
Ann Oper Res (2010) 179: 203–220
DOI 10.1007/s10479-008-0449-4

A hybrid GRASP/VND algorithm
for two- and three-dimensional bin packing

F. Parreño · R. Alvarez-Valdes · J.F. Oliveira ·
J.M. Tamarit

Published online: 25 October 2008
© Springer Science+Business Media, LLC 2008

Abstract The three-dimensional bin packing problem consists of packing a set of boxes
into the minimum number of bins. In this paper we propose a new GRASP algorithm for
solving three-dimensional bin packing problems which can also be directly applied to the
two-dimensional case. The constructive phase is based on a maximal-space heuristic devel-
oped for the container loading problem. In the improvement phase, several new moves are
designed and combined in a VND structure. The resulting hybrid GRASP/VND algorithm
is simple and quite fast and the extensive computational results on test instances from the
literature show that the quality of the solutions is equal to or better than that obtained by the
best existing heuristic procedures.

Keywords Cutting · Packing · Heuristic algorithms · GRASP · VND

1 Introduction

The three-dimensional bin packing problem (3BP) consists of determining the minimum
number of three-dimensional rectangular containers (bins) into which a given set of n three-
dimensional rectangular items (boxes) can be orthogonally packed without overlapping.
All bins are of identical known dimensions (W,H,D) and each box i is of dimensions
(wi, hi, di), i = 1, . . . , n. We assume, without loss of generality, that all the input data are

F. Parreño
Department of Mathematics, University of Castilla-La Mancha, Albacete, Spain

R. Alvarez-Valdes (�) · J.M. Tamarit
Department of Statistics and Operations Research, University of Valencia, Burjassot, Valencia, Spain
e-mail: ramon.alvarez@uv.es

J.F. Oliveira
Faculty of Engineering of the University of Porto, Porto, Portugal

J.F. Oliveira
INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Porto, Portugal

mailto:ramon.alvarez@uv.es


204 Ann Oper Res (2010) 179: 203–220

Fig. 1 Example class 7 instance 2 with 40 items

positive integers and that wi ≤ W , hi ≤ H and di ≤ D, i = 1, . . . , n. It is also assumed that
the orientation of the items is fixed, i.e. they cannot be rotated. We can see an instance in
Fig. 1 in which 40 boxes are packed into 6 bins. The two-dimensional bin packing problem
(2BP) addresses the same question for two-dimensional bins (W,H) and boxes (wi, hi) and
can be considered a special case of 3BP when di = D,∀i = 1, . . . , n. According to the ty-
pology proposed by Wäscher et al. (2007), bin packing problems are classified as SBSBPP
(Single Bin-Size Bin Packing Problems). The problem is strongly NP-hard as it generalizes
the strongly NP-hard one-dimensional bin packing problem.

Three-dimensional packing problems are of relevant practical interest in industrial ap-
plications such as loading cargo into pallets, containers or vehicles, or packaging design.
Although 3BP is a simplified version of real-world problems, in many cases it arises as a
subproblem of other complex problems not only in cutting and packing but also in some
scheduling problems.

An exact method for the 3BP was proposed by Martello et al. (2000). Their initial pro-
posal only solved robot-packable problems (den Boef et al. 2005), but was later modified
for solving the general problem (Martello et al. 2007). Fekete and Schepers (2004a), Fekete
et al. (2007) proposed a general framework for the exact solution of multi-dimensional pack-
ing problems. A branch and bound algorithm for the two-dimensional case was also devel-
oped by Martello and Vigo (1998).

Lower bounds for the 3BP appeared in the above mentioned paper by Martello et al.
(2000), and that by Fekete and Schepers (2004b). More recently, Boschetti (2004) has intro-
duced new bounds which dominate previous ones. Boschetti and Mingozzi (2003a, 2003b)
propose new lower bounds for the two-dimensional case.

Several constructive and metaheuristic algorithms have been designed for solving large
bin packing problems. Faroe et al. (2003) proposed a Guided Local Search heuristic for
3BP and 2BP, based on the iterative solution of constraint satisfaction problems. Lodi
et al. have developed tabu search algorithms based on new constructive procedures for two-
dimensional (Lodi et al. 1999) and three-dimensional (Lodi et al. 2002) cases, and a unified
tabu search code for general multi-dimensional bin packing problems (Lodi et al. 2004).
More recently, Crainic et al. (2008) have developed a two-level tabu search algorithm, in
which the first level aims to reduce the number of bins and the second optimizes the packing



Ann Oper Res (2010) 179: 203–220 205

of the bins, using the representation proposed by Fekete and Schepers (2004a), Fekete et al.
(2007). This two-level scheme results in a more flexible structure and the computational
results show their algorithm equals or outperforms previous approaches.

For the two-dimensional bin packing problem (2BP), Boschetti and Mingozzi (2003b)
proposed an effective constructive heuristic that assigns a score to each object, considers
the objects according to decreasing values of the corresponding scores, updates the scores
using a specified criterion, and iterates until either an optimal solution is found or a maxi-
mum number of iterations has been performed. More recently, Monaci and Toth (2006) have
designed a set-covering-based heuristic approach in which in a first phase a large number
of columns are generated by heuristic procedures (including the Boschetti and Mingozzi
algorithm (2003b)) and by a time-limited execution of the exact algorithm by Martello and
Vigo (1998). In the second phase they use these columns, corresponding to efficient ways
of filling one bin, for solving a set-covering problem which gives the solution to the original
bin packing problem.

In this paper we propose a new GRASP (Greedy Randomized Adaptive Search Proce-
dure) algorithm for solving two and three dimensional bin packing problems. The construc-
tive phase is based on a heuristic we developed for the container loading problem (Parreño
et al. 2008a). In the improvement phase, several new moves are designed, tested and finally
combined in a VND (Variable Neighborhood Descent) structure (Hansen and Mladenovic
2005). The resulting hybrid GRASP/VND algorithm is simple and fast and the extensive
computational results show the solutions to be equal to or better than those obtained by the
best, more complex existing procedures. The paper is organized as follows. Section 2 de-
scribes some preprocessing techniques developed to reduce the dimensions of the problem.
Section 3 presents the constructive and improvement phases of the algorithm, as well as a
diversification procedure. In Sect. 4 the algorithm is tested on a large set of test instances
from the literature and compared with the best reported heuristics. Finally, in Sect. 5 some
conclusions are drawn.

2 Preprocess

We have designed a procedure to be applied before calling the heuristic algorithms in order
to transform the original instance into an equivalent problem which can be more easily
solved.

If there is a box j such that wj > W/2, hj > H/2 and dj > D/2, we build the set
Sj = {i | wi ≤ W − wj or hi ≤ H − hj or di ≤ D − dj }. The boxes in Sj are the only ones
that can be packed into the same bin as box j . Then, if there is a feasible packing of boxes
{j} ∪ Sj , this packing optimally fills one bin and we can solve a reduced problem without
these boxes and add this bin to the solution.

The existence of this packing is heuristically checked and therefore it may be that the
packing exists and we are not able to find it. As this test is used to discard boxes from the
problem resolution, the failure of the heuristic will just mean that we will solve a larger
problem. First, we compute the total volume of box j , vj = wj ∗ hj ∗ dj , and the boxes in
Sj , Vj = ∑

i∈Sj
wi ∗ hi ∗ di . If vj + Vj ≤ W ∗ H ∗ D, we try to pack the boxes using the

constructive algorithm which will be described in the next section. If vj + Vj > W ∗ H ∗D,
the boxes do not fit into one bin and in principle the procedure cannot be applied. However,
if there is a box k ∈ Sj such that wk = mini∈Sj

{wi}, hk = mini∈Sj
{hi}, dk = mini∈Sj

{di}, that
is, minimal in Sj in all dimensions, we consider the set Sj \ k. If vj + Vj − vk ≤ W ∗ H ∗ D

and, by applying the heuristic procedure, we can pack box j and the boxes in Sj \ k into one



206 Ann Oper Res (2010) 179: 203–220

bin, then this packing is still optimal (the bin containing box j cannot be filled in any better
way). We can then solve a reduced problem with the remaining boxes, including the box k.

3 GRASP algorithm

The GRASP algorithm was developed by Feo and Resende (1989) to solve hard combina-
torial problems. For an updated introduction, refer to Resende and Ribeiro (2003). GRASP
is an iterative procedure combining a randomized constructive phase and an improvement
phase. In the subsections we describe a constructive procedure, a randomization strategy
which will be embedded in the constructive process, some movements for the improvement
phase, and a diversification phase which can be included in the iterative structure.

3.1 The constructive phase

The constructive procedure follows an iterative process in which at the beginning of each
iteration we have a list of boxes still to be packed B and a new empty bin E. Initially, this
list contains the complete list of boxes and, as the bins are filled, it is reduced until all the
boxes have been packed.

At each iteration, given the list and dimensions of the remaining boxes and the dimen-
sions of the bin, we apply a constructive algorithm we originally designed for solving the
Container Loading Problem (Parreño et al. 2008a, 2008b). Each application of the construc-
tive algorithm fills one bin and the procedure is used until all the boxes are packed. The
details of the algorithm can be found in the references and we will only outline its main
steps here.

1. Step 0: Initialization
S ={E}, the set of empty maximal spaces.
B = {b1, b2, . . . , bm}, the set of boxes still to be packed.

2. Step 1: Choosing the maximal space in S
We have a list S of empty maximal spaces. These spaces are called maximal because at
each step they are the largest empty parallelepiped available to be filled with rectangular
boxes. We can see an example for a 2D problem in Fig. 2. Initially we have an empty
rectangle and when we pack a piece into its bottom left corner, two maximal spaces are
generated. These spaces do not have to be disjoint. In the same Fig. 2 we see one more
step of the filling process with the maximal spaces generated.

At each step we take the maximal space with the minimum distance to a corner of the
bin and use the volume of the space as a tie-breaker. The corner of the maximal space
with the lowest distance to a corner of the bin will be the corner into which the boxes
will be packed. The reason behind that decision is to first fill the corners of the bin, then
its sides and finally the inner space.

3. Step 2: Choosing the boxes to pack
Once a maximal space S∗ has been chosen, we consider the boxes i of B fitting into S∗ in
order to choose which one to pack. If there are several boxes with the same dimensions,
we consider the possibility of packing a layer, that is, packing several of these boxes
arranged in rows and columns.

Two criteria have been considered to select the configuration of boxes:
(i) Best-Volume:

The box or layer producing the largest increase in the volume occupied by boxes.



Ann Oper Res (2010) 179: 203–220 207

Fig. 2 Maximal spaces in two
dimensions

(ii) Best-Fit:
The box or layer which fits best into the maximal space. We compute the distance
from each side of the layer to each side of the maximal space and order these dis-
tances in a vector in non-decreasing order. The box or layer is chosen using the
lexicographical order.

4. Step 3: Updating the list S
Unless the layer fits exactly in space S∗, packing it produces new empty maximal spaces,
which will replace S∗ on the list S . Moreover, as the maximal spaces are not disjoint,
the layer being packed can intersect with other maximal spaces which will have to be
reduced. Therefore, we have to update the list S . Once the new spaces have been added
and some of the existing ones modified, we check the list and eliminate possible inclu-
sions. Figure 2 shows this process. When the second box is packed in maximal space 1,
the space into which it is packed is eliminated from the list and is replaced by two new
spaces 3 and 4. Maximal space 2 is also affected by the packing thereby defining a new,
reduced, maximal space 5.

The list B is also updated and the maximal spaces that cannot accommodate any of
the boxes still to be packed are eliminated from S . If S = ∅ or B = ∅, the procedure ends.
Otherwise, it goes back to Step 1.

In the deterministic procedure described above, we have introduced a randomization
strategy at Step 2 when selecting the type of box and the configuration to pack. We consider
all feasible configurations of all types of boxes fitting into S and evaluate them according
to the objective function (Best-Volume or Best-Fit). The configuration is selected at random
from among a restricted set of candidates composed of the best 100δ% of the blocks, where
0 ≤ δ ≤ 1 is a parameter to be determined.

It is difficult to determine the value of δ that gives the best average results. The principle
of reactive GRASP, proposed for the first time by Prais and Ribeiro (2000), is to let the
algorithm find the best value of δ in a small set of allowed values. The parameter δ is initially
taken at random from a set of discrete values {0.1, . . . ,0.8,0.9}, but after a certain number
of iterations the relative quality of the solutions obtained with each value of δ is taken into
account and the probability of values consistently producing better solutions is increased.

At every iteration of the GRASP algorithm, except the first one, the constructive phase
has a target, a maximum number of bins to use, which is set to the best current solution minus
one. If the first solution requires n bins to pack all the boxes, in the subsequent iterations
the constructive phase will use at most n − 1 bins. If the boxes do not fit into n − 1 bins, the
solution will consist of n − 1 lists of boxes packed into the n − 1 available bins plus a list of
unpacked boxes. If at a given iteration all the boxes are packed into the available bins, the
target is decreased by one unit for the following iterations.



208 Ann Oper Res (2010) 179: 203–220

3.2 Improvement phase

Each solution built at the constructive phase is the starting point for a procedure in which
we try to improve the solution. Before applying any move we order the bins in the solution
by non-increasing occupied volume. In this way, the last bins in the solution will have more
empty spaces and will be the more likely candidates to be involved in improving moves.
Inside each bin, the order of the boxes is the order in which they were inserted into the
solution. We have studied several alternatives:

• The first procedure starts by eliminating the last k% items in the solution (for instance, the
last 50%), in the order described above. These items correspond to the less occupied bins.
We choose the value k at random from [30,90]. The removed items plus the unpacked
items are then packed again using the deterministic constructive procedure. In this call of
the deterministic algorithm we can use the objective function Best-Volume or the objective
function Best-Fit. Both alternatives have been tested and their results will appear in the
next section.

In Fig. 3 we can see an example with seventeen boxes. At a given iteration four bins are
being used in the constructive phase and one box is left unpacked. First, the last five items
are removed. Then the six currently unpacked boxes are considered for packing using
the deterministic constructive procedure. In this case all items are packed and a feasible
solution with only four bins is found. Therefore, in the next iterations of the GRASP
algorithm the target will be to use only three bins.

• A second procedure consists of considering the bins whose occupied volume is lower
than the average occupancy and removing the last k% pieces packed from each one of
them. The partially emptied bins are then filled again using the deterministic constructive
algorithm (with the Best-Volume or Best-Fit objective function).

• In a third procedure for each bin whose occupancy is below average the bin is split into
two parts, randomly selecting whether the cut is to be horizontal or vertical, and one
of the two resulting sides of the bin (upper/lower, left/right), again randomly selected,
is emptied. That involves removing pieces whose volume is mostly included in the part

Fig. 3 Instance 10 21, first move



Ann Oper Res (2010) 179: 203–220 209

Fig. 4 Instance 1 17, fourth move

being emptied. The partially emptied bins are filled using the deterministic constructive
algorithm (with the Best-Volume or Best-Fit objective function).

• The fourth procedure consists of a local search which is only called if we have more than
two bins in the current solution. The move consists of removing all the boxes from two
bins in the current solution and completing the partial solution, with the added condition
that the first item packed in the first bin is one of the unpacked items. This way we pack
items which were previously difficult to pack. The neighborhood consists of all pairs of
bins in which at least one of them has an occupancy which is below the average.

We have proved two variants, one in which as soon as we find an improving move we
make it (First-improve) and another in which we examine the neighborhood completely
before making a move (Best-improve). A preliminary computational experiment shows
that the complete exploration of the neighborhood produces better results.

An example of this kind of improvement can be seen in Fig. 4, in which we remove
the boxes in bins 2 and 4. We pack the only box which was not included in any of the bins
of the solution in the first empty bin, and then the remaining boxes with the constructive
algorithm.

A move is considered to improve the solution if the total volume of boxes packed into
the bins is increased.

The improvement phase is only called if the solution of the constructive phase is con-
sidered to be promising, that is, if it is considered a good starting point to improve the best
known solution. More specifically, we try to improve a solution if the volume of packed
boxes V ≥ Vtotal − (Vtotal/(nBestbins − 1)), where Vtotal is the total volume of the boxes and
nBestbins corresponds to the minimum number of bins used.

In summary, the first move, in which the last k% boxes in the solution are removed, has
been chosen because it has worked well in the Container Loading Problem (Parreño et al.
2008a). The second move is a variation of the first one in which the percentage of boxes to
be removed is applied to every bin of those below average. The third move is an aggressive
variation of the second, allowing different parts of the bins to be emptied. Finally, the fourth



210 Ann Oper Res (2010) 179: 203–220

move looks for pairs of complementary bins which can be best filled by combining the boxes
initially contained in both of them, plus the items outside the solution, in a different way.

Having defined four improvement moves, we can choose just one of them, according to
certain computational experiments, or combine them somehow to produce a more powerful
improvement phase. In the next section a computational comparison of the effect of each
individual move with both objective functions is presented. We have also designed three
possible combination strategies:

1. All moves:
Each move, in the order in which they have been described, is applied to the solution

while it improves the current solution.
2. VND (Variable Neighborhood Descent):

Define the neighborhoods N1 to N4 corresponding to the four moves and apply the
VND scheme as described in Hansen and Mladenovic (2005). Note that given a feasi-
ble solution x, its neighborhoods N1, N2 and N3 only contain one solution, so we are
considering quite a special VND algorithm, but the basic scheme can be applied to this
case:

Initialization: Select the set of neighborhood structures Np , for p = 1, . . . ,4, and start
from the initial solution x obtained by the constructive algorithm.

Repeat the following sequence until no improvement is obtained:
(1) Set p ← 1
(2) Repeat the following steps while p <= 4

(a) Exploration of neighborhood.
Find the best neighbor x ′ of x(x ′ ∈ Np(x));

(b) Move or not.
If the solution x ′ obtained is better than x, set x ← x ′ and p ← 1.
Otherwise, set p ← p + 1;

3. VNDseq (Sequential Variable Neighborhood Descent):
In VNDseq the neighborhoods are used in the same order as in VND, but in the Lo-

cal Search when a solution is improved using the pth neighborhood, instead of setting
p = 1 and going back to the first neighborhood, the algorithm proceeds sequentially to
the (p + 1)th.

3.3 Diversification phase

Throughout the search we store a vector with the frequency with which each item is not
packed into the available bins. We can use this information to diversify the search. After a
given number of iterations without improving the best known solution, we perform a certain
number of diversification iterations in which the constructive process is modified. Every
time we start packing a new bin, we pack into it the unpacked piece with the largest value
in the frequency vector and then go on with the usual filling process. In this way, the pieces
which are more difficult to pack and are left unpacked most of the time go into a bin for at
least a given number of iterations. A preliminary study showed that putting more than one
of these difficult pieces into the same bin consistently produced bad solutions and therefore
we put just one of these pieces into every new bin.

Whenever the solution is improved and the total number of bins is reduced, the frequency
vector is initialized.



Ann Oper Res (2010) 179: 203–220 211

4 Computational experiments

In this section we will present the results of the computational experiments. Our goal is to
show that the new algorithm on average produces similar or better solutions than all the other
known algorithms for the two- and three-dimensional bin-packing problem. We also show
that the high quality solutions for medium-large instances can be constructed in seconds on
a standard laptop.

The above algorithm was coded in C++ and run on a Pentium Mobile at 1500 MHz with
512 Mbytes of RAM. In order to assess the relative efficiency of our algorithm we have
compared it with the guided local search algorithm by Faroe et al. (2003), the tabu search
procedures by Lodi et al. for two-dimensional (1999) and three-dimensional cases (2002),
the heuristic proposed by Boschetti and Mingozzi (2003b) and the recent set-covering algo-
rithm by Monaci and Toth (2006) and TS2PACK by Crainic et al. (2008).

4.1 3D instances

For three-dimensional bin packing, the standard benchmark is the set of 320 problems gen-
erated by Martello et al. (2000). The instance generator is available at http://www.diku.dk/
~pisinger/codes.html. These instances have already been used by Faroe et al. (2003) (GLS)
and by Lodi et al. (2002) (TS3).

The instances are organized into 8 classes with 40 instances each, 10 instances for each
value of n ∈ {50,100,150,200}.

4.2 2D instances

For two-dimensional bin packing there are several sets of commonly used instances.
First, we consider those generated by Berkey and Wang (1987) and by Martello and
Vigo (1998). Each class is composed of 50 instances, 10 instances for each value of
n ∈ {20,40,60,80,100}, so a set of 500 instances has been considered. As for the lower
bounds, we used those proposed by Martello and Vigo (1998) and by Boschetti and Min-
gozzi (2003a). All instances, and the corresponding best known solution values, are avail-
able at http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm. Finally,
we consider other instances in the literature: instances cgcut , proposed by Christofides and
Whitlock (1977), gcut and ngcut , proposed by Beasley (1985a, 1985b), all available in
the ORLIB library, http://ww.ms.ic.ac.uk/info.html, see Beasley (1990). These instances are
two-dimensional cutting problems that were transformed into 2D-BPP as explained by Faroe
et al. (2003). We also used the beng set, proposed by Bengtsson (1982), available in the
PackLib2 (Fekete and Van der Veen 2007), http://mo.math.nat.tu-bs.de/packlib/index.html.
These classes have been used by Faroe et al. (2003) (GLS), Lodi et al. (1999) (TS3),
Boschetti and Mingozzi (2003b) (HBP) and Monaci and Toth (2006) (SCH).

4.3 Choosing the best strategies

Table 1 presents the results obtained by the constructive algorithm in Sect. 2. At Step 2 of this
algorithm, when selecting the new maximal space into which to pack new boxes, the orig-
inal procedure chose the space closest to one of the eight corners in the three-dimensional
container. Using this strategy, the container was first filled at the corners, then at the sides
and finally at the center. We compared this strategy with some alternatives in which only the
four corners at the base of the container were used to choose the space and the results were

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm
http://ww.ms.ic.ac.uk/info.html
http://mo.math.nat.tu-bs.de/packlib/index.html


212 Ann Oper Res (2010) 179: 203–220

Table 1 Results of the constructive algorithm according to selection of the corner

LB Fixed by One Two corners Four Eight

preproc. corner X Y Z corners corners

2D class 1 993 34 1008 1010 1011 1013

2 124 0 129 129 129 130

3 687 1 725 727 728 740

4 119 0 127 127 128 126

5 883 15 918 917 919 915

6 108 0 116 116 116 116

7 813 5 853 844 857 855

8 826 1 858 861 850 863

9 2130 222 2138 2138 2138 2138

10 490 6 523 524 517 523

2D literature 230 3 240 241 240 241

Overall 2D 7403 287 7635 7634 7633 7660

3D class 1 1207 1 1330 1340 1327 1323 1347 1355

2 1194 1 1312 1308 1325 1303 1325 1337

3 1208 1 1322 1318 1318 1333 1316 1341

4 2878 8 2960 2960 2960 2960 2960 2960

5 620 1 746 755 746 744 757 782

6 881 4 988 992 995 991 1004 1013

7 519 0 628 632 628 625 639 660

8 735 1 862 866 862 866 873 893

Overall 3D 9242 17 10148 10171 10161 10145 10221 10341

Overall 16645 304 17783 17805 17794 17881

better if the eight corners were considered. However, it is not clear whether a strategy work-
ing well for CLP instances, in which the container is very large relative to the dimensions of
the boxes, will also work well for bin packing problems in which the boxes are much bigger
compared with the size of the bins. Therefore, our first comparison involved the use of the
constructive algorithm using as a reference for choosing the maximal space only one corner,
the origin, two corners, considering different sides of the bin, X,Y,Z, the four corners of
the floor of the bin and finally the eight corners of the bin. Obviously, for two-dimensional
problems, this last option does not apply.

Table 1 shows the sum of bins required for each class of problems. For the two-
dimensional case, the table includes the aggregate results of the 10 classes generated by
Berkey and Wang (1987) and by Martello and Vigo (1998) and also the other sets of in-
stances grouped under the heading of Literature. For the three-dimensional case, the results
obtained for the eight classes generated by Martello et al. (2000) are reported.

As a reference, Table 1 also includes for each type of problem the best reported lower
bounds, which will be described in more detail in the following subsections, and the number
of boxes fixed in the preprocess described in Sect. 2.



Ann Oper Res (2010) 179: 203–220 213

Table 2 Individual improvement methods

Constr. Random. Best-Volume Best-Fit Best-Volume Best-Fit

constr. 1 2 3 1 2 3 4 4

2D class 1 1008 997 997 998 997 997 997 997 997 997

2 129 124 124 124 124 124 124 124 124 124

3 725 700 700 700 701 700 698 700 698 696

4 127 123 123 123 124 123 123 124 123 123

5 918 899 899 899 899 899 898 898 894 895

6 116 112 112 112 112 112 112 112 112 111

7 853 831 831 831 831 831 829 831 828 828

8 858 836 836 835 836 836 836 838 835 835

9 2138 2130 2130 2130 2130 2130 2130 2130 2130 2130

10 523 509 509 509 509 509 506 509 507 506

2D literature 240 231 231 231 231 231 231 231 230 231

Overall 2D 7635 7492 7492 7492 7494 7492 7484 7494 7478 7476

3D class 1 1330 1281 1281 1281 1281 1281 1281 1283 1273 1276

2 1312 1269 1269 1268 1267 1269 1264 1267 1258 1260

3 1322 1278 1277 1275 1277 1278 1274 1276 1271 1271

4 2960 2941 2941 2941 2942 2941 2941 2941 2941 2941

5 746 719 719 718 719 719 718 718 707 709

6 988 961 961 960 960 961 959 959 957 955

7 628 599 599 595 599 599 598 597 592 593

8 862 829 829 829 830 829 830 830 821 823

Overall 3D 10148 9877 9876 9867 9875 9877 9865 9871 9820 9828

Overall 17783 17369 17368 17359 17369 17369 17349 17365 17298 17304

In order to decide if the differences observed in the table can be considered statistically
significant, we have applied the Friedman non-parametric test to compare the six alternatives
and the Wilcoxon test for pairwise comparisons (Gibbons and Chakraborti 2003). For the
two-dimensional case, the four-corners strategy is significantly worse than the others, which
in turn can be considered to produce similar results. For the three-dimensional case, the
first four alternatives, involving one or two corners, are again significantly better than the
others, with eight-corners performing worse than four-corners. From this analysis, the clear
conclusion is that any of the strategies using one or two corners is a good choice for the
constructive algorithm. An alternative is to choose one of them. Another possibility would
be to use all four of them, selecting one of them at each iteration in a deterministic or random
way.

In Table 2 we compare the four improvement methods, used independently, with both
objective functions. In all cases, the GRASP algorithm is run for 50000 iterations and at
each iteration one of the four good strategies for choosing the corners is randomly selected.
Columns 3 and 4 contain the results corresponding to the constructive deterministic algo-
rithm and the constructive randomized algorithm, without an improvement phase. We have
again used the Friedman test to jointly compare several alternatives and the Wilcoxon test



214 Ann Oper Res (2010) 179: 203–220

Table 3 Combined
improvement methods All VNDseq VND VNDseq VND

moves +Divers. +Divers.

Class 1 997 997 997 997 997

2 124 124 124 124 124

3 696 696 697 696 696

4 123 123 123 122 122

5 895 893 893 893 893

6 112 111 112 111 111

7 828 827 828 827 827

8 835 835 835 835 835

9 2130 2130 2130 2130 2130

10 504 503 503 503 503

Literature 230 230 230 230 230

Overall 2D 7474 7469 7472 7468 7468

3D 1 1275 1273 1274 1273 1273

2 1259 1258 1258 1258 1258

3 1271 1270 1270 1270 1270

4 2940 2940 2940 2940 2940

5 707 707 706 706 706

6 954 953 953 953 953

7 592 593 590 593 593

8 819 818 816 818 818

Overall 3D 9817 9812 9807 9811 9811

Overall 17291 17281 17279 17279 17279

for pairwise comparisons. For two-dimensional problems the statistical analysis shows that
moves 1 and 3 do not improve the randomized constructive procedure, while moves 2 and 4
improve it significantly. Among these two moves, there is a significant difference in favor
of move 4, while the objective function used does not produce significant differences. In
summary, for two-dimensional problems, move 4 with any of the objective functions is the
best option, followed by move 2 with Best-Fit objective function.

For the harder three-dimensional problems, the results are quite similar but the differ-
ences between the strategies are larger. Moves 1 and 3 do not improve the randomized
constructive algorithm, while move 2, either with Best-Volume or Best-Fit, improves it sig-
nificantly. However, move 4 with any objective function is again significantly better than
move 2.

If we had to choose just one move for the implementation of the algorithm, these con-
siderations for the quality of the solution would have to be balanced with their CPU time
requirements. However, as all these moves are quite fast and we are looking for high-quality
solutions, instead of choosing one move, we have explored different ways of combining
them.

Table 3 presents the results of the three strategies for the combination of improvement
moves. Columns 6 and 7 also include a diversification phase. This phase is not called until
half the total number of iterations or the total running time is reached. From this moment,



Ann Oper Res (2010) 179: 203–220 215

every time 500 iterations are spent without improving the best known solution, the diversifi-
cation constructive process is used for 100 iterations. For two-dimensional problems, the re-
sults of the three strategies are quite similar, though the statistical tests show that the strategy
All moves performs significantly worse than VNDseq and the two alternatives including di-
versification, while these three alternatives do not differ significantly. For three-dimensional
problems, significant differences are observed between the strategy All moves and all the
others, but these four alternatives do not differ among themselves. Therefore, the statistical
analyses do not provide a clear indication about which strategy to use. We decided to include
the strategy VNDseq + Diversification in the final implementation of our algorithm because
we think that it is convenient to include a procedure which explicitly takes into account the
existence of awkward pieces, pieces that due to their size or shape are usually left out of
good configurations, thereby producing an increase in the final complete solution. This sit-
uation has been explicitly considered by Bischoff et al. (1995) in their work for the multiple
pallet problem. Our diversification strategy does not help to improve the solutions of the test
problems, but could be useful in some other cases.

4.4 Computational comparisons with other algorithms

The algorithm of Faroe et al. (2003) was run on a Digital 500 au workstation with a 500 MHz
21164 CPU (SPECint2000 value of 161) and the Lodi et al. (1999, 2002) and Monaci and
Toth (2006) algorithms were run on a Digital Alpha 533 MHz, a similar computer to the
one used by Faroe et al. The algorithms were run with a time limit of 1000 seconds for each
instance of 3BP and 100 seconds for each instance of 2BP. Our computer has a SPECint2000
value of approximately 1000 and can therefore be considered about seven times faster than
the other computers. Hence we set a computational time limit at 150 seconds for the 3BP
and 15 seconds for instances of 2BP, or a maximum number of 50000 iterations in all cases.
The recent TS2PACK by Crainic et al. (2008) was run on a Pentium IV 2000 MHz, but the
authors made their computing times equivalent to those of the Digital 500 workstation and
therefore the same comparisons can be applied.

Table 4 shows the computational results corresponding to three-dimensional test in-
stances, comparing the solutions obtained by our GRASP algorithm with the GLS algorithm
by Faroe et al. (2003), the TS3 algorithm by Lodi et al. (2002) and the TS2PACK by Crainic
et al. (2008). Each row of the table gives the average over the 10 instances for each class and
number of boxes. Column 4 shows L2, the corresponding lower bound obtained by Martello
et al. (2000). Columns 5 to 7 contain details of our GRASP algorithm: the iteration in which
the best solution was obtained, the total running time and the best solution found. The last
four rows show aggregate results, first for Classes 1, 4, 5, 6, 7, 8 which allow the comparison
with GLS (Faroe et al. 2003) and TS2PACK (Crainic et al. 2008), and then for all classes for
a complete comparison with TS3 (Lodi et al. 2002). Finally, Column 11 shows the number
of times our solution matches the corresponding lower bound.

The results show that our GRASP algorithm consistently equals or outperforms algorithm
TS3 for all subclasses. GRASP also gets equal or better results than GLS for all subclasses,
except some subclasses of Class 7 and one subclass of Class 8. When comparing GRASP
with TS2PACK, our algorithm gets better results in 8 cases while TS2PACK gets better results
in 5, with 11 ties. The aggregate results favor GRASP against the other three procedures.
If we apply statistical analysis to the results, the Friedman test shows a very significant
difference between the four algorithms. This difference appears in the pairs GRASP-TS3
and TS2PACK-TS3, but the differences between GRASP and GLS, GLS and TS3, GRASP
and TS2PACK, GLS and TS2PACK are not significant (p-values of 0.105, 0.058, 0.202 and
0.357 respectively in the Wilcoxon test).



216 Ann Oper Res (2010) 179: 203–220

Table 4 Results for the three-dimensional instancesa

Class Bin size Averages of ten instances for each class and size

n L2 GRASP GLS TS3 TS2PACK Opt.

Best iter Time Sol

1 100 × 100 × 100 50 12.5 3.8 47.2 13.4 13.4 13.4 13.4 3

100 25.1 48.8 98.4 26.6 26.7 26.6 26.7 1

150 34.7 1476.6 118.3 36.4 37.0 36.7 37.0 0

200 48.4 77.8 143.3 50.9 51.2 51.2 51.1 0

2 100 × 100 × 100 50 12.7 44.3 82.1 13.8 – 13.8 – 1

100 24.1 9.1 120.2 25.7 – 25.7 – 0

150 35.1 360.6 113.5 36.9 – 37.2 – 1

200 47.5 838.4 138.3 49.4 – 50.1 – 0

3 100 × 100 × 100 50 12.3 298.3 71.3 13.3 – 13.3 – 3

100 24.7 77.6 78.4 26.0 – 26.0 – 2

150 36.0 29.4 121.4 37.6 – 37.7 – 0

200 47.8 2070.9 147.3 50.0 – 50.5 – 0

4 100 × 100 × 100 50 28.7 0.2 77.4 29.4 29.4 29.4 29.4 4

100 57.6 0.4 135.0 59.0 59.0 59.0 58.9 1

150 85.2 1.2 135.1 86.8 86.8 86.8 86.8 1

200 116.3 3.0 135.1 118.8 119.0 118.8 118.8 1

5 100 × 100 × 100 50 7.3 152.8 102.2 8.3 8.3 8.4 8.3 2

100 12.9 115.8 141.1 15.0 15.1 15.0 15.2 0

150 17.4 472.3 144.5 20.1 20.2 20.4 20.1 0

200 24.4 1242.4 150.0 27.1 27.2 27.6 27.4 0

6 10 × 10 × 10 50 8.7 22.8 95.7 9.8 9.8 9.9 9.8 1

100 17.5 111.6 126.9 19.0 19.1 19.1 19.1 0

150 26.9 120.9 134.6 29.2 29.4 29.4 29.2 0

200 35.0 1684.6 150.0 37.4 37.7 37.7 37.7 0

7 40 × 40 × 40 50 6.3 1.7 142.9 7.4 7.4 7.5 7.4 0

100 10.9 15.9 150.0 12.5 12.3 12.5 12.3 0

150 13.7 33.6 150.0 16.0 15.8 16.1 15.8 0

200 21.0 179.7 150.0 23.5 23.5 23.9 23.5 0

8 100 × 100 × 100 50 8.0 100.8 140.1 9.2 9.2 9.3 9.2 0

100 17.5 13.2 121.7 18.9 18.9 18.9 18.8 1

150 21.3 118.4 118.6 24.1 23.9 24.1 23.9 1

200 26.7 201.3 150.0 29.8 29.9 30.3 30.0 0

Average classes 1, 4–8 28.50 258.32 127.42 30.36 30.43 30.50 30.41

Total classes 1, 4–8 6840 7286 7302 7320 7298 16

Average all classes 28.88 310.26 122.83 30.67 30.82

Total all classes 9242 9813 9863 23

aThe best values appear in bold



Ann Oper Res (2010) 179: 203–220 217

Table 5 Results for the two-dimensional instances. Part Ia

Class Bin size Averages of ten instances for each class and size

n LB∗ GRASP SCH GLS TS3 HBP Opt.

Best iter Time Sol

1 10 × 10 20 7.1 0.5 0.0 7.1 7.1 7.1 7.1 7.1 10

40 13.4 1.7 0.0 13.4 13.4 13.4 13.5 13.4 10

60 19.7 3.8 4.5 20.0 20.0 20.1 20.1 20.1 7

80 27.4 1.2 1.5 27.5 27.5 27.5 28.2 27.5 9

100 31.7 6.6 0.0 31.7 31.7 32.1 32.6 31.8 10

2 30 × 30 20 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 10

40 1.9 11.9 0.0 1.9 1.9 1.9 2.0 1.9 10

60 2.5 1.6 0.0 2.5 2.5 2.5 2.7 2.5 10

80 3.1 1.8 0.0 3.1 3.1 3.1 3.3 3.1 10

100 3.9 0.4 0.0 3.9 3.9 3.9 4.0 3.9 10

3 40 × 40 20 5.1 1.3 0.0 5.1 5.1 5.1 5.5 5.1 10

40 9.2 5.2 3.0 9.4 9.4 9.4 9.7 9.5 8

60 13.6 29.8 4.6 13.9 13.9 14.0 14.0 14.0 7

80 18.7 190.9 4.1 18.9 18.9 19.1 19.8 19.1 8

100 22.1 243.1 4.9 22.3 22.3 22.6 23.6 22.6 8

4 100 × 100 20 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 10

40 1.9 0.1 0.0 1.9 1.9 1.9 1.9 1.9 10

60 2.3 0.3 3.0 2.5 2.5 2.5 2.6 2.5 8

80 3.0 118.7 1.9 3.1 3.2 3.3 3.3 3.3 8

100 3.7 0.4 1.5 3.8 3.8 3.8 4.0 3.8 9

5 100 × 100 20 6.5 0.4 0.0 6.5 6.5 6.5 6.6 6.5 10

40 11.9 2.2 0.0 11.9 11.9 11.9 11.9 11.9 10

60 17.9 11.0 1.5 18.0 18.0 18.1 18.2 18.0 9

80 24.1 2.8 9.0 24.7 24.7 24.9 25.1 24.8 4

100 27.9 194.7 5.2 28.2 28.2 28.8 29.5 28.7 7

6 300 × 300 20 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 10

40 1.5 27.9 3.0 1.7 1.7 1.8 1.9 1.8 8

60 2.1 48.0 0.1 2.1 2.1 2.2 2.2 2.1 10

80 3.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 10

100 3.2 0.4 3.0 3.4 3.4 3.4 3.4 3.4 8

Table 5 presents the results obtained for the two-dimensional test instances. It compares
the solutions of our GRASP algorithm against the SCH algorithm by Monaci and Toth
(2006), the GLS algorithm by Faroe et al. (2003), the TS3 algorithm by Lodi et al. (1999)
and the HBP algorithm by Boschetti and Mingozzi (2003b). Again, each row shows the
averages over 10 instances for each class and box count. Column LB∗ indicates the lower
bound reported by Monaci and Toth (2006), computed by applying all the lower-bounding
procedures from the literature and an exact algorithm for a long computing time. Columns
5 to 7 contain details of our GRASP algorithm: the iteration in which the best solution was



218 Ann Oper Res (2010) 179: 203–220

Table 5 (Continued)

Class Bin size Averages of ten instances for each class and size

n LB∗ GRASP SCH GLS TS3 HBP Opt.

Best iter Time Sol

7 100 × 100 20 5.5 0.8 0.0 5.5 5.5 5.5 5.5 5.5 10

40 10.9 20.3 3.0 11.1 11.1 11.3 11.4 11.1 8

60 15.6 4.2 4.5 15.9 15.8 15.9 16.2 16.0 8

80 22.4 1.1 12.0 23.2 23.2 23.2 23.2 23.2 2

100 26.9 6.8 3.1 27.1 27.1 27.5 27.7 27.4 8

8 100 × 100 20 5.8 0.5 0.0 5.8 5.8 5.8 5.8 5.8 10

40 11.2 3.0 1.5 11.3 11.3 11.4 11.4 11.3 9

60 15.9 256.7 4.2 16.1 16.2 16.3 16.2 16.2 7

80 22.3 5.8 1.6 22.4 22.4 22.5 22.6 22.6 9

100 27.4 5.6 6.1 27.8 27.9 28.1 28.4 28.0 5

9 100 × 100 20 14.3 0.0 0.0 14.3 14.3 14.3 14.3 14.3 10

40 27.8 0.3 0.0 27.8 27.8 27.8 27.8 27.8 10

60 43.7 6.9 0.1 43.7 43.7 43.7 43.8 43.7 10

80 57.7 0.1 0.0 57.7 57.7 57.7 57.7 57.7 10

100 69.5 0.2 0.0 69.5 69.5 69.5 69.5 69.5 10

10 100 × 100 20 4.2 33.9 0.0 4.2 4.2 4.2 4.3 4.3 10

40 7.4 1.6 0.0 7.4 7.4 7.4 7.5 7.4 10

60 9.8 362.4 4.5 10.0 10.1 10.2 10.4 10.2 7

80 12.3 59.9 9.4 12.9 12.8 13.0 13.0 13.0 5

100 15.3 28.3 9.2 15.9 15.9 16.2 16.6 16.2 4

Average 14.35 34.10 2.21 14.48 14.49 14.57 14.72 14.55

Total 7173 7241 7243 7284 7360 7275 430

aThe best values appear in bold

obtained, the total running time and the best solution found. Finally, column 11 shows the
number of times the GRASP algorithm solution matches the lower bound, proving its opti-
mality.

Finally Table 6, with the same structure as Table 5, compares the results of these algo-
rithms on a set of two-dimensional instances which are well-known in the literature. For
these problems, no differences are observed, except for one instance of Bengtsson (1982) in
which GRASP improves the SCH solution.

The results show that for these two-dimensional instances the new GRASP algorithm
equals or outperforms GLS, TS3 and HBP for all subclasses. When comparing with SCH, a
very sophisticated algorithm that had obtained the best known results for these problems, the
results are almost identical, with GRASP improving four SCH solutions and SCH improving
two GRASP solutions. The last column shows that for most of the instances GRASP, and
also SCH, get proven optimal solutions. That indicates that both are extremely good and
their results on these benchmark problems are difficult to improve on. The statistical analysis
confirms that GRASP and SCH are significantly better than GLS, TS3 and HBP.



Ann Oper Res (2010) 179: 203–220 219

Table 6 Results for two-dimensional instances. Part IIa

Class n Instances LB∗ GRASP SCH GLS TS3 Opt.

Best iter Time Sol

cgcut 16–62 3 27 0.33 0.01 27 27 27 27 3

gcut 10–50 13 104 1.46 0.01 104 104 104 108 13

ngcut 7–22 12 32 0.42 0.08 32 32 32 36 12

beng 1–8 20–120 8 54 10.25 0.21 54 55 8

beng 9–10 160–200 2 13 6.50 0.00 13 2

aThe best values appear in bold

5 Conclusions

We have designed a new GRASP algorithm, based on maximal-spaces, for the bin-packing
problem. We have developed a new constructive algorithm, adapting procedures which were
successful for the container loading problem and defining some new improvement moves.
These improvement moves have been combined in a VND structure, allowing the algorithm
to obtain high-quality solutions. Two extensive computational experiments with three and
two dimensional instances already used by other authors show that the new heuristic on
average obtains similar or better solutions than the other existing algorithms for the three-
dimensional and two-dimensional bin-packing problems.

Finally, we would like to mention that the algorithm is quite flexible and could be adapted
to accommodate other conditions or constraints, such as the possibility of rotating the items.

Acknowledgements This study has been partially supported by the Spanish Ministry of Science and Tech-
nology, DPI2005-04796, cofinanced by FEDER funds, and by Project PCI08-0048-8577, Consejeria de Cien-
cia y Tecnologia, Junta de Comunidades de Castilla-La Mancha.

References

Beasley, J. E. (1985a). Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the Op-
erational Research Society, 36, 297–306.

Beasley, J. E. (1985b). An exact two-dimensional non-guillotine cutting tree search procedure. Operations
Research, 33, 49–64.

Beasley, J. E. (1990). OR-library: Distributing test problems by electronic mail. Journal of the Operational
Research Society, 41, 1069–1072.

Bengtsson, B. E. (1982). Packing rectangular pieces—a heuristic approach. The Computer Journal, 25, 353–
357.

Berkey, J. O., & Wang, P. Y. (1987). Two dimensional finite bin packing algorithms. Journal of the Opera-
tional Research Society, 38, 423–429.

Bischoff, E. E., Janetz, F., & Ratcliff, M. S. W. (1995). Loading pallets with non-identical items. European
Journal of Operational Research, 84, 681–692.

Boschetti, M. A. (2004). New lower bounds for the finite three-dimensional bin packing problem. Discrete
Applied Mathematics, 140, 241–258.

Boschetti, M. A., & Mingozzi, A. (2003a). Two-dimensional finite bin packing problems. Part I: New lower
and upper bounds. 4OR, 1, 27–42.

Boschetti, M. A., & Mingozzi, A. (2003b). Two-dimensional finite bin packing problems. Part II: New lower
and upper bounds. 4OR, 2, 135–147.

Christofides, N., & Whitlock, C. (1977). An algorithm for two-dimensional cutting problems. Operations
Research, 25(1), 30–44.

Crainic, T. G., Perboli, G., & Tadei, R. (2008). TS2PACK: A two-level tabu search for the three-dimensional
bin packing problem. European Journal of Operational Research. doi:10.1016/j.ejr.2007.06.063.

http://dx.doi.org/10.1016/j.ejr.2007.06.063


220 Ann Oper Res (2010) 179: 203–220

den Boef, E., Korst, J., Martello, S., Pisinger, D., & Vigo, D. (2005). Erratum to ‘The three-dimensional bin
packing problem’: robot-packable and orthogonal variants of packing problems. Operations Research,
53, 735–736.

Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided local search for the three-dimensional bin-packing
problem. INFORMS Journal on Computing, 15(3), 267–283.

Fekete, S. P., & Schepers, J. (2004a). A combinatorial characterization of higher-dimensional orthogonal
packing. Mathematics of Operations Research, 29(2), 353–368.

Fekete, S. P., & Schepers, J. (2004b). A general framework for bounds for higher-dimensional orthogonal
packing problems. Mathematical Methods of Operations Research, 60(2), 311–329.

Fekete, S. P., & Van der Veen, J. C. (2007). PackLib2: An integrated library of multi-dimensional packing
problems. European Journal of Operational Research 183, 1131–1135.

Fekete, S. P., Schepers, J., & Van der Veen, J. C. (2007). An exact algorithm for higher-dimensional packing.
Operations Research, 55, 569–587.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, 8, 67–71.

Gibbons, J. D., & Chakraborti, S. (2003). Non parametric statistical inference (4th ed.). New York: Marcel
Dekker.

Hansen, P., & Mladenovic, N. (2005). Variable neighborhood search. In E. Burke & G. Kendall (Eds.), Search
methodologies: introductory tutorials in optimization and decision support techniques (pp. 211–238).
Berlin: Springer.

Lodi, A., Martello, S., & Vigo, D. (1999). Approximation algorithms for the oriented two-dimensional bin
packing problem. European Journal of Operational Research, 112(1), 158–166.

Lodi, A., Martello, S., & Vigo, D. (2002). Heuristic algorithms for the three-dimensional bin packing prob-
lem. European Journal of Operational Research, 141(2), 410–420.

Lodi, A., Martello, S., & Vigo, D. (2004). TSpack: a unified tabu search code for multi-dimensional bin
packing problems. Annals of Operations Research, 131, 203–213.

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing problem. Manage-
ment Science, 44(3), 388–399.

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem. Operations Re-
search, 40, 256–267.

Martello, S., Pisinger, D., Vigo, D., den Boef, E., & Korst, J. (2007). Algorithm 864: Algorithms for gen-
eral and robot-packable variants of the three-dimensional bin packing problem. ACM Transactions on
Mathematical Software, 33, 1.

Monaci, M., & Toth, P. (2006). A set-covering-based heuristic approach for bin-packing problems. INFORMS
Journal on Computing, 18(1), 71–85.

Parreño, F., Alvarez-Valdes, R., Oliveira, J. F., & Tamarit, J. M. (2008a). A maximal-space algorithm for the
container loading problem. INFORMS Journal on Computing, 20, 412–422.

Parreño, F., Alvarez-Valdes, R., Oliveira, J. F., & Tamarit, J. M. (2008b). Neighborhood structures for the con-
tainer loading problem: a VNS implementation. Journal of Heuristics. doi:10.1007/s10732-008-9081-3.

Prais, M., & Ribeiro, C. C. (2000). Reactive GRASP: An application to a matrix decomposition problem in
TDMA traffic assignment. INFORMS Journal on Computing, 12(3), 164–176.

Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover &
G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Dordrecht: Kluwer Academic.

Wäscher, G., Haussner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems.
European Journal of Operational Research. 183, 1109–1130.

http://dx.doi.org/10.1007/s10732-008-9081-3

	A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing
	Abstract
	Introduction
	Preprocess
	GRASP algorithm
	The constructive phase
	Improvement phase
	Diversification phase

	Computational experiments
	3D instances
	2D instances
	Choosing the best strategies
	Computational comparisons with other algorithms

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


