
Ann Oper Res (2009) 170: 233–249
DOI 10.1007/s10479-008-0443-x

Near optimal control of queueing networks over a finite
time horizon

Yoni Nazarathy · Gideon Weiss

Published online: 28 October 2008
© Springer Science+Business Media, LLC 2008

Abstract We propose a method for the control of multi-class queueing networks over a fi-
nite time horizon. We approximate the multi-class queueing network by a fluid network and
formulate a fluid optimization problem which we solve as a separated continuous linear pro-
gram. The optimal fluid solution partitions the time horizon to intervals in which constant
fluid flow rates are maintained. We then use a policy by which the queueing network tracks
the fluid solution. To that end we model the deviations between the queuing and the fluid
network in each of the intervals by a multi-class queueing network with some infinite vir-
tual queues. We then keep these deviations stable by an adaptation of a maximum pressure
policy. We show that this method is asymptotically optimal when the number of items that
is processed and the processing speed increase. We illustrate these results through a simple
example of a three stage re-entrant line.

Keywords Queueing control · Multi-class queueing networks · Infinite virtual queues ·
Maximum pressure policies · Fluid approximations · Continuous linear programming

Introduction

Queueing networks are commonly used to model service, manufacturing and communica-
tion systems. In many situations one is interested in control of the network over a finite
time horizon that attempts to minimize costs and maximize utility. In this respect, a sensible
objective is to minimize the holding costs of the queues accumulated over the time horizon.

One theoretical approach to such finite horizon problems is to consider them as deter-
ministic, discrete scheduling problems, cf. Lawler et al. (1993), Goemans and Williamson
(1996) and Fleischer and Sethuraman (2003). In practice however these scheduling problems
are too large to be tractable, and furthermore, an optimal schedule may not withstand the

Research supported in part by Israel Science Foundation Grant 249/02 and 454/05 and by European
Network of Excellence Euro-NGI.

Y. Nazarathy · G. Weiss (�)
Department of Statistics, The University of Haifa, Haifa, Israel
e-mail: gweiss@stat.haifa.ac.il

mailto:gweiss@stat.haifa.ac.il

234 Ann Oper Res (2009) 170: 233–249

trial of application: As it is implemented over time, inaccuracies in the data and unexpected
events (many small ones and a few large ones) accumulate and interfere with the solution,
and there is no theory to say how close or far from optimum the result may be. Another the-
oretical approach is to model these problems by discrete stochastic systems and solve them
as Markov decision problems, or approximate them on a diffusion scale by a continuous
stochastic Brownian control problem, cf. Kushner (2001), Harrison (1988), Wein (1992),
Kelly and Laws (1993), Harrison (1996), Harrison and Van Mieghem (1997) and Maglaras
(1999). Markov decision problems or Brownian control problems usually focus on the op-
timization of the steady state of the system. They may therefore not be suitable for finite
horizon problems, where typically the initial queue lengths and the total number of items
processed are of the same order of magnitude, and one does not expect the system to reach
steady state.

The problem which we address here has features of both approaches: In the finite time
horizon we only schedule a finite batch of jobs, but we model these jobs in a multi-class
queueing network. As suggested in Weiss (1992), the method we use is to solve a determin-
istic fluid optimization problem which approximates the system, and then use decentralized
local on-line controls to track the fluid solution. To carry this out we integrate three recent
ideas which have been developed independently: (1) Solution of separated continuous linear
programs (SCLP) by means of an exact simplex type algorithm, see Weiss (2008). (2) Mod-
eling of queueing systems with unlimited supply of work by means of infinite virtual queues,
as used in Adan and Weiss (2005, 2006), Kopzon and Weiss (2002, 2007) and Weiss (2005).
(3) Maximum Pressure policies for stochastic processing networks as described in Dai and
Lin (2005), see also Dai and Lin (2006).

As a first step, we discard the detailed information on jobs, and aggregate them into
classes which are characterized by average processing times, and by their routes through
the system. This yields a multi-class queueing network, which we wish to control optimally
(Sect. 1). Next, our method approximates the multi-class queueing network by a determin-
istic continuous multi-class fluid network for which we formulate a finite horizon optimal
control problem which is solved as a SCLP. The optimal fluid solution partitions the finite
time horizon into time intervals distinguished by sets of empty and non-empty fluid buffers,
and by constant fluid flow rates (Sect. 2). We now associate with each time interval a multi-
class queueing network where each empty fluid buffer corresponds to a standard queue and
each non-empty fluid buffer corresponds to an infinite virtual queue. The state of this asso-
ciated system measures the deviation of the original system from the fluid solution (Sect. 3).

We then implement an on-line control of the queueing network by the use of a maximum
pressure policy, where the pressure is calculated from the state of the associated network.
This keeps the deviations from the fluid solution stable, and so the queueing network tracks
the optimal fluid solution (Sect. 4). We call this procedure the Maximum Pressure Fluid
Tracking Policy (MaxFTP).

The solution of the fluid control problem is centralized, and performed at the outset. The
maximum pressure tracking is decentralized, and performed on-line using at each queue its
own queue length and the queue lengths of queues directly downstream from it. This scheme
is asymptotically optimal in the following sense: If we scale up the number of jobs in the
system, and speed up the processing by the same amount, then the discrete stochastic system
will converge to the optimal fluid solution, and no other policy can achieve asymptotically
better results (Sect. 5).

Our purpose in this paper is to introduce this method, and to sketch the proofs. In fact
there is not much to prove, as most of the results we need were derived in Weiss (1992)
and Dai and Lin (2005), and we need merely to adapt them to our framework, in Sect. 2,

Ann Oper Res (2009) 170: 233–249 235

in Theorem 4.1 and Corollary 4.2. The main new result is the asymptotic optimality of
MaxFTP which is proven in Theorem 5.1.

To illustrate MaxFTP, we describe its implementation for a simple re-entrant line with 2
servers and 3 classes (this network has been recently studied in Adan and Weiss (2006)). We
demonstrate the effectiveness of our results by means of simulations in which the asymptotic
attributes of MaxFTP are empirically tested (Sect. 6).

Related fluid approaches for controlling multi-class queueing networks have been used
in Avram et al. (1995), Maglaras (1999, 2000), Chen and Meyn (1999), Meyn (2001), Meyn
(2003), Chen et al. (2003) and others. MaxFTP is distinguished in that it is geared to control
the transient finite horizon system, and for that purpose we use an optimal fluid solution.

In the context of wireless communication systems the proposed framework may be ap-
plied to mobile ad-hoc wireless networks (MANETs) that are both highly dynamic and
heavily congested: When the network is highly dynamic, link conditions vary quickly and
as a result link capacities, network topology and routes constantly change. When the net-
work is heavily congested, the sojourn time of messages is high. Combining both highly
variable dynamics and heavy congestion has the consequence that messages may experi-
ence changes in link capacities, network topology and routes while in transit. If a predictive,
location based, routing scheme is employed (such as that presented by Shah and Nahrstedt
in Shah and Nahrstedt (2002)), predictions regarding the relative stability of link conditions
may be made and the duration of the finite time horizons determined. In this case, our finite
horizon approach may be used repeatedly for the short durations in which link conditions
are relatively stable.

1 Finite horizon multi-class queueing networks

Multi-class queueing networks (MCQN) have been studied extensively in the past 15 years.
They were introduced in Harrison (1988) and since then were analyzed mostly in the context
of infinite horizon models with respect to fluid or diffusion approximations, cf. Dai (1995),
Bramson (1998) and Williams (1998).

A MCQN consists of k ∈ K = {1, . . . ,K} job-classes and i ∈ I = {1, . . . , I } servers. Jobs
of class k queue up in buffer k, and we let the queue length Qk(t) be the number of jobs of
class k in the system at time t . We let Qk(0), k ∈ K be the initial queue lengths. Buffer k

is served by server σ(k), and the constituency of server i is Ci = {k | σ(k) = i}. In general
a server may serve several classes, i.e. |Ci | > 1, hence the term multi-class. The topology
of the network is described by the I × K constituency matrix A with elements Aik = 1 if
k ∈ Ci , Aik = 0 otherwise.

We are only interested in the MCQN over a finite time horizon [0, T]. We may assume
that all the jobs which will be processed during that time are already in the system at time 0.
This assumption is without loss of generality: The general multi-class model has an arrival
stream A(t) which is often thought of as being supplied by buffer 0 that represents the
outside world and contains an infinite supply of jobs. Since we are only interested in a finite
time horizon, the supply of jobs can be taken as finite, so that the outside world can be
replaced by an additional buffer in the network with a finite initial supply of all the jobs that
will be served, and with a dedicated server that will release them into the rest of the system
as the arrival process.

For � = 1,2, . . . , the �’s job out of buffer k requires processing amount Xk(�), after
which the job may either leave the system or move to another buffer. Sk(t) = max{n |∑n

�=1 Xk(�) ≤ t} counts the number of jobs completed at buffer k by processing for a total

236 Ann Oper Res (2009) 170: 233–249

time t . φkk′(�) is the indicator of the event that the �’s job out of buffer k moved into buffer
k′ ∈ K \ k. Let �kk′(n) = ∑n

�=1 φkk′(�), this is a count of the number of jobs routed from
buffer k to k′ out of the first n jobs served at buffer k.

The MCQN is controlled by allocating processing times to the buffers. Let Tk(t) be the
total time allocated to buffer k by server σ(k), during [0, t]. Then the dynamics of the queues
are described by:

Qk(t) = Qk(0) − Sk(Tk(t)) +
∑

k′∈K\k
�k′k(Sk′(Tk′(t))). (1)

The allocated times have to satisfy:

Tk(0) = 0, Tk(t) non decreasing,
∑

k∈Ci

Tk(t) − Tk(s) ≤ t − s for all s < t and each i ∈ I.

In particular each Tk(t) is Lipschitz continuous with constant 1, and its derivative Ṫk(t)

exists for almost all t , and satisfies:

AṪ (t) ≤ 1, Ṫ (t) ≥ 0, 0 < t < T, (2)

where 1 denotes a vector of 1’s.
Additional constraints have to be satisfied by Tk(t), Qk(t), k ∈ K. First and foremost,

Qk(t) ≥ 0 and no processing can occur when Qk(t) = 0. We will also assume throughout
this paper that servers cannot be split so each server can work on only one job at a time. In
addition we assume, that jobs are not preempted. Hence for almost all t , Ṫk = 0 or Ṫk(t) = 1,
and Ṫk(t) can only change from 1 to 0 when Sk(Tk(t)) has a jump of 1, that is when the
processing of a job is completed.

The cost associated with the MCQN over the finite time horizon is

V =
∫ T

0

K∑

k=1

wkQk(t)dt, (3)

which is the total inventory cost over the time horizon with holding costs rates wk . If wk = 1
for all k then V is the total work in process during the time horizon, also equal to the sum
of sojourn times over [0, T) of all jobs, where we assume that the sojourn time of a job that
does not leave the system by time T is T .

Minimization of V is also equivalent to maximization of the sum of the times from the
completion of each job until T . Minimization of V when Xk(�), φkk′(�) are known is an NP
hard scheduling problem (job shop scheduling). The probabilistic version for infinite time
horizon, with long term average cost minimization, is a Markov decision problem, which
can sometimes be approximated by a Brownian control problem. Exact solution of the finite
horizon problem under probabilistic assumptions is intractable. We will therefore attempt to
solve the problem approximately.

To do so, we first of all discard all the detailed information of Xk(�), φkk′(�), and retain
only averages. Remarkably, our asymptotic results show that for large systems this loss of
information does not degrade the performance: The value achieved by our method converges
to the value of the optimal solution with full information (Theorem 5.1).

Ann Oper Res (2009) 170: 233–249 237

We assume the following about the sequences of processing times and routing of the
jobs:

lim
t→∞

Sk(t)

t
= μk, (4)

lim
n→∞

�kk′(n)

n
= Pkk′ , (5)

lim
n→∞

1

n

n∑

�=1

Xk(�)
1+ε ≤ C, (6)

where the last requirement has to hold for some ε > 0 and some C < ∞. μk is the long term
average processing rate, and Pkk′ the long term routing proportion (P is the K × K matrix
of these values).

It is customary in papers on MCQN to cast (4)–(6) in a probabilistic framework. One
assumes a stochastic process on probability space � and requires (4)–(6) to hold for almost
every ω ∈ �. Examination of the proofs in Dai and Lin (2005) shows that for our purposes
this is not necessary: our results hold for every sequence of Xk(�), φkk′(�) which satisfies
(4)–(6).

We define the input output matrix of the network by:

R = (I − P′)diag(μ), (7)

where I is the identity matrix and diag(μ) is a matrix with the rates μk in the diagonal. Here
Rk′k is the long term average rate at which buffer k′ is depleted as a result of processing
buffer k:

Rk′k =
{

μk k′ = k

−μkPkk′ k′ �= k.

Our approximate solution is in two stages: We first use Q(0),w,R,A to formulate and
solve a fluid optimization problem. This is done off line, centrally. We then use the fluid
solution and the current queue lengths for decentralized tracking of the fluid solution.

The fluid approximation is suitable only when we process a large number of jobs over the
time horizon. Our results are therefore asymptotic when the initial workload and processing
speed are scaled up. We let the queueing network with Q(0) and μ be our basic unit sys-
tem and define a sequence of queueing networks. All the networks share the same sequence
of processing times and routing indicators. For N = 1,2, . . . , the N scaled network is rep-
resented by QN

k (t), T N
k (t), in which we have QN

k (0) = NQk(0), and the processing times
are Xk(�)/N . Thus the initial work load is N times larger than the basic network, and the
processing is speeded up N fold. In particular, μN

k = Nμk , and RN = NR.

Example model

The example model that we use throughout this paper is the K = 3, I = 2 re-entrant line with
C1 = {1,3}, C2 = {2}. An illustration of the network is in Fig. 1. Routing is deterministic:
jobs move from class 1 to class 2 and then to class 3, so that φ12(�) = φ23(�) = 1, � =
1,2, . . . , and all other routing indicators are 0. The processing time sequences are drawn
from independent exponential random variables. The processing rates are μ1 = 1, μ2 = 1

4

238 Ann Oper Res (2009) 170: 233–249

Fig. 1 Example network

and μ3 = 1. The resulting input-output matrix is:

R =
⎛

⎜
⎝

1 0 0

−1 1
4 0

0 − 1
4 1

⎞

⎟
⎠ .

We assume initial queue amounts: Q1(0) = 8, Q2(0) = 1, Q3(0) = 15, a time horizon of
T = 40 and holding costs w1 = w2 = w3 = 1.

2 The multi-class fluid network optimization problem

Fluid approximations have been a major tool in the research on multi-class queueing net-
works, they have been used to verify the stability of networks, to evaluate performance in
steady state, and to control multi-class queueing networks so as to improve their steady
state performance. For some relevant recent work see Chen and Yao (1993), Connors et al.
(1994), Avram et al. (1995), Dai (1995), Chen and Meyn (1999), Meyn (2001, 2003) and
Chen et al. (2003).

Corresponding to the MCQN, we formulate a multi-class fluid network (MCFN) op-
timization problem: find bounded measurable functions uk(t) and absolutely continuous
functions qk(t) such that

minVf =
∫ T

0
w′q(t)dt (8)

s.t.

q(t) = q(0) −
∫ t

0
Ru(s)ds (9)

Au(t) ≤ 1 (10)

q(t), u(t) ≥ 0 (11)

t ∈ [0, T].

Here the dynamics of q(t) are given by

qk(t) = qk(0) − μkTk(t) +
∑

k′∈K\k
Pk′kμk′Tk′(t) ≥ 0,

Ann Oper Res (2009) 170: 233–249 239

which is the fluid analog of the MCQN dynamics (1). The processing of fluid out of buffer
k is at a deterministic continuous rate μk , and the fluid out of k is routed in exact propor-
tions Pkk′ to the other buffers k′ �= k. Thus instead of the discrete stochastic nature of the
MCQN the MCFN is a continuous deterministic system. A fraction uk(t) of the server σ(k)

is allocated to the fluid buffer k at time t , and Tk(t) = ∫ t

0 uk(s)ds. uk(t) satisfy the same
constraints as Ṫ in (2), but servers are infinitely divisible, so that uk(t) can take any value in
[0,1].

The problem (8)–(11) is a special case of a separated continuous linear program (SCLP),
cf. Anderson (1981), Anderson and Nash (1987), Bellman (1953) and Pullan (1993). A sim-
plex based algorithm that solves a wide class of SCLP problems optimally in a finite number
of steps has been recently found, see Weiss (2008). This has been an open problem for half
a century. Current naive implementations of the simplex based algorithm are able to quickly
solve MCFN problems in which the dimensions of K and I are of the order of 100.

The analysis in Weiss (2008) reveals important features of the solution, essential to our
control method. The MCFN problem is always feasible and bounded, and the SCLP simplex
algorithm will always produce a fluid solution that consists of a partition of the time horizon
0 = t0 < t1 < · · · < tM = T , where M is bounded, and in each of the time intervals the server
allocations uk(t) are constant, and as a result the fluid buffer levels qk(t) are continuous
piecewise linear.

We let τm = (tm−1, tm) denote the m’th time interval of the solution, and we denote by
um

k = uk(t), t ∈ τm the values of the server allocations. During τm, server i will be busy for
a fraction ρm

i = ∑
k∈Ci

um
k . This is the utilization of server i during τm, and is always ≤ 1.

In each τm some of the buffers will be empty throughout the whole time interval, and the
remaining buffers will be non-empty throughout the whole time interval. In general empty
buffers are not inactive: they may have fluid flowing into them as well as out of them, with
the inflow rate and outflow rates equal. We partition K during the m’th time interval as
follows:

Km
0 = {k | qk(t) = 0, t ∈ τm},

Km∞ = {k | qk(t) > 0, t ∈ τm}.
In our control approach, the fluid solution, summarized by τm,um, Km

0 , Km∞, is calculated
off-line at the outset (time 0), from the data T ,w,R,A, and the initial fluid levels qk(0) =
Qk(0). This solution is made available to all the servers.

Solution of the example fluid network

The multi-class fluid network problem for our example is:

minVf =
∫ T

0
q1(t) + q2(t) + q3(t)dt

s.t.

q1(t) = q1(0) −
∫ t

0
μ1u1(s)ds

q2(t) = q2(0) −
∫ t

0
μ2u2(s)ds +

∫ t

0
μ1u1(s)ds (12)

q3(t) = q3(0) −
∫ t

0
μ3u3(s)ds +

∫ t

0
μ2u2(s)ds

240 Ann Oper Res (2009) 170: 233–249

u1(t) + u3(t) ≤ 1

u2(t) ≤ 1

u(t), q(t) ≥ 0,

t ∈ [0, T].
To understand the dynamic of the fluid solution, we study three different feasible solu-

tions of (12). These are shown in Figs. 2, 3, and 4 where we plot the values {q1(t), q1(t) +
q2(t), q1(t)+ q2(t)+ q3(t)} for 0 < t < T . The three solutions are the last buffer first served
(LBFS) solution, and minimum makespan solution and the optimal solution of (12) respec-
tively.

The LBFS policy for a general re-entrant line with flow 1 → 2 → ·· · → K gives priority
to higher indexed buffers. In our example, server 1 gives priority to buffer 3 over buffer 1,

Fig. 2 LBFS. Vf = 376

Fig. 3 Minimal makespan.
Vf = 360

Fig. 4 Optimal SCLP. Vf = 352

Ann Oper Res (2009) 170: 233–249 241

Table 1 Fluid solution of the example network and parameters of the associated MCQNs with IVQs

Example data

Time interval m = 1 2 3 4

τm = (0, 4) (4, 8) (8, 24) (24, 40)

(um
1 , um

2 , um
3) = (0, 0, 1) (0, 1, 1) (1

4 , 1, 3
4) (1

4 , 1, 1
4)

(ρm
1 , ρm

2) = (1, 0) (1, 1) (1, 1) (1
2 , 1)

Km
0 = ∅ ∅ {2} {2, 3}

Km∞ = {1, 2, 3} {1, 2, 3} {1, 3} {1}
(αm

1 , αm
2 , αm

3) = (0, 0, 1) (0, 1
4 , 1) (1

4 , 0, 3
4) (1

4 , 0, 0)

Rm =
⎛

⎜
⎝

1 0 0

0 1
4 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

0 1
4 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

−1 1
4 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

−1 1
4 0

0 − 1
4 1

⎞

⎟
⎠

and hence it allocates full capacity to buffer 3 until it is empty, and thereafter enough ca-
pacity is allocated to buffer 3 to keep it empty, and the remaining capacity is allocated to
buffer 1. Server 2 is allocating full capacity to buffer 2. This is illustrated in Fig. 2. The cost
over time [0,40] is 376. Note that under LBFS server 2 which is the bottleneck server is
kept idle from time 4 to time 16. If we continue using LBFS after time 40 the system will
empty at 48, for a total cost of 384, (over the time horizon [0,48]).

We can avoid idleness of the bottleneck server, by allocating u1(t) = 1/4 once buffer
2 is empty. Doing so will keep server 2 busy and the system will empty in minimal time:
(q1(0) + q2(0))μ−1

2 = 36. This is called a minimum makespan solution. It is illustrated in
Fig. 3: Server 1 is allocated to buffer 3 until t = 4, when buffer 2 is empty, at which point
server 1 allocates u1 = 1/4 to buffer 1, and the remaining capacity u3 = 3/4 to buffer 3,
which is emptying at rate 3/4. The total cost is 360.

The optimal solution, which minimizes the cost in (12) over the time horizon of T = 40
is presented in Fig. 4. It is a compromise between LBFS and minimal makespan. LBFS is
employed until time t = 8, and after that, the bottleneck server is kept fully utilized. The
optimal cost is 352. All details of this fluid solution are in Table 1.

Let t∗ be the time at which we start to divert processing capacity from buffer 3 to buffer
1 in order that server 2 will be fully utilized. For minimum makespan t∗ = 4, for the optimal
solution it is t∗ = 8 and for LBFS it is t∗ = 16. The cost to empty the system is actually
given by the quadratic function W(t∗) = 1

2 (t∗)2 − 8t∗ + 384 and it is minimized at t∗ = 8.
It thus happens that for our example this simple “local optimization” actually solves the
optimization problem over all possible controls, as we find by solving the SCLP.

3 MCQNs with infinite virtual queues

The fluid solution indicates that in time interval τm, buffers k ∈ Km∞ are not empty throughout
the entire time interval. Assume that we are able to track the fluid solution with the actual
MCQN, so that Qk(t) > 0, k ∈ Km∞ for all t ∈ τm. In that case, the class k buffer always has
work available, and so for the dynamics of the network, its level during τm is not relevant.
This can be modeled by MCQN with infinite virtual queues, which we describe now. For

242 Ann Oper Res (2009) 170: 233–249

some further examples of infinite virtual queues see Adan and Weiss (2005, 2006), Kopzon
and Weiss (2002, 2007) and Weiss (2005).

A multi-class queueing network with infinite virtual queues (MCQN with IVQs) is de-
fined as follows: It consists of classes K = K0 ∪ K∞, servers I and constituency matrix A.
Queues of classes k ∈ K0 are standard queues. Queues of classes k ∈ K∞ are infinite virtual
queues: They always have an unlimited supply of jobs available for processing. Let Sk(t) be
the counting process of job completions after processing duration t . Let �kk′(n) count the
number of jobs routed from queue k to queue k′ out of the first n job completions of class
k, where k ∈ K, and k′ ∈ K0\k. Since buffers with infinite virtual queues are never empty,
we do not keep record of jobs which are routed into them, hence we do not consider �kk′(n)

when k′ ∈ K∞.
For k ∈ K0 we let Qk(t) ≥ 0 denote the number of jobs of class k in the system at time t .

For k ∈ K∞ we indicate the relative state of the queue by counting the departures, and by
relating them to some nominal input rate αk . We denote this relative queue length by Rk(t).
For time allocations Tk(t), k ∈ K we then have the dynamics of a MCQN with IVQs:

Zk(t) =
{

Qk(t) = Qk(0) − Sk(Tk(t)) + ∑
k′∈K\k �k′k(Sk′(Tk′(t))) k ∈ K0

Rk(t) = Rk(0) − Sk(Tk(t)) + αkt k ∈ K∞.
(13)

Here Qk(0) are initial queue lengths, and Rk(0) are some arbitrarily chosen initial values.
To summarize: The MCQN with IVQs is controlled by time allocations Tk(t). The

standard queues Qk(t), k ∈ K0 have input of jobs routed from other queues, and output
Sk(Tk(t)). They are non-negative integer valued. The infinite virtual queues supply a stream
of jobs into the system with their output Sk(Tk(t)) and sustain continuous input themselves at
nominal rates αk . Thus their relative level Rk(t) is not restricted in sign and is not restricted
to be integer.

The infinite virtual queues replace the input stream of standard MCQN. If Rk(t) is stable
in the sense that it is kept close to zero, then the departure process of the infinite virtual
queue provides input to the rest of the system at the rate αk . There are two new elements
here which provide wider modeling capacity: (i) the input streams are controlled from within
the network, by the allocation of processing time Tk(t), and (ii) the infinite virtual queues
share servers with other classes. In particular, if a server i serves some standard as well as
some infinite virtual queues, then it will always have work to do, and so it can work at full
utilization of ρi = 1, and yet, it is possible that the standard queues Qk(t) will be stable, and
behave like queues in light traffic. An illustrative example of this is analyzed in Kopzon and
Weiss (2007).

Let α = (α1, . . . , αK)′ be the vector of nominal input rates for k ∈ K∞ and αk = 0 for
k ∈ K0. The overall traffic intensity ρ for this exogenous input vector α is determined by
the following linear program, which is a modified version of the static planning problem LP
introduced in Harrison (2000):

min ρ

s.t. Ru = α, (14)

Au ≤ 1ρ,

u ≥ 0.

Ann Oper Res (2009) 170: 233–249 243

Here R is the input-output matrix for the MCQN with IVQs and thus the first constraint
in (14) reads:

μkuk − ∑
k′∈K\k Pk′kμk′uk′ = 0, k ∈ K0

μkuk = αk, k ∈ K∞.
(15)

A MCQN with IVQs is called rate stable if limt→∞ 1
t
Z(t) = 0. It can be shown that

a necessary condition for rate stability of MCQN with IVQs, under any policy, is that the
overall traffic intensity is ρ ≤ 1 (see Dai and Lin 2005).

MCQN with IVQs for each time interval

We return to our original MCQN over the finite time horizon, with its fluid solution. We
associate a MCQN with IVQs to each of the M intervals of the fluid solution. During τm

the associated MCQN with IVQs is defined by the partition Km
0 and Km∞. The nominal input

rates of k ∈ Km∞ are set to αm
k = μku

m
k , which is the optimal outflow rate from the non-empty

fluid buffer in the solution of (12). The corresponding matrix Rm is that of (7) changed to
have Rm

k′k = 0 for k′ ∈ Km∞, k′ �= k.
Table 1 describes the 4 MCQN with IVQs associated with the 4 intervals of the fluid

solution of the example network. The flow rates of the fluid solution, um
k , k ∈ K, provide

a feasible solution of (14, 15), with ρm = maxi∈I ρm
i ≤ 1. Hence the necessary condition

for rate stability is satisfied by each of the MCQN with IVQs. Clearly, in the fluid solu-
tion, qk(t) = 0 for k ∈ Km

0 , and so Qk(t) is the deviation from the fluid solution for buffers
k ∈ Km

0 . For the classes k ∈ Km∞ the fluid solution has outflow at rate μku
m
k , and so Rk(t)

measures the deviation from the fluid outflow rate for k ∈ Km∞. If we keep Zm(t) rate stable
we will keep these deviations small. Furthermore, for k ∈ Km∞, rate stability of Zm(t) will
yield that �k′k(Sk′(Tk′(t))) − Pk′kμk′um

k′ will also be stable, but this is the deviation between
the actual fluid inflow into buffer k, and the fluid inflow in the fluid solution. It follows
that keeping Zm(t) rate stable implies good tracking of the fluid solution during τm (this is
formally stated in Theorem 5.1).

4 Maximum pressure policies

Maximum pressure policies were introduced by in Tassiulas (1995). They were studied by
Stolyar (2004) in the context of one pass systems. They were further studied in the more
general framework of stochastic processing networks (introduced by Harrison (2000, 2001,
2002)) in Dai and Lin (2005, 2006). Maximum pressure policies are distinguished by two
properties: Under sufficient conditions they are rate stable for systems with overall traffic
intensity ρ ≤ 1, and in heavy traffic (ρ ≈ 1), networks with complete resource pooling have
optimal diffusion scale approximations. We now briefly describe maximum pressure poli-
cies and their adaptation to MCQN with IVQs. The results presented in this section are an
adaptation from Dai and Lin (2005).

Denote by ak = Ṫk(t) the level at which class k jobs are served. When ak = 1 server
σ(k) serves class k fully. When ak = 0, there is no processing of jobs from class k. Mo-
mentarily assume that we allow processor sharing, thus 0 ≤ ak ≤ 1. The column vector
a = (a1, . . . , aK)′ is an allocation. Let the set of feasible allocations A be defined as the
non-negative vectors a such that

∑
k∈Ci

ak ≤ 1 for all i ∈ I (these are the conditions 2). A is

244 Ann Oper Res (2009) 170: 233–249

a non-empty (contains 0), bounded convex polytope, and has a finite number of extreme
points. Denote the set of extreme points of A by E . While A summarizes the set of alloca-
tions that satisfy the resource consumption constraints, it may be that due to emptiness of
buffers k ∈ K0 some allocations in A are not available at certain times. Denote by A(t) ⊆ A
the set of available allocations at time t . Let E (t) = E ∩ A(t) denote the set of the extreme
allocations which are available at time t .

Denote the column vector that is the state of a MCQN at time t by z = (Z1(t), . . . ,ZK(t))′.
Define the total network pressure for an allocation a to be z′Ra (where z′ is a row vec-
tor, R is the input-output matrix and a is a column allocation vector). A service policy is
said to be a maximum pressure policy if at each time t , the network chooses an allocation
a∗ ∈ argmaxa∈E(t)z

′Ra.
By following all the steps in the proofs of the results of Dai and Lin (2005) one can see

that they hold without any change also for MCQN with IVQs, as defined in Sect. 3. We
therefore adopt Dai and Lin’s main throughput optimality result to our context:

Theorem 4.1 Let Z(t) be a MCQN with IVQs. Assume that the processing and routing
counts satisfy conditions (4)–(6). Let ρ be the overall traffic intensity of the network for
nominal input α, and assume that ρ ≤ 1. Then under maximum pressure policy with no
splitting of servers and with no preemptions limt→∞ 1

t
Z(t) = 0.

We make just one comment about the proof: One needs to show that MCQN with IVQs
satisfy EAA assumption. The steps of the proof are as in Dai and Lin (2005), but we need
to make use of the fact that φkk′(�) = 0 for k′ ∈ K∞.

In fact we need the asymptotic result for slightly different scaling. Let Z(t) be a MCQN
with IVQs. Let Sk(t), �kk′(n) be the processing and routing counts of Z(t), and let α be its
nominal inputs vector. ZN(t) is called an N scaling of Z(t) with initial conditions ZN(0),
if it has processing counts SN

k (t) = Sk(Nt), routing counts �kk′(n), and nominal input Nα.
We then have:

Corollary 4.2 Let Z(t) be a MCQN with IVQs. Assume that the processing and routing
counts satisfy conditions (4)–(6). Let ρ be the overall traffic intensity of the network for
nominal input α, and assume that ρ ≤ 1. Let ZN(t) be a sequence of N scalings of Z(t), with
initial states ZN(0) that satisfy ZN(0)/N → 0 as N → ∞. Then under a maximum pressure
policy with no splitting of servers and with no preemptions, ZN(t)/N → 0 uniformly for
0 < t < T for any T > 0.

As observed in Dai and Lin (2005) and Tassiulas (1995), the maximization of the pressure
z′Ra over Aa ≤ 1, a ≥ 0 separates into maximization of the pressure for each of the servers.
This in turn is achieved by

k∗ ∈ arg max
k∈Ci∪0

{

μk(Zk(t) −
∑

k′∈K0\k
Pkk′Zk′(t)),0

}

,

where k∗ = 0 corresponds to idling because all available queues have non-positive pressure.

5 Maximum pressure tracking of the optimal fluid solution

We come now to integration of the SCLP fluid solution, the associated MCQN with IVQs,
and the maximum pressure policy, as described in Sects. 3–5 into a policy for the solution
of the finite horizon MCQN control problem of Sect. 1.

Ann Oper Res (2009) 170: 233–249 245

Table 2 Calculation of pressure in a re-entrant line, for interval τm. Pressure at buffer k depends on type of
queue and queue length of classes k, k + 1. By convention K + 1 ∈ Km∞

Re-entrant implementation

k ∈ Km
0 k ∈ Km∞

k + 1 ∈ Km
0 μk(Qk(t) − Qk+1(t)) Zm

k
(tm−1) + μk(αk(t − tm−1) − (Sk(Tk(t))

− Sk(Tk(tm−1))) − Qk+1(t))

k + 1 ∈ Km∞ μkQk(t) Zm
k

(tm−1) + μk(αk(t − tm−1) − (Sk(Tk(t))

− Sk(Tk(tm−1)))

Maximum Pressure Fluid Tracking Policy (MaxFTP)

Phase 1 (at time 0, centralized): Use Q(0), w,R,A to solve the fluid network problem (8)–
(11), and obtain the time intervals τm, the sets of empty and non-empty fluid buffers
Km

0 , Km∞ and the flow rates αm
k = um

k μk for k ∈ Km∞.

Phase 2 (on-line, decentralized): Track the fluid solution, for t ∈ [0, T) by applying a max-
imum pressure policy in each of the intervals τm, m = 1, . . . ,M as follows:

• Let Q(t) be the queue lengths process for t ∈ τm.
• Let Zm(t) for t ∈ τm be the state process of an associated MCQN with IVQs Km∞, and

nominal inputs αm, such that the processing times and routings of Zm(t) are identical to
those of Q for t ∈ τm. (Note that Zm is as defined in (13) but with the time shifted by
tm−1).

• Set initial values for Zm:

Zm
k (tm−1) =

{
Qk(tm−1) k ∈ Km

0
−hm

k αm
k

√|Q(0)| k ∈ Km∞, (16)

where |Q(0)| = ∑
k∈K Qk(0), and hm

k = 0 if k ∈ Km
0 or if k ∈ Km∞ and qk(tm−1) > 0, and

hm
k = min{k′ :Pk′k>0} hm

k′ + 1 for the remaining k.
• At every time t let E (t) be the set of extreme allocations available for Q(t).

Let Zm(t)′Rma be the pressure of allocation a, calculated for Zm(t).
Use the maximum pressure allocation, maxa∈E(t) Z

m(t)′Rma, without processor splitting
or preemptions.

For the example network (and in fact for any re-entrant line), implementation of the
maximum pressure fluid tracking policy is described in Table 2. When server i is available
at time t ∈ τm, it calculates the pressure of all buffers k ∈ Ci which have Qk(t) > 0 according
to Table 2 and starts to process a job from the queue with the highest pressure if the resulting
pressure is positive. Otherwise, it idles.

Our main result is:

Theorem 5.1 Let Q(t) be the queue length process of a finite horizon MCQN. Assume
that the processing and routing counts satisfy conditions (4)–(6). Let QN(t) be N scalings
of Q(t), with QN(0) = NQ(0). Let q(t) be the optimal fluid solution, and let Vf be its
objective value.

(i) Let V N denote the objective value of QN(t) for any general policy. Then

lim inf
N→∞

1

N
V N ≥ Vf

246 Ann Oper Res (2009) 170: 233–249

(ii) Under MaxFTP policy:

lim
N→∞

1

N
QN(t) = q(t) uniformly on 0 ≤ t ≤ T

and limN→∞ 1
N

V N = Vf .

Proof (i) Consider some general policy and let V̄ = lim infN→∞ 1
N

V N . Let r be a sub-
sequence for which V̄ = limr→∞ 1

r
V r . By the argument of Dai and Lin (2005), Section

A.2 we can find a subsequence r ′ of the r such that limr ′→∞(1
r ′ Qr ′

(t), T r ′
(t), 1

r ′ V r ′
) =

(Q̄(t), T̄ (t), V̄) uniformly on [0, T], where Q̄(t), T̄ (t) are Lipschitz continuous fluid lim-

its, and in particular T̄ has derivative ˙̄T almost everywhere. One can see that Q̄(t), ˙̄T (t), V̄

must be a feasible solution to (8–11). Hence, V̄ ≥ Vf . (ii) We now consider the se-
quence (QN(t),ZN(t), T N(t),V N) under the MaxFTP policy, where ZN are the processes
of deviations from the fluid solution. As above we have that for a subsequence r

limr→∞(1
r
Qr(t), 1

r
Zr(t), T r(t), 1

r
V r) = (Q̄(t), Z̄(t), T̄ (t), V̄), uniformly on [0, T]. Our

goal is to show that Q̄(t), ˙̄T (t) equal the optimal solution of (8)–(11). We do this by in-
duction on the intervals τm, m = 1, . . . ,M . There is nothing to show for t = 0. Assume then
that Q̄(tm−1) = q(tm−1). Assume first that qk(tm−1) > 0 for all k ∈ Km∞. In that case we have
that the initial values Z

m,N
k (tm−1) as defined by (16) are equal to 0. We define:

¯̄t = min
[
tm, inf{t : tm−1 < t < tm, Q̄k(t) = 0 for some k ∈ Km

∞}].
By continuity of Q̄, ¯̄t > tm−1. Let tm−1 < t̄ < ¯̄t . Then for r > r0 we will have Qr

k(t) > 0 for
tm−1 < t < t̄, k ∈ Km∞. Hence for r > r0 the MaxFTP policy will act on Zm,r(t) identical to
max pressure policy. Consider then the sequence of scalings Zm,r under maximum pressure
policy. The optimal solution of SCLP in the mth interval satisfies:

Rmum =
[

RKm
0 ,Km

0
RKm

0 ,Km∞
0 diag(μKm∞)

]

um = αm,

Aum ≤ 1, um ≥ 0,

hence, comparing with (14) we see that ρ ≤ 1 for the network Zm,1. Hence, by Corollary 4.2,
limr→∞ Zm,r(t) = 0 on 0 < t < t̄ , and because t̄ < ¯̄t was arbitrary the same holds for 0 <

t < ¯̄t . We then have for all 0 < t < ¯̄t :
Q̄k(t) = Z̄k(t) = 0, k ∈ Km

0 ,

Z̄k(t) = αk(t − tm−1) − μk(T̄k(t) − T̄k(tm−1)) = 0 implies ˙̄T k(t) = αk/μk, k ∈ Km
∞

so Q̄k(t) = qk(t), k ∈ Km
0 , and ˙̄T k(t) = um

k , k ∈ Km∞. We next obtain for Km
0 :

Q̄Km
0
(t) = 0 − RKm

0 ,Km
0

[
T̄K0(t) − T̄K0(tm−1)

] − RKm
0 ,Km∞[T̄K∞(t) − T̄K∞(tm−1)] = 0

implies ˙̄T K0(t) = −(RKm
0 ,Km

0
)−1RKm

0 ,Km∞diag(αk/μk)k∈Km∞

and so ˙̄T k(t) = um
k , k ∈ Km

0 . Finally we substitute these values into

Q̄Km∞(t) = Q̄Km∞(tm−1) − RKm∞,Km
0
[T̄K0(t) − T̄K0(tm−1)] − RKm∞,Km∞[T̄K∞(t) − T̄K∞(tm−1)]

to get Q̄k(t) = qk(t), k ∈ Km∞. Since Q̄k(
¯̄t) = qk(

¯̄t) we must have ¯̄t = tm.

Ann Oper Res (2009) 170: 233–249 247

Consider now the case that for some of the k ∈ Km∞, qk(tm−1) = 0. We sketch the proof in
this case. The MaxFTP policy will start off at time tm−1 with negative pressure in these
buffers. As a result there will be no processing out of these buffers for a duration of
hm

k

√
N |Q(0)|. All the buffers with hm

k = 0 will be processed according to maximum pres-
sure. It can then be seen that the buffers with hm

k > 0 will fill up with a quantity of jobs of
the order of magnitude

√
N by the time they reach positive pressure. As a result we get that

d
dt

Q̄(tm−1) > 0, and the proof proceeds as before.
We have shown that each fluid limit must equal the optimal fluid solution, and we also

know that every sequence of scalings has a subsequence which has a fluid limit. This
proves that limN→∞ 1

N
QN(t) = q(t), uniformly on [0, T]. In particular this implies that

limN→∞ 1
N

V N = Vf . �

6 Simulation results

We simulated the example network for N scalings of up to N = 106. We generated the
processing times for each of the classes as pseudo random i.i.d. exponential random vari-
ables. For each single replicate we used 3 × 4 = 12 generator seeds which gave us long
sequences of processing times for each of the three buffers in each of the four time intervals
of the fluid solution. We then created N scalings of each replicate as defined in Sect. 4.

Figure 5 illustrates the simulation results for 4 such replicates (the four columns) and N

scalings of N = {1, 10, 100}. In the figure we show for each of the 12 simulated queueing
processes the values of QN(t) plotted against the optimal fluid solution for that N (this is the
fluid solution q(t) multiplied by N for each t). The illustrations show that even for N = 10,
the approximation is quite good.

Figure 6 examines the asymptotics of our policy in more detail and on a mass scale.
Here we have plotted unscaled deviations, namely QN

k (t) − Nqk(t), at the time points t =
4, 8, 24, 40, which are the breakpoint times of the optimal fluid solution. This is performed
for each queue k = 1,2,3. For 100 replicates we have performed the following N scalings:
N = {1, 5 × 103, 104, 5 × 104, 105, 2 × 105, 4 × 105, 6 × 105, 8 × 105, 106}. The N

Fig. 5 Example realizations: 4 replicates (columns) with scalings N = {1,10,100} for each replicate

248 Ann Oper Res (2009) 170: 233–249

Fig. 6 Empirical asymptotics: 100 replicates with N scalings up to N = 106

scalings of each replicate are plotted as a continuous line. This allows us to appreciate how
the deviations evolve along a single sample path, as the scaling increases.

As may be expected, the deviations all appear to be of the order of magnitude of
√

N . An
exception is for the N scalings for k = 3 and t = 40, where the deviations look like queue
lengths of a queue in light traffic (indeed the utilization of server 1 in the last interval is 1/2).

References

Adan, I. J. B. F., & Weiss, G. (2005). A two node Jackson network with infinite supply of work. Probability
in Engineering and Informational Sciences, 19, 191–212.

Adan, I. J. B. F., & Weiss, G. (2006). Analysis of a simple Markovian re-entrant line with infinite supply of
work under the LBFS policy. Queueing Systems Theory and Applications, 54, 169–183.

Anderson, E. J. (1981). A new continuous model for job-shop scheduling. International Journal Systems
Science, 12, 1469–1475.

Anderson, E. J., & Nash, P. (1987). Linear programming in infinite dimensional spaces. Chichester: Wiley-
Interscience.

Avram, F., Bertsimas, D., & Ricard, M. (1995). Fluid models of sequencing problems in open queueing
networks: an optimal control approach. In F. P. Kelly & R. Williams (Eds.), IMA volumes in mathematics
and its applications: Vol. 71. Stochastic networks (pp. 199–234). New York: Springer.

Bellman, R. (1953). Bottleneck problems and dynamic programming. Proceedings National Academy of
Science, 39, 947–951.

Bramson, M. (1998). State space collapse with application to heavy traffic limits for multiclass queueing
networks. Queueing Systems Theory and Applications, 30, 89–148.

Chen, H., & Yao, D. (1993). Dynamic scheduling of a multi class fluid network. Operations Research, 41,
1104–1115.

Chen, M., Pandit, C., & Meyn, S. P. (2003). In search of sensitivity in network optimization. Queueing
Systems Theory and Applications, 44, 313–363.

Chen, R. R., & Meyn, S. P. (1999). Value iteration and optimization of multiclass queueing networks. Queue-
ing Systems Theory and Applications, 32, 65–97.

Connors, D., Feigin, G., & Yao, D. (1994). Scheduling semiconductor lines using a fluid network model.
IEEE Transactions on Robotics and Automation, 10, 88–98.

Dai, J. G. (1995). On positive Harris recurrence of multi-class queueing networks: a unified approach via
fluid limit models. Annals of Applied Probability, 5, 49–77.

Dai, J. G., & Lin, W. (2005). Maximum pressure policies in stochastic processing networks. Operations
Research, 53, 197–218.

Dai, J. G., & Lin, W. (2006). Asymptotic optimality of maximum pressure policies in stochastic processing
networks. Annals of Applied Probability (submitted).

Ann Oper Res (2009) 170: 233–249 249

Fleischer, L., & Sethuraman, J. (2003). Approximately optimal control of fluid networks. IBM Research
Report

Goemans, M. X., & Williamson, D. P. (1996). The primal dual method for approximation algorithms and its
application to network design problems. In D. Hochbaum (Ed.) Approximation algorithms (pp. 144–
191).

Harrison, J. M. (1988). Brownian models of queueing networks with heterogeneous customer populations. In
W. Fleming & P. L. Lions (Eds.), Proceedings of the IMA workshop on stochastic differential systems.
Berlin: Springer.

Harrison, J. M. (1996). The BIGSTEP approach to flow management in stochastic processing networks. In
F. P. Kelly, S. Zachary, & I. Ziedins (Eds.), Royal statistical society lecture note series: Vol. 4. Stochastic
networks: theory and applications (pp. 147–186). Oxford: Oxford University Press.

Harrison, J. M. (2000). Brownian models of open processing networks: canonical representation of workload.
Annals of Applied Probability, 10, 75–103.

Harrison, J. M. (2001). A broader view of Brownian networks. Annals of Applied Probability, 13, 1119–1150.
Harrison, J. M. (2002). Stochastic networks and activity analysis. In Y. Suhov (Ed.), Analytic methods in

applied probability, In memory of Fridrik Karpelevich. Providence: American Mathematical Society.
Harrison, J. M., & Van Mieghem, J. (1997). Dynamic control of Brownian networks: State space collapse and

equivalent workload formulations. Annals of Applied Probability, 7, 747–771.
Kelly, F. P., & Laws, C. N. (1993). Dynamic routing in open queueing networks: Brownian models, cut

constraints and resource pooling. Queueing Systems Theory and Applications, 13, 47–86.
Kopzon, A., & Weiss, G. (2002). A push pull queueing system. Operations Research Letters, 30, 351–359.
Kopzon, A., & Weiss, G. (2007). A push pull system with infinite supply of work. Preprint.
Kushner, H. J. (2001). Heavy traffic analysis of controlled queueing and communication networks. Berlin:

Springer.
Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Sequencing and schedul-

ing, algorithms and complexity. In S. C. Graves & A. H. G. Rinnooy (Eds.), Handbooks in operations
research and management science: Vol. 4. Logistics of production and inventory. Amsterdam: North
Holland.

Maglaras, C. (1999). Dynamic scheduling in multiclass queueing networks: Stability under discrete-review
policies. Queueing Systems Theory and Applications, 31, 171–206.

Maglaras, C. (2000). Discrete-review policies for scheduling stochastic networks: Trajectory tracking and
fluid-scale asymptotic optimality. Annals of Applied Probability, 10, 897–929.

Meyn, S. P. (2001). Sequencing and routing in multiclass queueing networks. Part I: Feedback regulation.
SIAM Journal Control and Optimization, 40, 741–776. IEEE international symposium on information
theory. Sorrento, Italy, June 25 – June 30 2000.

Meyn, S. P. (2003). Sequencing and routing in multiclass queueing networks. Part II: Workload relaxations.
SIAM Journal Control and Optimization, 42, 178–217.

Shah, S., & Nahrstedt, K. (2002). Predictive location-based QoS routing in mobile ad hoc networks. In Pro-
ceedings of IEEE international conference on communications.

Pullan, M. C. (1993). An algorithm for a class of continuous linear programs. SIAM Journal Control and
Optimization, 31, 1558–1577.

Stolyar, A. L. (2004). MaxWeight scheduling in a generalized switch: State space collapse and equivalent
workload minimization under complete resource pooling. Annals of Applied Probability, 14(1), 1–53.

Tassiulas, L. (1995). Adaptive back-pressure congestion control based on local information. IEEE Transac-
tions on Automatic Control, 40, 236 Ð-250.

Wein, L. M. (1992). Scheduling networks of queues: Heavy traffic analysis of a multistation network with
controllable inputs. Operations Research, 40, S312–S334.

Weiss, G. (1999). Scheduling and control of manufacturing systems—a fluid approach. In Proceedings of the
37 Allerton conference, Monticello, Illinois 21–24, September 1999, (pp. 577–586).

Weiss, G. (2005). Jackson networks with unlimited supply of work. Journal of Applied Probability, 42, 879–
882.

Weiss, G. (2008). A simplex based algorithm to solve separated continuous linear programs. Mathematical
Programming, 115, 151–198.

Williams, R. J. (1998). Diffusion approximations for open multiclass queueing networks: sufficient conditions
involving state space collapse. Queueing Systems Theory and Applications, 30, 27–88.

	Near optimal control of queueing networks over a finite time horizon
	Abstract
	Introduction
	Finite horizon multi-class queueing networks
	Example model

	The multi-class fluid network optimization problem
	Solution of the example fluid network

	MCQNs with infinite virtual queues
	MCQN with IVQs for each time interval

	Maximum pressure policies
	Maximum pressure tracking of the optimal fluid solution
	Maximum Pressure Fluid Tracking Policy (MaxFTP)

	Simulation results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

