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Abstract Supply chain mechanisms that exacerbate price variation needs special attention,
since price variation is one of the root causes of the bullwhip effect. In this study, we inves-
tigate conditions that create an amplification of price variation moving from the upstream
suppliers to the downstream customers in a supply chain, which is referred as the “reverse
bullwhip effect in pricing” (RBP). Considering initially a single-stage supply chain in which
a retailer faces a random and price-sensitive demand, we derive conditions on a general de-
mand function for which the retail price variation is higher than that of the wholesale price.
The investigation is extended to a multi-stage supply chain in which the price at each stage
is determined by a game theoretical framework. We illustrate the use of the conditions in
identifying commonly used demand functions that induce RBP analytically and by means
of several numerical examples.

Keywords Pricing · Bullwhip effect · Supply chain management · Game theory

1 Introduction and scope

Pricing decisions are very important since they directly impact the performance of supply
chains due to the direct linkage with the market demand, competition, procurement costs,
revenues, and thus profits. One critical aspect of supply chain prices is the price variation,
that has been proven to be one of the main causes of the bullwhip effect, which adversely
affects the supply chain performance, causing excess inventories, backorders and inefficient
use of resources (Lee et al. 1997). The bullwhip effect is the increase in order variation,
and it starts at the downstream of the supply chain and is amplified from one supply chain

E.C. Özelkan (�) · C. Lim
Systems Engineering and Engineering Management Program, The William States Lee College of
Engineering, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte,
NC 28223-0001, USA
e-mail: ecozelka@uncc.edu

C. Lim
e-mail: clim2@uncc.edu

mailto:ecozelka@uncc.edu
mailto:clim2@uncc.edu


212 Ann Oper Res (2008) 164: 211–227

stage to another as we move towards the upstream. In contrast, our primary concern in this
study is the impact of upstream supply chain price variation on the downstream retail prices,
and the conditions of demand mechanisms that induce an amplified price variation as we
move from the upstream to the downstream of a supply chain. Due to the reverse direction
of the price variation propagation (compared to the direction of the bullwhip effect in order
quantity variation), this behavior is referred to as the “reverse bullwhip effect in pricing
(RBP)” (Ozelkan and Cakanyildirim 2007).

As an empirical evidence on the existence of RBP, imagine a simple supply chain where
we have a single supplier and a single retailer. The supplier is selling a product to the retailer
at a wholesale price of w and the retailer is using a fixed percentage profit margin m > 0
to identify the retail price p, i.e., p = (1 + m)w. Letting σw and σp denote the standard
deviation of the wholesale and retail prices, respectively, it is easy to verify that σp > σw

and thus, an amplification of price variation occurs since σ 2
p = (1 + m)2σ 2

w . Therefore, we
can generalize that in supply chains where all stages apply fixed percentage margins, an RBP
would occur with amplification from one stage to another. The question is whether, based
on this simple supply chain scenario, one can expect price variation increase all the time
when the retailer optimally determines the retail price. As previously discussed in Ozelkan
and Cakanyildirim (2007) and further extended in this paper, RBP would not always occur
when optimal pricing is employed for price sensitive demands (i.e., demand is dependent on
the retail price).

Another empirical evidence of the existence of RBP can be drawn from price indices
published by Bureau of Labor Statistics (2008). Consumer Price Index (CPI) is a measure
of the average change over time in the prices paid by urban consumers for representative
consumer goods and services. Similarly, Producer Price Index (PPI) measures the average
change over time in the selling prices received by domestic producers of goods and services.
Therefore, CPI represents retail prices while PPI can be considered as an indirect measure of
upstream prices. Among the published price indices, index series coded as CUUR0000SAf
and WPUSOP3110 correspond to the food products from January 1998 to February 2008
(see Bureau of Labor Statistics 2008, for raw data). Computing sample standard deviations
of these indices yields 13.7 and 11.1, respectively. Since the variation of CPI is greater than
the variation of PPI, we can conjecture the existence of RBP for food products.

Our main hypothesis in this study is that for RBP to occur, certain market conditions
should hold. The market condition analyzed in this study is the demand generation mech-
anisms. Second, we hypothesize that the magnitude of RBP may be related to the number
of stages in a supply chain. Third, we believe that measures used to quantify RBP can be
important in our understanding of RBP itself. Therefore, the purpose of the presented study
is to investigate several open RBP research questions, namely, investigation of RBP under
random demand, differentiating between stronger and weaker RBP conditions, and analysis
of commonly used demand functions to understand which demand generating mechanisms
yield RBP. We show that RBP conditions for the deterministic case still apply to the random
demand case for certain demand uncertainty structures, and while some demand functions
exclusively yield either RBP or no RBP, others result in RBP only for partial ranges of the
upstream supply price.

The paper is organized as follows. In Sect. 2, we present a brief review of the related
work. Then, we discuss the price determination mechanism as well as the conditions of
RBP for the single-stage supply chain in Sect. 3, which is extended to the multi-stage supply
chain in Sect. 4. Relationship of RBP, variations of prices and the bullwhip effect in order
quantity is discussed in Sect. 5. We describe specific conditions for commonly used demand
functions in Sect. 6, and conclude with a summary of major findings in the final section.
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2 Literature review

Since the popularization of the term “bullwhip effect” by Lee et al. (1997), there have been
a number of studies to investigate the underlying causes (demand signal processing, or-
der batching, price fluctuations and shortage gaming) of the bullwhip effect and to miti-
gate such order variation (see e.g. Chen et al. 2000; Disney and Towill 2003; Sheu 2005;
Disney et al. 2006; Kim et al. 2006). We refer to Lee et al. (2004) for a comprehensive
review of bullwhip effect literature, while providing a review of more relevant literature in
this section. A similar term “reversed bullwhip effect” was introduced by Svensson (2003)
under a slightly different context, who analyzed the bullwhip effect in intra-organizational
echelons. In Svensson (2003), the reversed bullwhip effect (in order variation) occurs when
there is a high degree of postponement in inbound logistics flows, and a high degree of spec-
ulation in outbound logistics flows. In our study, instead of analyzing the order variation as
investigated in the mainstream bullwhip effect research, we consider the impact of upstream
price variation on the variation of the downstream supply chain prices.

Pricing has been an ongoing area of research. The two main research directions have
been supply chain coordination (see e.g. Jeuland and Shugan 1983; Lal 1990; Ingene and
Parry 1995; Gerstner and Hess 1995; Iyer 1998), and identification of the best supply chain
structure in terms of length, breadth and ownership (see e.g. Coughlan and Lal 1992; Tyagi
1999; Corbett and Karmarkar 2001; Chiang et al. 2003). On the other hand, RBP is a fairly
new research area which has been recently introduced in Ozelkan and Cakanyildirim (2007).
In their study, Ozelkan and Cakanyildirim (2007) analyzed price variation amplification for
a multi-stage serial supply chain under deterministic and price-sensitive demand.

The work presented here is complementary to the pricing and bullwhip effect studies that
are discussed in the literature. Here, we aim to extend the results of Ozelkan and Cakany-
ildirim (2007) to derive conditions for RBP under random price-sensitive demand. We also
provide several different definitions of RBP where we differentiate between RBP versus
strict and strong RBP cases. We derive RBP conditions for these different definitions, and
also provide specific conditions of commonly used demand functions for RBP.

3 Single-stage supply chain model

Consider a single-stage supply chain where a retailer is subject to a random and price sen-
sitive demand q(p, ε), where p denotes the retail price and ε ∈ [A,B] is a random variable
with a probability density function f (·) and its mean με . Furthermore, let w > 0 denote
the wholesale price that the retailer pays to the supplier, and let Eq(p) denote the expected
demand, Eq(p) = E[q(p, ε)]. We assume that Eq(p) is continuously twice differentiable
and strictly decreasing in price (E′

q(p) < 0) for p ∈ (0,∞). While the former is made for
the sake of theoretical analysis in the paper, the latter is a realistic assumption since when
the retail prices go up, it is natural to expect that the customers will buy less, and vice versa.
Furthermore, we assume that there exists an upper bound, say u ∈ (0,∞], on the retail price
such that Eq(u) = 0. (We will use u = ∞ if Eq(p) → 0 as p → ∞.)

3.1 Uniqueness of retail price

Given the wholesale price w > 0, the retailer identifies the optimal retail price that maxi-
mizes the expected profit E[�R(p, ε)] as follows.

sup
p

E[�R(p, ε)] =
∫ B

A

(p − w)q(p, ε)f (ε)dε = (p − w)Eq(p) (1a)



214 Ann Oper Res (2008) 164: 211–227

s.t. w ≤ p ≤ u. (1b)

We would like to note that representations of a supply chain similar to (1) have been exten-
sively studied in the literature to derive managerial insights (see e.g. Coughlan and Lal 1992;
Corbett and Karmarkar 2001; Chiang et al. 2003). As will be discussed in sequel, here we are
only concerned with the case where the retail price is uniquely determined given a wholesale
price so that we can have one-to-one relationship to investigate the impact of the wholesale
price on the retail price. The retail price is trivially unique if w = u. To this end, we assume
that w < u in order to derive conditions for the uniqueness of the retail price given a whole-
sale price. Noting that the above problem is one dimensional optimization problem over the
interval [w,u], the solution can be identified as in the following proposition.

Proposition 1 Let � denote the set of stationary points to (1a) defined as:

� =
{

λ ∈ [w,u] : dE[�R(p, ε)]
dp

∣∣∣∣
p=λ

= Eq(λ) + (λ − w)E′
q(λ) = 0

}
. (2)

Let p∗ denote the optimal solution to (1). Then, we have

p∗ = argmax
{
E[�R(p, ε)] : p ∈ � ∪ {u}}. (3)

Proof The result directly follows the fact that the optimal solution will be either the lower
or upper bounds of the feasible region or one of the feasible stationary points. The lower
bound w is omitted since (p − w)Eq(p) > 0 for p ∈ (w,u) whereas E[�R(w, ε)] = 0. �

Corollary 1 If u < ∞, then � 	= ∅ and

p∗ = argmax
{
E[�R(p, ε)] : p ∈ �

}
. (4)

Proof From Eq(w) > 0, we have dE[�R(p,ε)]
dp

|p=w > 0. Also, from Eq(u) = 0 and E′
q(u) < 0,

we have dE[�R(p,ε)]
dp

|p=u < 0. Since dE[�R(p,ε)]
dp

is continuous on [w,u], there exists

λ ∈ (w,u) such that dE[�R(p,ε)]
dp

|p=λ = 0, and hence � 	= ∅. (4) directly follows since
E[�R(w, ε)] = E[�R(u, ε)] = 0. �

Note that p∗ in (3) is not necessarily unique. To see this, consider, e.g., a demand function
with Eq(p) = 2 + w − p for p ∈ [w,w + 1) and Eq(p) = (p − w)−1 for p ≥ w + 1. It is
easy to see that all the points in the interval [w + 1, u] yield the same maximum expected
profit of 1. We provide sufficient conditions of the uniqueness in the following propositions.
First, we will discuss a corner case when � is an empty set.

Proposition 2 If � = ∅, then the problem (1) has the unique solution p∗ = u.

Proof Note that dE[�R(p,ε)]
dp

|p=w > 0. Since dE[�R(p,ε)]
dp

is continuous, � = ∅ implies
dE[�R(p,ε)]

dp
> 0 for p ∈ [w,u]. Since the profit function is monotonically increasing,

p∗ = u. �

A more interesting case is when � is nonempty which is investigated below.
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Proposition 3 If � is nonempty and λ ∈ � implies
Eq(λ)E′′

q (λ)

(E′
q (λ))2 < 2, then � is a singleton

� = {λ} and the problem (1) has a unique solution p∗ = λ.

Proof Consider λ ∈ � 	= ∅. We know that if d2E[�R(p,ε)]
dp2 |p=λ < 0, then λ is a strict lo-

cal maximum of the expected profit (see Bazaraa et al. 1993, Theorem 4.1.4). We can

show that d2E[�R(p,ε)]
dp2 |p=λ < 0 if and only if

Eq(λ)E′′
q (λ)

(E′
q [λ)]2 < 2 as follows: From (2) and

E′
q(λ) < 0, we have λ − w = −Eq(λ)

E′
q (λ)

. Hence, d2E[�R(p,ε)]
dp2 |p=λ = 2E′

q(λ) + (λ − w)E′′
q (λ) =

2E′
q(λ) − Eq(λ)

E′
q (λ)

E′′
q (λ). If 2E′

q(λ) − Eq(λ)

E′
q (λ)

E′′
q (λ) < 0, then we have

Eq(λ)E′′
q (λ)

(E′
q (λ))2 < 2 by mul-

tiplying 1/E′
q(λ) to both sides where E′

q(λ) < 0. Conversely, if
Eq(λ)E′′

q (λ)

(E′
q (λ))2 < 2, then

2E′
q(λ) − Eq(λ)

E′
q (λ)

E′′
q (λ) < 0 by multiplying E′

q(λ) to both sides. Next, we note that, since
dE[�R(p,ε)]

dp
is continuous, � must be a singleton. (Otherwise, we must have a station-

ary point local minimum between two local maximums.) Furthermore, we must have
dE[�R(p,ε)]

dp
> 0 for p ∈ [w,λ), and dE[�R(p,ε)]

dp
< 0 for p ∈ (λ,u] since dE[�R(p,ε)]

dp
|p=w > 0

and dE[�R(p,ε)]
dp

|p=u < 0. Hence, λ is the unique global maximum. �

Note that since
Eq(λ)E′′

q (λ)

(E′
q (λ))2 < 2 identifies the local maximum point, we may consider this

expression as the “concavity coefficient” (a similar use of this terminology can be found
in Edwards 1950). In the previous propositions, the conditions of uniqueness depend on w

since � needs to be identified. Instead, although it is more restrictive, the condition in the
following proposition examines only the property of the expected demand function.

Proposition 4 If
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2 for p ∈ (0, u), then the problem (1) has a unique solution.

Proof If � = ∅, then dE[�R(p,ε)]
dp

> 0 for p ∈ (0, u), and hence, the optimal solution is

p∗ = u. If � 	= ∅, then we have
Eq(λ)E′′

q (λ)

(E′
q (λ))2 < 2 for λ ∈ �. Thus, from Proposition 3, � is a

singleton � = {λ} and the unique solution is p∗ = λ. �

A direct result of Proposition 4 is that when u < ∞, then � is a singleton � = {λ}, and
the problem (1) has a unique solution p∗ = λ. Note that this result is straightforward since
dE[�R(p,ε)]

dp
|p=w > 0 and dE[�R(p,ε)]

dp
|p=u < 0 imply � 	= ∅.

3.2 Demand uncertainty structure

The demand q(p, ε) can take different forms. We will consider here both additive and mul-
tiplicative forms (see Petruzzi and Dada (1999) for a similar consideration). Letting y(p) be
the deterministic part of demand and ε be a random variable as defined before, the demand
functions under additive and multiplicative uncertainties are defined as q(p, ε) = y(p) + ε

and q(p, ε) = εy(p), respectively, where ε > 0 for multiplicative uncertainty. For the sub-
sequent discussions, we will use y as a shorthand for y(p), and y ′ and y ′′ to denote the first
and second derivatives. Then, previous results yield the following corollary for the additive
and multiplicative demand uncertainties.

Corollary 2 Consider a single-stage supply chain where the demand uncertainty is additive.
If (y+με)y′′

y′2 < 2 for p ∈ (0, u], then the retail price is uniquely determined. Furthermore, if
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there exists u such that y(u) + με = 0 for the additive uncertainty, then � is nonempty and
a singleton {λ}, and p∗ = λ is the unique optimal solution to the optimization problem. For
the multiplicative uncertainty, the two conditions are yy′′

y′2 < 2 and y(u) = 0, respectively.

Note that in Corollary 2, the multiplicative case result is independent of ε, since με can
be eliminated from the stationary point equation. From Corollary 2, it is straightforward to
see the next relationship between deterministic and probabilistic demands.

Corollary 3 For a single-stage supply chain where the demand is additive with με = 0
or demand is multiplicative with με > 0, the retailer’s optimality condition for maximizing
expected profits is the same as the deterministic price-sensitive demand case.

3.3 Conditions of reverse bullwhip effect in pricing

As presented earlier, the retail price is uniquely determined when certain conditions are
satisfied. Now, assume that the optimal retail price is uniquely determined for each whole-
sale price w. Accordingly, let p(w) be the function that maps the wholesale price w to the
corresponding unique optimal retail price p. Noting that E′

q(p) 	= 0, we define a function

g(p) = Eq(p)

E′
q (p)

+ p. Note that since Eq(p) is continuously twice differentiable, g(p) should

be a differentiable function. From here, one can verify that g(p) is monotonically increasing
when the condition in Proposition 4 holds, thus the inverse g−1(w) exists, and identifies the
retailer’s stationary point optimal price given the wholesale price w. These observations are
formally summarized in the following proposition and corollary:

Proposition 5 If
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2 for p ∈ (0, u), then the inverse of g(p) exists. Furthermore,

the unique stationary point λ of (1a) is determined by λ = g−1(w).

Proof Since g′(p) = −Eq(p)E′′
q (p)

(E′
q (p))2 +2 > 0, g(p) is monotonically increasing. Hence, g−1(w)

exists. From the definition of g(p), g−1(w) ∈ �. �

Note that the range identified by g−1(w) > u need not be considered when g(p) (and
hence g−1(w)) is monotonically increasing since the optimal retail price is a constant u. In
other words, when g−1(w) is monotonically increasing, w ∈ (0, w̄) where w̄ = g(u) is the
only meaningful value. The next corollary specifies the (differentiable) function p(w) for
the meaningful range of w, i.e., w ∈ (0, w̄).

Corollary 4 Suppose that
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2 for p ∈ (0, u). Then, p(w) = g−1(w) for

w ∈ (0, w̄).

Proof From Proposition 3, Proposition 5, and the fact that g−1(w) for w ∈ (0, w̄) is the
unique stationary point in [w,u], g−1(w) is the optimal retail price. �

We remark that the condition
Eq(p)E′′

q (p)

(E′
q (p))2 < 2 not only provides the uniqueness of the retail

price as in Proposition 4, but also guarantees a unique retail price value for each wholesale
prices.
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Based on the above results, our discussion can now be focused on RBP. Note that RBP
indicates that the change in retail price is amplified as the wholesale price varies. In this
context, we define RBP based on the value of the rate of price change dp(w)

dw
(also referred as

the “cost-pass-through coefficient”).

Definition 1 Consider a differentiable function p(w) that determines the retail price. Then,
RBP is said to exist for a given interval (a, b) if

dp(w)

dw
≥ 1 for w ∈ (a, b). (5)

When the inequality is replaced by the strict inequality, a strict RBP is said to exist.

Note that this definition for RBP is more general than the one provided in Ozelkan and
Cakanyildirim (2007), who considered only the strict inequality case. As we will discuss
later for the multi-stage supply chains, differentiating between strict RBP versus RBP (or
non-strict RBP) can help us characterize required conditions for RBP in multi-stage supply
chains better. Observe that the wholesale price w varies over time and so does the retail
price p. Let μw and μp denote respective expected values. Here, we are also interested in
the relationship between normalized wholesale and retail prices (i.e., dw

μw
and dp

μp
). Hence, in

addition to the above RBP definition, we define a strong RBP (SRBP) case as follows.

Definition 2 An SRBP is said to exist for a given interval (a, b) if

dp(w)

dw
≥ μp

μw

for w ∈ (a, b). (6)

When the inequality is replaced by the strict inequality, a strict SRBP is said to exist.

As stated in the following proposition, SRBP requires a stronger condition than RBP
does (hence, it is named as “strong”).

Proposition 6 If SRBP exists for w ∈ (a, b), then there exists RBP for w ∈ (a, b).

Proof Given a wholesale price w, we always have the retail price such that p ≥ w. Hence,
we have μp ≥ μw or μp

μw
> 1. �

An implication of Proposition 6 is that if RBP does not occur SRBP will not occur either.
In what follows, we show that the concavity coefficient helps us derive sufficient conditions
for the existence of RBP and SRBP. First, we analyze the RBP conditions as follows:

Proposition 7 Consider a single-stage supply chain. Suppose that
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2. Then,

RBP exists for (a, b) ⊂ (0, w̄) if and only if
Eq(p)E′′

q (p)

[E′
q (p)]2 ≥ 1 for p ∈ (p(a),p(b)). Further-

more, strict RBP exists if and only if
Eq(p)E′′

q (p)

[E′
q (p)]2 > 1.

Proof From Corollary 4 and
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2, we have p(w) = g−1(w), which determines the

unique stationary point. Since g(p) = Eq(p)

E′
q (p)

+p, we have dw
dp

= g′(p) = [E′
q (p)]2−Eq(p)E′′

q (p)

[E′
q (p)]2 +
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1 = 2− Eq(p)E′′
q (p)

[E′
q (p)]2 . Note that dw

dp
≤ 1 (equivalently, dp

dw
≥ 1) if and only if

Eq(p)E′′
q (p)

[E′
q (p)]2 ≥ 1. The

strict RBP result directly follows by deleting the equality. �

Based on Proposition 7, specific RBP conditions for additive and multiplicative random
demand structures can be derived as follows:

Corollary 5 Consider a single-stage supply chain where the demand is random but additive
in structure. Suppose that (y +με)y

′′(y ′)−2 < 2. Then, RBP occurs for (a, b) ⊂ (0, w̄) if and
only if (y + με)y

′′(y ′)−2 ≥ 1 for p ∈ (p(a),p(b)). Moreover, strict RBP exists if and only if
(y + με)y

′′(y ′)−2 > 1.

The proofs of this and several subsequent corollaries are straightforward, and therefore,
they are omitted.

Corollary 6 Consider a single-stage supply chain where the demand is random but multi-
plicative in structure. Suppose that yy ′′(y ′)−2 < 2. Then, RBP occurs for (a, b) ⊂ (0, w̄) if
and only if yy ′′(y ′)−2 ≥ 1 for p ∈ (p(a),p(b)). Moreover, strict RBP exists if and only if
yy ′′(y ′)−2 > 1.

Similar to the RBP conditions, SRBP conditions can be derived as follows:

Proposition 8 Consider a single-stage supply chain. Suppose that
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2. Then,

SRBP exists for (a, b) ⊂ (0, w̄) if and only if
Eq(p)E′′

q (p)

[E′
q (p)]2 ≥ 2 − μw

μp
for p ∈ (p(a),p(b)).

Furthermore, strict SRBP exists if and only if
Eq(p)E′′

q (p)

[E′
q (p)]2 > 2 − μw

μp
.

Proof The proof is similar to that of Proposition 7. Again, we have dw
dp

= 2 − Eq(p)E′′
q (p)

[E′
q (p)]2 .

Thus, dw
dp

≤ μw

μp
(equivalently, dp

dw
≥ μp

μw
) if and only if

Eq(p)E′′
q (p)

[E′
q (p)]2 ≥ 2 − μw

μp
. The strict SRBP

directly follows by deleting the equality. �

SRBP conditions for additive and multiplicative random demand structures follow di-
rectly from Proposition 8 as stated in the following corollaries:

Corollary 7 Consider a single-stage supply chain where the demand is random but additive
in structure. Suppose that (y + με)y

′′(y ′)−2 < 2. Then, SRBP occurs for (a, b) ⊂ (0, w̄) if
and only if (y + με)y

′′(y ′)−2 ≥ 2 − μw

μp
for p ∈ (p(a),p(b)). Moreover, strict SRBP exists if

and only if (y + με)y
′′(y ′)−2 > 2 − μw

μp
.

Corollary 8 Consider a single-stage supply chain where the demand is random but multi-
plicative in structure. Suppose that yy ′′(y ′)−2 < 2. Then, SRBP occurs for (a, b) ⊂ (0, w̄)

if and only if yy ′′(y ′)−2 ≥ 2 − μw

μp
for p ∈ (p(a),p(b)). Moreover, strict SRBP exists if and

only if yy ′′(y ′)−2 > 2 − μw

μp
.

Comparison of the results of Corollaries 7 and 8 to those of Corollaries 5 and 6, once again
confirms that SRBP requires stronger conditions than RBP. Next, we observe from Corollar-
ies 5 through 8 that the deterministic case is a specific case of these results, which is stated
formally in the following corollary:
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Corollary 9 For a single-stage supply chain where the demand is random but additive with
με = 0 or multiplicative with με > 0, RBP and SRBP conditions are the same as the deter-
ministic price-sensitive demand case.

A closer look at the concavity coefficient indicates that not all demand functions will result
in RBP and SRBP as summarized below:

Corollary 10 RBP and SRBP do not occur when the expected value of the demand function
is concave.

Proof If the expected value of the demand function is concave, we have d2Eq(p)/dp2 ≤ 0,

and in turn, satisfies the uniqueness condition
Eq(p)E′′

q (p)

[E′
q (p)]2 < 2. However, since

Eq(p)E′′
q (p)

[E′
q (p)]2 < 1,

RBP does not exist due to Proposition 7. Next, based on Proposition 6, we know that if RBP
does not occur SRBP will not occur either. �

The observation of Corollary 10 can further be streamlined for the additive and multi-
plicative uncertainty cases as follows:

Corollary 11 For random demand with additive uncertainty (with y + με > 0) and mul-
tiplicative uncertainty (with με > 0) structure, RBP does not occur when the deterministic
part of the demand function is concave.

Proof This result follows from the fact that shifting a function by a constant (με) or multi-
plying with a positive constant does not change concavity. �

Results of Corollary 11 is interesting since it indicates that RBP and SRBP may occur
only for ranges where the deterministic part of the demand function is strictly convex. In
Sect. 6, we will provide examples for both concave and convex demand functions.

4 Multi-stage supply chains

In this section, we extend our analysis to a multi-stage supply chain that links more than
two entities. This case requires playing a multi-step sequential game for the n-stage supply
chain, where in each step one player makes a pricing decision based on the actions taken
by other players in previous steps. Starting from the retailer Sn and moving upstream, each
supplier Si identifies their reaction function pi = ri(pi−1) based on their objective function.
For example, the reaction function of Sn is obtained by solving the following objective
function:

max
pn

�Sn(pn) = (pn − pn−1)Eq(pn) (7a)

s.t. pL
n ≤ pn ≤ pU

n , (7b)

where pL
n and pU

n denote the lower and upper bounds on the price, and Eq(pn) denotes
the expected demand when the retail price is pn. As in the single-stage case, we consider a
stationary point optimal solution to this optimization problem as follows.

pn = rn(pn−1) =
{
pn|Eq(pn) + (pn − pn−1)

dEq(pn)

dpn

= 0
}
, (8)
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where rn(pn−1) is used to denote the reaction function of the retailer Sn to the previous
stages sales price pn−1. Similarly, for supplier Sn−1, the reaction function can be obtained as

pn−1 = rn−1(pn−2) =
{
pn−1|Eq [rn(pn−1)] + (pn−1 − pn−2)

dEq [rn(pn−1)]
dpn−1

= 0
}
. (9)

Repeating this argument, we can write the reaction function for supplier Si as

pi = ri(pi−1) =
{
pi |Eq [ψi(pi)] + (pi − pi−1)

dEq [ψi(pi)]
dpi

= 0
}
, (10)

where ψi(pi) = rn(rn−1(. . . (ri+1(pi)) . . .)). The price of the product (e.g., raw material) fed
into the most upstream supplier, S1, is given by p0. Then, the order of events in an n-stage
supply chain will be as follows: In Step 1, the most upstream supplier S1 makes a pricing de-
cision based on the reaction functions of S2 . . . Sn given p0. Then in Step 2, S2 makes pricing
decision based on S1’s decision and the reaction functions of S3 . . . Sn. In general, Si makes
a decision based on decisions taken by players S1, . . . , Si−1, and the reaction functions of
Si+1, . . . , Sn. Under this circumstance, similar to the single-stage case, we define RBP and
SRBP as follows.

Definition 3 Consider a differentiable function ψ0(p0) that determines the retail price pn

via the above sequential decision-making process. Then, RBP is said to exist for a given
interval (a, b) if

dψ0(p0)

dp0
≥ 1 for p0 ∈ (a, b). (11)

Furthermore, SRBP is said to exist if

dψ0(p0)

dp0
≥ μn

μ0
for p0 ∈ (a, b), (12)

where μ0 = E[p0] and μn = E[pn]. When the inequality is replaced by the strict inequality,
it is said that strict RBP and strict SRBP exist, respectively.

The following arguments summarize our observations for sequential games in an n-stage
supply chain.

Proposition 9 The retail price pn is uniquely determined as a stationary point for each p0

and there exists RBP if

0 <

n∏
i=1

⎡
⎢⎣2 −

Eq[ψi(pi)] d2Eq [ψi (pi )]
dp2

i{
dEq [ψi (pi )]

dpi

}2

⎤
⎥⎦ ≤ 1. (13)

Proof Note that if dp0
dpn

∈ (0,1], pn is uniquely determined for p0 and RBP exists. From

the stationary point condition, we have pi−1 = Eq [ψi (pi )]
dEq [ψi (pi )]/dpi

+ pi . Hence, dpi−1
dpi

= 2 −
Eq [ψi(pi)] d2Eq [ψi(pi )]

dp2
i

{ dEq [ψi (pi )]
dpi

}−2. The chain rule, dp0
dpn

= ∏n

i=1
dpi−1
dpi

, results in (13). �
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Corollary 12 The retail price pn is uniquely determined as a stationary point for each p0

and there exists RBP if

1 ≤
Eq[ψi(pi)] d2Eq [ψi (pi )]

dp2
i{

dEq [ψi(pi )]
dpi

}2 < 2, i = 1, . . . , n. (14)

Proof Since 2 − Eq [ψi(pi)] d2Eq [ψi(pi )]
dp2

i

{ dEq [ψi (pi )]
dpi

}−2 ∈ (0,1], (14) holds true. �

Corollary 12 is intuitive because the condition (14) results in RBP between Si and Si−1.
From this corollary, we see that when there is a strict RBP between supply chain stages
Si and Si−1 (i.e., when the “≤” sign in (14) is replaced with a “<” sign), the variation
of prices as measured by the cost-pass-through coefficient will be amplified. Furthermore,
the amplification increases as the number of stages in the supply chain increases. Another
intuitive result implied by Corollary 12 is that to have a strict RBP in a supply chain (i.e.,
from most upstream S1 to most downstream Sn), we need to have strict RBP between at
least one of the supply chain stages. Next, using Proposition 9, additive and multiplicative
uncertainties results in specific conditions summarized in the following corollaries, where
we used the definition ŷi = y[ψi(pi)].

Corollary 13 Consider an n-stage supply chain where the demand is random but additive

in structure. Then, if 0 <
∏n

i=1[2 −
(ŷi+με)

d2 ŷi

dp2
i

{ dŷ
dpi

}2
] ≤ 1, RBP exists.

Corollary 14 Consider an n-stage supply chain where the demand is random but multi-

plicative in structure. Then, if 0 <
∏n

i=1[2 −
ŷi

d2 ŷi

dp2
i

{ dŷ
dpi

}2
] ≤ 1, RBP exists.

Using a similar argument as in Proposition 9, we have a similar condition for SRBP as
follows:

Proposition 10 The retail price pn is uniquely determined as a stationary point for each p0

and there exists SRBP if

0 <

n∏
i=1

⎡
⎢⎣2 −

Eq [ψi(pi)] d2Eq [ψi (pi )]
dp2

i{
dEq [ψi (pi )]

dpi

}2

⎤
⎥⎦ ≤ μ0

μn

. (15)

Proof Noting that if dp0
dpn

∈ (0,
μ0
μn

], the proof is identical to that of Proposition 9. �

Again, specific SRBP results for the additive and multiplicative uncertainties follow di-
rectly from Proposition 10 as summarized below:

Corollary 15 Consider an n-stage supply chain where the demand is random but additive

in structure. Then, if 0 <
∏n

i=1[2 −
(ŷi+με)

d2 ŷi

dp2
i

{ dŷ
dpi

}2
] ≤ μ0

μn
, SRBP exists.
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Corollary 16 Consider an n-stage supply chain where the demand is random but multi-

plicative in structure. Then, if 0 <
∏n

i=1[2 −
ŷi

d2 ŷi

dp2
i

{ dŷ
dpi

}2
] ≤ μ0

μn
, SRBP exists.

5 Relationship of RBP, SRBP, variance and coefficient of variation

While in the previous sections, we investigated the conditions that resulted in RBP, and
SRBP, a related question of interest is how they relate to σ 2. Ozelkan and Cakanyildirim
(2007) showed that RBP is related to σ 2 as follows:

Proposition 11 If dp(w)

dw
≥ c for all w ≥ 0, then σp

σw
≥ c, where c is a positive constant.

Corollary 17 If dp(w)

dw
= c, then σp

σw
= c.

For the proofs of Proposition 11 and Corollary 17, the reader can refer to Ozelkan and
Cakanyildirim (2007). Proposition 11 also implies that if dp(w)

dw
≥ 1 + δ, then σp

σw
≥ 1 + δ,

where δ ≥ 0 . Thus, when an RBP takes place, an increase of price variance will take place.
Furthermore, based on the results of Sect. 4, this increase in price variance may be amplified
in multi-stage supply chains. The results of Proposition 11 can be expanded to the SRBP
case as follows:

Proposition 12 Let CVp = σp/μp and CVw = σw/μw denote the coefficient of variation

(CV) for p and w, respectively. Then, SRBP implies CVp

CVw
≥ 1, and strict SRBP implies

CVp

CVw
> 1.

Proof The proof follows from Proposition 11 by setting c = μp

μw
+ δ where δ ≥ 0. δ = 0

results in RBP, whereas δ > 0 results in strict SRBP. �

Based on Corollary 17, we can find an exact estimate of the ratio of the retail price CV

to whole sale price CV .

Corollary 18 If dp(w)

dw
= c, then CV p

CV w
= c

μw

μp
.

Proof If dp(w)

dw
= c, then σp

σw
= c. By dividing both sides by μp

μw
we get σp/μp

σw/μw
= CV p

CV w
=

c
μw

μp
. �

Remark 1 Lee et al. (1997) identified variation in the retail price as one of the main sources
of the information distortion that causes bullwhip effect (in order quantities) toward the
upstream of a supply chain. Since RBP implies amplified variation in retail prices based
on the above observation, it is not difficult to deduce that variations in the wholesale price
would exacerbate the bullwhip effect in order quantities under the presence of RBP.
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6 Illustration of RBP for common demand functions

In this section, we aim to analyze some of the most commonly used demand functions
and identify which demand functions might result in RBP and which demand functions
would not using the conditions presented in Sect. 3. Table 1 shows the demand func-
tions investigated and summarizes the results. In this table, the “Concavity” is defined as
(y + με)y

′′(y ′)−2 for the additive uncertainty case as in Proposition 7, and as yy ′′(y ′)−2

for the multiplicative uncertainty case. As discussed in Sect. 3.3, the “cost-pass-through”
and “concavity” coefficients can help us identify if RBP would take place or not. In what
follows, we will summarize the RBP results for each demand function.

Linear demand The concavity coefficient indicates that the optimal retail price is uniquely
determined as the stationary point. However, since it is less than 1, RBP never occurs due to
Proposition 7. (This is also confirmed by Corollary 10 since the expected demand function
is concave.)

Logit demand Observing the negative concavity coefficient, RBP will not take place for ei-
ther the additive or the multiplicative case. This is again confirmed by the concave expected
demand function (see Corollary 10).

Iso-elastic demand For the iso-elastic demand function, we only consider the case that
l > 1. Otherwise, the optimal retail price is always ∞, which does not have a meaningful in-
terpretation in practice. The multiplicative case results in RBP since the concavity coefficient
lies in [1,2). Indeed, it is strict RBP because l+1

l
> 1 for l > 1. (Note that this is confirmed

by dp

dw
= l

l−1 > 1.) Furthermore, note that p(w) = l
l−1w. Hence, we have μp = l

l−1μw , or
μp

μw
= l

l−1 , which results in SRBP. (However, strict SRBP does not exist because dp

dw
= μp

μw
.)

For the additive case, if με > 0, then the optimal retail price is always ∞, which lies in

Table 1 Demand functions and the reverse bullwhip effect conditions for a single-stage supply chain

Function Deterministic Uncertainty Cost-pass- Concavity RBP SRBP

name demand y(p) through dp
dw

Eq(p)E′′
q (p)

[E′
q (p)]2

Linear a − bp, A 1
2 0 N N

a, b > 0 M 1
2 0 N N

Logit a eu−p

1+eu−p , A [2 − (1 − eu−p) (1 − eu−p)(1 + με
y ) N N

a > 0 (1 + με
y )]−1

M [1 + eu−p]−1 1 − eu−p N N

Iso-elastic ap−l , A [2 − l+1
l

(1 + με
y )]−1 l+1

l
(1 + με

y ) Y/N Y/N

a > 0, l > 1 M l
l−1

l+1
l

Y Y

Logarithmic a
(− ln p

ū

)b
, A [2 − (1 − ln p

u +1
b

) (1 − ln p
u +1
b

)(1 + με
y ) Y/N Y/N

a, b > 0 (1 + με
y )]−1

M [1 + 1+ln p
u

b
]−1 1 − ln p

u +1
b

Y/N Y/N

Legend: A—Additive, M—Multiplicative, Y—Yes, N—No
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outside of our concern. Noting that the case of με = 0 is equivalent to the multiplicative
case, assume that με < 0. Then, there exists u = (− a

με
)1/l , where Eq(u) = 0. Hence, again

we only consider p ∈ (0, u]. Note that since με < 0, the concavity coefficient
Eq(p)E′′

q (p)

[E′
q (p)]2

is monotonically decreasing in p while its minimum value of 0 is attained at p = u. Fur-

thermore, we have
Eq(p)E′′

q (p)

[E′
q (p)]2 → l+1

l
as p → 0. This implies that the concavity coefficient

is always less than 2 and the retail price is uniquely determined by the corresponding sta-

tionary point for p ∈ (0, u]. Solving
Eq(p)E′′

q (p)

[E′
q (p)]2 = 1 yields p̂ = [− a

(l+1)με
]1/l . Therefore, we

conclude that RBP exists for w ∈ (0, g(p̂)] while it does not for w ∈ (g(p̂), g(u)), where
g(p) = Eq(p)

E′
q (p)

+ p = (
p

l
)[l − 1 − (

με

a
)pl] (see Proposition 7). A similar argument can be

used for SRBP. Letting p̃ denote the solution of
Eq(p)E′′

q (p)

[E′
q (p)]2 = 2 − μw

μp
(although this is not al-

ways easy to analytically find), there exists SRBP for w ∈ (0, g(p̃)]. The following example
illustrates both RBP and SRBP conditions for the additive uncertainty structure.

Example of iso-elastic demand Consider an iso-elastic demand function with having a =
1000 and l = 2. If the uncertainty structure is additive with με = −10, then p̂ =

√
10
3 =

7.07. The concavity coefficient is 3
2 (1 − p2

100 ). Since g(p) = p

2 + p3

200 , we have g(p̂) = 5.3.
Thus, there exists RBP for w ∈ (0,5.3). To verify this, note that dp

dw
= 1

3
200 p2+ 1

2
≥ 1 when

p ∈ (0,7.07), which corresponds to w ∈ (0,5.3). Furthermore, note that RBP does not exists
for p ∈ (7.07,10) (or w ∈ (5.3,10)), where u = 10 is determined by setting Eq(u) = 0. For
the existence of SRBP, suppose that w is uniformly distributed in (0,10) (i.e., the probability
density function is fW(w) = 1

10 ). Then, μw = 5. Furthermore, since dp

dw
= l+1

l
(1 + με

y
), the

probability density function of p is given by fP (p) = fW(w)(1/
dp

dw
) = 3

2000p2 + 1
20 . Hence,

μp = ∫ 10
0 pfP (p)dp = 6.25. Solving 3

2 (1 − p2

100 ) = 2 − μw

μp
= 1.2 yields p̃ = 4.47. Since

g(4.47) = 2.68, there exists SRBP for w ∈ (0,2.68).

Logarithmic demand First, consider the multiplicative demand uncertainty. Observe that
the concavity coefficient of the logarithmic demand function is not always less than 2, which
is a sufficient condition for a unique retail price. However, it is not difficult to see that
the concavity coefficient is less than 2 for w ∈ (0, u) (hence the retail price is uniquely

determined) as follows. Solving 1 − ln p
u +1
b

< 2 yields p > ue−b−1. (The right-hand-side is
always less than u.) Note that the value of p such that p > ue−b−1 (uniquely) corresponds to
a wholesale price w since the function g(p) is monotonically increasing. Furthermore, note
that g(ue−b−1) = − ue−b−1

b
< 0 and g(u) = u. Therefore, for each w ∈ (0, u), a stationary

point retail price is uniquely determined. To examine the existence of RBP, the solution

of 1 − ln p
u +1
b

≥ 1 results in p ≤ ue−1. Hence, there exists RBP for w ∈ (0, g(ue−1)] (and
strict RBP for w ∈ (0, g(ue−1))). Furthermore, noting that g(ue−1) ≤ 0 when b > 1, no RBP
exists if b ≤ 1. Similarly, given μw and μp , there exists SRBP when w ∈ (0, g(p̂)], where
p̂ = ue−b(1−μp/μw)−1. As far as the additive demand uncertainty is concerned, we can derive
similar conditions for RBP and SRBP. However, due to the complication of the equation,
these conditions can be derived numerically as in the example below.

Example of logarithmic demand Consider a logarithmic demand function y(p) =
5[− ln p

10 ]2. Let the expected value of demand uncertainty be με = −2. Due to the negative
value of με , the maximum value of p is now 5.3 at which the expected demand becomes 0.
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(For the similar reason as in the iso-elastic demand case, a positive value of με is not con-
sidered here.) Then, a numerical search yields that the concavity coefficient is less than 2
when p > 0.42 (or, w > −0.22 = g(0.42)). Hence, the retail price is unique when w > 0.
Together with this, a numerical search gives the range w ∈ (0,0.83) for which RBP exists.
For SRBP, assume that the wholesale price uniformly varies in (0,5.3) (i.e., μw = 2.65).
A simulation yields μp = 3.58. Hence, we have μp/μw = 1.35. This results in the interval
w ∈ (0,0.133) for which SRBP exists.

7 Summary and conclusions

In this paper, we introduced several definitions of reverse bullwhip effect in pricing (RBP)
differentiating between strict and strong cases (i.e., SRBP): More specifically, RBP is de-
fined as the case that the “cost-pass-through” coefficient is greater than or equal to one, and
SRBP is defined as the case that “cost-pass-through” coefficient is greater or equal to the
ratio of the expected values of sales price to buying price, with the strict cases requiring
strict inequalities. We analyzed several factors that may impact RBP such as the demand
uncertainty structure, type of demand function, and number of stages in a supply chain. We
derived conditions of demand functions for which RBP (or strict RBP) and SRBP (or strict
SRBP) may occur in supply chains. Some of the major findings are summarized below.

From a managerial perspective, the results indicate that a retailer, who is making pricing
decisions under additive demand uncertainty, should consider not only the deterministic
part of the market demand but also the expected demand shift due to the uncertainty. The
cases of additive uncertainty structure with an expected value of the uncertainty of zero, and
multiplicative uncertainty structure with a positive expected uncertainty result in the same
solution for RBP as in the deterministic demand case. Importance of demand function shifts
on the price and profitability has been recently discussed in Cowan (2004), who showed
that additive demand shifts result in price increases. Our results agree with these previous
findings and extend the results to the RBP case.

Another managerial insight from our findings is that RBP may not occur in every sup-
ply chain. We have seen that the occurrence of RBP or SRPB is related to the shape of the
expected profit function which can be represented by the “concavity” coefficient. One can
conclude about the existence of RBP or SRPB by examining the magnitude of the “concav-
ity” coefficient alone. For RBP to occur the coefficient needs to be greater than or equal to
one, and for SRBP to occur the “concavity” coefficient needs to be greater than a threshold
which is a function of the ratio of the expected values of buying price to sales price.

Analysis of different demand functions indicates that not all demand functions result in
RBP. More specifically, RBP does not occur when the expected demand function is concave.
Therefore, while the linear and logit demand functions do not result in RBP for additive and
multiplicative uncertainty cases, iso-elastic and logarithmic demand functions may. The iso-
elastic demand function does not result in strict SRBP for multiplicative uncertainty.

We have seen that in supply chains where pricing decisions are made sequentially starting
from the most upstream supplier and then proceeding sequentially all the way down to the
retailer, both RBP and SRBP conditions for a multi-stage supply chain is a multiplicative
combination of each-stage’s condition. Based on this finding, we conclude that both RBP
and SRBP may be amplified as the number of stages in a supply chain increases.

We have also observed that the analysis of the “cost-pass-through coefficient” can reveal
information about variability metrics such as price variances (in the context of an RBP)
and price coefficients of variation (in the context of an SRBP). Based on these findings, we
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conclude that RBP and SRBP may increase “forward” bullwhip effect in order variation.
From a managerial perspective, this is one of the main reasons why studying the RBP and
SRBP is important. A natural question is what can be done to avoid or minimize RBP.
While identifying optimal strategies to deal with RBP and SRBP is beyond the scope of the
current study, we believe that longer term supplier relationships through win-win contracts
will stabilize price fluctuations and will eliminate or at least minimize the root-cause of RBP
and SRBP, i.e., the price variation in the upstream of a supply chain.

The results presented here provide valuable insights on when and how RBP or SRBP may
occur in supply chains. In reality, supply chains may be more complex than what is modelled
here, therefore the results can be extended to involve more complexities. We expect that RBP
will occur for more complex supply chain systems as well, but the required conditions will
be specific to the cases analyzed. Some of the future work may involve the investigation of
price variation under coordination, varying supply chain structures (e.g., under competition),
joint optimization of pricing and order quantity decisions, and consideration of future cost
fluctuations. Finally, further empirical studies can shed more light into the reverse bullwhip
effect in pricing for a variety of practical demand functions.
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