
Ann Oper Res (2010) 179: 57–76
DOI 10.1007/s10479-008-0461-8

Space and time allocation in a shipyard assembly hall

Maud Bay · Yves Crama · Yves Langer · Philippe Rigo

Published online: 7 November 2008
© Springer Science+Business Media, LLC 2008

Abstract We present a space and time allocation problem that arises in assembly halls
producing large building blocks (namely, a shipyard which assembles prefabricated keel
elements). The building blocks are very large, and, once a block is placed in the hall, it
cannot be moved until all assembly operations on this block are complete. Each block must
be processed during a predetermined time window. The objective is to maximize the number
of building blocks produced in the hall.

The problem is modeled as a 3-dimensional bin packing problem (3D-BPP) and is han-
dled by a Guided Local Search heuristic initially developed for the 3D-BPP. Our computa-
tional experiments with this heuristic demonstrate that excellent results can be found within
minutes on a workstation. We also describe some additional real-life constraints arising in
the industrial application, and we show how these constraints can be conveniently and flex-
ibly integrated in the solution procedure.

1 Introduction

The aim of this paper is to present an industrial space allocation and scheduling problem aris-
ing in shipyard assembly halls dedicated to the processing of voluminous building blocks,
and to demonstrate the efficiency, in this applied context, of algorithmic approaches origi-
nally designed for the solution of 3-Dimensional Bin Packing problems.

M. Bay · Y. Crama (�) · Y. Langer
HEC Management School, University of Liège, Boulevard du Rectorat 7 (B31), 4000 Liège, Belgium
e-mail: Yves.Crama@ulg.ac.be

M. Bay
e-mail: Maud.Bay@ulg.ac.be

Y. Langer
e-mail: Yves.Langer@belpex.be

P. Rigo
Naval Architecture and Transportation Systems (ANAST), University of Liège,
Chemin des Chevreuils 1 (B52-3), 4000 Liège, Belgium
e-mail: Ph.Rigo@ulg.ac.be

mailto:Yves.Crama@ulg.ac.be
mailto:Maud.Bay@ulg.ac.be
mailto:Yves.Langer@belpex.be
mailto:Ph.Rigo@ulg.ac.be

58 Ann Oper Res (2010) 179: 57–76

This study was carried out at Aker Yards France (previously known as Les Chantiers
de l’Atlantique), one of the major European shipyards located in Saint Nazaire, France, at
the mouth of river Loire. This shipyard covers all the activities involved in the shipbuilding
process, from the basic pre-design phase to the delivery of sea-ready vessels. Its main prod-
uct lines consist of passenger ships (big cruise liners and car ferries), LNG tankers, military
ships (frigates and logistical ships), etc. From this shipyard came many famous liners such
as “France” (1912), “Ile De France” (1927), “Normandie” (1935), and “Norway” (1960).
Recently, Aker Yards France built up the world’s largest ocean liner, “Queen Mary 2”. Its
production, completed in 2003, took less than two years.

Building such large ships requires the production and the assembly of tens, or even hun-
dreds of thousands of steel elements and pipes. It includes welding hundreds of kilometers
of lines, painting several hundred thousands square meters of surface, and handling sub-
assemblies larger than many townhouses. These complex and numerous activities require
careful planning and logistics.

The shipbuilding process has changed radically over the three last decades. Formerly,
most of the work took place in a dry dock, with the ship constructed almost piece by piece
from the ground up. However, advances in technology and more detailed planning have
made it possible to divide the vessel into subunits, called blocks and panels, which inte-
grate utilities and other systems. The blocks are assembled in dedicated halls and are com-
posed of subparts and subassemblies which have been produced in other facilities. After
assembly, the blocks are transported to the dry dock where they are fitted together. This
process is faster, less expensive and provides better quality management than previous prac-
tices. Furthermore, it lends itself to increased use of automation and robotics, which not
only decreases costs, but also reduces the workers’ exposure to chemical and physical haz-
ards.

This paper focuses on the space allocation and planning decisions concerning the assem-
bly halls. Each hall is fully dedicated to the production of blocks and is divided into several
equal-sized rectangular areas (e.g., four areas for the main hall under study), each of which
is large enough to contain a few blocks simultaneously (see Sect. 5.1 for additional details).
The blocks are voluminous and heavy so that, once the assembly of a block has started,
this block cannot be moved until all its required assembly operations have been completed.
Then, it is transported out of the hall. The objective, as defined by the shipyard managers,
is to maximize the number of building blocks produced in a given hall over a certain time
horizon (we return to this point in Sect. 6). In the sequel, we refer to this problem as the
Space and Time Allocation (STA) problem for shipyard assembly halls.

In Sect. 2, we give a more precise description of the STA model, and we discuss its re-
lation to the 3-Dimensional Bin Packing problem. Our solution approach is actually largely
inspired from previous work on bin packing. We describe our heuristic algorithms in Sect. 3
(to test for the existence of feasible solutions) and in Sect. 4 (to find a large feasible subset of
blocks). Section 5 presents the results of our computational experiments, including a com-
parison with the results provided by a standard constraint programming approach. Finally,
Sect. 6 explains how additional industrial issues have been taken into account in the solution
delivered to the shipyard.

2 The model

We focus on the STA problem associated with an assembly hall subdivided into a number
A of identical rectangular areas. Each area has width W , length L and height H . There

Ann Oper Res (2010) 179: 57–76 59

is a set of n blocks to be produced in the hall. Each block is viewed as a parallelepiped
and is characterized by its geometric dimensions (width wj , length lj and height hj , for
j = 1,2, . . . , n), as well as by its production requirements such as processing time tj (the
number of days needed for its assembly), release date rj (the date when the required parts
are available for assembly), and due date dj (the date when the block is to be delivered at
the dry dock).

In order to be processed, each block should be assigned to an arbitrary area of the hall.
The only restrictions are that the assembly of a block j cannot start before its release date rj ,
the block must remain in the hall without interruption for tj time units, and it must leave
before its due date dj . Moreover, each block is always positioned with its sides parallel to
the walls of the hall; two blocks cannot overlap physically and cannot be placed on top of
each other. As a result of the latter constraint, the height of the blocks and of the hall will
not play any role in most of our discussion. (We briefly return in Sect. 6.1 to the practical
consequences of the limited height of the hall and to additional constraints on individual
blocks.)

Thus, the STA problem consists in orthogonally ordering the blocks into the rectangular
areas, without overlap, and so as to respect the time constraints, with the objective to produce
the largest possible number of building blocks.

We define six decision variables for each block j = 1,2, . . . , n:

• bj ∈ {0,1}, indicating whether block j will be produced in the hall (bj = 1) or whether it
will be subcontracted (bj = 0),

• aj ∈ {1,2, . . . ,A}, indicating the area where block j will be produced,
• xj and yj , coordinates representing the position of the upper-left corner of block j in the

selected area,
• oj ∈ {0,1}, indicating the orientation (either longitudinal or transversal) of block j in the

selected area,
• sj , the starting date for the assembly of block j .

A solution, that is to say an assignment of values to the above variables, is feasible if the
individual and the collective constraints are met. We call individual constraints those which
bear on one block only, regardless of the other blocks. The individual constraints can be
modeled as follows:

(1) each block must fit within the width of an area: xj ≥ 0 and xj +[ojwj +(1−oj)lj] ≤ W ;
(2) each block must fit within the length of an area: yj ≥ 0 and yj +[oj lj +(1−oj)wj] ≤ L;
(3) each block must fit in its time window: sj ≥ rj and sj + tj ≤ dj .

On the other hand, collective constraints deal with the interaction between the positions
of different blocks. Unless we mention otherwise, the only collective constraint is that the
blocks may not overlap.

2.1 Relation to the 3-Dimensional Bin Packing problem

The STA problem described above is closely related to the 3-Dimensional Bin Packing prob-
lem (3D-BPP). Recall that in 3D-BPP, we are given a set of n parallelipipeds, each charac-
terized by its width wj , length lj and height hj (j = 1,2, . . . , n), as well as an unlimited
number of identical three-dimensional bins with width W , length L and height H . The 3D-
BP problem consists in orthogonally packing all the items in the minimum number of bins;
see e.g. Martello et al. (2000).

We have already observed that the height of the assembly hall does not play any active
role in the STA problem, since building blocks cannot be stacked upon each other. Time,

60 Ann Oper Res (2010) 179: 57–76

therefore, behaves as the third dimension of the model (similar models are mentioned by
Dyckhoff 1990). We also note that a “2-dimensional” version of STA is described (without
explicitly identifying the industrial environment) by Imahori et al. (2003, 2005). In these pa-
pers, the authors observe that each building block has nearly the same width as the assembly
hall, so that the x-dimension does not play any active role. (One of the halls at Aker Yards
France also is of this type.)

A major difference between 3D-BPP and the STA problem is that, in the former,
items/blocks must fit in the bin height (zj ≥ 0 and zj + hj ≤ H), whereas they must fit
in their individual time window in the latter (sj ≥ rj and sj + tj ≤ dj). Moreover, the two
problems deal with different objective functions (the so-called knapsack loading problem or
container packing problem are variants of 3D-BPP whose objective function is more closely
related to the objective of STA; see, e.g., Brunetta and Grégoire 2005, Dyckhoff 1990, or
Martello et al. 2000). The distinction between minimizing the number of bins and maximiz-
ing the number of blocks will be mitigated, in a first step of our approach, by concentrating
on the search for feasible solutions, rather than on the optimization version of the problem
(see Sects. 3 and 4).

3D-BPP is a generalization of the well-known (1-Dimensional) Bin Packing problem
and it is therefore strongly NP-hard; see e.g. Coffman et al. (1997, 1999), Dyckhoff (1990),
Dyckhoff et al. (1997), Garey and Johnson (1979), Lodi et al. (2002), or Martello and Toth
(1990) for classifications of bin packing problems and more information about their compu-
tational complexity.

Brunetta and Grégoire (2005), Faroe et al. (2003), Martello et al. (2000, 2007) are recent
contributions which provide brief surveys of the literature on 3D-BPP. Since the problem
is hard, most efficient approaches rely on local search metaheuristics for the solution of
large-scale instances. (Martello et al. 2007 have tested exact algorithms for values of n up
to n = 50.) In particular, Faroe et al. (2003) have proposed a Guided Local Search (GLS)
heuristic for 3D-BPP. In their computational experiments, this approach appears to outper-
form the best available heuristics for 3D-BPP. It also offers a high degree of flexibility in its
implementation, so that it can be easily adapted to variants of the problem involving different
objective functions and/or additional constraints (such as the real-world side-constraints dis-
cussed in Sect. 6 below). Therefore, the algorithm that we have developed for STA explicitly
builds on their work. We now proceed to describe it.

3 Finding feasible solutions

In this section, as in Faroe et al. (2003), we first concentrate on the problem of finding at
least one feasible solution for the set of blocks initially given. Of course, if such a feasible
solution is found, then no further optimization is needed. We will see in Sect. 4 what should
be done in the opposite case.

3.1 General approach

Let X be any solution of the STA problem, that is, any assignment of values to the variables
aj , xj , yj , oj and sj for j = 1,2, . . . , n. (We implicitly assume that bj = 1 for all j .) While
trying to find a feasible schedule, our local search heuristic strictly enforces the individual
block constraints defined in Sect. 2, meaning that X always satisfies the constraints (1)–(3).
On the other hand, we do not enforce the collective constraints, but we measure the extent
of their violation and these measures are summed in an auxiliary objective function to be

Ann Oper Res (2010) 179: 57–76 61

minimized. Without additional real-life collective constraints, the extent of the violations
can be measured by the total “volume” (in “square meters × days”) of pairwise overlaps
between the blocks. Thus, if we denote by overlapij (X) the volume of the overlap between
blocks i and j , then the auxiliary objective function can be formulated as

f (X) =
∑

1≤i<j≤n

overlapij (X) (1)

Starting from an arbitrary infeasible solution where blocks can overlap, searching for a fea-
sible solution can be achieved by minimizing the function f , since an objective value of
zero indicates that all the collective constraints are satisfied.

A typical local search procedure proceeds by moving from the current solution X to
another solution X′ in a neighborhood ν(X) whenever this move improves the value of the
objective function. Slightly adapting the framework of Faroe et al. (2003) (who do not allow
rotating the boxes), we define the neighborhood ν(X) as the set of all solutions that can be
obtained by translating any single block along the coordinate axes or along the timeline, or
by a move to the same (relative) position in another area of the hall, or by a ±90 degree
rotation of a block around one of its four corners.1 A neighbor of X is therefore constructed
by assigning a new value to exactly one of the variables xj , yj , sj , aj or oj . It is clear that
this definition allows to move from any solution to any other solution through a sequence of
neighbors.

It is well-known that local search procedures may easily get stuck in a local minimum
of poor quality. Several strategies have been proposed to avoid this shortcoming of simple
descent algorithms, among which simulated annealing (see e.g. Aarts and Korst 1989), tabu
search (see e.g. Glover 1990), variable neighborhood search (see Hansen and Mladenovič
2001), and many others.

Another difficulty with local search procedures is that the neighborhood of any given
solution may be quite large (even if continuous, variables like xj , yj or sj can be discretized
for practical purposes) and therefore, exploring the neighborhood to find an improving move
can be very costly in computing time.

To deal with the above issues, we rely on a the Guided Local Search (GLS) heuristic, and
its accompanying neighborhood reduction scheme called Fast Local Search (FLS).

3.2 Guided local search

Guided Local Search has its roots in a neural network architecture developed by Wang and
Tsang (1991), which is applicable to a class of problems known as Constraint Satisfaction
problems. The current GLS framework, with the accompanying FLS scheme, has been first
proposed by Voudouris (1997) and Voudouris and Tsang (1997, 1999).

Generally speaking, GLS augments the objective function f of a problem to include a
set of penalty terms associated with “undesirable features” of a solution, and it considers the
new function h, instead of the original one, for minimization by a local search procedure.
The local search procedure is denoted LocalOpt in our description of GLS (see Algorithm 1).
Local search is confined by the penalty terms and focuses attention on promising regions of
the search space. Each time LocalOpt gets caught in a local minimum, penalties are modified
and the LocalOpt search is called again to minimize the modified objective function. (This

1In the case of a rotation around a corner, moving to a neighbor also involves corresponding changes in xj

and in yj . To simplify the explanation, this technical issue will be ignored in the sequel.

62 Ann Oper Res (2010) 179: 57–76

is akin to the use of diversification strategies in tabu search or in variable neighborhood
search.)

This general scheme has been adapted to 3D-BPP by Faroe et al. (2003). In their proce-
dure, the features of a solution X are the Boolean variables Iij (X) ∈ {0,1}, which indicate
whether blocks i and j overlap (Iij (X) = 1) or not (Iij (X) = 0). The value of overlapij (X)

measures the impact of the corresponding feature on the solution X.
The number of times an “active” feature has been penalized is denoted by pij , which is

initially zero. Thus, the augmented objective function takes the form

h(X) = f (X) + λ
∑

1≤i<j≤n

pij Iij (X)

=
∑

1≤i<j≤n

overlapij (X) + λ
∑

1≤i<j≤n

pij Iij (X) (2)

where λ is a parameter—the only one in this method—that has to be chosen experimentally
(see Sect. 5.2).

Intuitively speaking, GLS attempts to penalize the features associated with a large over-
lap, but which have not been penalized very often in the past. More formally, we define a
utility function μij (X) = overlapij (X)/(1 + pij) for each pair of blocks (i, j). At each iter-
ation the procedure adds one unit to the penalty pij corresponding to the pair of blocks with
maximum utility, then it calls LocalOpt(X, (i, j)) (see Algorithm 1). In a sense, the search
procedure is forced to set a higher priority on these features. Since features with maximum
utility keep changing all the time, this guiding principle prevents GLS from getting stuck in
local minima. The algorithm is run for T time units at most.

Algorithm 1 GLS(X0,T); {X0 is the initial solution, T is the time limit}
X := X0; {X is the current solution}
X∗ := X0; {X∗ is the best available solution}
t = 0; {t measures the run time}
pij = 0 for all pairs of blocks (i, j) {initialize the penalties}
repeat

Select a pair (i, j) with maximum utility;
pij := pij + 1; {Increase the penalty of pair (i, j)}
X := LocalOpt(X, (i, j)) {Run FLS with new penalties}
if h(X) ≤ h(X∗) then

X∗ := X;
end if

until h(X) = 0 or (elapsed time t ≥ T)
return X∗

3.3 Fast local search

In our implementation, the procedure LocalOpt mentioned in Algorithm 1 is a so-called Fast
Local Search (FLS) procedure adapted from Voudouris and Tsang (1997) and Faroe et al.
(2003). The main objective of FLS is to reduce the size of the neighborhoods explored in
the local search phase, by an appropriate selection of moves that are likely to reduce the
overlaps with maximum utility.

Ann Oper Res (2010) 179: 57–76 63

To describe FLS, consider any solution X and any variable m among the variables
xj , yj , sj , aj , oj with j ∈ {1, . . . , n}. Informally, FLS selects at random a variable m within
a list of active variables, as long as this list is not empty (active variables are those which are
most likely to lead to an improvement of the current solution). Then, FLS searches within
the domain of m for an improvement of the objective function. If no improvement is found,
then the variable m becomes inactive and is removed from the list until the end of the current
call to LocalOpt.

More formally, we define νm(X) as the set of all solutions which differ from X only by
the value of variable m. The neighborhood ν(X) is thus divided into a number of smaller
sub-neighborhoods:

ν(X) =
⋃

m

νm(X).

Each of the sub-neighborhoods νm(X) can be either active or inactive. Initially, only some
sub-neighborhoods are active. (We will show at the end of this section how the selection
process is designed to focus on the maximum utility overlaps.) FLS now continuously visits
the active sub-neighborhoods in random order. If there exists a solution Xm within the sub-
neighborhood νm(X) such that h(Xm) < h(X), then X becomes Xm; otherwise we suppose
that the selected sub-neighborhood will provide no more significant improvements at this
step, and thus it becomes inactive. When there is no active sub-neighborhoods left, the FLS
procedure is terminated and the best solution found is returned to GLS.

The size of the sub-neighborhoods related to the aj and the oj variables is relatively
small, therefore FLS is set to test all the neighbors of these sets. On the other hand, us-
ing an enumerative method for testing the translations along the x, y and s-axes would
be very time consuming, especially when areas and/or time windows are large. We may
observe, however, that only certain coordinates of such neighborhoods need to be investi-
gated. Indeed, as pointed out by Faroe et al. (2003), all overlapij (x) functions (respectively
overlapij (y), overlapij (s)) are piecewise linear functions, and will for that reason always
reach their minimum in one of their breakpoints or at the limits of their domains. (Thinking
of the geometry of the 3D-BP problem, one can easily understand that a best packing arises
either when the boxes touch each other along their faces, or when they touch the sides of the
bins.) As a result, FLS only needs to compute the values of f (x) (respectively, f (y), f (s))
for x (respectively, y, s) at breakpoints or at extreme values. In fact, there are at most four
breakpoints for each overlap function, and only the first and the last one are evaluated.

Additionally, since changes in the total overlap function only depend on the value of the
selected variable m, most of the terms of this function are constant. Thus, when evaluating
the value of f (X) after a move, only the n overlapij terms depending on m should be
computed, and so the computing time for the evaluation of one solution turns out to be linear
in n. In the description of FLS (see Algorithm 2), we denote by hpartial(m) this “partial”
augmented objective function used to compare the impact of fixing m at different values.

The efficiency of FLS directly depends on the number of active sub-neighborhoods. Now,
remember that LocalOpt(X, (i, j)) is called by GLS after some penalty pij has been adjusted
with the aim to escape local minima. Thus, active sub-neighborhoods should be those which
allow moves on the penalized features associated with the overlap of blocks i and j . Ac-
cordingly, Faroe et al. (2003) propose to activate the moves on the two blocks i and j , as
well as the moves on all blocks that overlap with block i and block j .

A schematic description of FLS is given by Algorithm 2.

64 Ann Oper Res (2010) 179: 57–76

Algorithm 2 LocalOpt(X, (i, j)); {X is the current solution; (i, j) is a pair of blocks }
ActiveList := List of the variables associated with the moves applicable to blocks i and j ,
and to the blocks overlapping either i or j

while ActiveList �= ∅ do
Pick a variable m in ActiveList
Let m∗ be the current value of variable m

PositionList := List of relevant values of m

for k := 1 to |PositionList| do
if hpartial(PositionList(k)) ≤ hpartial(m

∗) then
m∗ := PositionList(k);

end if
end for
Let X′ be the solution obtained by setting m := m∗ in X

if h(X′) ≤ h(X) then
X := X′ {Execute the move}

else
Remove m from ActiveList {No improvement}

end if
end while
return X;

4 Selecting the blocks

In the previous section, we described a GLS heuristic to find a feasible solution of the STA
problem. If GLS works as expected, then it should return a space and time allocation with
zero overlap (i.e., a feasible solution) when there is one. In general, however, no such feasi-
ble solution may exist for the set of blocks initially included in the instance, and we face the
problem of selecting a maximum subset of blocks to be scheduled for assembly.

As mentioned in Sect. 2.1, this objective function differs from the usual objective func-
tion of 3D-BPP. In order to handle it, we rely on the following heuristic assumption:

(HA) if GLS cannot find a feasible solution of STA within a predetermined amount of com-
puting time T , then the heuristic assumption is that the instance is (probably) infea-
sible.

As a consequence of this assumption, the search heuristic GLS can be used as a “black-
box” to carry out feasibility tests. We use the notation GLS(X,T) to indicate the output of
procedure GLS when it is initialized with the (infeasible) solution X and executed for T

time units.
Several procedures have been developed and tested based on this concept. A simple “de-

scent method” is to initialize GLS with a randomly generated solution X0 that includes the
entire set of blocks (i.e., set bj = 1 for all j = 1,2, . . . , n). After a search of T time units,
the algorithm is stopped and returns X1 = GLS(X0, T), the best solution found (in terms
of overlap). Then, one of the blocks with the largest overlap is removed from the solution
X1, and the heuristic GLS is restarted from this solution. The entire procedure ends when a
solution Xk with zero overlap is found; see Algorithm 3.

A more efficient variant of this procedure, called MaxBlocks(X,T ,Tmax), allows adding
as well as removing blocks from the current set. Thus, assume that, at any iteration of the
procedure, X is a solution (feasible or not) involving some subset of blocks. If the solution

Ann Oper Res (2010) 179: 57–76 65

Algorithm 3 BlockDescent(X0, T); {X0 is the initial solution, T is the time limit in every
application of GLS}

X∗ := X0; bj := 1 for j = 1,2, . . . , n;
repeat

Let X be the solution obtained by setting bj := 0 in X∗ for a random block j among
those such that

∑
i overlapij (X

∗) is maximum;
X∗ := GLS(X,T);

until f (X∗) = 0
return X∗;

GLS(X,T) returned by GLS is feasible, then this solution is a candidate to be the final op-
timal solution. So, we record it if it is better than the best incumbent solution X∗, and we
try to include an additional block in the set. On the other hand, if GLS(X,T) is not fea-
sible, then a fast post-processing step is performed to produce a feasible solution X′: this
is achieved by simply removing blocks in a greedy fashion until all overlaps are cancelled.
The solution X′ is recorded if it is better than the incumbent X∗; then, we remove an over-
lapping block from GLS(X,T) and the process is repeated. (Depending on the infeasibility
level of the solution, we may even want to remove more than one block at a time.) The pro-
cedure is stopped after a predetermined amount of computing time Tmax, or by any more
sophisticated stopping criterion, and it returns the feasible solution X∗ involving the largest
collection of blocks (i.e., the largest number of variables bj equal to 1). Note that, thanks
to the post-processing phase, MaxBlocks(X,T ,Tmax) always generates a feasible solution.
A more precise description is given in Algorithm 4. Here, we denote by |X| the number of
blocks j such that bj = 1 in a solution X.

Algorithm 4 MaxBlocks(X0, T ,Tmax); {X0 is the initial solution, T is the time limit in
every application of GLS, Tmax is the global time limit for MaxBlocks}

X∗ := ∅; X := X0;
repeat

X := GLS(X,T);
if f (X) = 0 (the current solution is feasible) then

if |X| > |X∗| then
X∗ := X

end if
In X, set bj := 1 for a random block j such that bj = 0; {Add a random block}

else
X′ := PostProcessing(X); {Generate a feasible solution}
if |X′| > |X∗| then

X∗ := X′
end if
In X, set bj := 0 for a random block j such that

∑
i Iij ≥ 1; {Remove a random

overlapping block}
end if

until Stopping criterion: elapsed time ≥ Tmax
return X∗;

66 Ann Oper Res (2010) 179: 57–76

One of our aims in this study, however, was to remain as close as possible to the industrial
reality and to the working methods of the shipyard under study. From this point of view,
the approaches outlined above suffer from one major drawback: they are likely to have
aversion for the largest blocks and to reject such blocks before any others, since they are
hardest to allocate. (“Large” may mean here: either large surface lj ×wj , or large processing
requirements tj .) Scheduling algorithms are known to face similar difficulties when long
tasks have to be placed.

In the real-life situation, when the entire set of blocks cannot be produced, the operator in
charge of scheduling can either move specific blocks to other assembly halls, or subcontract
them to external workshops, or change some of the system parameters (e.g., increase the
workforce to reduce processing times, postpone due dates, etc.). However, the shipyard did
not provide us with formalized information which could describe all the relevant aspects of
these choices, nor with an appropriate weighting scheme to evaluate the preferences among
blocks.

For this reason, the software that we have developed allows the operator to change man-
ually the collection of blocks to be allocated. In practice, starting from any solution X0

(feasible or not), iterative executions of the form Xk+1 = GLS(X′
k) can be performed at will

by the operator, where X′
k is a solution obtained by deliberate modifications of a previous

solution Xk . (In particular, by switching any variable bj from 0 to 1 or from 1 to 0.) This
indicates to the operator if a particular set of blocks is feasible or not, and provides the
corresponding allocation when there is one.

Finally, it should be observed that, in practice, real instances are likely to be “almost fea-
sible” since the collection of blocks which make up such instances are selected in prelimi-
nary planning phases which take into account, at least approximately, the actual production
capacity of the assembly halls. Therefore, simple optimization procedures combined with
manual updates can quickly lead to good solutions. By offering access to the three proce-
dures mentioned above, the industrial application gives the end-user a broad control of the
data and of the computed results, so that he can easily evaluate various situations and take
the appropriate decision based on several trials.

5 Computational experiments

This section presents the results of computational experiments with the different procedures
described above. The objective of these experiments was to establish guidelines for calibrat-
ing the parameters of the procedures, to evaluate their performance on various benchmark
instances, and to provide a comparison with the performance of alternative approaches based
on a generic solution package (for reasons explained below, we have used a constraint pro-
gramming package, namely ILOG (2007)). The algorithms, written in C++, have been run
on a Pentium 3 GHz with 2 Gb RAM.

5.1 Data and test instances

Let us first provide some additional information regarding the types of problem instances
encountered at the shipyard.

The amount of work required by each block depends on the complexity of the block,
which typically depends on its position in the ship, on the type of ship under construction,
and on many other factors. The processing time is thus extremely variable for different
blocks, ranging from 2 to 40 days.

Ann Oper Res (2010) 179: 57–76 67

A typical assembly hall consists of four working areas of approximately 70 × 25 meters.
The crane bridge in this hall is able to carry blocks weighing up to 180 tons; blocks of
such weights typically have dimensions of the same order as the width of the ship under
construction (e.g., 25–40 meters). About 100 blocks are scheduled at once, for a total time
horizon of 6 to 9 months.

Several test instances have been generated based on the features of this assembly hall.
Each instance contains 100 blocks to be allocated to one of the four areas; the dimensions of
each block (spatial and temporal) are compatible with the dimensions of the areas and with
the time windows. Thus, the feasibility or infeasibility of each instance is only due to the
interactions among the blocks, i.e., to the “collective constraints”.

The instances are of 6 different types, labeled by letters from A to F: types A to D cor-
respond to “realistic” instances, type E to highly structured instances, and type F to random
instances. The realistic instances are derived from industrial data and are meant to exhibit
the main features of real data (shapes of the blocks, processing times, and time windows
characteristics). More specifically:

A: Instances A0–A5 are based on real data.
B: Instances B1–B5 are derived from A1 by multiplying the length of each block in A1 by

a factor (ranging from 1.06 to 1.10) which increases with the label of the instance. Thus,
the blocks in B1 are longer than the blocks in A1, the blocks in B2 are longer than those
in B1, and so on.

C: Instances C1–C5 are similarly derived from A1 by multiplying the width of each block in
A1 by a factor (ranging from 1.03 to 1.05) which increases with the label of the instance.

D: The multiplicative factors applied when generating instances of type B or C have more
impact on large blocks than on small ones. In order to counter this effect, we build
a set of instances D1–D5 where the multiplier is applied only to the smaller blocks,
thus generating more homogeneous block sizes than in B and C. Instances D1–D3 are
increasingly homogeneous. Instance D4 is meant to be difficult: the length (resp., the
width) of each block is exactly half the length (resp., the width) of an assembly area, so
that two blocks can only fit side by side if they are very accurately adjusted. In instance
D5, the length (resp., the width) of each block is exactly equal to the length (resp., the
width) of an area, and the time windows are such that it is very clearly impossible to
allocate all the blocks.

E: In the instances E1–E5, all the blocks have the same dimensions and durations, and these
values increase from E1 to E5. The time window is also identical for all the blocks.
Instances E1 and E2 are feasible, and instances E3–E5 are infeasible. In particular, E5 is
the instance where all the blocks have the dimensions of an assembly area and duration
equal to the planning horizon length, meaning that there are 25 times too many blocks
with respect to the availability of the workshop.

F: Instances F0–F5 are randomly generated. The spatial dimensions of the blocks are nor-
mally distributed so that on average, each block fills 1

16 of an assembly area. The du-
rations tj and the release dates rj are uniformly distributed, so as to obtain a nearly
constant load of the areas. The length of the time windows decreases with the label of
the instances, which are therefore increasingly likely to be infeasible.

In total, this yields 32 instances labeled A0–A5, B1–B5, C1–C5, D1–D5, E1–E5 and
F0–F5. Some additional hard instances will be introduced in Sect. 5.5.

68 Ann Oper Res (2010) 179: 57–76

5.2 The λ parameter

The first experiments were designed to adjust the value of the λ parameter which appears
in the definition of the augmented objective function—see equation (2)—and which is the
main parameter of the GLS procedure (together with its total running time). The value of
λ determines to what degree a penalty modifies the augmented objective value and drives
the local search out of a local minimum. A large value of λ is supposed to make the search
more aggressive, to avoid solutions with penalized features and to favor large jumps in the
solution space with limited attention for the overlap term f (X) in the augmented objective
function. Small values of λ, on the other hand, may require heavier penalties pij to escape
a local minimum but should result in a more intensive exploration of the neighborhood of
the current solution and to a search strategy that is more sensitive to the gradient of f (X).
However, small λ values might prevent a broad exploration of the solution space.

We have tested the Guided Local Search algorithm with different values of λ in a broad
range from 1 to 9000, and with a high limit (1200 sec.) on its total running time. The results
obtained on a representative sample of feasible instances are displayed in Table 1 below.
(Similar results were obtained for other instances.) As the computing time of the heuristic
is random and may vary from one run to the next on any specific instance, the table dis-
plays the mean values of the computing time for 10 executions on each instance, as well
as the percentage of the number of trials for which GLS was able to find a solution within
1200 seconds when this percentage is smaller than 100%. (In the latter case, the average
computing time is reported for the solved instances only.)

We can see in Table 1 that, for small values of λ (say, λ smaller than 1000), GLS does not
always reach a feasible solution. On the other hand, the performance of the algorithm does
not seem to depend significantly on the choice of λ in the range from 1000 to 9000.

We also performed some experiments where the value of λ was dynamically adapted to
the value of the objective functions. But this self-adjusting framework did not yield better
results than those obtained with a fixed value of λ.

In the following computational experiments, the value λ = 5000 was used as default
value, since this value led to good results for most of the test instances. In the industrial
application, however, the value of λ is a user-parameter which can be changed if it does not
provide the expected results, and smaller values of λ are frequently used (see Sect. 6.2).

5.3 Comparison with a constraint programming approach

As explained in Sect. 4, the heart of our approach to STA is the GLS algorithm which tests
the feasibility of any given set of boxes. A similar approach is typically used by constraint
programming algorithms, which also rely on iterated solutions of feasibility subproblems
to solve optimization problems; see e.g. Focacci et al. (2003), Jussien and Lhomme (2002),

Table 1 Mean execution time of GLS (in seconds) and percentage of solved instances

λ 1 10 50 200 1000 3000 5000 7000 9000

A1 *(0%) 153 (30%) 113 (80%) 69.2 58.1 30.4 35.8 33.5 36.3

A2 106 (70%) 48.6 27.9 15.8 12.5 13.4 15.3 13 10.8

A3 61.9 (90%) 23.7 20 5.3 4 6.8 3.2 5.9 7.5

A4 72.8 20.9 10.1 2.4 1 2.5 4.4 6.6 5.9

B4 *(0%) 519 (10%) 450 (20%) 533 (70%) 468.2 734.3 731.7 526.8 616.7

Ann Oper Res (2010) 179: 57–76 69

Van Hentenryck and Michel (2005), Wang and Tsang (1991), etc. Therefore, we decided to
compare the performance of our GLS algorithm with that of widely available commercial
software tools for constraint programming, namely the CP-Optimizer (CPO) package and
the Solver package from ILOG (2007). Of course, this comparison is not entirely “fair” to
the extent that the GLS algorithm has been specifically tailored to handle STA, whereas the
ILOG packages are generic optimization tools. But the virtue of the comparison is precisely
to provide a better understanding of the benefits obtained by developping a specialized ad
hoc algorithm for the practical problem faced by the shipyard, rather than relying on generic
“off-the-shelf” solutions like those provided by ILOG.

Our constraint programming model for STA contains five variables for each block (area,
orientation, (x, y)-coordinates, and starting time), as well as the individual constraints and
the no-overlap constraints described in Sect. 2. This basic model, however, is too primitive
to be efficiently solved. Therefore, we strengthen it with several additional constraints. First,
we include a global packing constraint available in CPO, in order to ensure that the sum of
the three-dimensional encumbrances (surface × duration) of the blocks placed in each area
does not exceed the three-dimensional volume of the area (available surface × length of
planning horizon).

Furthermore, we add some constraints in order to reduce the large number of symmetric
solutions that are inherent to the problem. Note that symmetries arising from 180◦ rotations
of the blocks are automatically ruled out by our definition of variables, since the orientation
of each block is simply defined to be either vertical or horizontal (no right-left nor bottom-
up symmetry). A second type of symmetry issue is related to the placement of the blocks
in an area (vertical symmetry, horizontal symmetry, and 180◦ rotation of each area); it is
reduced by imposing, for each area, that one of the blocks has its upper-left corner placed
in the upper-left quadrant of the area. A last symmetry issue derives from the fact that all
working areas are identical. This problem occurs in particular when several areas are empty;
then, it is indifferent to place the next block in either one of these empty areas. This issue is
taken into account by restricting the allowed positions of the first blocks to be placed.

We ran CP Optimizer with different sets of parameters on the test instances. Among the
search strategies available in CPO, only the so-called “restart” strategy was able to deliver
significant results. We also used the Solver software on the same model; Solver allows to
implement dedicated search strategies instead of the predefined strategies present in CPO.
We have experimented with different search strategies which, however, did not prove more
efficient than the standard strategies used by CPO. Therefore, we do not dwell on the details
here and we simply focus on the comparison between CPO and GLS.

We have analyzed both the quality of the results and the computing times of GLS and
CPO. In our experiments, we concentrated mostly on the feasibility version of STA. Note
that for any given instance, the GLS heuristic can only reach the conclusion that the instance
is feasible or that it is unable to find a solution within the allocated time. On the other hand,
the CPO software can either find a solution, or prove that the problem is infeasible, or reach
the time limit without any conclusion.

Table 2 displays the results obtained on the set of benchmark instances. The computing
time of the GLS heuristic is random, therefore the times presented in Table 2 for GLS are
averages over 5 executions. On the other hand, the execution time of CPO for a given in-
stance is essentially constant. For both algorithms, a limit of 1200 seconds has been set on
the computing time. An objective value of “1” indicates that a feasible solution has been
found (in each run of the algorithm), and a “0” means that no solution has (ever) been found
within the time limit. For CPO, a value “0*” indicates that CPO has been able to prove that
the corresponding instance is infeasible. A computing time larger than 1200 indicates that
the time limit has been reached.

70 Ann Oper Res (2010) 179: 57–76

Table 2 Comparison GLS vs.
CPO Instance Objective Time

GLS CPO GLS CPO

A0 1 0 50 1201

A1 1 1 25 561

A2 1 0 11 1201

A3 1 0 7 1201

A4 1 1 4 119

A5 0 0 1201 1201

B1 1 1 43 568

B2 1 1 39 244

B3 1 0 88 1201

B4 1 0 513 1201

B5 0 0 1201 1201

C1 1 1 1 414

C2 1 0 53 1201

C3 1 0 59 1201

C4 1 0 49 1201

C5 1 0 79 1201

D1 1 0 29 1201

D2 0 0 1201 1201

D3 0 0 1201 1201

D4 0 0 1201 1201

D5 0 0* 1201 1

E1 1 0 1 1201

E2 1 0 284 1201

E3 0 0 1201 1201

E4 0 0 1201 1201

E5 0 0* 1201 1

F0 1 1 1 18

F1 1 1 1 13

F2 1 1 1 11

F3 1 1 1 16

F4 1 0 54 1201

F5 0 0 1201 1201

Clearly, more instances are solved by Guided Local Search than by Constraint Program-
ming within a given time limit. In fact, it never happens that CPO finds a solution but GLS
does not find one. Moreover, whenever both algorithms find a feasible solution, the mean
computing time required by GLS is always (much) smaller than the time required by CPO.

When no feasible solution can be found, either both algorithms reach the time limit with-
out conclusion, or CPO proves that the instance is infeasible. This last case is interesting but
unfortunately, it occurs very rarely (2 instances out of 32 in our experiments), and only for
instances which are “severely” infeasible (recall the description of the instances in Sect. 5.1).

Ann Oper Res (2010) 179: 57–76 71

In conclusion, the GLS algorithm clearly outperforms the CPO algorithm on our set of
benchmark instances. Of course, we cannot exclude that a more sophisticated CP model
and/or more advanced settings of the CPO software would yield better results. But at the
very least, the comparison seems to justify the development of our specialized algorithm
for the industrial application. These conclusions are actually fully coherent with the obser-
vations in recent papers by Martello et al. (2007) or Pisinger and Sigurd (2007), where the
authors develop exact algorithms for different variants of bin-packing problems and where
CP approaches prove useful for the solution of specific one-bin subproblems, but only in
combination with other advanced integer programming techniques.

5.4 Performance of GLS as a function of its running time

In the previous section, we have shown that GLS is able to solve many feasible benchmark
instances within T = 1200 seconds. In fact, it is interesting to note that, for the number of
blocks considered here, the running time of GLS on feasible realistic instances (A0–A5) is
actually quite short, in the range of 10 to 50 seconds. This is probably due to the fact, already
mentioned above, that real instances are likely to be reasonably easy as the assembly hall is
not excessively loaded.

To validate these observations, Table 3 shows the ability of GLS to solve a feasible in-
stance within a given time T , when T is relatively short (which must be the case at the
shipyard, where the algorithm is meant to be used frequently; see also Sect. 5.5). For each
instance, we report the percentage of executions (out of 10 trials) that successfully found a
feasible solution. We can see that GLS performs quite well for most instances when T = 40
seconds or T = 120 seconds, except for B4 which is clearly a much harder instance (see
Sect. 5.1).

5.5 Optimization procedures

The procedures BlockDescent(X,T) and MaxBlocks(X,T ,Tmax) described in Sect. 4 aim
at maximizing the total number of blocks produced. They iteratively generate several sets
of blocks X, check whether each set is feasible (using the procedure GLS(X,T)), modify

Table 3 Percentage of instances solved by GLS as a function of its running time

T = 120 T = 40 T = 20 T = 10 T = 5

A0 100% 90% 40% 0% 10%

A1 100% 100% 90% 30% 20%

A2 100% 100% 100% 100% 30%

A3 100% 100% 100% 100% 70%

A4 100% 10% 0% 0% 0%

B1 100% 70% 50% 10% 0%

B2 90% 70% 10% 20% 0%

B3 90% 20% 20% 0% 0%

B4 20% 0% 0% 0% 0%

D1 100% 50% 20% 20% 0%

Mean values 90% 55% 39% 25% 12%

72 Ann Oper Res (2010) 179: 57–76

Fig. 1 Performance of MaxBlocks(X,T ,Tmax) for different values of T

it accordingly, and eventually return the best solution found in the process. Of course, we
expect a larger time parameter T to provide more certainty about the feasibility or infeasi-
bility of a current solution X (cf. hypothesis (HA) in Sect. 4, and the observations reported
in Sect. 5.4). Thus, it is intuitively better to set a rather large value for this parameter. On
the other hand, when the iterative calls GLS(X,T) are long, a smaller number of solutions
are analyzed within the same total computing time Tmax, and this reduces the likelihood to
reach the best solutions. Therefore, we have tested the trade-off between these two antago-
nistic impacts for the procedure MaxBlocks(X,T ,Tmax), which is the more efficient of the
two optimization procedures.

Figure 1 displays the results obtained when MaxBlocks(X,T ,Tmax) is executed with a
total time limit Tmax = 120 seconds and with various values of T in a range from 5 to 120
seconds. Note that, as a result of these parameter settings, GLS(X,T) can be called from
1 to more than 120 times in any given experiment. For each value of T , the vertical axis
shows the average number of blocks in the best solution found by MaxBlocks(X,T ,Tmax)
for several classes of instances.

More precisely, the graph labeled MA (resp., MB, MD) shows the mean value of the
results over the instances A0–A5 (resp., B1–B5, D1–D4). Each individual instance was
solved 10 times for each value of T . The complexity of the individual instances has been
further increased by multiplying the width of each block by a constant factor 1.5, thus giving
rise to more difficult instances IA0–IA5, IB1–IB5 and ID1–ID4, respectively. The mean
results obtained for the latter instances are also displayed in Fig. 1: see graphs IMA, IMB,
IMD, respectively.

We can observe that two behaviors appear depending on the relative complexity of the
instances. Instances A to D are rather low complexity instances for the optimization prob-
lem, and each of these instances includes many feasible subsets of blocks; so, the main
challenge in this context is essentially to identify correctly these feasible subsets and, as we
already observed in Sect. 5.4, larger values of T produce the best performance. For harder

Ann Oper Res (2010) 179: 57–76 73

instances (IA, IB, ID), however, the performance of the algorithm slightly increases when
T decreases. In this case, each local search phase GLS(X,T) is very short, but its repetitive
execution allows to reach good solutions.

The previous observations suggest that running MaxBlocks for a longer time should yield
even better results. Accordingly, some experiments have also been conducted with a very
large time limit (Tmax = 6000 seconds) and led to an improvement of the best solution
by about 4% (i.e., 4 blocks) on some instances. It should be stressed, however, that such
long running times are excessive in the industrial context, where the algorithms are usually
allowed to run for one or two minutes only.

To conclude, we can say that GLS(X,T) displays a good performance on feasible in-
stances when T is around 120 seconds. On the other hand, for infeasible instances, the
optimization procedure MaxBlocks(X,T ,Tmax) allows GLS to escape local minima. In this
case, a trade-off has to be found when setting the parameter T . In practice, a total computing
time of Tmax = 120 seconds with T = 20 seconds appears to offer a good compromise.

6 Industrial issues

The algorithms described in this paper have been developed for three different workshops
at Aker Yards France. At the time of this writing, they have been in daily use for several
months at the shipyards. As compared to the “academic” and rather abstract description of
the problem that we gave in previous sections, tailoring the algorithms to their industrial
environment required several adaptations and raised new questions that we now proceed to
discuss.

6.1 Additional constraints

Various side-constraints have to be considered in order to increase the practical relevance of
the STA model. Fortunately, the GLS framework proved flexible enough to incorporate most
of these constraints without too much additional effort.

For example, in practice, it may be necessary to restrict or to impose the position of
certain blocks (e.g., because these blocks are already in process when the planning process
is launched, or because some required handling or production equipment is only available in
a particular area, etc.). Such individual constraints on blocks are easily handled by the GLS
algorithm: forbidden positions and infeasible neighbors are simply not generated during the
search. Thus, in practice, the end-user may fix the value or reduce the domain of any variable
when using the software (including bj -variables; see also Sect. 4).

More complex collective constraints also appeared in the real-life situation. In particular,
for the assembly hall described in the previous section, each working area has a single door,
and the crane bridge can only carry the blocks up to a certain height C. As a result, it may
happen that a tall block obstructs the door or stands otherwise in the way, and some finished
blocks may not be deliverable in time because there is no feasible passageway to carry them
out of the hall.

Here again, the GLS approach proved “generic” enough to deal with this issue. For each
generated solution X, we added to the objective function h(X) a new penalty term which
accounts for exit difficulties:

g(X) = h(X) + e(X)

=
∑

i<j

overlapij (X) + λ
∑

i<j

pij Iij (X) +
∑

i,j

exitij (X),

74 Ann Oper Res (2010) 179: 57–76

where exitij (X) measures the overlap between block i and the “exit path” for block j . The
exit path for j is restricted by security constraints which impose to use a straight path, and
thus it is determined by:

• the longitudinal interval [xj , xj + ojwj + (1 − oj)lj];
• the transversal interval [0, yj + (1 − oj)wj + oj lj], as the doors are at position y = 0;
• the vertical interval [C − hj ,C], since each block can be carried up to the height of the

crane bridge;
• the completion date sj + tj of block j ;
• the area aj where block j is produced.

Note that the value of the exit terms could somehow be scaled in relation to the h(X) val-
ues, but this did not appear to be useful in our procedure, as the new penalty terms proved
sufficient to drive the objective function to zero.

Additional collective constraints arise when a family of related blocks have to be pro-
duced for a ship. For example, all the blocks that include the emergency boats require similar
production equipments, and it is convenient to allocate them to a same zone of the halls. In a
similar way, two blocks that are adjacent in the ship structure may need to be produced next
to each other in the assembly hall, so as to allow a fine positioning of connecting elements
like members or piping tracks. An easy way to cope with the latter requirement is to define
a super-block that includes the two (or more) adjacent blocks and to replace the individual
blocks by this super-block in the data of the problem. For the first situation, however, this
method is too restrictive, and we prefered instead to define a “distance” constraint that limits
the relative distance between two blocks.

Other collective constraints could certainly be included in the model by taking full ad-
vantage of the flexibility of the GLS framework.

6.2 Robustness

The optimization procedures BlockDescent or MaxBlocks described in Sect. 4, just like the
guided local search procedure GLS, always start from an initial solution X0. A drawback of
this approach is that the structure of X0 can confine GLS to an area of the solution space that
can be difficult to escape (especially for small values of λ), and therefore, the search process
may not reach the very best solution.

However, in a dynamic industrial setting, this apparent drawback turns out to be an advan-
tage. Indeed, it may be very costly, or practically impossible for the company to frequently
readjust the schedules and the allocation of blocks to the halls. By generating new solutions
from previous ones, the GLS procedure actually ensures that the structure of previous solu-
tions can be preserved when the production plans are updated. (This is to be contrasted with
various methods proposed for rectangle packing problems arising in VLSI design, which
typically rely on construction strategies and for which a slight modification of the data may
lead to major perturbations of the solution.) As a consequence, it may prove rewarding to
run GLS with a relatively small value of λ in the industrial context.

6.3 Dispatching and subcontracting blocks

The aim of the methods described in this paper was to maximize the number of blocks
produced in a particular assembly hall. Compared to the situation faced by the shipyard, this
is actually a rather gross simplification. The shipyard is indeed composed of two distinct
assembly halls dedicated to the production of building blocks. Additionally, blocks (or parts

Ann Oper Res (2010) 179: 57–76 75

of blocks) can be processed at a panel line, another assembly hall involving completely
different processes. Finally, blocks can also be subcontracted to outside firms, but this is
usually more costly and should be avoided as much as possible.

Our algorithms have been easily adapted, and are currently used, for several halls consist-
ing of rectangular areas of heterogenous sizes. These halls are viewed as distinct production
units and are handled independently of each other. An interesting topic for additional re-
search, however, would be to simultaneously deal with the global issue of dispatching the
blocks among the assembly halls, as well as with the subcontracting decisions. This would
require, in particular, to handle cost data (for handling, subcontracting, . . .) which were not
available to us in the framework of the project reported here.

7 Conclusion

In this paper, we have presented a real-world space and time allocation problem arising in
a large shipyard, and we have modeled it as a 3-dimensional bin packing problem. We have
demonstrated the practical efficiency and usefulness in this industrial context of the GLS
approach proposed by Faroe et al. (2003) for the 3D-BPP. This generic approach allows
incorporating various real-life constraints and led to the successful implementation of a
flexible and robust application which is now in daily use at the shipyard.

Acknowledgements We wish to thank Aker Yards France for their support in this work and for numerous
helpful comments regarding the shipbuilding process. We also thank several ANAST colleagues and three
anonymous referees for their constructive remarks on earlier versions of the paper.

References

Aarts, E., & Korst, J. (1989). Simulated annealing and Boltzmann machines—a stochastic approach to com-
binatorial optimization and neural computing. New York: Wiley.

Brunetta, L., & Grégoire, Ph. (2005). A general purpose algorithm for three-dimensional packing. INFORMS
Journal on Computing, 17(3), 328–338.

Coffman, E. G., Garey, M. R., & Johnson, D. S. (1997). Approximation algorithms for bin packing: A survey.
In D. S. Hochbaum (Ed.), Approximation algorithms for NP-hard problems. Boston: PWS Publishing
Company.

Coffman, E. G., Galambos, G., Martello, S., & Vigo, D. (1999). Packing approximation algorithms: Com-
binatorial analysis. In D.-Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization.
Dordrecht: Kluwer Academic.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Re-
search, 44, 145–159.

Dyckhoff, H., Scheithauer, G., & Terno, J. (1997). Cutting and packing. In M. Dell’Amico, F. Maffioli, &
S. Martello (Eds.), Annotated bibliographies in combinatorial optimization. New York: Wiley.

Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided local search for the three-dimensional bin-packing
problem. INFORMS Journal on Computing, 15(3), 267–283.

Focacci, F., Laburthe, F., & Lodi, A. (2003). Local search and constraint programming. In F. Glover &
G. Kochenberger (Eds.), Handbook of metaheuristics. International Series in Operations Research &
Management Science. Dordrecht: Kluwer Academic.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-
completeness. New York: Freeman.

Glover, F. (1990). Tabu search: a tutorial. Interfaces, 20(4), 74–94.
Hansen, P., & Mladenovič, N. (2001). Variable neighborhood search: Principles and applications. European

Journal of Operational Research, 130, 449–467.
ILOG (2007). CP Optimizer user’s manual and reference manual. ILOG, Paris.
Imahori, S., Yagiura, M., & Ibaraki, T. (2003). Local search algorithms for the rectangle packing problem

with general spatial costs. Mathematical Programming, 97, 543–569.

76 Ann Oper Res (2010) 179: 57–76

Imahori, S., Yagiura, M., & Ibaraki, T. (2005). Improved local search algorithms for the rectangle packing
problem with general spatial costs. European Journal of Operational Research, 167, 48–67.

Jussien, N., & Lhomme, O. (2002). Local search with constraint propagation and conflict-based heuristics.
Artificial Intelligence, 139, 21–45.

Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problem: a survey. European Journal
of Operational Research, 141, 241–252.

Martello, S., Pisinger, D., & Vigo, D. (2000). The three dimensional bin packing problem. Operations Re-
search, 48(2), 256–267.

Martello, S., Pisinger, D., Vigo, D., Den Boef, E., & Korst, J. (2007). Algorithm 864: General and robot-
packable variants of the three-dimensional bin packing problem. ACM Transactions on Mathematical
Software, 33(1), 1–12.

Martello, S., & Toth, P. (1990). Knapsack problems—algorithms and computer implementations. New York:
Wiley.

Pisinger, D., & Sigurd, M. (2007). Using decomposition techniques and constraint programming for solving
the two-dimensional bin-packing problem. INFORMS Journal on Computing, 19(1), 36–51.

Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. Cambridge, MA: The MIT Press.
Voudouris, C. (1997). Guided local search for combinatorial optimization problems. Ph.D. Thesis, Depart-

ment of Computer Science, University of Essex, Colchester, United Kingdom.
Voudouris, C., & Tsang, E. (1997). Fast local search and guided local search and their application to British

Telecom’s workforce scheduling problem. Operations Research Letters, 20, 119–127.
Voudouris, C., & Tsang, E. (1999). Guided local search and its application to the traveling salesman problem.

European Journal of Operational Research, 113, 469–499.
Wang, C. J., & Tsang, E. (1991). Solving constraint satisfaction problems using neural-networks. In Proceed-

ings of IEE second international conference on artificial neural networks, pp. 295–299.

	Space and time allocation in a shipyard assembly hall
	Abstract
	Introduction
	The model
	Relation to the 3-Dimensional Bin Packing problem

	Finding feasible solutions
	General approach
	Guided local search
	Fast local search

	Selecting the blocks
	Computational experiments
	Data and test instances
	The lambda parameter
	Comparison with a constraint programming approach
	Performance of GLS as a function of its running time
	Optimization procedures

	Industrial issues
	Additional constraints
	Robustness
	Dispatching and subcontracting blocks

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

