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Abstract A basic problem in the theory of simple games and other fields is to study whether
a simple game (Boolean function) is weighted (linearly separable). A second related problem
consists in studying whether a weighted game has a minimum integer realization. In this
paper we simultaneously analyze both problems by using linear programming.

For less than 9 voters, we find that there are 154 weighted games without minimum
integer realization, but all of them have minimum normalized realization. Isbell in 1958 was
the first to find a weighted game without a minimum normalized realization, he needed to
consider 12 voters to construct a game with such a property. The main result of this work
proves the existence of weighted games with this property with less than 12 voters.

Keywords Simple games · Weighted voting games · Minimal realizations · Minimum
realization · Realizations with minimum sum

1 Introduction

Simple games can be viewed as models of voting systems in which a single alternative, such
as a bill or an amendment, is pitted against the status quo.
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Definition 1.1 A simple game G is a pair (N,W) in which N = {1,2, . . . , n} and W is
a collection of subsets of N that satisfies: N ∈ W , ∅ /∈ W and, the monotonicity property,
S ∈ W and S ⊆ R ⊆ N implies R ∈ W .

Any set of voters is called a coalition, the set N is called the grand coalition, and the
empty set ∅ is called the empty coalition. Members of N are called players or voters, and
the subsets of N that are in W are called winning coalitions. Our definition of simple game
demands that the grand coalition is winning and the empty coalition is losing. The gain,
albeit small, in the exclusion of these two innocuous examples is in the interpretation of
simple games as voting systems. However, in other fields like, for example, circuits theory
or Boolean algebra, these two restrictions are not required.

The intuition here is that a set S is a winning coalition if and only if the bill or amendment
passes when the players in S are precisely the ones who voted for it. A subset of N that is not
in W is called a losing coalition, let L = 2N \ W . A minimal winning coalition is a winning
coalition all of whose proper subsets are losing. Analogously, a maximal losing coalition is
a losing coalition all of whose proper supersets are winning. Because of monotonicity, any
simple game is completely determined by its set of minimal winning coalitions or by its set
of maximal losing coalitions, which are denoted by Wm and LM , respectively.

Monotonicity leads to an efficiency in describing (N,W): we need list only the mini-
mal winning coalitions (or the maximal losing coalitions). The entire collection of winning
(losing) coalitions can now be obtained by closing out under the operation of adding new el-
ements to the minimal winning coalitions. Thus (N,Wm) ((N,LM)) is enough information
to describe the game.

A voter a ∈ N is null if a does not belong to any minimal winning coalition. A voter
a ∈ N is winner if {a} is a winning coalition.

Of fundamental importance to us is the class of weighted simple games.

Definition 1.2 A simple game G = (N,W) is said to be weighted if there exists a “weight
function” w : N → R and a real number “quota” q ∈ R such that a coalition S is winning
exactly when the sum of the weights of the players in S meets or exceeds quota.

Any specific example of such a weight function w : N → R and quota q as in Definition
1.2 are said to realize G as a weighted game. A particular realization of a weighted simple
game is denoted as (q;w1, . . . ,wn), or briefly (q;w), where w represents (w1, . . . ,wn). The
weight

∑
i∈S wi , of a non-empty coalition S, is denoted by w(S), and 0 is assigned to w(∅).

Three parameters can rbe associated to any realization (q;w) of a weighted simple game
(briefly, weighted game) (N,W):

T = w(N), a = min
S∈W

w(S) and b = max
S∈L

w(S).

Some real-world examples of weighted games can be found in some voting systems: the
United Nations Security Council seen as a simple game (see Freixas and Zwicker 2003 for a
weighted representation of this example with abstention), the first European Economic Com-
munity (1958), and many national and supranational European Parliaments. All these exam-
ples use integer weights and quota. On the other hand, examples of non-weighted games
are: the United States Federal System, the System to Amend the Canadian Constitution, the
current European Economic Community, etc. See Taylor (1995) for a thorough presentation
of these examples.
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A basic problem in the theory of simple games, and other fields, consists in studying
whether a simple game is weighted. The only results giving necessary and sufficient con-
ditions can be found under one of the next three topics (see Taylor and Zwicker 1999 for a
more detailed explanation on them):

(i) Geometric approach based on separating hyperplanes;
(ii) Approach based on trading transforms;

(iii) Algebraic approach based on systems of linear inequalities.

The geometric approach requires translating the question of weightedness into one of sep-
arability via a hyperplane of the convex hulls associated to winning coalitions and losing
coalitions respectively in R

n. Such characterization attaches an attractive geometric intu-
ition to the notion of weightedness, but it is not clear how one might actually apply it to
check whether a given simple game is weighted.

The approach based on trades offers a natural, albeit quite complex, procedure. Weighted
games are characterized as those for which is not possible to convert an arbitrarily sequence
of winning coalitions to a sequence of losing coalitions by leaving invariant the number
of times each player appears in both sequences. This approach is proposed in Taylor and
Zwicker (1992) (see also Taylor and Zwicker 1999 for more details). In Freixas and Mo-
linero (2008) a new test is provided, which only uses a subset of minimal winning coalitions.

Theorems on the existence of solutions for systems of linear inequalities go back to
the early 1900s. An important result mentioned in Von Neumann and Morgenstern (1944),
and extensively treated in Fishburn (1973), is the Theorem of the Alternative. This third
procedure is the one chosen in this paper (see for example Chavátal 1983; Shapiro 1979 to
deal with linear programming in depth). From linear programs we will get simple games
that verify some relevant properties.

The organization of this paper is as follows. The main issue of Sect. 2 is to provide an
efficient system of inequalities which allow to study whether a simple game is weighted.
Section 3 is devoted to classify several types of integer realizations for weighted games and
to state an efficient linear programming problem to find minimum (sum) integer realizations.
Section 4 makes use of classical computational packages to tackle the main problems stated
in the previous sections. It contains a full classification for weighted games with less than 9
voters. In particular, we list all 154 weighted games without minimum integer realization.
Section 5 is devoted to find weighted games without minimum integer realization and with
less than 12 voters. Finally, the conclusions are stated in Sect. 6.

2 An efficient system of inequalities

The most natural way to find out if a simple game (N,W) is weighted consists in determin-
ing the consistency of the following system of inequalities:

w(S) > w(R) for all S ∈ Wm, R ∈ LM (1)

where w = (w1, . . . ,wn) are the unknowns.
If system (1) is consistent then any solution w = (w1, . . . ,wn) provides a realization

(q;w) for (N,W) where q is any number belonging to the interval (b, a]. This system has
|Wm| · |LM | inequalities (or constraints), which is a smaller number than |W | · |L|, which is
the number of constraints for the innocuous equivalent system obtained by considering all
winning and all losing coalitions.
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In this paper we will propose two additional simplifications for system (1). Although
they were already pointed out in Carreras and Freixas (1996), no further analysis have been
done on them. We will use the most simplified version of them to classify all games with
less than 9 voters (see system (3) below).

2.1 Real and integer realizations

Previously to establish the two alternative “equivalent” systems of inequalities, we need to
introduce some preliminaries on realizations of weighted games.

Proposition 2.1 Let (N,W) be a weighted game with (q;w) as a realization. Then:

(i) T ≥ q > 0,
(ii) wi ≤ 0 for some i ∈ N implies that i is a null voter,

(iii) (c · q; c · w) for every c > 0 is a realization for (N,W).

Proof

(i) If q ≤ 0 the empty set would be a winning coalition, and if T < q the grand coalition
would be losing. Both facts contradict the definition of simple game (cf. Definition 1.1).

(ii) Assume by the way of contradiction that there exists i such that wi ≤ 0. So, there is
at least some S ∈ Wm with i ∈ S, w(S \ {i}) = w(S) − wi ≥ w(S) ≥ q . Hence, S \ {i}
would be a winning coalition which is a contradiction with the minimality of S.

(iii) It easily follows from the fact that w(S) ≥ q if and only if (c · w)(S) ≥ c · q for every
c > 0, since (c · w)(S) = c · w(S). �

So we may restrict our attention to real realizations with positive quota, 0 < q ≤ T ,
and non-negative weights, wi ≥ 0; that is, weights in R+ = {x ∈ R, x ≥ 0} and quota in
R++ = {x ∈ R, x > 0}. Now, R(N,W) denotes the set of real realizations for the weighted
game (N,W), that is, pairs (q;w) ∈ R++ × R

n+. Proposition 2.1-(iii) shows that the set
R(N,W) is a cone.

Proposition 2.2 (Integer realizations) Every weighted game (N,W) admits an integer re-
alization.

Proof Let (q;w) be a real realization for (N,W). As a = minS∈W w(S) and b =
maxS /∈W w(S) it holds b < q ≤ a. If q /∈ Q we can adjust q by the subtraction of a small
irrational to convert q to a rational number q ′. Next, if some of the weights are irrational
numbers, we can also adjust each of them, wi , by adding a small irrational to convert it
to a rational number w′

i (w′
i > wi ). The remaining weights, wi which are rationals, are left

invariant (w′
i = wi ). As the changes in weights or quota are small enough the “wiggle room”

between b and a for (q;w) guarantee that b ≤ b′ < q ′ ≤ q ≤ a ≤ a′, thus (q;w) and (q ′;w′)
are equivalent realizations. Then, we may consider the integer realization (q ′′;w′′) which
is obtained from (q ′;w′) by multiplying (cf. Proposition 2.1-(iii)) all numbers by the great
common divisor (g.c.d., for short) of the denominators of q ′ and w′

i (with w′
i 	= 0) which

allows to obtain an equivalent integer realization. �

On account to this proposition, from now on, we will just consider integer realizations:
I(N,W) denotes the set of integer realizations for the weighted game (N,W); that is, pairs
(q;w) ∈ N++ × N

n+. If (q;w) ∈ I(N,W) then (c · q; c · w) ∈ I(N,W) whenever c ∈ N.
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Thus, I(N,W) is unbounded and so R(N,W) is. Note that the set I(N,W) is a cone of
integer values. When there is no confusion we write simply I instead of I(N,W). If integer
realizations are used one may ask for the “smallest” realization(s) within the cone of integer
values. This point will be tackled in Sect. 3, we now previously need to define a relation of
importance among voters.

2.2 A natural relation

To define a natural relation between voters, we start by introducing the desirability relation
which goes back at least to Isbell (1958), and later generalized in Maschler and Peleg (1966)
(see also Muroga 1971).

Definition 2.3 Let (N,W) be a simple game.

(i) Player i is more desirable than j (i 
 j , for short) in (N,W) if

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W, for all S ⊆ N \ {i, j}.
(ii) Players i and j are equally desirable (i ∼ j , for short) in (N,W) if

S ∪ {i} ∈ W ⇔ S ∪ {j} ∈ W, for all S ⊆ N \ {i, j}.
(iii) Player i is strictly more desirable than player j (i � j , for short) in (N,W) if i is more

desirable than j , but i and j are not equally desirable.

If the desirability relation is complete for (N,W), then the game is called complete. In
the field of Boolean algebra, complete games correspond to 2-monotonic positive Boolean
functions, which were already considered in Hu (1965). The problem of identifying this type
of functions by using polynomial-time recognition have been treated in Boros et al. (1991,
1997).

It is clear that if a weighted game admits (q;w1, . . . ,wn) as a realization then wi ≥
wj implies i 
 j . Thus, for a weighted game the desirability relation is complete. In fact
non-complete games are not weighted thus, from now on, we will just deal with complete
simple games. Note also that wi = wj implies i ∼ j . Although, i ∼ j does not necessarily
imply wi = wj . However, i � j implies wi > wj . These comments suggest the following
definition.

Definition 2.4 Let (q;w) be a realization of a weighted game (N,W), (q;w) is said to
preserve types if wi = wj whenever i ∼ j .

From now on, whenever we consider a realization (q;w) of a weighted game (N,W) it
will be assumed that i 
 i + 1 for each i = 1, . . . , n − 1, that is, voter i is more desirable
than voter i + 1. Thus the set of voters admits a partition in t classes, N1,N2, . . . ,Nt such
that i � j and i ∈ Np , j ∈ Np′ implies p < p′, i.e. voters in N1 are the most desirable, and
voters in Nt are the least desirable. The extreme cases for this partition arise when t = 1
which means that all voters are equally desirable; and t = n which means that each class
reduces to a singleton.

Given a simple game (N,W) one can study the desirability relation among voters so this
information allows another improvement to describe (N,W): we need list only the winning
coalitions that are minimal in this sense. A shift-minimal winning coalition (shift-maximal
losing coalition) is a coalition S that is minimal (maximal), among minimal winning coali-
tions (maximal losing coalitions), in the 
-relation (or 
-preorder). Formally,
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Definition 2.5 Let (N,W) be a simple game and 
 be its desirability relation. A coalition
S ∈ W is shift-minimal if for every i ∈ S and j /∈ S such that i � j it holds (S \{i})∪{j} ∈ L.

Definition 2.6 Let (N,W) be a simple game and 
 be its desirability relation. A coalition
S ∈ L is shift-maximal if for every i /∈ S and j ∈ S such that i � j it holds (S \ {j}) ∪
{i} ∈ W .

From now on, the set of shift-minimal winning coalitions (shift-maximal losing coali-
tions) will be denoted by Wh (LH ).

This shift-ordering has been rediscovered a number of times, and in more than one con-
text. For example, in the context of simple games, it appears in Ostmann (1985), Krohn
and Sudhölter (1995), Carreras and Freixas (1996), Taylor and Zwicker (1999); in Boolean
functions, it appears in Hammer et al. (2000); in social choice, it occurs in Fishburn (1969);
in the study of fair division, it occurs in Brams et al. (1979); and in voting theory, it appears
in Brams and Fishburn (1976).

If (N,W) is a complete simple game (i.e., the desirability relation is complete), we may
think of the linearly ordered set of 
-equally desirable classes as being lined up from the
most influential on the left to the least influential on the right. Thus the coalition (S \ {i}) ∪
{j} described in Definition 2.5 is obtained by “shifting a one to the right”.

A second useful way to check whether a simple game is weighted consists in studying
the consistency of the following system of linear inequalities:

w(S) > w(R) for all S ∈ Wh, R ∈ LH (2)

where w1, . . . ,wn are the unknowns.
The inclusions Wh ⊆ Wm and LH ⊆ LM mean that the inequalities in system (1) but not

in system (2) are redundant. To clarify the notion introduced in Definitions 2.5 and 2.6 let
us consider an example.

Example 2.7 Consider a game with 5 voters whose set of minimal winning coalitions is

Wm = {{1,2}, {1,3}, {1,4}, {1,5}, {2,3,4}, {2,3,5}, {2,4,5}}.
Then one can generate the remaining winning coalitions, the losing coalitions and among
these the maximal ones. The reader may easily check that there are 19 winning coalitions
and 13 losing coalitions. The list of maximal losing coalitions is

LM = {{1}, {2,3}, {2,4}, {2,5}, {3,4,5}}.
The desirability relation is complete since 1 � 2 � 3 ∼ 4 ∼ 5, thus the game is complete

and, therefore the game could be weighted. Coalition {1,2} is minimal winning but is not
shift-minimal because coalitions of the form {1, j} also win for j = 3,4,5. It is not difficult
to check that the remaining minimal winning coalitions are also shift-minimal. Thus,

Wh = {{1,3}, {1,4}, {1,5}, {2,3,4}, {2,3,5}, {2,4,5}}.
Analogously, it can be checked that every maximal losing coalition is shift-maximal.

Thus,

LH = {{1}, {2,3}, {2,4}, {2,5}, {3,4,5}}.



Ann Oper Res (2009) 166: 243–260 249

System (1) has 7 · 5 = 35 inequalities (whereas considering all winning and all losing
coalitions would involve 19 ·13 = 247 inequalities). System (2) still allows a better reduction
with respect to system (1) since it only takes 6 · 5 = 30 inequalities. Systems (1) and (2) are
consistent and admit as a solution the weights (w1,w2,w3,w4,w5) = (5,4,1,1,1), there-
fore a realization for this game is (6;5,4,1,1,1).

2.3 A more efficient system of inequalities

We start this section with an example which suggests a further simplification for system (2).

Example 2.8 A company is formed by three owners, nine team leaders and ninety workers.
Each team leader is in charge of ten workers. Some internal decisions in the company are
taken by the following rule: a decision is passed, if and only if, a majority of the owners (at
least 2-out-of-3) vote in favor, a majority of owners and team leaders (at least 7-out-of-12)
votes in favor, and one third of all the members of the company (at least 34-out-of-102)
votes in favor. That is to say, from the viewpoint of voting there are three types of members
in the company whose respective cardinalities can be gathered in vector (3,9,90). Each
shift-minimal coalition has exactly 2 owners, 5 team leaders and 27 workers, so it can be
represented by vector (2,5,27). Note that in this voting game, an owner is strictly more
desirable than a team leader, and a team leader is strictly more desirable than a worker,
so that the game is complete. Once we have identified the vector of types and the models
of shift-minimal winning coalitions one may easily identify the models of shift-maximal
losing coalitions, which are the vectors: (3,9,22), (3,3,90) and (1,9,90). Indeed, if we
add a single element in one of these vectors or move one element from the right to the left,
we get a vector corresponding to winning coalitions.

System (2) has much less inequalities than systems (1), although the number of shift-
minimal coalitions is

(3
2

) · (9
5

) · (90
27

) ≈ 2,6 · 1025, and the number of shift-maximal coalitions
is

(3
3

) · (9
9

) · (90
22

) + (3
3

) · (9
3

) · (90
90

) + (3
1

) · (9
9

) · (90
90

) ≈ 5,3 · 1020, which makes system (2) too
large to study its consistency. Now, one may consider the alternative system of inequalities
obtained by considering “models” of shift-minimal and shift-maximal coalitions instead of
shift-minimal winning and shift-maximal losing coalitions, respectively. We consider “rep-
resentatives” for each element in the partition N1, N2, N3 of N instead of voters. Thus, the
system is

2w1 + 5w2 + 27w3 > 3w1 + 9w2 + 22w3

2w1 + 5w2 + 27w3 > 3w1 + 3w2 + 90w3

2w1 + 5w2 + 27w3 > w1 + 9w2 + 90w3

where w1,w2,w3 are the unknowns.
Clearly, this system has not solution, if it had been consistent, wi , for i = 1,2,3, would

have represented the common weight for all voters in Ni , for i = 1,2,3.

This example gives the idea on how to solve the underlying problem. The following
theorem arises from the equivalence of systems (1) and (2), and it establishes the vectorial
formulation of systems (2).

Theorem 2.9 A complete simple game (N,W) is a weighted game if and only if there is a
vector w = (w1,w2, . . . ,wt ) such that w1 > w2 > · · · > wt ≥ 0, which satisfies the system
of inequalities:

(mi − lj ) · w > 0 for i = 1, . . . , r, j = 1, . . . , s; (3)
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where mi , for i = 1, . . . , r , are the models of shift-minimal winning coalitions and lj , for
j = 1, . . . , s, are the models of shift-maximal losing coalitions; and t stands for the number
of classes N1, . . . ,Nt in the partition of N for game (N,W).

Now, we enumerate some remarks from which we will develop most of our experiments
below in Sects. 4 and 5.

a. When a simple game is complete we may represent it by a pair (n, M) where n =
(n1, n2, . . . , nt ) and ni = |Ni |; being voters in N1 the most desirable, voters in N2 the
second most desirable, and so on. Each row mi = (mi1, . . . ,mit ) in matrix M represents
a model of shift-minimal winning coalitions S with the relationship mi1 = |S ∩ N1|, . . . ,
mit = |S ∩Nt |. Repetitions of rows in M are not allowed. Hence a complete simple game
may be represented by the pair (n, M). Analogously, one may use a pair (n, L) where
n = (n1, n2, . . . , nt ) and each row lj = (lj1, . . . , lj t ) in matrix L represents a model of
shift-maximal losing coalitions S with the relationship lj1 = |S ∩ N1|, . . . , lj t = |S ∩ Nt |.

b. System (3) is consistent if and only if system (2) is consistent. Moreover, each model
mi represents

(
n1

mi,1

) · · · ( nt

mi,t

)
shift-minimal winning coalitions. Analogously, each model

lj represents
(

n1
lj,1

) · · · ( nt

lj,t

)
shift-maximal losing coalitions. Hence, the simplification in

passing from system (2) to system (3) is usually a good improvement.
c. If system (3) is consistent one may easily obtain a solution for system (2) by assigning

weight wi to each voter belonging to Ni . Reciprocally, if system (2) is consistent one
may easily obtain a solution for system (3) by assigning to the representative of Ni the
average of the weights for all voters belonging to Ni .

d. There are no games “rare enough” so that systems (2) and (3) have the same number
of inequalities. That is, we will always get some kind of reduction by using system (3)
instead of system (2).

Our goal in Sect. 4 is to classify weighted games with less than 9 voters, so it will be very
useful to know what properties must fulfill any allowed pair (n, M) representing a complete
simple game (N,W). The following theorem gives the answer and will be extensively used
later on.

Theorem 2.10 (Carreras and Freixas 1996)

Part A Let G = (N,W) be a complete simple game with non-empty classes N1 > N2 >

· · · > Nt , let n be the vector defined by their cardinalities and let M be the matrix with
r rows that are the profiles corresponding to shift-minimal coalitions. If M = (mi,j ), with
1 ≤ i ≤ r and 1 ≤ j ≤ t , the pair (n, M) satisfies the four conditions below:

(1) mi,j ∈ N ∪ {0} and 0 ≤ mi,j ≤ nj for all i, j with 1 ≤ i ≤ r and 1 ≤ j ≤ t ;
(2) for every pair of different rows of M, mi , mh, it holds neither

∑k

j=1 mi,j ≥ ∑k

j=1 mh,j

for all 1 ≤ k ≤ t , nor
∑k

j=1 mh,j ≥ ∑k

j=1 mi,j for all 1 ≤ k ≤ t ;
(3) if t = 1 then m1,1 > 0; if t > 1 then for every k < t there exists some h such that

mh,k > 0 and mh,(k+1) < nk+1; and
(4) the rows of M are lexicographically ordered by partial sums; that is, let k be the lowest

number 1 ≤ k ≤ t such that
∑k

j=1 mij 	= ∑k

j=1 mhj , then it is
∑k

j=1 mij >
∑k

j=1 mhj

whenever i < h.

Part B (Uniqueness) Two complete simple games G = (N, W) and G′ = (N ′, W ′) are iso-
morphic if and only if n = n′ and M = M′.
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Part C (Existence) Given a vector n and a matrix M satisfying the conditions of Part A,
there exists a complete simple game G = (N, W) associated to vector n and matrix M.

We note that Theorem 2.10 is a parameterization theorem because of it allows one to
enumerate all complete simple games up to isomorphism by listing the possible values of
certain invariants (n, M). We refer the interested reader to Carreras and Freixas (1996) for
more details.

3 Minimal integer normalized realizations

In this section we only deal with weighted games with integer realizations. Let us consider
two different concepts for the term “smallest” realization of a weighted game.

Definition 3.1 A realization (q;w) of a weighted game (N,W) is called minimum if w′ ≥ w

(that is, w′
i ≥ wi for all 1 ≤ i ≤ n) for all realization (q ′;w′) ∈ I(N,W) with w′ 	= w. Let

MI be the set of minimum realizations.

For instance, one may easily check that the realization (6;5,4,1,1,1) for the game de-
fined in Example 2.7 is minimum.

Definition 3.2 A realization (q;w) of a weighted game (N,W) has minimum sum if
w′(N) ≥ w(N) for all (q ′;w′) ∈ I(N,W). Let sMI be the set of all minimum sum re-
alizations.

In the following we seek properties that minimum sum realizations must fulfill.

Proposition 3.3 Let (q;w) ∈ sMI be a realization for the weighted game (N,W), then:

(i) q = a and q = b + 1,
(ii) wi = 0 if i is a null voter,

(iii) wi = q if i is a winner,
(iv) g.c.d.(q;w1, . . . ,wk) = 1, where {1, . . . , k} denotes the set of non-null voters in N .

Proof

(i) Let (q;w) ∈ sMI , recall that a = minS∈W w(S), b = maxS∈L w(S) and T = w(N). If
a − b ≥ 2 it means that there are no coalitions S with w(S) = a − 1. We distinguish
between two cases:
– If q = a, then we may consider (q ′;w′) ∈ I with q ′ = q − 1 and w′ is obtained

from w by decreasing one unit a positive weight and leaving the remaining weights
with the same value. Clearly, both realizations define the same game, which is a
contradiction with the assumption (q;w) ∈ sMI because w′(N) < w(N). Thus, a −
b = 1 and q = a.

– If q ≤ a − 1, we just have to take q ′ = q and proceeding as before.
Thus, (q;w) ∈ sMI implies both: a = b + 1 and q = a.

(ii) It is a consequence of Proposition 2.1-(ii).
(iii) Let (q;w) ∈ sMI and assume that voter i is a winner with wi > q , then we may con-

sider a new representation (q ′;w′) ∈ I in which wi is transformed to q , the remaining
components in w are left invariant in w′ and q ′ = q . The inequality w ≥ w′ together
with w 	= w′, is a contradiction with (q;w) ∈ sMI .
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(iv) Let (q;w) ∈ sMI and assume that g.c.d.(q;w1, . . . ,wk) = c 	= 1, where {1, . . . , k}
denotes the set of non-null voters in N . By Part (ii) the weights of null voters (if any)
in w are zero. Therefore, we may consider the realization ( 1

c
· q; 1

c
· w) which belongs

to I and preserves winning coalitions. Thus a contradiction with (q;w) ∈ sMI . �

We note that Proposition 3.3-(i) implies that the quota q for minimum sum realizations
is forced to be q = a. This justifies why there is no any restriction for the quota in Defini-
tions 3.1 and 3.2.

Now, from Definition 3.2 and system (2) we can directly establish the following theorem.

Theorem 3.4 Assuming the previous notations and definitions, minimum sum realizations
for game (N,W), sMI , are the solutions of the linear program:

min
n∑

i=1

wi

s.t. w(S) > w(R) for all S ∈ Wh, R ∈ LH .

(4)

Note that the constraints in system (4) are exactly the inequalities in system (2).

Proposition 3.5 Let (N,W) be a weighted game, MI and sMI be the sets defined above.

(i) MI has at most one element.
(ii) sMI is never empty.

(iii) MI ⊆ sMI . Moreover, the equality arises if and only if MI reduces to a singleton.

Proof

(i) Let (q;w), (q ′;w′) be two elements in MI , w′ ≥ w and w ≥ w′ implies w = w′. Part
(i) in Proposition 3.3 implies q = q ′ and so the uniqueness.

(ii) The number of voters is finite as well as each weight and quota for any realization.
Thus w(N) is a positive integer for every realization and it follows that sMI is never
empty.

(iii) Firstly, we prove that MI ⊆ sMI by the way of contradiction: let (q;w) ∈ MI \ sMI ,
then it exists (q ′;w′) with w(N) > w′(N) but w′

i ≥ wi for all i ∈ N , so we get the
contradiction because of w′(N) ≥ w(N).

Secondly, we proof that MI = sMI if and only if |MI| = 1:
(⇒) Assume MI = sMI . By Part (ii), sMI is never empty, and by Part (i), MI

has at most one element. Thus, MI = sMI implies that MI reduces to a singleton.
(⇐) Let (q;w) ∈ MI , if MI reduces to a singleton, then it satisfies that w′ ≥ w

(w′ 	= w) for any other realization (q ′;w′). Thus there is only a unique realization with
minimum sum. �

According to Proposition 3.5-(iii), system (2) is consistent if and only if the linear pro-
gram described in system (4) has solution.

Definition 3.6 A realization (q;w) ∈ I for a weighted game (N,W) is called normalized
if it preserves types and meets the four conditions in Proposition 3.3.

Let N (N,W) denotes the set of normalized realizations, briefly N . Let MN and sMN
be, respectively, the sets of minimum normalized realizations and normalized realizations
with minimum sum.
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Proposition 3.7 Let (N,W) be a weighted game and N be the set of all normalized real-
izations. Then:

(i) MN has at most one element.
(ii) sMN is never empty.

(iii) MN ⊆ sMN . Moreover, the equality arises if and only if MN reduces to a singleton.
(iv) MI ⊆ MN . Moreover, the equality arises if and only if MN = ∅ or MI reduces to a

singleton.

Proof The proofs of parts (i), (ii) and (iii) are, mutatis mutandis, equivalent to the proofs of
parts (i), (ii) and (iii) given in Proposition 3.5.

To proof (iv), firstly, we assume MI has just one element. Then a realization preserves
types and properties of Proposition 3.3. Hence, MI and MN coincide. Secondly, if MI = ∅
the inclusion MI ⊆ MN is obvious. The second part is clear from Part (i) and Proposi-
tion 3.3-(i). �

Now, as a consequence of system (4) and Theorem 2.10, we are able to establish the main
result of this work to realize the outcomes in Sect. 4.

Theorem 3.8 Assuming the previous notations and definitions, minimum normalized sum
realizations for game (N,W), sMN , are the solution of the linear program:

min n · w
s.t. Awtr > 0

tr (5)

where n = (n1, . . . , nt ), “·” stands for the inner product, w = (w1, . . . ,wt ) and wtr is its
transposition, the matrix A has r·s rows and t columns, the rows of A are mi − lj , i.e., the
subtraction for all the pairs of models of shift-minimal coalitions (r models) with models
of shift-maximal coalitions (s models); and 0 stands for the null vector of r · s components
(0, . . . ,0).

Note that the constraints in the linear program (5) are the inequalities in system (3).
Thus, according to Proposition 3.7-(iii), system (3) is consistent if and only if the linear
program (5) has solution. In the following sections we will solve the linear programs (5)
for all games with less than 9 voters and some linear programs for games with more than 8
voters with the goal of finding games without a minimum normalized integer realization.

In Bohosian and Bruck (2003) two methods for identifying if a particular realization of a
simple game has minimum sum are provided. These methods are based on determining first,
all coalitions with weight sum equal to q and to q − 1, constructing an associated matrix
with them and proving a matricial equality with a degree of freedom. As the exact number
of complete and weighted games for less than 9 voters is known, our approach is exhaustive
solving linear program (5) whenever system (3) has solution. However, the approach fol-
lowed to prove the existence of games without a minimum normalized realization for more
than 8 voters could be applied by generating simple games at random (maybe without uni-
form probability) and using the method proposed in Bohosian and Bruck (2003) to check
the minimality.
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The statements above will let us:

• compute how many simple games are weighted (Definition 1.2 using system (3));
• compute how many weighted games have minimum integer realization (Definition 3.1

using system (4));
• provide minimum integer realizations whenever they exist (Definition 3.1 using sys-

tem (4));
• compute how many weighted games have minimum sum integer realization (Defini-

tion 3.2 using system (4));
• provide minimum sum integer realizations whenever they exist (Definition 3.2 using sys-

tem (4));
• compute how many weighted games have minimum sum integer normalized realization

(Definition 3.6 using system (5)); and
• provide some new weighted games without a unique minimum integer normalized real-

ization (Definition 3.6 using system (5)).

4 Algorithms and experiments to classify weighted games

We have done all our experiments with a processor AMD64X2 4400 (two cores at 2.2 GHz)
with 4 Gb of DDR memory with ECC and we have essentially been able to deal with simple
games with less than 9 voters because of there is a huge number of games with more than 8
voters (see Table 1), and it requires to much time to compute all of them. We have basically
used the GLPK (GNU Linear Programming Kit) package (2005) to solve our (integer) linear
programs. However, we have also done some experiments with the Optimization package of
MAPLE (Maple 2005) and with Matlab (2005), but GLPK is clearly more useful for our
purpose, specially for the integer restrictions.

4.1 Weighted complete simple games

The first necessary step in our experiments is to compute which complete simple games
are weighted: firstly, for each complete simple game we have computed the corresponding
vector n and the matrices M (following the steps given in Theorem 2.10) and L (in a similar
way); secondly, for each pair (M, L), the system of inequalities (3) has solution if and only
if the corresponding game is weighted (see Theorem 2.9).

Table 1, obtained by programming Theorem 2.10, provides how many complete simple
games up to isomorphism are weighted depending on the number of voters (see also Krohn
and Sudhölter 1995). Let us note that in Muroga et al. (1962) are listed all weighted games
with less than 7 voters. In our approach GLPK gives the solution to linear program (5) for
all weighted games with less than nine voters.

Table 1 Number of Complete Simple Games (CG), number of Weighted Complete Simple Games (WG)
and CPU time (in seconds) needed to compute all of them, with n voters

n 1 2 3 4 5 6 7 8

CG 1 3 8 25 117 1171 44313 16175188

WG 1 3 8 25 117 1111 29373 2730164

CPU time <1 <1 <1 <1 <1 <1 3 66532

(≈18.5 h.)
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4.2 Complete classification for weighted games with less than 9 voters

Once we have determined all weighted complete simple games with the corresponding vec-
tor n and pair (M, L), we are able to give a full classification of them according to whether
they have a minimum realization or not.

We have got that all weighted games with less than 8 voters have minimum realization,
|MI| = 1, but there are 154 weighted games with 8 voters and two minimum sum realiza-
tions, MI = ∅ and |sMI| = 2. In Tables 3 and 4 of Appendix we list all of them.

We remark here that all these 154 games have exactly two minimum sum realizations.
However, none of these 154 games is self-dual (that is, S ∈ W if and only if N \ S /∈ W , for
each S ⊆ N ), hence the quota for all of them is different of T +1

2 . As a consequence, once the
weights and quota are determined we get a new solution by duality, considering the same
weights and the new quota q ′ = T + 1 − q .

Finally, for all these 154 weighted games with minimum sum realization but without
minimum realization, we have solved the linear program described in system (5) to compute
the corresponding minimum sum normalized realization. We have checked that all these
weighted games have minimum normalized realization; that is, even thought there are 154
weighted games with 8 voters such that MI = ∅, all of them verify MN 	= ∅.

For instance, the weighted game (12;7,6,6,4,4,4,3,2) without minimum realization
(#2 in Table 3 with q ′) has minimum normalized realization (14;8,7,7,5,5,5,3,3) ob-
tained solving linear program (5). Of course, its dual game defined by (25;7,6,6,4,4,4,

3,2) (#2 in Table 3 with q) has minimum normalized realization (30;8,7,7,5,5,5,3,3).

5 Games without minimum sum normalized realizations

We have seen in the previous subsection that all weighted games with less than 9 voters
have a minimum normalized realization, MN = ∅. In Isbell (1959) it is exhibited a remark-
able example with 12 voters in which the two affected voters with different weight are not
equi-desirable, getting therefore an example with MN 	= ∅. This example has been very
important in game theory since (Dubey and Shapley 1979) mentioned it. As far as we know
nobody has claimed on the existence of games with MN = ∅ for less than 12 voters, even
though some scholars are currently devoting efforts in this issue.

Now, we are going to study what occurs with some weighted games with more than 8
voters. Unfortunately, it has been not possible to do an exhaustive study for weighted games
with more than 8 voters because there are too many complete simple games to be checked
and it requires too much CPU time. So, we have just applied linear program (5) for some
thousand weighted games generated at random with 9, 10 and 11 voters, but all of them had
just one minimum sum normalized realization.

Then, we have considered the weighted game with 12 voters and two minimum normal-
ized sum realizations given in Isbell (1959), i.e., (99;38,31,31,28,23,12,11,8,6,5,3,1)

and (99;37,31,31, 28,23,12,11,8,7,5,3,1). For the weights of these games we have
considered all proper weighted games (i.e., all weighted games with quota strictly greater
than T/2) that can be generated from the weights by removing either 1 or 2 or 3 weights
to get weighted games of either 11 or 10 or 9 voters respectively. For each one of these
weighted games we have calculated matrix A and solved linear program (5). Table 2 con-
tains the 10 proper weighted games we have obtained without a minimum integer normalized
sum realization. By duality, see e.g. Carreras and Freixas (1996), ten additional games are
obtained taking as a quota the number T − q + 1 instead of q .

See Table 2.
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Realizations with integer minimum sum realization are important in the voting literature.
These realizations are connected with some solution concepts if the game is self-dual. In
Krohn and Sudhölter (1995) some connections appear linking minimal integer realizations
with the least core and the nucleolus of self-dual games. For instance, they compute these
two solution concepts for the self-dualized game #2 and #44 in Table 3 and for the Isbell’s
example. One might desire to extend their analysis for the lists of games provided in our
Tables 2, 3 and 4. It also becomes an interesting open problem characterizing games for
which the minimum integer realization coincides with some particular solution concept like
the Penrose–Banzhaf–Coleman, the Shapley–Shubik, the Johnston, the Deegan-Packel or
the Holler indices.

Minimal integer realizations might also be useful to study the occurrence of paradoxes
of measures of relative power.

6 Conclusions

We have provided some new results to determine whether a complete simple game is
weighted (Theorem 2.9), whether a weighted complete simple game has minimum sum
realization (Theorem 3.4), and whether a weighted complete simple game has minimum
normalized sum realization (Theorem 3.8). From these results we have computed:

• all realizations without minimum sum for weighted games with less than 9 voters (this
full classification for weighted games with 8 voters is new); and

• some new normalized realizations of weighted simple games without minimum sum. In
particular, we have found some of such realizations with 10 and 11 voters.

The main contribution of our work proves the existence of weighted games without a
minimum integer realization for less than 12 voters reducing, therefore, the number of vot-
ers, 12, that Isbell needed in his example (Isbell 1959).

We leave open to determine the exact number of weighted games for more than 8 voters
using the techniques presented here or another ones. From our work we know this number
is whether 9 or 10.

Another problem we are working on is to determine the minimum number of voters
needed to get games without a minimum normalized realization.

From a computational viewpoint, it is also interesting to study the required CPU time to
solve the linear programs (4) and (5) of Theorems 3.4 and 3.8, respectively. Our experiments
establish that the GLPK (GNU Linear Programming Kit) package is more efficient.

Another open problem is: given a fix number of voters n, to generate a random (and
maybe with uniform probability) game and study whether it is weighted and if so, determin-
ing whether it has a minimum (normalized) realization. Many real-world voting systems has
a huge number of voters, so that dealing with weightedness and integer minimality for them
is also an interesting problem.

Finally, it becomes interesting to complete existent works in the theory of simple games
linking minimal integer realizations with some solution concepts. In this line of research our
results in Tables 2, 3 and 4 could be helpful to establish some new contributions.

Acknowledgements The authors thank the referees for carefully reading an earlier version of this paper
and for pointing out useful comments and references.
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Appendix

Table 3 Pairs of weighted games with 8 voters with quotas q and q ′ such that MI = ∅ and q ′ = T − q + 1.
The other minimum sum normalized realization is obtained by interchanging encircled weights. It continues
in Table 4

# T q q ′ w1 w2 w3 w4 w5 w6 w7 w8

2 36 25 12 7 6 6 4 4 4 �3 �2
4 36 24 13 9 6 6 4 4 4 �2 �1
6 38 24 15 11 6 6 4 4 4 �2 �1
8 39 27 13 9 7 6 5 5 3 �2 �2

10 41 24 18 11 9 6 4 4 4 �2 �1
12 42 28 15 9 7 7 6 4 4 �3 �2
14 42 30 13 9 8 �7 �6 5 3 2 2

16 42 28 15 11 7 7 5 5 4 �2 �1
18 42 28 15 11 8 6 6 4 4 �2 �1
20 42 25 18 13 6 6 4 4 4 �3 �2
22 43 24 20 11 9 6 6 4 4 �2 �1
24 43 25 19 13 7 6 4 4 4 �3 �2
26 44 28 17 13 7 7 5 5 4 �2 �1
28 44 28 17 13 8 6 6 4 4 �2 �1
30 44 27 18 14 �7 �6 5 5 3 2 2

32 45 25 21 13 7 6 6 4 4 �3 �2
34 46 28 19 13 7 7 6 4 4 �3 �2
36 47 28 20 13 11 6 6 4 4 �2 �1
38 48 33 16 12 8 8 �7 �6 3 2 2

40 48 28 21 13 9 7 6 4 4 �3 �2
42 48 32 17 13 9 7 7 5 4 �2 �1
44 48 32 17 13 10 8 6 4 4 �2 �1
46 48 28 21 13 11 7 5 5 4 �2 �1
48 48 27 22 14 9 �7 �6 5 3 2 2

50 49 28 22 13 9 7 7 4 4 �3 �2
52 49 28 22 13 11 8 6 4 4 �2 �1
54 50 28 23 13 11 7 7 5 4 �2 �1
56 50 27 24 14 9 �7 �6 5 5 2 2

58 50 32 19 15 9 7 7 5 4 �2 �1
60 50 32 19 15 10 8 6 4 4 �2 �1
62 50 30 21 17 8 �7 �6 5 3 2 2

64 51 28 24 13 9 7 7 6 4 �3 �2
66 51 28 24 13 11 7 7 5 5 �2 �1
68 51 28 24 13 11 8 6 6 4 �2 �1
70 51 27 25 14 9 �7 �6 5 5 3 2

72 51 34 18 14 11 9 6 4 4 �2 �1
74 51 30 22 17 9 �7 �6 5 3 2 2

76 52 33 20 11 10 8 6 6 �5 �4 2

78 53 32 22 15 13 8 6 4 4 �2 �1
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Table 4 Pairs of weighted games with 8 voters with quotas q and q ′ such that MI = ∅ and q ′ = T − q + 1.
The other minimum sum normalized realization is obtained by interchanging encircled weights. It comes from
Table 3

# T q q ′ w1 w2 w3 w4 w5 w6 w7 w8

80 53 34 20 16 11 9 6 4 4 �2 �1
82 53 33 21 17 8 8 �7 �6 3 2 2

84 54 33 22 13 10 8 6 6 �5 �4 2

86 54 36 19 15 11 9 7 5 4 �2 �1
88 54 32 23 15 13 7 7 5 4 �2 �1
90 54 30 25 17 9 8 �7 �6 3 2 2

92 55 33 23 13 11 8 6 6 �5 �4 2

94 55 32 24 15 13 10 6 4 4 �2 �1
96 56 32 25 15 13 9 7 5 4 �2 �1
98 56 34 23 16 14 9 6 4 4 �2 �1

100 56 30 27 17 9 8 �7 �6 5 2 2

102 56 36 21 17 11 9 7 5 4 �2 �1
104 57 33 25 13 11 10 6 6 �5 �4 2

106 57 32 26 15 13 10 8 4 4 �2 �1
108 57 38 20 16 12 10 7 5 4 �2 �1
110 57 30 28 17 9 8 �7 �6 5 3 2

112 57 33 25 17 12 8 �7 �6 3 2 2

114 58 32 27 15 13 9 7 7 4 �2 �1
116 58 34 25 16 14 11 6 4 4 �2 �1
118 59 33 27 13 11 10 8 6 �5 �4 2

120 59 32 28 15 13 9 7 7 5 �2 �1
122 59 32 28 15 13 10 8 6 4 �2 �1
124 59 38 22 18 12 10 7 5 4 �2 �1
126 60 36 25 17 15 9 7 5 4 �2 �1
128 61 34 28 16 14 11 9 4 4 �2 �1
130 62 33 30 17 12 8 8 �7 �6 2 2

132 62 36 27 17 15 11 7 5 4 �2 �1
134 63 33 31 13 11 10 8 6 6 �5 �4
136 63 34 30 16 14 11 9 6 4 �2 �1
138 63 33 31 17 12 8 8 �7 �6 3 2

140 63 38 26 18 16 10 7 5 4 �2 �1
142 64 36 29 17 15 11 9 5 4 �2 �1
144 65 38 28 18 16 12 7 5 4 �2 �1
146 66 36 31 17 15 11 9 7 4 �2 �1
148 67 36 32 17 15 11 9 7 5 �2 �1
150 68 38 31 18 16 12 10 5 4 �2 �1
152 70 38 33 18 16 12 10 7 4 �2 �1
154 71 38 34 18 16 12 10 7 5 �2 �1
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