
Ann Oper Res (2010) 179: 243–260
DOI 10.1007/s10479-008-0462-7

A novel non-linear approach to minimal area rectangular
packing

Volker Maag · Martin Berger · Anton Winterfeld ·
Karl-Heinz Küfer

Published online: 5 November 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper discusses the minimal area rectangular packing problem which is to
pack a given set of rectangles into a rectangular container of minimal area such that no two
rectangles overlap. Current approaches for this problem rely on metaheuristics like simu-
lated annealing, on constraint programming or on non-linear models. Difficulties arise from
the non-convexity and the combinatorial complexity. We investigate different mathemati-
cal programming approaches for this and introduce a novel approach based on non-linear
optimization and the “tunneling effect” achieved by a relaxation of the non-overlapping con-
straints. We compare our optimization algorithm to a simulated annealing and a constraint
programming approach and show that our approach is competitive. Additionally, since it is
easy to extend, it is also applicable to a variety of related problems.

Keywords Rectangular packing · Non-overlapping constraints · Non-linear optimization ·
Regularization · Relaxation

1 Introduction

Packing problems of objects with arbitrary shapes arise in a multitude of important real
world applications. In particular, packing problems of rectangular-shaped objects are inten-
sively studied. Such rectangular packing problems for example arise in container loading,
facility layout design, scheduling and many more.
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In microelectronics design, the layout of an electronic system includes the placement
of its devices. Being part of the floorplanning, the placement problem is to position the
interconnected devices on a rectangular board. As modern markets demand miniaturized
systems the area minimization of the board is one of the main objectives of this rectangular
packing problem.

Therefore, we focus on the following problem in rectangular packing:

Definition 1 A minimal area rectangular packing problem (MARPP) is to arrange a set of
non-rotatable rectangles into a rectangular container of minimal area, such that the container
includes all rectangles and no two rectangles overlap.

The optimization problem MARPP is N P -hard (Murata et al. 1996). The rectangular con-
tainer is also called bounding box. Non-overlapping constraints are that no two rectangles
overlap and containment constraints are that all rectangles are in the container.

A large variety of models and optimization approaches have been developed and stud-
ied for rectangular packing problems. Approximation algorithms are mainly studied in the
context of the theory of bin packing (Coffman et al. 1996; Bansal and Sviridenko 2004).
They rely on the design of clever heuristics which are also used in the application to specific
packing problems. Mixed integer programming (MIP) is another method to formulate such
problems (Fasano 2004; Goetschalckx and Irohara 2007).

In particular for MARPP, also metaheuristics and constraint programming (CP) are ap-
plied. In microelectronics design, MARPP is often solved with simulated annealing (SA)
and abstract solution representations (Wong and Liu 1986; Guo et al. 1999; Chang et al.
2000; Lin and Chang 2001; Pisinger 2007). Moffitt and Pollack (2006) apply CP and solve
MARPP instances of up to 24 rectangles to optimality.

Formulating the MARPP as a non-linear problem may not seem like an obvious choice:
Due to the non-convexity of the non-overlapping constraints standard gradient-based ap-
proaches likely stop in a local optimum and rarely find a good global solution (Horst and
Tuy 1996). Nevertheless, there exist approaches to deal with such situations in general (Levy
and Montalvo 1985; Ali et al. 1997; Wang and Zhang 2007) and in the context of rectangular
packing problems (Alon and Ascher 1988; Dorneich and Sahinidis 1995; Ababei et al. 2005;
Zhan et al. 2006).

For MARPP we propose a novel non-linear model, motivated by methods used for gen-
eral semi-infinite programming (GSIP). The containment constraints are implemented as
linear conditions of the form Ax ≤ b. We formulate the non-overlapping constraints with a
non-differentiable function and then regularize it, that is, we approximate it with a smooth
function. The essential point is that the approximation is also a relaxation of the original
problem in which the rectangles can change their relative positions more easily. We refer
to this behaviour as the “tunneling effect”. We use an extended version of the penalty suc-
cessive linear programming approach (PSLP, Zhang and Kim 1985) to solve the resulting
non-linear program (NLP).

While our non-linear approach allows to integrate arbitrary non-linear objective func-
tions and non-linear constraints, a major drawback is its long runtime. However, the number
of n2+n

2 considered constraints, where n is the number of rectangles, can be significantly
reduced by ignoring those constraints which are far from being active. This is known as
“active set method” (Luenberger 1989). This method reduces the runtime of our algorithm
considerably and renders it competitive to other approaches for MARPP.

The outline of this paper is as follows: In the second section we introduce our notation
and apply it to MARPP. In the next section we give a broad survey of SA, CP and non-linear
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approaches to rectangular packing. In the main section we present our novel non-linear
model, propose an optimization algorithm for it and discuss properties of our approach. We
show experiments in which we compare our method to two simulated annealing approaches
and the optimal solutions given by a CP approach. We finish the paper with conclusions and
perspectives for future research work.

2 Notation and standard problem formulation

Throughout this paper we use the following notation:

– R = {r1, . . . , rn} denotes the set of rectangles.
– l

(i)

1 , l
(i)

2 represent the width and the height of rectangle ri .
– c

(i)

1 , c
(i)

2 represent the center coordinate of rectangle ri .
– b1, b2 represent the width and the height of the bounding box B .
– The area as objective function is denoted by A = b1b2.

Now we can formulate MARPP as the following optimization problem:

min b1b2 (P )

subject to
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)

for 0 < i < j ≤ n

We assume that the bounding box is anchored at the origin. Condition (1) guarantees that
the rectangles are within the container B whereas (2) assures that no two rectangles overlap.
The non-overlapping constraints express that any rectangle ri is either left, right, below or
on top of any other rectangle rj .

3 Survey of other approaches to MARPP

3.1 Simulated annealing

In the following we briefly introduce the metaheuristic simulated annealing, show how to
represent a rectangular packing with the sequence pair encoding scheme and sketch how
one can solve MARPP in this way. We call the SA approach with the sequence pair in short
SASP.

Many optimization problems appearing in real world applications are, in practice, not
solvable with exhaustive search due to computation times exponentially growing with the
size of the instances. Metaheuristics have successfully been applied to such optimization
problems, especially to N P -hard combinatorial problems. Metaheuristics are search meth-
ods which start from an initial solution and iteratively try to replace the current solution by
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a better solution of the neighbourhood of the current solution. The class of metaheuristics
includes—but is not restricted to—Ant colony optimization, Evolutionary computation in-
cluding Genetic algorithm, Iterated local search, SA and Tabu search (Blum and Roli 2003).

We focus on SA as it is often used in placement problems (Wong and Liu 1986;
Murata et al. 1996; Guo et al. 1999; Chang et al. 2000; Lin and Chang 2001; Pisinger 2007).
SA is one of the oldest metaheuristics and originates from statistical mechanics (Kirkpatrick
et al. 1983). The fundamental idea of SA applied to a minimization problem is to accept an
intermediate solution z′ to have a worse objective function f (z′) value than the current solu-
tion z. The probability p(T , z′, z) of such an acceptance decreases during search. It is gen-
erally computed following the Boltzmann distribution, i.e. p(T , z′, z) = exp(− f (z′)−f (z)

T
).

The update of the temperature T usually follows a geometrical law, i.e. Tk+1 = αTk for
α ∈ (0,1). A pseudo-code of SA is given in Algorithm 1.

Algorithm 1 Pseudo code of SA
Initialize random starting solution z

Initialize temperature T

while termination condition not met do
Pick neighbour z′ ∈ N (z) through a random move
if f (z′) < f (z) then

Replace z with z′
else

Accept z′ as z with probability p(T , z′, z)
end if
Update T

end while

The problem of encoding an arrangement of rectangles as a combinatorial object has
been intensively studied. For placement problems, such an encoding of a packing is called
a floorplan representation. Yao et al. (2003) give a broad overview of the multitude of dif-
ferent floorplan encoding schemes and their interrelationship. The floorplan representation
sequence pair (SP) is an encoding scheme and was proposed in Murata et al. (1996). The
following definition states the sequence pair for MARPP:

Definition 2 (Sequence Pair) Suppose the rectangles ri ∈ R are to be packed. Then, a se-
quence pair sp := (�+,�−) is a pair of rectangle sequences. Both sequences �+ and �− are
permutations of R.

Each non-overlapping constraint of (2) is a disjunction of linear inequalities. Depend-
ing on the linear order in �+ and �−, sp encodes exactly one topological relation G ∈
{left of, right of, below, on top of} between each pair (ri, rj ) of rectangles of R, i < j .
Therefore, at least one linear inequality holds. The consistent assignment of topological
relations between the rectangles can be translated to a lower-left compacted packing. Each
topological relation is encoded in one of two directed acyclic constraint graphs, one graph
for horizontal relations and one for vertical relations. The vertices of the horizontal (vertical)
constraint graph represent the rectangles and the edge weights represent the width (height)
of the left (below) rectangle. The longest path to a vertex in the horizontal (vertical) con-
straint graph determines the horizontal (vertical) position of the corresponding rectangle of
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a lower-left compacted packing. The longest paths to the rectangles are determined in O(n2)

time. For further properties on this translation we refer to Murata et al. (1996). This tradi-
tional translation was enhanced to other translations with O(n log logn) time by Tang et al.
(2001); Pisinger (2007).

To complete the SASP approach for MARPP we define neighbourhood structures N
which are explored during the annealing process. A move defines how to traverse randomly
from a solution z to a neighbourhood solution z′ ∈ N . Moves for the sequence pair are based
on randomly shifting or swapping rectangles in either one or both sequences �+ and �−.
Typically, a rectangle is shifted in one sequence and pairs of rectangles are swapped in
one or both sequences. To guarantee the diversification of SASP, moves should be chosen
randomly out of several different move types. However, any sequence pair can be simply
reached from any other sequence pair by consecutively applying any single move out of the
described move types. More details on neighbourhood definitions and their properties can
be found in Berger (2006).

3.2 Constraint programming

In the following we briefly survey constraint programming and how it can be applied to
rectangular packing. represent the constraints of MARPP and sketch how to solve MARPP.

CP is a powerful paradigm for solving combinatorial search problems that draws on a
wide range of techniques from artificial intelligence, computer science, databases, program-
ming languages, and operations research (Rossi et al. 2006). From the CP viewpoint, the
decision or optimization problem is to satisfy relations between variables stated in the form
of constraints. In order to reduce the search effort CP develops strong inference and propa-
gation methods for constraints.

Rectangular packing has also been a challenge for researchers from CP and several CP
approaches are proposed for problems related to MARPP. Briefly, they differ in the way they
model the non-overlapping constraint, how it is propagated and how search is branched. In
general, branching is either done on the disjuncts of the non-overlapping constraint or done
on the coordinates of the rectangles.

A constraint-based scheduling model for the two-dimensional orthogonal packing prob-
lem can be found in Clautiaux et al. (2008). The two-dimensional orthogonal packing prob-
lem consists in determining if a set of rectangles can be packed in a larger rectangle of
fixed size. They use energetic reasoning together with a subset-sum propagation algorithm
to effectively prune the search tree in a branch-and-bound framework.

Amossen and Pisinger (2006) proposed to solve multi-dimensional bin packing problems
with guillotine constraints through a depth-first search with constructive assignment of the
disjuncts of the non-overlapping constraints. During search, feasibility with respect to the
guillotine constraints is maintained.

Moffitt and Pollack (2006) also applied backtracking search for constructively assigning
disjuncts of the non-overlapping constraints of MARPP. They propose several new problem-
specific as well as problem-independent pruning techniques to explore only feasible solu-
tions of a reduced search tree. All-pair shortest path matrices are maintained during search
and efficiently used to check in O(1) time if a topological relation between two rectangles
is consistent to the current partial solution. They evaluate their approach by proving optimal
solutions for packing squares of consecutive size into a container of minimal area. To our
knowledge, their approach provides the fastest runtimes for the prove of optimality pub-
lished at the time of submitting this paper. In Sect. 5 we compare the results of our approach
to their optimal solutions.
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3.3 Non-linear approaches

In the context of rectangular packing problems several approaches formulate the problem in
different ways. We survey them in chronological order:

In Alon and Ascher (1988) the non-overlapping constraints are enforced by lower bounds
on the Euclidean distance of the midpoints of the rectangles. This is an overestimation,
however, it allows the rotation by any degree. The main objective is the minimization of the
wire length. Constraints are added as a penalty term to the objective function.

The model proposed by Herrigel and Fichtner (1989) also allows 90◦ rotations and sev-
eral other objectives. However, the resulting non-linear program has a structure which is hard
to handle. The way the non-overlapping constraints are smoothed is similar to our approach,
except that the regularization parameter is fixed. As a consequence, the error introduced by
the regularization is not driven to zero which leaves a slight infeasibility after termination of
the algorithm.

In Dorneich and Sahinidis (1995) a mixed integer non-linear programming approach is
used. The shape of the rectangles can be changed to a certain amount and further constraints
are considered, for example, that some pairs of rectangles have to share a common border.
A combination of a non-linear solver and a branch-and-bound algorithm is proposed to solve
the problem.

In Zhan et al. (2006) and Ababei et al. (2005) the main issue is a floorplanning algorithm.
The size of the container is fixed but beside the positioning also the sizing of the rectangles
is variable within a predefined range. The algorithm consists of two stages: In the first stage
a uniform distribution of the rectangles is calculated which may violate feasibility slightly
(that is, small overlaps may occur). In the second stage the overlapping is explicitly penal-
ized to enforce feasibility. The overlapping is described by an approximation of maximum
and minimum functions, therefore a post-processing step is necessary to eliminate remain-
ing overlaps. The main objective here is to minimize the length of wires connecting the
rectangles in a predefined way.

In Birgin et al. (2006) the container is assumed to be convex but need not be rectangular.
The algorithm consists of an iterative loop where in each iteration the number of rectangles
is increased and the violation of the containment and non-overlapping constraints is mini-
mized. The algorithm terminates if the violation is not close to zero. For the containment
constraints it is enough to check the four corners of a rectangle and for the non-overlapping
constraints a smooth approximation of the maximum function is used.

A much more generic approach was recently stated by Winterfeld (2007) in the context
of GSIP. It was shown that it is possible to fit several geometric objects Oi into a container
C while optimizing the shape of both the objects and the container and preserving the non-
overlapping constraints. In the context of MARPP, Oi correspond to the rectangles ri and
C to the bounding box B . Formulating the MARPP as a semi-infinite program leads to a
more complex model than known non-linear models. Yet, in some numerical approaches
for GSIP (Stein 2003) non-smooth functions (complementary conditions) appear which are
regularized in a similar way as we do it in our approach. Our non-linear programming (NLP)
solver is inspired by a solver for general semi-infinite programs and can easily integrate
constraints of the above, very generic form.

4 A novel non-linear approach

We convert P to a non-linear problem in two steps. First we replace the disjunctions by
maximum functions. Second, we approximate the maximum function by a parameterized
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differentiable function. This step also introduces a relaxation of the problem which we study
in more detail. Finally, we present our novel algorithm.

4.1 Reformulation of the problem

An equivalent formulation to P is the following:

min b1b2 (P ′)

subject to

1

2
l
(i)
k ≤ c

(i)
k ≤ bk − 1

2
l
(i)
k for k ∈ {1,2} and i ∈ {1, . . . , n}

max
k∈{1,2}

(
|c(i)

k − c
(j)

k | − 1

2
(l

(i)
k + l

(j)

k )

)
≥ 0 for 0 < i < j ≤ n (3)

It is easy to see that (3) is just a reformulation of (2). The constraints (3) are still non-
linear, non-convex and non-differentiable. Since differentiability is an essential assumption
for most NLP solvers, we approximate the constraints by differentiable functions, a proce-
dure which is known as smoothing or regularization.

4.2 Regularization of the problem

Our approach is based on a variant of the Chen-Harker-Kanzow-Smale function (Chen and
Harker 1993) f (a, b) = 1

2 (a + b − √
(a − b)2 ) which is equivalent to the minimum func-

tion. The counterpart for the maximum function is f (a, b) = 1
2 (a + b + √

(a − b)2 ). A few
similar functions (Sun and Qi 1999; Chen et al. 2000) are known as non-linear complemen-
tary problem (NCP) functions.1 They are used to express the complementarity constraints
appearing, for instance, in the Karush-Kuhn-Tucker optimality conditions (Bazaraa et al.
1993). For primal-dual and interior point methods these conditions arise explicitly and need
to be regularized. This is usually done by inserting a regularization parameter τ such that the
regularized function converges to the original function when τ goes to zero (Wright 1997;
Ye 1997; Burke and Xu 2000).

The inequalities (3) are equivalent to

max
k∈{1,2}

(
(c

(i)
k − c

(j)

k )2 −
(

1

2
(l

(i)
k + l

(j)

k )

)2
)

≥ 0 for 0 < i < j ≤ n

Therefore, by introducing the function gk(i, j) := (c
(i)
k −c

(j)

k )2 − 1
4 (l

(i)
k + l

(j)

k )2, we get a new
formulation of the non-overlapping constraints:

f (g1(i, j), g2(i, j)) ≥ 0 for 0 < i < j ≤ n (4)

The regularized form2 of the Chen-Harker-Kanzow-Smale function f is fτ (a, b) := 1
2 (a +

b + √
(a − b)2 + 4τ ). For τ > 0, fτ is differentiable everywhere and the regularized prob-

lem is

min b1b2 (Pτ )

1We do not have any evidence that one of the functions is preferable. The comparison of the numerical
behaviour of different NCP functions in our context is subject to further research.
2Often also stated as fτ (a, b) := 1

2 (a + b +
√

(a − b)2 + 4τ2 ).
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subject to

1

2
l
(i)
k ≤ c

(i)
k ≤ bk − 1

2
l
(i)
k for k ∈ {1,2} and i ∈ {1, . . . , n} (5)

fτ (g1(i, j), g2(i, j)) ≥ 0 for 0 < i < j ≤ n (6)

Note that f0 ≡ f ≡ max and fτ (a, b) ≥ f (a, b). Therefore, the set of feasible solutions
of (P) is contained in the one of (Pτ ). That means that replacing the condition (4) by (6)
causes not only a smoothing but also a relaxation of the problem. The relaxation has a
specific interpretation: Depending on the size of τ , condition (6) allows partial overlapping
or even containment of the rectangles. In the context of the global optimization problem this
can be used to get away from local minima. The effect of this mechanism is illustrated in
Fig. 3 in Sect. 5.3. Winterfeld (2007) describes an analog observation in the context of GSIP.

4.3 Analysis of the tunneling effect

In this section we properly analyze the effect caused by the relaxation and derive information
on the dependency between the maximal overlapping and the regularization parameter τ . We
restrict ourselves to squares here, because the fact that the width is equal the height simplifies
the presentation. However, the results can be transferred to rectangles.

We assume in the following l
(i)

1 = l
(i)

2 and omit the subscript. First we need a stricter
notion of the overlapping.

Definition 3 Consider two squares with midpoints c(1), c(2) ∈ R
2 and side lengths l(1), l(2),

respectively. The degree of overlapping is given by d(c(1), c(2)) = max{0, 1
2 (l(1) + l(2)) −

maxk∈{1,2}{|c(1)
k − c

(2)
k |}}.

Note that d(c(1), c(2)) > 0 if and only if the corresponding squares overlap, that means,
the interior of their intersection is non-empty. Furthermore, d(c(1), c(2)) ≤ 1

2 (l(1) + l(2)) and
equality holds when the midpoints coincide. In Fig. 1 the degree of overlapping is indicated
by o.

Extending the definition of the degree of non-overlapping to rectangles would require
to consider subcases depending whether the larger overlap occurs in vertical or horizontal
direction. This is because vertical and horizontal side length differ in case of non-squares.

Lemma 1 Given two squares with side lengths l(1) and l(2). For r := 1
2 (l(1) + l(2)), any

o ∈ [0, r] and τ := (2ro − o2)r2 equation (6) guarantees a degree of overlapping smaller
than or equal to o.

Fig. 1 Degree of overlapping for
two squares
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Proof Assume that the midpoints c(1) and c(2) of the two squares have a distance of δ1 and δ2

in the corresponding dimension and d(c(1), c(2)) > o. Furthermore without loss of generality
assume δ1 ≥ δ2. Then δ1 < r − o (the assumption implies o < r), gk(1,2) = δ2

k − r2 for
k ∈ {1,2} and we have

fτ (g1(1,2), g2(1,2)) = 1

2

(
δ2

1 − r2 + δ2
2 − r2 +

√
(δ2

1 − δ2
2)

2 + 4(2ro − o2)r2

)

≤ −r2 + 1

2

(
δ2

1 +
√

δ4
2 + 4(2ro − o2)r2

)

< −r2 + 1

2

(
(r − o)2 +

√
(r − o)4 + 8r3o − 4r2o2

)

= −r2 + 1

2

(
r2 − 2ro + o2 +

√
(−r2 − 2ro + o2)2

)

= 0 using that − r2 − 2ro + o2 ≤ 0

which contradicts (6). �

Corollary 1 Given two squares with side lengths l(1) and l(2), r := 1
2 (l(1) + l(2)) and τ ∈

[0, r4], the equation (6) guarantees a degree of overlapping smaller than or equal to r −√
r2 − τ

r2 .

Corollary 2 There exists a τ such that the constraints of the relaxed problem Pτ hold if and
only if the containment constraints are fulfilled.

The above statements show how to explicitly control the maximal overlapping for a given
pair of squares. However, since the overlapping depends also on the size of the squares, the
same τ will lead to different maximal overlappings for different pairs of squares.

Corollaries 1 and 2 are also relevant for rectangles, since for any pair of them one can
take the smallest enclosing squares, that is, the side length of each square is the maximum of
width and height of the corresponding rectangle. The degree of overlapping of the squares
overestimates the overlap of the rectangles and, therefore, upper bounds on the overlap of
the smallest enclosing squares are also valid for the enclosed rectangles.

4.4 Our novel algorithm

The algorithm consists of three nested loops as shown in Algorithm 2. In the outer loop
we determine n1 starting solutions and in the middle loop an initial τ = τ

(j)

1 is fixed. The
maximal number of iterations in this loop is restricted by n2. The inner loop is within the
regularized NLP solver, which iteratively calculates a locally optimal solution of P ′. In the
following we describe the NLP solver in more detail, the integration of the active set method,
the way we generated starting solutions and the most influential parameters of the algorithm.

The regularized NLP solver. The non-linear solver we used is based on PSLP extended
by a strategy to reduce the regularization parameter τ to zero.3 The essential ingredients of
PSLP are:

3In our implementation this means τ < 10−6.
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Algorithm 2 Pseudo code of our novel algorithm
for i := 1 to n1 do

Initialize random starting solution
for j := 1 to n2 do

Initialize τ
(j)

1
Run regularized NLP solver
if no significant improvement was achieved then

leave middle loop
end if

end for
end for
return best of the n1 obtained solutions

– The constraints are added as a penalty term to the objective function multiplied with a
penalty factor μ.

– In each iteration k the current solution x(k) = {b(k), c(1,k), . . . , c(n,k)} is calculated by solv-
ing a linearization of the problem at the previous solution x(k−1).

– As an additional constraint it is required that x(k) must be within a trust region T (x(k−1)) =
{y ∈ R

2n+2 : ||y − x(k−1)||∞ ≤ δk} where δk > 0 determines the size of the trust region in
step k.

– The trust region is adapted depending on the ratio of the improvement of the objectives of
the linearized model and of the non-linear model. If the ratio is close to one or larger, the
trust region size is increased, if it does not exceed an upper bound δUB. If it is not too far
from zero the trust region size is decreased. If it is nearly zero or negative, x(k) is rejected
and the current iteration is repeated with a smaller trust region.

– The stopping criterion is that the gradient of the penalized objective is close to zero and
there is no change in the objective value.

If the initial solution is feasible and μ is chosen large enough,4 this algorithm terminates
with a Karush-Kuhn-Tucker point which is usually a local optimum.

In order to handle the regularization, τ is considered as another variable with a separate
kind of trust region. τ also appears as an additional term in the extended objective weighted
by a factor. In this way, it is automatically driven from its initial value τ

(j)

1 to zero during the
iterations of the inner loop.

Using active set method to improve the runtime. The part of the algorithm which is most
time-consuming is solving the linearized problem in each PSLP iteration. Hence, decreasing
the size of it is the most efficient way to speed up the algorithm. We do that by removing
constraints which cannot be violated within an iteration of PSLP even if they are temporarily
disregarded by the solver. This holds for constraints of the form h(x) ≥ 0 at the k-th iteration
if

h(y) ≥ 0 for all y ∈ T (x(k−1)) (7)

since x(k) ∈ T (x(k−1)). For the constraints of P ′ we can check (7) directly. Since Pτ is a
relaxation, we can disregard a regularized constraint if (7) holds for the corresponding non-
regularized constraint.

4We use μ = 105.
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This approach reduces the number of constraints to a fraction of the original number,
since now the non-overlapping constraints need only be checked for pairs of rectangles
which are in a neighbourhood of each other. This is much smaller than the overall number
of rectangles, provided that the trust region size δ is not too large.

In the standard PSLP method, the trust region size depends on the quality of the lin-
ear approximation. The larger the size is, the larger each step may be and the fewer iter-
ations are necessary. For the active set method, the trust region size also determines the
number of constraints to be considered. The smaller the size is, the faster each iteration
is. Therefore, the adjustment of the trust region described above was extended such that
δk+1 = min{δk, σ‖x(k) − x(k+1)‖∞} for some σ ≥ 1. That means that the trust region size is
decreased if the change in the current solutions of successive iterations is small anyway.5

The starting solution. The quality of the final solution significantly depends on the start-
ing solution. Yet, the dependency seems to be arbitrary. We cannot expect to find starting
solutions in a general way such that our algorithm always converges to a final solution close
to a global optimum.

Therefore, we did not use sophisticated heuristics, but rather arranged the rectangles in
such a way that the lower right corner of the i-th rectangle touches the upper right corner
of the i + 1-th rectangle. The order of the rectangles is subject to randomization. In the first
iterations of the inner loop the rectangles are pushed together without any bias to a particular
arrangement, which is a necessary requirement for good starting solutions.

It is worth noting that the starting solution need not be feasible for P but only for P
τ
(1)
1

.

If τ
(1)

1 is chosen large enough, one could even put all rectangles on top of each other.

5 Numerical results

In this section we first present our observations concerning the dependency of the algorithm
on its parameters. Then, we compare our results with two SASP implementations, one of
Pisinger (2007) and our own using the SA of Algorithm 1 with SP translation as in Murata
et al. (1996). Furthermore, for small problem instances, we show the relation to optimal
results from Moffitt and Pollack (2006). Finally we have a closer look to an exemplary
single run of the novel algorithm and discuss similarities of it to SA.

To enable the comparison with Moffitt and Pollack (2006) we use the same problem
setup as they did, that is, n squares with side lengths 1,2, . . . , n, respectively. For solving
the linear programs arising in PSLP we used ILOG CPLEX. The results of the non-linear
approach were calculated on an Intel Quad-Core Xeon E5420 with 2.5 GHz. For licensing
reasons of the ILOG CPLEX solver we could not parallelize our program. When using
the four processors of the machine in parallel, our runtimes can roughly be quartered. Our
SASP approach was tested on a Intel Core Duo processor T2500 with 2.0 GHz and the
SASP approach of Pisinger (2007) was run on an AMD64 processor with 2.4 GHz. Since in
all cases only one CPU core was used, the processor performances are comparable and do
not delimit our comparison. All presented runtimes are given in seconds.

5We used σ = 2.
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Table 1 The second row shows the best area calculated by the algorithm for different numbers of squares
(column) over n1 = 512 random starting solutions. The following rows present the deviation of the best
solution in percent for smaller numbers of starting solutions

10 50 100 200

512 408 47443 388128 3.2373e+6

16 5.88 3.32 1.19 6530.83

32 4.17 1.96 1.19 6416.85

64 0.00 1.93 1.19 1.92

128 0.00 1.07 1.19 0.43

256 0.00 0.40 0.00 0.00

Table 2 Average values, taken over a sample of 512 runs

Squares 10 50 100 200

Average runtime 0.075 0.48 1.3 6.1

Average absolute deviation 0.024 0.073 0.070 1.1

5.1 Dependency of the novel algorithm on the parameters

The PSLP algorithm with the extensions for regularization and the active set method has
a number of parameters whose values we chose empirically. From our studies we conclude
that the exact choice of most parameters is not essential for the performance of the algorithm.
For the results presented here we used the following values:

– initial value τ
(1)

1 = 370

– adaptation factor α = τ
(j+1)
1

τ
(j)
1

= 0.6

– upper bound for the trust region size δUB = 50
– initial trust region size δ1 = 1.7

The number of starting solutions n1 has a large impact on the quality of the final solution. As
we take the best of the n1 corresponding outcomes, an increase of n1 improves the likelihood
to find a good solution. In order to determine a reasonable value for n1 we ran the algorithm
for different values up to 512 and for different problem classes from 10 to 200 squares as
shown in Table 1. The improvements for more than 128 runs were small, hence we used
n1 = 128 for the following comparisons in Fig. 2 and Table 3. Table 1 also indicates, that
for another set of 128 random starting solutions the outcome of the algorithm is not much
different therefore, we do not present different results from runs in the following.

The runtime of our algorithm is proportional to n1. Table 2 shows the average runtimes
for single runs and the average absolute deviation, that is, the average of the absolute value
of the deviation from the average runtimes. Since this deviation is small, the overall runtime
over 128 starting solutions hardly depends on the choice of the starting solutions. Therefore,
one run of the algorithm gives an accurate value for the runtime in average.

5.2 Comparisons with other approaches

For up to 24 squares Moffitt and Pollack (2006) provide optimal results. Their results are
depicted in Fig. 2, together with our results from the non-linear and SASP approach. Our
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Fig. 2 Comparison of the area usage (y-axis) for the three different methods for different numbers of squares
(x-axis)

Table 3 Results for larger number of squares

Non-linear Our SASP Pisinger (2007)

Squares Area Usage Time Area Usage Time Area Usage Time

10 408 0.944 6.29 405 0.951 2.56 405 0.951 6.95

25 6059 0.912 19.4 5874 0.941 18.5 5655 0.977 28.88

50 47952 0.895 56.9 44928 0.955 210.0 43575 0.985 97.80

75 162000 0.885 123.4 150577 0.953 448.8 – – –

100 392764 0.861 156.6 355568 0.952 1016 343371 0.985 372.79

150 1301340 0.873 339.2 1192202 0.953 3386 – – –

results are worse than the optimal results, but the time needed to calculate the optimal solu-
tions increases much faster for the CP approach of Moffitt and Pollack (2006). It needs one
and a half minute for 15 squares and 146 hours for 24 squares, while our non-exhaustive
approaches need less than 20 seconds in that case.

Table 3 depicts the outcomes for larger problem sizes. The results of the non-linear ap-
proach are compared with the SASP approaches. From Pisinger (2007) we took the results
for the long runs of the algorithm with one million iterations. For each problem instance,
Pisinger presented the area and the runtime for the best of ten runs. Our non-linear approach
takes the best out of 128 runs but the sum of the runtimes of all runs. In the table we refer
to usage as the area usage given by the sum of the area of the squares divided by the area of
the minimal bounding box calculated by the algorithms.

Our SASP implementation proved to be less sensitive regarding the choice of the starting
solution and of the moves. Different runs did not yield significant differences in the quality of
the solutions. Therefore, we run SASP only once from a randomly chosen starting solution.

The algorithm from Pisinger (2007) yields the best area usage. Yet, their runtimes are in
the same order of magnitude.
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We used straightforward heuristics for the choices of parameters and its adaptation during
the algorithm. We are convinced, that improvements of these will lead to better results and
better runtimes. Yet, SASP is more efficient in representing and searching the solution space.
The advantage of our novel algorithm is, that it is not restricted to the characteristics of
MARPP and can be easily extended by further constraints and other objectives. So, the
strengths of our approach are its expressiveness and extensibility.

5.3 Detailed study of the behaviour of our novel algorithm

Figure 3 demonstrates how the outer loop of the algorithm works. Here, we used rectan-
gles with side length uniformly distributed between 1 and 9 units of length. Starting from
the initial solution with relaxed non-overlapping constraints the rectangles move quickly to-
gether and overlap for some iterations (Fig. 3(b)) until the first local optimum in Fig. 3(c) is
reached. When the NLP solver is restarted and the non-overlapping constraints are relaxed

Fig. 3 Selected iterations of one optimization run with ten rectangles
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again, the bounding box is further compressed and the rectangles shift on top of each other.
Figure 3(e) depicts the state in which the overlap is largest. When the allowed relaxation
is reduced, overlaps of rectangles disappear and the rectangle positions converge to another
locally optimal, feasible solution shown in Fig. 3(g). For the next restart of the NLP solver
the maximal overlap is smaller, therefore the next state with smallest bounding box shown
in Fig. 3(h) is not as compact anymore as in Fig. 3(e). In iteration 66 another locally optimal
solution (Fig. 3(i)) is reached which still provides an improvement compared to Fig. 3(g).
But the next NLP solver restart ends up with the same local optimum and the algorithm
terminates.

The figures indicate that the rectangles tend to move to the left upper corner and the
overlap close to that corner is largest. This phenomenon is caused by the underlying non-
linear solver and cannot be controlled directly. It does not contribute to an improvement of
the objective and is undesired since it gives the solution some bias. One way to eliminate this
property is to change the non-linear solver. Alternatively, a bound on the maximal degree of
overlapping can prevent this phenomenon.

5.4 Similarities between the our novel algorithm and SA

Using SA for global optimization of a continuous function is not a new idea (Ali et al.
1997). Recently, Wang and Zhang (2007) explicitly combined SA with a gradient-based
optimization method. By interpreting the inner and the middle loop in a particular manner,
we can see that our approach has similarities to SA.

For the inner loop we take the regularization parameter τ to be the temperature and the in-
feasibility as the energy configuration for a moment. A low energy configuration is achieved
when no rectangles overlap and is enforced for τ = 0. By corollary 1 we can interpret the
reduction of τ as cooling the system, since we reduce the allowed degree of overlapping.
The difference to SA is that a worse state is not accepted according to a probability function.
Instead, any improvement of the actual objective, the area of the bounding box, is accepted
which does not violate the limit of overlapping determined by τ . In practice it turns out
that in each iteration the current solutions achieve the maximal degree of non-overlapping
allowed by the current value of τ .

Also the middle loop has a similar interpretation. Again we can consider τ as the tem-
perature. Now, the inner loop can be seen as a move which changes the current solution.
The degree of the change is determined by τ , with which the regularized NLP solver is ini-
tialized. However, this analogy is not carried out completely so far. The middle loop does
not stop when τ is small enough but when no further improvements were achieved. Also,
deteriorations are not accepted in any case. However, the algorithm can easily be adapted to
represent this strategy.

Putting both loops together one can consider the outer loop as a kind of reheating, which
is an idea well known for SA (Kolonko 1999; Anagnostopoulos et al. 2006).

6 Conclusion and future research

We presented a novel approach to solve the MARPP based on a continuous model and on
a regularization of the maximum function. We compared our approach to SASP approaches
and it turned out that it is competitive. The special features of this algorithm are that it always
provides a feasible solution and the tunneling effect. This technique uses the relaxation of
the non-overlapping constraints to escape from local optima and shows similarities to meta-
heuristic concepts. The active set method reduces the number of constraints considerably
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and speeds up the algorithm. Finally, the major strength of our model is that it can be easily
extended with other smooth objectives and constraints.

Such extensions may especially benefit from the tunneling effect. For instance, when
minimizing the length of wires the gradient of the objective yields more information. These
are useful in particular when the relaxation causes a large degree of freedom. Furthermore,
one could make use of the possibilities offered by the non-linear, continuous formulation of
the problem. For example, in microelectronics, the rectangles correspond to modules which
are interconnected by wires in a predefined way and one important goal is to keep the length
of the wires as short as possible. Common wire-length models lead to a continuous objective
function.

Extending this approach to three (or higher) dimensions may be interesting. The
main issue here is that instead of smoothing max{a(x), b(x)} one has to consider
max{a(x), b(x), c(x)}. To do so, other regularization functions are needed. However, the
underlying algorithm stays the same, whereas SA or CP approaches have to deal with a
significantly higher combinatorial complexity.

Hybridization of our approach with other approaches like SA or CP might yield improve-
ments. They could complement each other in a framework which unifies the robust sampling
of the solution space from metaheuristics, the strong propagation mechanisms from CP and
the flexible relaxation from global non-linear optimization. For example, one could switch
between SA moves and iterations of the NLP solver as described in (Wang and Zhang 2007).
Also, it should be possible to use CP with its strong methods to investigate arrangements of
a subset of the rectangles with additional constraints.
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