xij and yij are, respectively, cij + λij and fij − uijλij . If La-
grangean decomposition is applied in phase 1, from (19), the Lagrangean reduced costs for
variables xij is the same as in the previous case, but the variable yij has a reduced cost of
fij − uijλij + μij in the first subproblem (20), and one of −μij in the second subproblem
(21). In order to define a unique reduced cost for the variable yij there are several options,
but if we add both costs the final reduced cost is fij − uijλij , the same as in the case of
Lagrangean relaxation.

Now the Lagrangean reduced cost for the pair (i, j) is defined as

πij = fij − uijλij + F(cij + λij )
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where F is a factor for compensating the fixed and variable costs. Note that the multiplier
μij does not appear in this formula. Now, for defining the index set S in the core, we have
first to set a threshold π and then to select all pairs whose reduced cost does not exceed π ,
that is:

S = {(i, j) : πij < π}

The value of π is essential for the core problem to be effective, and has to be chosen so
that the problem is feasible but does not contain too many variables. To this end, for each
j = 1, . . . , n let kj be the number of pairs (i, j) in S, and let K = minj=1,...,n kj , which is
the minimum number of origins in the core for any destination. The following binary search
algorithm finds the adequate value of π from a value for K introduced by the user. At any
iteration lb and ub are, respectively, a lower and an upper bound of π .

Binary search algorithm

Input (πij ) and K .
Output π .
Step 0 Initially set lb = 0 and ub = max{πij }.
Step 1 Set π = 1

2 (lb + ub).
Step 2 For each j = 1, . . . , n let Sj = {i : πij < π}, kj = |Sj | and k_ min = minj=1,...,n kj .
Step 3 If k_ min = K stop, π = π is the final value. If k_ min < K set lb = π and go to

Step 1. If k_ min > K set ub = π and go to Step 1.

The algorithm converges in a few iterations to a π value such that for any destination j

the core problem contains at least K indexes (i, j) ∈ S. If K is too large, a slight reduction
will be reached, whereas if K is too small, the core may not be feasible. We have experi-
mented with different values for K and have found that the values from K = 2 to K = 5
are, generally, the most effective. Besides the value of K , the core problem depends on the
value of F , the factor for compensating the fixed and the variable costs. The value or values
taken by the parameters (K,F ) has a great influence on the quality of the solution provided
by the core problem. In Sect. 7 we deal with the question of how to choose the values for
these parameters.

Summarizing, the index set of the core problem S is obtained with the following proce-
dure of three steps:

1. From λij and F , form the reduced cost of the pair (i, j)

πij = fij − uijλij + F(cij + λij )

2. From (πij ) and K calculate the threshold value π applying the binary search algorithm.
3. Set S = {(i, j) : πij < π}.

The core problem has the same structure as the original one, but in a sparse format. If
we denote Si = {j : (i, j) ∈ S} for each i = 1, . . . ,m, and Sj = {i : (i, j) ∈ S} for each
j = 1, . . . , n, the core problem is formulated as follows:

Min
∑

(i,j)∈S

(cij xij + fij yij )

s.t.
∑

j∈Si

xij = si i = 1, . . . ,m (22)
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∑

i∈Sj

xij = dj j = 1, . . . , n (23)

xij ≥ 0 (i, j) ∈ S (24)

xij ≤ uij yij (i, j) ∈ S (25)

yij ∈ {0,1} (i, j) ∈ S (26)

From this formulation, the core problem can be attacked by any exact algorithm as a
branch and cut one, although, in spite of the reduction reached, on many occasions it is not
possible to solve it optimally, and a heuristic method has to be used. In this paper we once
more apply either Lagrangean relaxation or Lagrangean decomposition to the core problem
to obtain the best heuristic solution in this phase 2. The relaxations and subproblems needed
in this approach are analogous to those studied in Sect. 3 for the complete problem. So, for
the continuous variables, the set

X(S) = {x ∈ R|S| : x verify (22), (23), (24)} (27)

corresponds to the feasible set for a sparse LTP(S). For the binary variables we consider the
row knapsack set given by

Yr(S) =
{
y ∈ {0,1}|S| :

∑

j∈Si

uij yij ≥ si, i = 1, . . . ,m

}
(28)

and the column knapsack set given by:

Yc(S) =
{
y ∈ {0,1}|S| :

∑

i∈Sj

uij yij ≥ dj , j = 1, . . . , n

}
(29)

Due to the sparsity of these sets, the solution of the Lagrangean relaxation or Lagrangean
decomposition is much quicker than for the complete problem.

5 Simple heuristics

In the method we are proposing, either Lagrangean relaxation or Lagrangean decomposi-
tion is applied to the complete original problem in phase 1, and to each core problem in
phase 2. However, no attempt is made to obtain good solutions in phase 1, as the problem is
still too difficult. We limit ourselves to the search for good solutions in phase 2. During the
solution of the relaxations of the previous sections on each core problem, certain solutions
x ∈ X(S) are obtained as solutions of their respective subproblems. From these solutions,
and sometimes solving another additional subproblem, it is easy to obtain a complete feasi-
ble solution of the problem. So, we will refer to a Lagrangean heuristic as the best solution
obtained while solving a Lagrangean relaxation or decomposition.

Given any solution x ∈ X(S) it is enough to take yij = 1 if xij > 0 and yij = 0 otherwise,
for each (i, j) ∈ S, so that (x, y) is a feasible solution for the core problem, and is thus also
feasible for the original problem. We call this the simple heuristic, and it is the most usual
way of finding a feasible solution from the different heuristic methods commented in Sect. 1.
Vector x ∈ X(S), from which the solution is found, can be either that obtained in the solution
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of the Lagrangean subproblem (14), or that obtained in the solution of any linear transporta-
tion problem with constraint set x ∈ X(S). So, Balinski’s heuristic (Balinski 1961) is ob-
tained by first solving the LTP(S) with objective coefficients: λij = cij + fij /uij , (i, j) ∈ S

and then completing the solution in the previously commented form. Balinski’s heuristic
was used to initialize the upper bound in the Lagrangean calculations.

On the other hand, we have found the following improved heuristic specially useful. It is
applied along the subgradient algorithm, and takes elements of other known heuristics such
as the dynamic slope scaling procedure (Kim and Pardalos 1999) and the parametric ghost
image processes (Glover et al. 2005). Let x ∈ X(S) be the solution at the current iteration,
let xij be the maximum value attained by the variable xij until this iteration, and consider
the LTP(S) with objective coefficients for (i, j) ∈ S given by:

λij =
⎧
⎨

⎩

cij + fij /xij if xij > 0
cij + fij /xij if xij = 0, xij > 0
∞ if xij = 0, xij = 0

(30)

Observe that the objective in this problem is composed, in the first case, of the variable
cost cij plus the fixed cost prorated with the current activity level fij /xij , when xij > 0. In
the second case, we prorate the fixed cost with the maximum activity level until now. In the
third case, the null activity level does not justify the fixed cost in any way. Thus, both the
variable and the fixed costs are included in the new marginal cost, depending on the current
and maximum activity level. Once an optimal solution x ′ ∈ X(S) of the corresponding LPT
has been found, it is completed with a solution (x ′, y ′) of FCTP.

From any feasible solution, obtained with any of the previous methods, it is possible to
apply a local search heuristic, such as that commented in Sect. 1, to improve the solution.
In this paper we apply this procedure once for each core problem.

6 Overall procedure

Besides the algorithmic parameters and the choices necessary for applying Lagrangean re-
laxation in the phases one and two (namely, the type of relaxation and the controls of the
subgradient algorithm), there are other important parameters that are decisive for the final
result. These are the number of core problems that we are going to examine (N ), the values
of parameters K and F for defining each of these problems, and the time spent in branch and
bound enumeration in phase 3 (T_BB). We will take the same value of K for all problems,
and different values F1, . . . ,FN for parameter F . The choice of these parameters has a great
effect on the final solution and will be examined in detail later. The procedure outputs the
best solution found (x∗, y∗) and its objective function value Z∗.

The overall procedure can be summarized as follows:

Input: K , N , F1, . . . ,FN , T_BB.
Output: (x∗, y∗), Z∗.
Phase 1: Lagrangean relaxation.

1.1 Calculate the Balinski’s heuristic, solving the corresponding problem LTP(λ) stated in
Sect. 5, and initialize (x∗, y∗) and Z∗.

1.2 Starting with the upper bound UB = Z∗ apply either Lagrangean relaxation or La-
grangean decomposition to the original problem, to obtain the optimal multipliers λij ,
in addition of the lower bound LB.
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Phase 2: Core problem.

2.1 For k = 1, . . . ,N do:
2.1.1 Define, from the factor Fk , the reduced cost of pair (i, j) as πk

ij = fij − uijλij +
Fk(cij + λij ).

2.1.2 Apply the Binary search algorithm to find the threshold value πk .
2.1.3 Define the Core problem associated to the set of pairs: Sk = {(i, j) : πk

ij < πk}.
2.1.4 Apply either Lagrangean relaxation or Lagrangean decomposition to the Core

problem to obtain the heuristic solution (xk, yk) and its objective function
value zk .

2.1.5 Apply the local search heuristic to the present solution, and rename it as (xk, yk)

and zk .
2.1.6 If zk < z∗ then actualize z∗ = zk and (x∗, y∗) = (xk, yk).

2.2 Save the Core problem that produced the best solution.

Phase 3: Branch and Cut.

3.1 Apply to the Core problem saved in step 2.2 the standard Branch a Cut algorithm start-
ing with solution (x∗, y∗), and with a limit time of T_BB. Rename again the final found
solution as (x∗, y∗) and its objective function value as z∗.

3.2 Calculate the final gap 100(z∗ − LB)/z∗.

7 Computational results

7.1 Introduction

In this section we report the results of applying the procedures of the previous sections to
different FCTP problems. The objective of the experiments is to compare the effectiveness,
both in the quality of solutions and the elapsed time, of the following procedures:

1. TS from Sun et al. (1998).
2. Parametric GIP from Glover et al. (2005).
3. Core 2 and Core 3.

Additionally, some problems are solved with Cplex. The Cplex solver is presently one
of the most efficient implementations of B&C algorithms, and it includes the most recent
developments in Integer Programming, such as different cutting planes methods, heuristics
and preprocessing techniques, in addition to sophisticated rules for guiding the enumeration
tree. Although it is a general purpose algorithm, its efficiency for solving different types of
problems of IP is well known (Atamturk and Savelsbergh 2005), so the comparison of new
procedures with Cplex can be interesting.

All algorithms needed for running Core 2 and Core 3 were programmed in C, compiled
with Microsoft Visual C++.NET version 7.1, and run in a PC Pentium 3000 with 1 GB of
RAM. For the solving of the different problems and subproblems of LP and IP the CPX
library of solver Cplex, version 9.1, was used. The 0-1 knapsack subproblems arising in all
algorithms were solved with the subroutine MT1 of Martello and Toth (1990). Finally, every
LTP appearing in the Lagrangean algorithms and the different heuristics were solved with
the specialized library CPXNET of Cplex. As all these problems have the same constraint
set but different objectives, functions of the library CPXNET can be used to efficiently
reoptimize each new problem.
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Table 1 Problem characteristics

Type Range of variable costs Range of fixed costs Ratio

inf sup inf sup

A 3 8 50 200 22.72

B 3 8 100 400 45.25

C 3 8 200 800 90.90

D 3 8 400 1,600 181.81

Until very recently, the TS method of Sun et al. (1998) could be considered as the most
efficient method to attack FCTP problems. The appearance of the Parametric GIP method
of Glover et al. (2005) and its superior computational performance makes it currently the
most efficient presently. Both methods are based on different algorithmic strategies and use
local search intensively. The results corresponding to the TS and GIP methods are extracted
from Glover et al. (2005), and were obtained in a Dell, Latitude Laptop, 1 GHz, with 256K
Cache running on Windows 2000 operating system.

The treated problems and some details of the considered algorithms will be described in
the following sub-sections. Finally, a comparison of the different methods will be made.

7.2 Test problems

In order to study the effectiveness of the method we have used the same comprehensive
FCTP test bed as in Sun et al. (1998), Glover et al. (2005). The setbed consists of eight
problem types, from letter A to letter H, each in seven problem sizes. For the same problem
size, the ratio of the average fixed cost to the average variable cost rises from A to H. For
each type and size, 15 totally dense problems were randomly generated, so the set contains
840 problems. A complete description of how the data were generated can be found in Sun
et al. (1998), Glover et al. (2005).

To begin with, it is necessary to say that the proposed method is only suitable for prob-
lems with a ratio that is not excessively high, in our case for type A to D problems. For
larger ratios, we would need to examine, in phase 2, too many values of parameters K and
F , and Core 2 would be very inefficient. Furthermore, for large ratios, the enumeration in
phase 3 attains too little improvement, and Core 3 would also be very inefficient. In Table 1
the main data used for the generation of these problems are given.

7.3 Some details of phases one to three

In phase 1 it is necessary to apply either Lagrangean relaxation or Lagrangean decomposi-
tion to the original problem. Moreover, in the first case, any of the sets Yb , Yr or Yc could
be used. The objective in this phase is not to obtain good lower and upper bounds, but to
obtain Lagrangean reduced costs that allow to define an effective core problem. Here we
have observed a strong association between obtaining a better lower bound and obtaining
Lagrangean reduced costs that lead to a better core problem. In fact, in preliminary experi-
mentation, we have verified that, in general, it is better to apply Lagrangean decomposition
than simple Lagrangean relaxation, and within this method it is better to use sets Yr or Yc

than Yb . This question will be clarified in the following subsection.
The maximization of the Lagrangean function ν(LD(λ,μ)) was carried out by a sub-

gradient algorithm, following the usual rule of updating (Beasley 1993; Guignard 2003).
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In the case of Lagrangean decomposition, if (λk,μk) is the vector of multipliers in the it-
eration k, xk is an optimal solution of the subproblem (LR1(λk)), yk

1 of the subproblem
LR3(λk,μk) and yk

2 of the subproblem LR4(λk,μk), then the subgradient vector decom-
poses γ k = (ζ k, ηk) ∈ R2mn where ζ k

ij = xk
ij −uij y

k
ij and ηk

ij = xk
ij −uij y

k
ij , i = 1, . . . ,m, j =

1, . . . , n. The multiplier vectors in the following iteration are:

λk+1
ij = max

(
0, λk

ij + θ
L − L(λk,μk)

‖γ k‖2
ζ k
ij

)

μk+1
ij = λk

ij + θ
L − L(λk,μk)

‖γ k‖2
ηk

ij

where L is an upper bound for L(λ,μ), that was taken as the value of the best solution
found until that moment. Parameter θ was taken as equal to 2 for the first iteration, and
halved whenever, after P subgradient iterations, the function L(λ,μ) did not improve more
than a certain tolerance. The algorithm finishes when either the parameter θ becomes less
than another tolerance, or the number of iterations exceeds a maximum allowed. The value
taken by the parameter P is important for the efficiency of the method, and in this phase it
is necessary to take high values such as P = 60, which was the value used.

With respect to the resolution of the successive subproblems the following process was
used: first, Balinski’s heuristic is applied to initialize the upper bound L and define an initial
problem LTP. Then, every time the Lagrangean subproblem (RL1(λ, x)) has to be solved, it
is enough to change the objective of the LPT and reoptimize it to obtain the new solution
and the new heuristic. In this way, the computational cost of the successive reoptimizations
is very low. In this phase we do not apply either the improved heuristic or the local search
heuristic.

In phase 2, for each chosen value of the parameters K and F , a core problem is defined
and a Lagrangean decomposition algorithm is applied to it. The subgradient algorithm is
almost identical to that in phase 1, except for the subproblems corresponding to sets (27),
(28) and (29) of Sect. 4, and the application of the improved heuristic at each subgradient
iteration and the local search heuristic to the final feasible solution.

During phase 2, which is essentially a heuristic phase, we apply two types of heuristics.
Firstly, at each iteration of the subgradient algorithm the subproblem (14) has to be solved,
and this yields directly the simple heuristic, as stated in Sect. 5. Additionally, the improved
heuristic can be obtained solving the new LTP(λ) given by (30). Also, the local search
heuristic could be apply in any point of the subgradient algorithm, but this should be time
consuming. We limit its application a one only time, for each core problem that is being
examined. The impact of these heuristics in the final solution is always low, that is, these
heuristics improves only lightly the solution obtained from the simple Lagrangean heuristic.

In phase 3 we load the core problem that produced the best heuristic solution and ap-
ply the standard branch and cut algorithm implemented in Cplex 9.1. Most parameters and
controls of the branch and cut algorithm were left in their default values, except for the use
of the CPXcopymipstart routine to initialize the branch and cut search from the final
solution of phase 2, and for the maximum time limit that was set at a short value.

7.4 Initial experiments

In this subsection we describe some initial computational experiments that try to justify the
algorithms Core 2 and Core 3. At first place, it is necessary to specify what relaxation will
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Table 2 Results of the phase 1 for the different relaxations

Problem ν(LD(Yb)) tb ν(LD(Yr )) tr ν(LD(Yc)) tc ν(LD(Yr ,Yc)) trc

N3004 163,610.04 0.97 164,290.84 1.80 164,519.13 1.50 164,525.30 2.09

N3009 163,351.05 1.16 164,025.33 2.37 164,526.64 1.59 164,529.63 2.97

N300E 165,262.08 1.02 165,989.71 1.83 166,780.52 1.59 166,780.14 2.91

N3104 171,174.80 1.09 173,131.50 2.20 173,758.48 1.55 173,762.79 3.14

N3109 170,074.54 1.14 171,448.54 2.25 172,568.28 1.59 172,576.49 2.75

N310E 171,573.97 1.22 173,067.83 2.05 174,679.14 1.61 174,686.26 2.98

N3204 186,506.14 1.22 189,127.19 2.23 191,331.47 1.63 191,336.09 2.92

N3209 183,002.44 1.24 185,946.56 2.13 188,521.90 1.63 188,533.52 2.92

N320E 183,673.36 1.30 186,496.01 1.97 190,334.23 1.67 190,352.27 3.08

N3304 212,966.62 1.36 218,114.20 2.50 223,155.28 1.70 223,156.28 2.16

N3309 208,040.92 1.38 213,287.33 2.11 219,799.72 1.70 219,809.49 2.27

N330E 206,036.61 1.33 211,912.61 2.19 220,324.35 1.70 220,354.09 2.36

to be chosen both in the phase 1 and in the phase 2. For the first phase, we need to compare
the strength of the four considered relaxations, and their computational time. To this end, we
have selected, inside the problems solved in Glover et al. (2005), twelve difficult problems,
three of each type, and we have applied Lagrangean relaxation, based in each of the sets Yb ,
Yr and Yc , as well as Lagrangean decomposition, based on (Yr , Yc). Table 2 gives, for each
relaxation, the corresponding lower bound and computation time.

We observe in Table 2 that, as expected, the bound LD(Yr,Yc) is the stronger, although
ν(LD(Yc)) is always near enough. Moreover, given that the computation time with this re-
laxation is only lightly larger than with the others, we finally, we decide for Lagrangean
decomposition for the first phase, although Lagrangean relaxation based on Yc could have
been another good option. For the second phase, we have to pay attention to the heuristic
solution of the core problem obtained for each of the four possible relaxations. Here, there
is not any relaxation that produces always better solutions, although in extensive prelimi-
nary computational tests, we have found that Lagrangean decomposition based on (Yr , Yc)

yields more frequently the better solutions, followed by Lagrangean relaxation based on Yc .
Finally, we decide again for Lagrangean decomposition based on (Yr , Yc) for the second
phase, although Lagrangean relaxation based on Yc produces rather similar, although lightly
inferior, results.

Another initial question is to check how much reduction is attained in the core problem.
This depends, mainly, on the value of K , whereas it is very insensitive to the value of F .
To illustrate this question, we have selected four problems of dimensions 50 × 100, one for
each type, and for a fixed value of F , say F = 5, we have calculated the number of variables
of the core problem for different values of the parameter K . The following table gives, for
each problem and each value of K , the number of variables of the core problem and, in the
two last rows, the average number in the four problems and the percentage over the possible
total number (10,000).

For small values of K the reduction is considerable, and predictably the core problem
will be more easily solved than the original problem. The reduction is very similar for the
rest of the problems with identical dimensions, although it is smaller for problems of smaller
dimensions.
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Table 3 Core size

Problem Number of columns of the core for K =
2 3 4 5 8 14 20

N3004 1,338 1,680 1,792 2,078 2,934 4,458 5,618

N3104 1,380 1,704 2,088 2,444 3,128 4,512 5,862

N3204 1,432 1,682 1,926 2,324 2,932 4,818 6,002

N3304 1,136 1,778 1,972 2,420 2,910 4,948 5,956

Average 1,321.5 1,711.0 1,944.5 2,316.5 2,976.0 4,684.0 5,859.0

Percentage 13.21 17.11 19.44 23.16 29.76 46.84 58.59

Table 4 Initial results for some easy problems

Problem Cplex 9.1 Core 2 (K = 3, F = 5) Core 3 (K = 3, F = 5)

Name Size z1 t1 z2 t2 z3 t3

N104 10 × 10 40,258 0.08 40,258 0.09 40,258 0.98

N107 10 × 10 42,029 0.19 42,130 0.19 42,129 0.20

N204 15 × 15 54,502 0.89 54,604 0.16 54,604 0.20

N207 10 × 15 53,596 2.16 53,610 0.23 53,596 0.44

N304 10 × 20 56,366 0.33 56,366 0.17 56,366 0.20

N307 10 × 20 49,742 1.30 49,767 0.19 49,742 1.02

N504 10 × 30 57,130 93.44 57,152 0.23 57,130 5.53

N507 10 × 30 52,903 12.81 52,918 0.31 52,903 0.72

The next question we have to answer is how effective the core problem will be for small
values of K . As another initial experiment, we have selected a set of easy problems, ex-
tracted from the set of easy problems solved in Glover et al. (2005), for which Cplex 9.1 can
find the optimal solution, and we have first solved the original problem with Cplex 9.1. Then
we have applied Core 2 for fixed values of K and F , say K = 3 and F = 5, and finally we
have solved the core problem again with Cplex 9.1 (Core 3). The main results, summarized
in Table 4, show the problem name and size, the optimal objective function value (z1) and
the CPU time (t1) for Cplex 9.1, the optimal objective function value (z2) and the CPU time
(t2) for Core 2, and analogous values (z3) and the CPU time (t3) for Core 3, in the last two
columns.

As can be observed in Table 4, for all problems except for N204, the solution of the core
problem coincides with the solution of the original problem. This indicates that the core
problem includes the variables that generally participate in the optimal solution. Further-
more, for the more difficult problems, N504 and N507, the solution of the core problem is
obtained much quicker than the solution of the original problem.

The following initial question is to check the performance of the algorithm for more dif-
ficult problems, for which the solution to optimality of neither the original problem nor the
core problem is possible. In this point there is a great difference in the situation for other
problems where a core problem has been used, such as the p-median or capacitated facility
location problems. For these problems, once the core problem is defined, its complete reso-
lution is possible by branch and cut (Avella et al. 2005, 2007) even for large scale problems.
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Fig. 1 Best objective function value for different values of F

For FCTP, in many cases, the core problem is too difficult to be solved to optimality, and a
heuristic approach is required. In this paper we have again applied a Lagrangean heuristic
although, in principle, we have different approaches depending on both the number of core
problems we want to explore in phase 2 and the time we want to devote to branch and bound
enumeration in phase 3. We have grouped all possibilities in three approaches or options.
In the first approach, we first define the core problem for a single value of K and F , that
is N = 1, apply the fast Lagrangean heuristic (Core 2), and then apply the branch and cut
algorithm to the resulting core problem (Core 3). In the second approach, we first explore
the core problem for N = 10 values of K and F , applying the fast Lagrangean heuristic to
each one and saving the best solution obtained during the process, and then apply Core 3 to
the core problem that produced the best solution. In the third approach, we explore the core
problem for N = 20 values of K and F , applying the fast Lagrangean heuristic to each one
and saving the best solution obtained during the process.

The values given to the parameters K and F influence both the computational time and
the solution quality. In extensive computational experience, we have observed that for prob-
lem types A and B the value K = 5 produces the better solution most frequently, while for
types C and D this happens for the value K = 2. These are the final values for parameter K .
With respect to the value of the parameter F , it is difficult to anticipate what the best one
is because near values can produce solutions of substantially different quality. To illustrate
the difficulties in the choice of the value for F , the next figure shows a typical picture of the
value of the found solution for different values of F (in this case from 1 to 20 in increments
of 1). We have found no procedure for determining an adequate value for F except for the
solving of the core problem for different values of F .

From our computational experience, the most we can predict is a range of values for F

where the best solution is most frequently found. For example, for problem types A and B the
range from 1 to 10 is very frequent, whereas for problem types C and D the range from 20 to
40 is frequent enough. In Table 5 we summarize the values taken by the different parameters
for the three algorithmic options mentioned above. As a notation matter, F = 21 . . .40, I = 2
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Table 5 Values of parameters for the three algorithmic options

Option 1 (N = 1) Option 2 (N = 10) Option 3 (N = 20)

Types A and B K = 5 K = 5 K = 5

F = 5 F = 1 . . .10 F = 1 . . .10

T_BB = 60 I = 1 I = 0.5

T_BB = 30 T_BB = 0

Types C and D K = 2 K = 2 K = 2

F = 30 F = 21 . . .40 F = 21 . . .40

T_BB = 60 I = 2 I = 1

T_BB = 30 T_BB = 0

indicates that F ranges from 21 to 40 in increments of 2, and T_BB shows the seconds spent
in branch and bound enumeration in Core 3.

In order to explore the above possibilities, in the third initial experiment we have selected,
inside the problems solved in Glover et al. (2005), twelve difficult problems, three of each
type, and we have applied Core 2 and Core 3 for the three sets of selected parameters. In this
way, the total elapsed time with all methods is roughly the same. The results, summarized in
Table 6 in the Appendix, show, for each option, the best objective function value found and
the execution time for Core 2, z2 and t2 respectively, and analogously for Core 3, z3 and t3.
For each problem, we use the symbol ∗ to indicate the option where the best solution was
obtained.

We observe in Table 6, firstly, that with Option 1 the solutions are always worse than
with the other options. Option 2 is very advantageous for problem types A and B, that is,
for small ratios. For these problems, to examine 10 core problems and carry out branch and
bound enumeration during 30 seconds yields better solutions than either examining only
one core problem and carrying out branch and bound enumeration during 60 seconds, or
examining 20 core problems and not carrying out branch and bound enumeration. Instead,
for problems of types C and D, Option 3 is clearly the best, because with branch and bound
enumeration, the improvement of the solution of Core 2 is null in many cases.

7.5 Complete results

In this subsection we make the comparisons between the proposed algorithms Core 2 and
Core 3, and the TS method of Sun et al. (1998) and the parametric GIP of Glover et al.
(2005), on a total of 72 problems, including the subset of 12 easy problems and the 60 large
and difficult problems of types A to D, all solved in Glover et al. (2005). For type A and B
problems and the easy problems, we run Core 2 and Core 3 with the above Option 2 and
parameters K = 5, F = 1 . . .10, I = 1 and T_BB = 60. For type C and D problems we run
Core 2 with Option 3 and parameters K = 2, F = 21 . . .40, I = 1 and T_BB = 0.

We begin with the subset of easy problems. For these problems it is still interesting to
compare the different algorithms with Cplex. Table 7 in the Appendix presents the results
for these 12 problems. The data for columns corresponding to Cplex 9.0, TS and GIP are
extracted from Glover et al. (2005), and were obtained with a Dell, Latitude Laptop, Pen-
tium III, 1 GHz, with 256K Cache running on Windows 2000 operating system. Cplex was
executed with a limit time of 11,000 seconds.

From Table 7 we observe that Core 3 obtains the same objective function value as TS
for five problems and better ones for seven. Comparing with GIP, Core 3 obtains the same
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objective function value as GIP for seven problems, better ones for three and worse for two.
Comparing with Cplex, for the problems for which Cplex can obtain an optimal solution,
Core 3 reaches the same value, and for the rest Cplex obtains a better solution than Core 3
for two problems and worse for the other two. We can conclude that, for these types of
problems, Core 3 is competitive enough. On the other hand, the performance of Core 2 is
only similar to that of TS but not that of the other methods. This indicates that for this type
of problem the branch and bound enumeration carried out in Core 3 is essential, although it
has to be applied on the reduced core problem obtained in Core 2.

Next, the results for the difficult problems of types A to D are presented in Tables 8 to
11 in the Appendix. For these problems the results from Cplex are not included because of
its inferior performance. Again the data for the columns corresponding to TS and GIP are
extracted from Glover et al. (2005).

For problem types A and B, Core 3 obtains a better objective function value than TS
for 23 out of the 30 problems, and worse for the remaining 7. Compared with GIP, Core 3
obtains a better objective function value than GIP for 8 out of the 30 problems, and worse
for the remaining 22. Core 2 obtains a better objective function value than TS for 19 out
of the 30 problems, and worse for the remaining 11, whereas it obtains worse solutions
than GIP for all 30 problems. As in the case of the easy problems, the branch and bound
enumeration carried out in Core 3 is essential to improve the solutions obtained in Core 2.
We can conclude that for problems of type A and B, Core 3 is still competitive enough, as
it outperforms TS, and for some problems it obtains solutions of higher quality than GIP,
although overall GIP is still the best method.

For problem types C and D, Core 2 obtains a better objective function value than TS for
18 out of the 30 problems, and worse for the remaining 12. Compared with GIP, Core 2
obtains a worse objective function value than GIP for all problems. For problems of types
C and D, the performance of Core 2 is similar or slightly superior to that of TS, and worse
than that of GIP in all problems.

With respect to the computation times, it is necessary to make some observations. Firstly,
our results and those of Glover et al. were obtained in different machines and, therefore,
their respective computation times are difficult to compare. A PC Pentium IV 3 GHz can
be several times faster than a PC Pentium III 1 GHz, but this ratio is unknown. Even after
looking at Dongarra (2008), it is difficult to deduce the value of this ratio, although it could
be between 3 and 5. Then, the shown computation times have to be analysed with caution.
Secondly, our method has an additional feature not present in the other ones, as it provides a
lower bound allowing us to calculate the final gap. This fact influences the final computation
times.

8 Summary and concluding remarks

In this paper the Fixed Charge Transportation Problem (FCTP) is considered and a new
heuristic approach is presented, which is composed of three components or phases: La-
grangean relaxation, core problem and branch and bound enumeration. From its formulation
as an MIP problem, and in the context of Lagrangean Relaxation, different special relax-
ations are considered, which lead to two types of subproblems: continuous transportation
problems and binary knapsack problems. Although the use of Lagrangean relaxation is not
novel for FCTP problems, we do not know the use of strong knapsack sets for FCTP. Using
these structures, several Lagrangean relaxation and Lagrangean decomposition algorithms
have been designed. The purpose of solving these relaxations is not properly the calculation
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of good bounds but the calculation of good reduced costs for all pairs of variables (xij , yij ).
This allows us to define, in phase 2, different core problems for each value of two para-
meters. As the core problems are, in general, too difficult to solve to optimality we have
to apply a heuristic approach, and in this paper we again apply the Lagrangean relaxation
algorithm which provides, besides the lower bound, a heuristic solution. Finally, in phase 3,
we can resort to branch and bound enumeration and, in some cases, the solution of phase 2
can be improved.

To evaluate the effectiveness of the proposed algorithms, 72 test problems from the lit-
erature were considered and the efficiency of the algorithms was compared with that of two
state of the art methods: the tabu search procedure of Sun et al. (1998) and the parametric
ghost image processes of Glover et al. (2005). For problems with small ratios, specifically
for ratios lower than or equal to 25, the proposed method can obtain similar or better so-
lutions than the two state-of-art algorithms. For ratios between 50 and 180, the algorithm
obtains solutions with better quality than the tabu search, although worse than the paramet-
ric ghost image processes. Its performance could be considered to be halfway between both
methods for the type of problems considered.

Some additional questions not treated in this paper, and several possible extensions can
be the following:

1. Stronger Lagrangean relaxations based on new binary sets Y , or even mixed sets includ-
ing both types of variables.

2. Enhancements in the branch and cut phase, such as use of specific valid inequalities, use
of linear programming based heuristics, or use of penalties for the branching variable.

3. Extensions to FCNP and other multicommodity capacitated fixed charge network design,
as those dealt with in Crainic et al. (2004).

4. More intensive use of the local search heuristics, or even inclusion of strategies of tabu
search and parametric ghost image processes.
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Appendix: Results for some difficult problems

Table 6 Initial results for some difficult problems

Problem Option 1 Option 2 Option 3

z2 t2 z3 t3 z2 t2 z3 t3 z2 t2

N3004 167,799 3.67 167,451 64.11 167,593 20.94 167,394∗ 51.70 167,542 37.33

N3009 167,605 4.63 167,171 65.67 167,320 36.09 167,162∗ 67.03 167,320 66.28

N300E 173,250 5.41 173,126 65.95 169,958 33.94 169,609∗ 64.84 169,940 62.45

N3104 180,322 3.11 179,776 64.36 179,609∗ 21.52 179,609∗ 51.81 179,609∗ 50.16

N3109 178,069 5.72 178,000 66.03 178,069 37.30 178,000 67.61 177,949∗ 73.05

N310E 184,193 4.61 183,823 64.92 183,987 30,50 183,624 60.80 183,986 56.13

N3204 202,189 4.24 202,189 64.39 202,189 20.59 202,189 50.77 201,408∗ 32.78

N3209 199,799 3.75 199,799 63.91 198,497 27.36 198,497∗ 57.48 198,497∗ 48.89

N320E 205,521 3.39 204,367 64.06 204,538 28.86 204,085 59.67 201,444∗ 51.16

N3304 246,367 3.81 246,637 63.92 246,285 19.58 246,285 49.70 243,803∗ 37.36

N3309 241,622 6.11 240,679 67.03 240,493 44.00 240,493 74.25 239,293∗ 61.50

N330E 245,335 4.28 245,098 64.52 243,854 32.69 243,516 62.98 242,794 60.34∗

Table 7 Results for easy problems

Problem Cplex 9.0 TS GIP Core 2 Core 3

name z_Cplex t_Cplex z_TS t_TS z_GIP t_GIP z2 t2 z3 t3

N104 40,258 0.11 40,258 0.03 40,258 0.26 40,258 0.06 40,258 0.36

N107 42,029 0.33 42,029 0.04 42,029 0.18 42,030 0.20 42,029 0.27

N204 54,502 2.70 54,502 0.11 54,502 1.12 54,578 4.17 54,502 5.44

N207 53,596 5.37 53,601 0.13 53,601 1.06 53,610 0.34 53,596 0.81

N304 56,366 1.00 56,391 0.13 56,366 0.78 56,366 0.33 56,366 0.44

N307 49,742 4.61 49,742 0.12 49,742 0.89 49,756 0.39 49,742 2.61

N504 57,130 237.33 57,130 0.28 57,130 2.86 57,152 0.61 57,130 6.75

N507 52,903 43.57 52,977 0.24 52,903 1.39 52,918 0.66 52,903 1.45

N1004 163,599 11,000 163,793 5.48 163,585 22.95 163,787 3.25 163,692 63.33

N1007 162,300 11,000 162,313 6.75 162,237 35.43 162,453 2.48 162,234 62.56

N2004 104,046 11,000 104.193 15.87 104,001 39.97 104,129 13.58 104,031 73.63

N2007 104,147 11,000 104,341 13.08 104,256 27.23 104,313 10.61 104,254 70.75
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Table 8 Results for type A difficult problems

Problem Core 2 Core 3 TS GIP

z2 t2 z3 t3 z_ts t_ts z_gip t_gip

N3000 168,212 21.11 167,957 81.36 168,460 33.44 168,057 193.23

N3001 166,806 24.03 166,684 84.73 166,930 40.38 166,678 178.12

N3002 168,145 26.05 168,000 86.83 167,888 37.31 167,919 195.38

N3003 168,680 22.27 168,431 82.33 168,847 27.38 168,434 144.31

N3004 167,593 20.94 167,244 81.20 167,581 33.08 167,275 194.51

N3005 168,041 28.63 167,658 89.17 168,251 37.84 167,639 195.59

N3006 165,943 25.28 165,747 85.81 166,287 31.56 165,862 179.85

N3007 167,515 27.03 167,349 87.72 167,845 32.85 167,364 196.17

N3008 165,968 34.69 165,888 95.56 165,944 28.34 165,576 187.98

N3009 167,320 34.55 167,080 95.81 167,206 30.79 167,193 110.50

N300A 167,568 24.00 167,436 84.97 167,895 29.54 167,358 142.26

N300B 168,727 35.48 168,633 95.81 168,807 35.68 168,504 175.73

N300C 165,734 59.41 165,698 119.95 165,765 32.11 165,295 192.61

N300D 166,446 35.25 166,371 100.50 166,295 37.89 166,217 204.43

N300E 169,958 32.73 169,490 93.52 169,865 28.90 169,375 155.39

Table 9 Results for type B difficult problems

Problem Core 2 Core 3 TS GIP

z2 t2 z3 t3 z_ts t_ts z_gip t_gip

N3100 179,084 14.27 178,927 74.70 179,672 43.89 179,019 192.27

N3101 178,318 30.05 177,761 91.41 178,518 34.88 177,861 190.51

N3102 179,271 36.41 179,271 96.84 179,021 33.77 179,007 190.77

N3103 179,369 40.14 179,231 100.55 179,278 31.33 179,017 212.18

N3104 179,676 22.81 179,676 83.09 179,828 42.36 179,230 211.28

N3105 178,841 25.44 178,764 85.67 178,714 42.55 178,160 147.71

N3106 177,116 25,61 176,720 86.02 177,304 46.67 176,546 183.65

N3107 178,441 39.03 178,271 99.38 178,567 30.25 177,904 206.68

N3108 176,955 45.48 176,863 105.84 176,540 36.27 176,266 185.68

N3109 178,069 35.33 177,843 95.63 178,077 38.18 177,599 134.07

N310A 179,400 30.14 179,258 90.42 179,432 32.80 178,703 188.21

N310B 180,168 46.52 179,895 108.42 180,020 34.38 179,647 120.21

N310C 176,452 40.67 176,202 101.02 176,106 36.55 175,850 162.26

N310D 177,943 41.30 177,797 103.58 178,287 38.10 177,328 205.80

N310E 183,987 30.56 183,774 90.88 180,273 47.55 179,763 190.15
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Table 10 Results for type C difficult problems

Problem Core2 TS GIP

z2 t2 z_ts t_ts z_gip t_gip

N3200 200,670 68.53 201,441 31.67 199,611 185.97

N3201 199,797 75.72 199,720 49.61 198,843 206.12

N3202 201,593 66.81 201,728 33.54 199,986 195.94

N3203 200,055 45.30 200,648 34.54 199,338 220,96

N3204 201,408 72.44 201,748 42.21 201,089 184.59

N3205 199,960 75.46 199,576 54.21 198,764 210.42

N3206 198,189 41.53 198,305 43.47 197,383 134.98

N3207 199,096 46.14 200,195 39.88 198,006 208.88

N3208 197,292 41.22 197,043 42.55 196,558 209.44

N3209 198,497 48.89 199,160 29.43 198,262 215.64

N320A 201,108 58.97 201,041 35.33 197,924 201.10

N320B 201,813 46.98 202,682 29.29 201,108 187.57

N320C 197,334 43.97 198,738 36.73 196,264 210.73

N320D 199,184 51.66 199,738 46.42 198,158 189.05

N320E 201,444 51.34 201,583 38.14 200,178 172.56

Table 11 Results for type D difficult problems

Problem Core 2 TS GIP

z2 t2 z_ts t_ts z_gip t_gip

N3300 240,597 66.30 240,209 34.80 239,115 210.02

N3301 240,410 94.73 241,428 33.86 238,570 159,56

N3302 242,310 110.91 240,555 39.57 239,876 197.97

N3303 239,015 68.02 237,274 40.18 237,204 157.40

N3304 243,803 72.13 243,778 40.03 241,295 208.32

N3305 240,647 77.91 241,594 36.97 237,920 187.67

N3306 237,434 64.72 237,461 47.34 236,061 197.88

N3307 237,611 86.75 238,483 33.18 236,150 210.07

N3308 236,530 63.36 236,800 33.91 234,479 159.81

N3309 239,293 105.31 238,961 34.61 238,233 197.42

N330A 242,812 64.06 242,350 38.09 242,000 187.10

N330B 242,830 76.30 243,341 36.71 241,009 205.16

N330C 237,050 63.83 237,911 30.90 235,173 201.58

N330D 239,881 48.09 237,071 42.69 236,002 188.27

N330E 243,626 104.77 241,727 44.41 238,434 197.21
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