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Abstract We classify the contributions of DEA literature assessing Decision Making Units
(DMUs) whose internal structure is known. Starting from an elementary framework, we
define the main research areas as shared flow, multilevel and network models, depending
on the assumptions they are subject to. For each model category, the principal mathematical
formulations are introduced along with their main variants, extensions and applications. We
also discuss the results of aggregating efficiency measures and of considering DMUs as
submitted to a central authority that imposes constraints or targets on them. A common
feature among the several models is that the efficiency evaluation of the DMU depends on
the efficiency values of its subunits thereby increasing the discrimination power of DEA
methodology with respect to the black box approach.

Keywords Efficiency evaluation · Data envelopment analysis · Networks · Hierarchy ·
Multi-stage production processes

Data Envelopment Analysis (DEA) has been a standard tool for evaluating the relative effi-
ciencies of Decision Making Units (DMUs) since the paper of Charnes et al. (1978) based
on the seminal work of Farrell (1957). Some underlying assumptions are common to clas-
sical DEA models. The efficiency of a DMU is defined as the weighted ratio of the outputs
(products or outcomes) yielded by the DMU over the inputs (resources used or consumed).
All DMUs considered are homogeneous, i.e., they all have the same types of inputs and out-
puts, and are independent, i.e., no constraint binds input and output levels of a DMU with
the inputs and outputs of other DMUs. Furthermore, DMUs are seen as black boxes, i.e.,
their internal structures are not considered. As a consequence, generally, there is no clear
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evidence of the transformations to which the inputs are subject to within the considered
units.

In the last two decades, several authors have explored the possibility of measuring ef-
ficiency relative to the subprocesses of DMUs within the DEA framework. These authors
abandon the black box perspective in the assumption that, in some particular contexts, the
knowledge of the internal structure of DMUs can give further insights for the DMU per-
formance evaluation. As an example, such knowledge allows to determine whether better
performances can be theoretically obtained by merging the technologies of some substruc-
tures of the observed DMUs. In addition, assessing the efficiency of each of the subunits
might prevent the inefficiency of some of them to be compensated by the efficiency of other
subunits.

The aim of this paper is to survey the models that consider internal structures of DMUs.
The main rationale of the classification is driven by the realization that three groups of
models are different generalizations of the same elementary formulation. As it appears from
the synoptic table in the Appendix (see Table 1), the references form nearly closed clusters
for each of the identified model categories. In this work we describe the commonalities and
differences between these models and show how they relate to the basic formulation.

In particular, we analyze a specific model by comparing a set of homogeneous and inde-
pendent DMUs, each composed of a set of Decision Making SubUnits (DMSUs). Subunit,
component and (sub)process are other synonyms of DMSU. Each subunit is allowed to per-
form a unique function or activity. Only to keep the notation simple, we also assume that all
the DMUs under comparison have the same internal structure.

We define a DMU as elementary if its internal structure complies with the following
assumptions:

Assumptions

1. All the subunits of the DMU do not have shared inputs and shared outputs, i.e., the DMU
does not have the opportunity to decide how to allocate its inputs or outputs among its
subunits in order to maximize its efficiency (Cook et al. 2000).

2. Any input (output) of the DMU is also an input (output) of one of its subunits.
3. No intermediate flows among DMSUs exist. In other words, the output of a DMSU can-

not be the input of another DMSU (and also cannot re-enter the same DMSU).

In the black box approach it is customary that the flow levels entering and exiting a
DMU are not problem decision variables, but problem data. However, a different alloca-
tion of the common flows among the subunits may lead to different DMU efficiency values
when two or more DMU components use the same type of input and/or produce the same
type of output. We refer to shared flow models when Assumption 1 no longer holds (see
Fig. 1). This situation may occur when DMUs are divided into different components that
require common resources (e.g., money) or produce goods or services obtained through the
synergy and collaboration among them (e.g., the quality of service provided to customers).
Assumption 1 implies that the components of an elementary DMU do not compete for the
same resource and do not synergically yield the same product. It follows that the combined
presence of Assumption 1 and Assumption 3 signifies that all the subunits of an elementary
DMU are independent. But they are neither requested nor prevented to be homogeneous. In
fact, Assumption 1 allows subunits to have inputs and outputs of different type. We refer to
multilevel models when Assumption 2 is dropped, i.e., when DMU inputs (outputs) are not
necessarily inputs (outputs) of its subunits (see Fig. 2). When Assumption 3 is neglected we
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refer to network models. Here DMUs have at least one output of a DMSU which is an input
of a different DMSU (see Fig. 3). In this case, the subunits are neither homogeneous nor
independent. Besides modeling subprocesses, these models are of interest because they al-
low to describe systems where DMUs are organized in networks where the outputs of some
of them become inputs for other DMUs. This framework may encompass manufacturing
production systems, and in general supply chains, in which some DMUs yield intermediate
products that feed other DMUs. The same approach also includes dynamic DEA models
in which some outputs at period t are inputs in the next period, t + 1 (Färe and Grosskopf
2000).

A further line of research considers DMUs as components of a greater structure which
is interested in maximizing its future efficiency by either re-allocating resources or fixing
targets to its subunits. Finally, we discuss the problem of consistently aggregate efficiency
indexes across subunits to obtain a comprehensive DMU measure of efficiency.

In the following sections, we first describe the formulation to maximize the relative ef-
ficiency of an elementary DMU (Sect. 1). Then we introduce the basic reference models
(typically with constant returns to scale) for shared flow (Sect. 2), multilevel (Sect. 3) and
network (Sect. 4) models. We provide interpretations and applications proposed by different
authors, and specify the possible variations from the basic model. In Sect. 5, we present the
main results on the aggregation of efficiency indexes and on the resource re-allocating and
target setting models. Finally, in Sect. 6 conclusions are drawn. Throughout the paper we
assume that the reader is familiar with at least the seminal works on DEA (see, e.g., Charnes
et al. 1978; Banker et al. 1984), as we will not define or justify basic concepts such as,
e.g., positive non-Archimedean value ε, slack variables, production set, virtual inputs and
outputs, returns to scale, allocative and technical efficiencies.

1 Elementary model

For each elementary DMU k (i.e., whose internal structure follows Assumptions 1–3) let us
define

– i, j, r : the indexes of the generic input, output, and DMSU, respectively,
– Xr

k = {xr
ik}: the vector of the inputs of DMSU r ,

– Y r
k = {yr

jk}: the vector of the outputs of DMSU r ,
– νr = {νr

i }: the vector of weights of the inputs of DMSU r ,
– μr = {μr

j }: the vector of weights of the outputs of DMSU r .

For an elementary DMU 0 belonging to a set of N homogeneous and independent DMUs
with the same internal structure, the input-oriented version of the envelopment problem with
constant returns to scale can be written as follows:

θ∗
0 = min θ0 − ε

(∑
r

(∑
i

sr−
i +

∑
j

sr+
j

))
(1a)

∑
k

λr
kx

r
ik = θ0x

r
i0 − sr−

i ∀i, r (1b)

∑
k

λr
ky

r
jk = yr

j0 + sr+
j ∀j, r (1c)

λr
k, s

r−
i , sr+

j ≥ 0 ∀i, j, k, r (1d)
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where λr
k is the multiplier of DMSU r belonging to DMU k, and sr−

i , sr+
j are the slack

variables. If the DMU internal structure is unknown, the multipliers would not be associated
to DMSUs, but to DMUs only, i.e., λr

k = λk ∀r,∀k where λk is the multiplier of DMU k. The
dual formulation of Model (1) is:

e∗
0 = max

∑
j,r

μr
j y

r
j0 (2a)

∑
i,r

νr
i x

r
i0 = 1 (2b)

∑
j

μr
j y

r
jk ≤

∑
i

νr
i x

r
ik ∀k, r (2c)

νr
i ,μ

r
j ≥ ε ∀i, j, r. (2d)

In Model (2) the maximum relative efficiency e∗
0 is assessed by comparing DMU 0 with

all the existing subunits. As shown in Yang et al. (2000), Castelli et al. (2004), and Kao
(2008) e∗

0 is equal to the maximum relative efficiency of its subunits, and DMU 0 is:

– weakly efficient if and only if there exists at least one of its subunits which is weakly
efficient relative to the corresponding subunits of other DMUs;

– CCR-efficient if and only if each of its subunits is CCR-efficient relative to the corre-
sponding subunits of other DMUs.

It is worth noting that Model (2) can also be directly derived from the formulation of the
relative efficiency maximization of e0 as a comparison of DMU 0 with all the existing DMUs
(Castelli et al. 2004), as it is customary in the classical DEA framework.

Also Färe and Primont (1984) proposed a multiple input and single output elementary
configuration. Relying on the Farrell (1957) output-based efficiency measure, the authors
constructed a reference technology for DMUs using their subunit data. Next, this efficient
technology is compared against the reference frontier of the subunits, i.e., as if the subunits
were independent DMUs and not part of a larger DMU. Kao (2000) generalized their models
for cases of multiple outputs and multiple inputs.

2 Shared flow models

While the total amount of each flow entering (or exiting) the whole DMU is always known,
as it is customary in DEA models, the amount of shared flow allocated to each component
may be considered as a decision variable to maximize the DMU efficiencies (see Fig. 1).

Beasley (1995) introduced one of the first examples of a shared flow DEA model. Even if
it was not originally referred to as such, it is nowadays acknowledged as part of the literature
on the subject. It applies to departments of different universities devoted to the same disci-
plines. The considered departments are homogeneous and independent DMUs. Within each
of them, the teaching and research activities clearly define two different separable functions.
One of the DMU inputs, research income, is specifically dedicated to the research function.
The other DMU inputs, general and equipment expenditure, are shared (joined) between
the two functions. DMU outputs are split, i.e., no shared outputs exist: the number of un-
dergraduates and of taught postgraduates are outputs of the teaching function; the number
of research postgraduates, research income, and research rating are outputs of the research
function. Other shared flow formulations are applied in several domains. By introducing
variable returns to scale, Tsai and Molinero (2002) evaluate the performance of National
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Fig. 1 A shared flow DMU:
DMSUs A and B are not
independent because they
compete for the same shared
resource. Similarly DMSUs B
and C are not independent
because of the shared output.
DMSU D is independent of
DMSUs A, B and C

Health Service (NHS) trusts in England, and Diez-Ticio and Mancebon (2002) assess the
efficiency of Spanish Police Service. A case study on Canadian bank branches is presented
by Cook et al. (2000), Cook and Hababou (2001) and Cook and Zhu (2005, Chap. 6) where
different weights on shared inputs and an additive objective function are considered. Shared
flow models with panel data and non-discretionary inputs are introduced by Jahanshahloo et
al. (2004a, 2004b) and Amirteimoori and Nashtaei (2006) in a case study on Iranian com-
mercial bank branches. Panel data are considered to measure possible progress and regress
(see Tulkens and Eeckaut 1995) of the bank sector.

2.1 Formulation of shared flow models

Referring to r as the generic component of DMU k, now vectors Xr
k,Y

r
k , νr , and μr intro-

duced in Sect. 1 are defined as the vectors of dedicated inputs, dedicated outputs, weights
of the dedicated inputs, and weights of dedicated outputs of component r , respectively. In
addition, we define

– XS
k = {xS

ik}: the vector of shared inputs,
– Y S

k = {yS
jk}: the vector of shared outputs,

– νS = {νS
i }: the vector of weights of shared inputs,

– μS = {μS
j }: the vector of weights of shared outputs,

– αr = {αr
i }: the vector of proportions of the shared inputs allocated to component r ,

– βr = {βr
j }: the vector of proportions of the shared outputs attributed to component r .

With a little abuse of notation we also define αrXS
k as the column vector whose generic entry

is αr
i x

S
ik . In this context, αr

i x
S
ik is the amount of shared input i allocated to component r by

DMU k to maximize its efficiency. When a shared input cannot be clearly divided among
functions (e.g., general expenditure), then αr

i can be seen as the proportion of the (virtual)
value of the input i allotted to component r . Similarly, we define βrY S

k as the column vector
whose generic entry is βr

j y
S
jk where βr

j is always seen as the proportion of the (virtual) value
of output j that can be attributed to component r because it is assumed that no component
can produce a shared output by itself but needs synergy with other components. As an ex-
ample, the quality of service level provided by an organization to its customers depends on
the degree of collaboration and integration among its subdivisions, each of them sharing
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with other subunits the responsibility for such output. When outputs common to different
components are produced without the need of synergy among them, the literature refers to
them as overlapping outputs (see Sect. 2.2.5 for details).

2.1.1 Primal formulation

Consider, for the sake of simplicity, the case when shared outputs are not present. The effi-
ciency of DMU k is expressed as

ek =
∑

r μrY r
k∑

r νrXr
k + ∑

r νS(αrXS
k )

,

the partial efficiency of the single component r is defined as

er
k = μrY r

k

νrXr
k + νS(αrXS

k )
,

and the aggregate efficiency êk = ∑
r qr

k e
r
k as the weighted combination of the partial effi-

ciencies of its components, where the weight qr
k of each component r is

qr
k = νrXr

k + νS(αrXS
k )∑

p νpX
p

k + ∑
p νS(αpXS

k )
.

Hence qr
k is the fraction of DMU k total weighted inputs that are consumed by component r :∑

r qr
k = 1 ∀k. Also Yang et al. (2000) introduced the concept of partial efficiency measures

but they applied it on an elementary model (see Sect. 1). The general model proposed by
Beasley (1995) is

e∗
0 = max e0 (3a)

er
k ≤ 1 ∀k, r (3b)∑

r

αr
i = 1 ∀i (3c)

νr
i , ν

S
i , αr

i ,μ
r
j ≥ ε ∀i, j, r. (3d)

Condition (3b) imposes that the partial efficiency of each DMU component cannot ex-
ceed 1. Beasley (1995) proves that when each DMU is free to allocate the value of the shared
inputs among its different components, the aggregate efficiency êk and the efficiency ek are
coincident when maximized.

As for the classical DEA formulations, Model (3) can be rewritten as follows

e∗
0 = max

∑
r

μrY r
0 (4a)

∑
r

νrXr
0 +

∑
r

νS(αrXS
0 ) = 1 (4b)

μrY r
k ≤ νrXr

k + νS(αrXS
k ) ∀k, r (4c)∑

r

αr
i = 1 ∀i (4d)

νr
i , ν

S
i , αr

i ,μ
r
j ≥ ε ∀i, j, r. (4e)
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Model (4) is not linear because of inequalities (4b)–(4c). When no shared inputs ex-
ist Model (4) easily reduces to the elementary Model (2) as XS

k = 0 ∀k. Hence the terms∑
r νS(αrXS

0 ) in (4b) and νS(αrXS
k ) in (4c), and constraint (4d) are no longer necessary.

2.1.2 Dual formulation

Molinero (1996) and Molinero and Tsai (1997), proposed an approach dual to (3). In addi-
tion, the authors included shared outputs, i.e., outputs yielded synergically by two or more
components. Their output oriented model is

e∗
0 = max

∑
r

qr
0θ

r
0 + ε

(∑
i

(
sS−
i +

∑
r

sr−
i

)
+

∑
j

(
sS+
j +

∑
r

sr+
j

))
(5a)

∑
k

λr
kx

r
ik = xr

i0 − sr−
i ∀i, r (5b)

∑
k

∑
r

λr
k(α

r
i x

S
ik) = xS

i0 − sS−
i ∀i (5c)

∑
k

λr
ky

r
jk = θr

0 yr
j0 + sr+
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∑
k

∑
r

λr
k(β

r
j y

S
jk) =

∑
r

θ r
0 (βr

j y
S
j0) + sS+

j ∀j (5e)

∑
r

αr
i = 1 ∀i (5f)

∑
r

βr
j = 1 ∀j (5g)

∑
r

qr
0 = 1 (5h)

λr
k, q

r
0 , α

r
i , β

r
j , s

r−
i , sS−

i , sr+
j , sS+

j ≥ 0 ∀i, j, r, k, (5i)

where qr
0 are positive weights representing the relative importance of each component r for

DMU 0, and θr
0 are measures of the inefficiencies of the components of DMU 0. Actually,

θr
0 are the reciprocals of the distance functions defined by Shephard (1970). Note that in the

models proposed by Molinero (1996) and Molinero and Tsai (1997) the slack variables sr−
i ,

sS−
i , sr+

j , sS+
j are not present. Here they are imposed for coherence with the standard DEA

dual models (see, e.g., Cooper et al. 2000).
When the values αr

i , βr
j , and qr

0 are not decision variables but are fixed, still satisfying
conditions (5f), (5g) and (5i), the dual of Model (5) is

e∗
0 = min

∑
r

νrXr
0 +

∑
r

νS(αrXS
0 ) (6a)

μrY r
0 + μS(βrY S

0 ) = qr
0 ∀r (6b)

μrY r
k + μS(βrY S

k ) ≤ νrXr
k + νS(αrXS

k ) ∀k, r (6c)

νr
i , ν

S
i ,μr

j ,μ
S
j ≥ ε ∀i, j, r. (6d)
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The above model parallels the output oriented version of Model (4) when shared out-
puts are considered. Besides Model (6) being linear, the main difference between the
two models is the presence of the multiple constraints (6b) instead of the single one∑

r μrY r
0 + ∑

r μS(βrY S
0 ) = 1. This latter constraint is a relaxation of the former ones

because
∑

r qr
0 = 1. Conditions (6b) state a precise relationship between the relative im-

portance attributed to a component and the optimal amount of outputs allocated to it (re-
spectively, the optimal amount of allocated inputs if an input oriented model is considered).
Then, conditions (6b) justify the choice in Beasley (1995) of expressing the weight qr

k of the
component r in the aggregated efficiency as equal to the fraction of DMU k total weighted
inputs that are consumed by component r . Without conditions (6b), such a choice might
appear arbitrary, although reasonable.

2.2 Extensions

Many authors have extended Models (4) and (5). Common features of the different variants
are that the aggregate efficiency of a DMU cannot exceed unity, and that a DMU is efficient
if and only if it is efficient in all its components. In this section, we describe the peculiarity
of each available modeling advance.

2.2.1 Weight restrictions

Beasley (1995) himself does not present Model (3), but he incorporates the additional con-
straints

(νS, νr ,∀r) ∈ �in (7)

(μr,∀r) ∈ �out (8)

where the sets �in and �out are assurance regions as defined in Thompson et al. (1990). Con-
straints (7) and (8) involve value judgements concerning the proportions αr and the weights
μr , and νr of the different DMU components. They are not strictly necessary for the defini-
tion of a shared flow DEA model, but might prevent the model from yielding unreasonable
results. In this context, Beasley (1995) provides an example where, in the absence of con-
straints (7)–(8), one research postgraduate was worth about 880000 undergraduates for a
given department.

2.2.2 Variable returns to scale

Molinero and Tsai (1997) proved that the feasible solutions of (5) define a convex set and
(5a) is a convex function. Tsai and Molinero (2002), considering university departments as
a reference example, introduced and discussed a variable returns to scale version of (5). The
efficiency of each component r of DMU k is then defined as

er
k = μrY r

k + μS(βrY S
k )

νrXr
k + νS(αrXS

k ) + δr
k

(9)

where the variable δr
k is unrestricted and its optimal value defines the component’s returns

to scale status. The aggregate efficiency of DMU k is

er =
∑

r μrY r
k + ∑

r μS(βrY S
k )∑

p νpX
p

k + ∑
p νS(αpXS

k ) + ∑
p δ

p

k

. (10)
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Note that the optimal value of
∑

p δ
p

k may be zero even if some or all elements in the sum are
different from zero. In this case, DMU k may appear to be operating under constant returns
to scale and technically efficient when analyzed as a black box but, when its individual
components are analyzed, it may be found scale inefficient in each of its activities (Tsai and
Molinero 2002). It follows that a DMU, that is efficient when considered as a black box,
may be inefficient when its different components are taken into account, independently of
its returns to scale status.

2.2.3 Different weights on shared inputs

Cook et al. (2000) allow a same shared input i to be weighted differently by the subunits
of the same DMU. The rationale behind such a choice is that different components may
disagree on the importance of a same input. Consequently, the shared flow model as in Cook
et al. (2000) includes in (4b)–(4c) a set of vectors νSr , one for each component r , instead of a
single one. Also, a change of variables is proposed. In particular, let i = 1, . . . , s be the index
of the shared inputs, then ν̄Sr

i = νSr
i αr

i for i = 1, . . . , s − 1 and ν̄Sr
s = νSr

s (1 − ∑s−1
i=1 αr

i ).
Because of these new variables, the authors obtain a linear model. The terms νS

r (αrXS
k )

in conditions (4b)–(4c) become ν̄SrXS
k and νS

r ≥ ε in (4e) turns ν̄Sr
i ≥ εαr

i . Unfortunately,
non-linearity may arise again when additional constraints concerning value judgements as
(7)–(8) are necessary. If such judgements are expressed also in terms of νS

r , the variable
substitution may not lead to a linear model.

2.2.4 Additive objective function

Cook and Hababou (2001) present variables and constraints as in Cook et al. (2000) but
differ in the objective function. They formulate an additive objective function representing
an aggregate measure of the efficiencies of all the DMU subunits. In the classical additive
DEA models (Charnes et al. 1985), a possible measure of the inefficiency of DMU k is
given by the difference between the weighted sum of the inputs minus the weighted outputs
of DMU k. Here Cook and Hababou (2001) suggested a multiobjective approach where
the partial inefficiencies of all components are considered. For each subunit, the weighted
sum of its inputs minus the weighted sum of its outputs is considered. In particular, the
authors minimize the maximum partial inefficiency in order to give equal importance to
each component, i.e., their objective function is

min max{νrXr
k + νSr(αrXS

k ) − μrY r
k : ∀r subunit of DMU0}. (11)

Finally, the authors linearize their model with the same variable changes proposed in Cook
et al. (2000).

2.2.5 Overlapping outputs

Cook and Green (2004) deal with a manufacturing multi-plant company and point out that
some outputs of different components of the same DMU can partially overlap, i.e., some
outputs may be common to different components. In particular, each DMSU can yield a
given amount of overlapping output j , with no need of synergy with the other components.
Hence there is no possibility of attributing the considered amount to the other subunits. From
this point of view, the overlapping outputs are different from the shared outputs considered
in Molinero and Tsai (1997); Molinero (1996), and Jahanshahloo et al. (2004b). In fact,
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Cook and Green (2004) cannot approach what they call the overlap problem by introduc-
ing variables βr as in (5) to determine which proportions of shared outputs are attributed

to each component: the efficiency of a single subunit r remains er
k = μrY r

k

νrXr
k
+νSr (αrXS

k
)

and,

consequently, the aggregate efficiency of a whole DMU k is ek =
∑

r μrY r
k∑

r νrXr
k
+∑

r νSr (αrXS
k
)
. How-

ever, the shared inputs are no longer allocated to the components because such task could
hardly be performed without introducing some ambiguities due to the component overlap-
ping. Shared inputs are allocated directly to the outputs. In particular, consider Model (3)
and the extension proposed in Cook et al. (2000). Cook and Green (2004) introduced a
new set of variables α

j

i as the proportions of the shared inputs i allocated for outputs j .
In addition, they replaced condition (3c) with

∑
j α

j

i = 1, for all i. Finally, they defined

αr
i as αr

i = ∑
i∈Or α

j

i , where Or is the set outputs of subunit r . Note that now, in general,∑
r αr

i ≥ 1.
The allocation of shared inputs directly to outputs was originally introduced in Färe et

al. (1997). Even though the concept of DMSU is not explicitly mentioned, it can easily be
inferred since one input can be allocated among various outputs.

2.2.6 Core business identification

Cook and Green (2004) and Cook and Zhu (2005, Chap. 11) addressed the problem of
determining in which areas a DMU would perform better. Such areas form the core business
of a DMU and should be privileged even at the cost of possibly forcing the DMU to abandon
the components with less satisfactory performances. To this aim, Cook and Green (2004)
modified the objective function of Model (3) and added assignment constraints (each DMU
must have at least one component assigned and each component must be assigned to at least
one DMU).

2.2.7 Panel data and non-discretionary inputs

Jahanshahloo et al. (2004b) extended the model proposed in Cook et al. (2000). They in-
troduced shared outputs, considered panel data, and proved that the aggregate efficiency of
the whole DMU is a convex combination of the efficiency of the DMU components even in
the presence of shared outputs. In Jahanshahloo et al. (2004a), the same authors also intro-
duced non-discretionary inputs that are not under decision maker control, but are considered
as negative terms in the numerator of the fraction that describes a DMU efficiency value.
They linearized the models proposed in Jahanshahloo et al. (2004b) by changing variables
as in Cook et al. (2000).

3 Multilevel models

A different research area includes DMUs exhibiting autonomous activities that cannot be as-
sociated to any of its subunits. In other words, a DMU presents additional inputs/outputs not
considered by its subunits. For example, in Cook et al. (1998), DMSUs are highway main-
tenance patrols and DMUs are the districts in which the maintenance patrols are grouped.
The subunits have traffic and road conditions as possible inputs, while DMUs may include
additional inputs that can be applied only to districts such as the extent of privatization and
district engineers’ experience. The same authors also introduced possible applications of
their model to power plants and hospitals. These models are defined as multilevel models
(Cook et al. 1998) where the top level, referred to as level n DMU, includes independent
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Fig. 2 A multilevel DMU: the
DMU includes two homogeneous
and independent subunits

and homogeneous subunits, referred to as level n − 1 DMUs. Recursively, the level n − 1
DMUs include smaller independent and homogeneous subunits, level n − 2 DMUs, and so
on. Unlike shared flow models, the amount of input and output of each subunit is fixed. In
this work, we introduce only two-level structures, and we simply refer to DMU for the level
2 DMU and to DMSU or subunit for level 1 DMUs (see Fig. 2).

By denoting i; j ; k as the indexes of the generic input, output, and DMU, respectively,
the following notation is introduced:

– Rk = {rk}: the set of indexes rk of all DMSUs belonging to DMU k,
– Xr

k = {xr
ik}: the vector of the inputs of DMSU rk ,

– Xk = {xik}: the vector of the additional inputs of DMU k,
– Y r

k = {yr
jk}: the vector of the outputs of DMSU rk ,

– Yk = {yjk}: the vector of the additional outputs of DMU k,
– ν1 = {ν1

i }: the vector of weights of the inputs common to both DMSUs and DMUs,
– ν2 = {ν2

i }: the vector of weights of the additional inputs of DMUs,
– μ1 = {μ1

i }: the vector of weights of the outputs common to both DMSUs and DMUs,
– μ2 = {μ2

i }: the vector of weights of the additional outputs of DMUs.

Accordingly, the efficiency of a DMSU rk is expressed as

er
k = μ1Y r

k

ν1Xr
k

(12)

and the efficiency of a DMU k as

ek = μ1
∑

rk∈Rk
Y r

k + μ2Yk

ν1
∑

rk∈Rk
Xr

k + ν2Xk

. (13)

Cook et al. (1998) presented a unifying model for multilevel structures that assesses the ef-
ficiency of DMUs of different levels. The authors argue that the efficiency of a DMSU rk

should be evaluated only relative to those other subunits operating under the same condi-
tions, in practice belonging to the same DMU k.

On the other hand, they also assert that the subunits in Rk should be taken into account
when evaluating the efficiency of a DMU k. On the basis of these assumptions, Cook et
al. (1998) proposed that the efficiency of a DMSU 00 in DMU 0 is evaluated through the
following model

e0∗
0 = maxμ1Y 0

0 (14a)

ν1X0
0 = 1 (14b)
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μ1Y r
0 ≤ ν1Xr

0 ∀r0 ∈ R0 (14c)

ν1
i ,μ

1
j ≥ ε ∀i, j. (14d)

This is a classical DEA model that evaluates DMSU 00 relative only to subunits included
in the same DMU 0. The efficiency of a DMU 0 is evaluated through the following model:

e∗
0 = maxμ1

∑
r∈R0

Y r
0 + μ2Y0 (15a)

ν1
∑
r∈R0

Xr
0 + ν2X0 = 1 (15b)

μ1
∑
r∈Rk

Y r
k + μ2Yk ≤ ν1

∑
r∈Rk

Xr
k + ν2Xk ∀k (15c)

μ1Y r
k ≤ ν1Xr

k ∀k,∀r ∈ Rk (15d)

ν2
i , ν

1
i ,μ

2
j ,μ

1
j ≥ ε ∀i, j. (15e)

This model compares DMU 0 with all other DMUs. It is different from the linear pro-
gramming model considering DMUs as black boxes due to the presence of constraints (15d).
These constraints take into account the DMU internal structure by imposing that their ef-
ficiency is related to the efficiencies of their subunits. In particular, constraints (15d) force
that the optimal values for weights ν1

i ,μ
1
j are feasible for the DMSUs, i.e., the efficiency of

each subunit should not exceed unity. Cook et al. (1998) presented a unifying model for mul-
tilevel structures that includes both (14) and (15). When the DMUs do not have additional
inputs/outputs, Model (15) reduces to the elementary model (2). In such case, constraints
(15c) turn out to be redundant since they are implied by constraints (15d). Cook and Green
(2005) applied the hierarchical model described in Cook et al. (1998) to the evaluation of
power plants.

3.1 Comparing subunits belonging to different DMUs

In Model (14) any subunit is compared only against the other subunits belonging to the same
DMU. The rationale is that inputs received and decisions taken by each DMU influence the
efficiency of its subunits, then comparing subunits belonging to different DMUs would be
questionable. In fact, DEA models assess the efficiency of a DMU as a function of its dis-
tance from the production frontier defined by the other observed DMUs. In a mathematical
programming perspective, DEA models determine the efficiency of a DMU with respect
to the other DMUs. In an econometric perspective, the observed DMUs are a sample of a
larger population, and DEA is a biased estimator of the efficiency of a DMU with respect
to the unknown real production set (Simar and Wilson 2000). In both situations, the larger
the sample is, the more likely the DMU under assessment is inefficient. Also, the average
efficiency of the DMUs of the sample decreases (Zhang and Bartles 1998). This is why Staat
(2001) invites to interpret very carefully possible differences in the efficiencies of subunits
belonging to different DMUs when the cardinalities of sets Rk vary. Cook et al. (1998) pro-
posed a way of correcting the possible biases by adjusting the efficiency of subunit rk taking
into account the size of the DMU k, the average efficiency of all the subunits in Rk , and
the efficiency of DMU k. However, Staat (2002) points out that such a procedure returns
different corrections for samples of equal size. He suggests to use bootstrap techniques (see,
e.g., Simar and Wilson 2000) to overcome such deficiencies.
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Fig. 3 Network DMU

4 Network models

In this section we describe models including intermediate flows between the subunits. The
subunits are no longer independent, but are interdependent in the sense that part of the output
produced by each of them may be used as an input by other ones. Interdependency among
subunits leads to their non-homogeneity.

The basic model has been introduced by Färe and Whittaker (1995) and Färe and
Grosskopf (1996) where each DMU is composed of two subunits and there is one inter-
mediate flow: the output from the first subunit is used in the second one. Färe and Grosskopf
(2000) extend the network considering more subprocesses (see also Färe et al. 2007). We
propose a general formulation under the assumption that all DMUs have exactly the same in-
ternal structure: Model (16) assesses the relative efficiency of DMU 0 where r is the generic
subunit, xr

i0 is the amount of the i-th input of DMU 0 entering subunit r , yr
j0 is the amount

of the j -th output of DMU 0 produced by subunit r , and zrt
l0 is the l-th intermediate flow of

DMU 0: it is an output of subunit r used by subunit t (Fig. 3).

θ∗
0 = min θ0 − ε

∑
r

(∑
i

sr−
i +

∑
l

sr−
l +

∑
j

sr+
j

)
(16a)

∑
k

λr
kx

r
ik = θ0x

r
i0 − sr−

i ∀i, r (16b)

∑
k

λr
k

∑
t∈pred(r)

ztr
lk =

∑
t∈pred(r)

ztr
l0 − sr−

l ∀l, r (16c)

∑
k

λr
k

(
yr

jk +
∑

t∈succ(r)

zrt
jk

)
= yr

j0 +
∑

t∈succ(r)

zrt
j0 + sr+

j ∀j, r (16d)

λr
k ≥ 0 ∀k, r, (16e)

where k is the generic DMU, and pred(r) represents the set of predecessors of subunit r ,
i.e., the set of subunits which have at least one output used by subunit r . Similarly, succ(r) is
the set of successors of subunit r . For subunit r , input constraints are (16b) and (16c), output
constraints are (16d). Expression (16b) and the y component of expression (16d) are also
the input and output constraints of DMU 0, respectively. By introducing dummy subunits,
Kao (2007) transformed a generic network of DMSUs into a series system where each stage
in the series is of a parallel structure.

As pointed out in Färe and Grosskopf (1996), DMU 0 exhibits constant returns to scale
and strong disposability of inputs and outputs since each subunit does the same.
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Färe and Whittaker (1995) applied the model including intermediate flows to a diary
production problem and made a comparison with a classical DEA model, i.e., without in-
termediate production. The former model turned out to have greater discrimination power:
only 23% of the DMUs are on the frontier compared to 65% when intermediate flows are
not explicitly taken into account.

As a further application, Löthgren and Tambour (1999) estimated efficiency and produc-
tivity for a sample of Swedish pharmacies taking also into account customer satisfaction.
The pharmacy technology is represented by a production and a consumption node. The pro-
duction node yields (final) outputs (e.g., outpatient prescriptions) and also produces nonmar-
ketable characteristics and attributes (e.g., the service level) that are considered as interme-
diate inputs of the consumption node. Together with external inputs (e.g., customer-service
labor hours) the consumption node provides customer quality assessments on pharmacy ser-
vice. Also Prieto and Zofio (2007) employ network DEA models as in Färe and Grosskopf
(2000). They assess the economies of a set of countries belonging to the Organisation for
Economic Co-operation and Development (OECD) with the aim of identifying best prac-
tices. Each national economy is described in terms of a network where different nodes use
primary inputs to produce intermediate input and outputs, and satisfy final demand. Each
node represents a basic economic sector, such as agriculture, manufacturing, construction,
and services.

4.1 Extensions and special cases

A few authors have introduced variants of Model (16). They extend it to time-dependent
processes and infer properties of the DMU efficiency when the internal structure has some
special features. In addition, they address the efficiency evaluation of the subunits and link
it with the whole DMU assessment.

4.1.1 Dynamic networks

Färe and Grosskopf (2000) considered the same production process in two successive pe-
riods with period-specific inputs and outputs. In addition, some of the outputs in the first
period are used as inputs in the second. By representing the production processes as nodes
or subunits, these time-intermediate products are the intermediate flows of a (dynamic) net-
work whose relative efficiency may be evaluated using Model (16). Afterward, Chen (2008)
focused on the temporal evolution of intermediate flows in a production network.

4.1.2 Multi-stage DMUs

Seiford and Zhu (1999) analyzed DMUs whose internal structure is composed of consec-
utive stages and considered each stage and the whole DMU as independent by evaluating
their efficiencies using conventional DEA models. Conversely, Castelli et al. (2004) linked
the DMU and subunit efficiencies of a two-stage process under constant returns to scale (see
Fig. 3). Their main results may be summarized as follows:

– When only one stage exists, the internal structure reduces to the elementary one, thus the
models of Sect. 1 apply.

– When the flow entering each subunit in the second stage is equal to the sum of the flows
leaving the first stage, the maximum relative efficiency of the DMU under evaluation is
assessed by comparing it with all the existing subunits, i.e., with each subunit belonging
to each observed DMU.
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– When the input virtual weight of each subunit in the second stage is equal to the sum of the
output virtual weights of the subunits of the first stage, the maximum relative efficiency
of the DMU under evaluation is equal to the product of the maximum relative efficiency
of each single stage calculated according to Model (2).

Similar results were also provided by Amirteimoori and Shafiei (2006) and Kao and Hwang
(2008). Furthermore, Chen and Zhu (2004) proposed a DEA framework which considers
a two-stage process as efficient when each stage is efficient. Chen et al. (2007) proved the
equivalence between the CCR version of the Chen and Zhu (2004) model and the Kao and
Hwang (2008) model. Chen et al. (2008) showed that the analysis of subunits in series in
the case of variable returns to scale cannot rely on radial measures of efficiency but needs
an additive formulation.

In the assessment of multi-stage systems, Golany et al. (2006) simultaneously evaluated
the efficiency of the aggregate system and of each DMSU within it. The authors acknowl-
edged that their model is a special case of the Färe and Grosskopf network framework (see,
e.g., Färe and Grosskopf 2000), but they used different aggregate efficiency measures as
possible objective functions. In particular, Golany et al. (2006) proposed measures that al-
low to identify a Pareto optimal point, as the one that achieves the largest equal reduction in
the efficiency of the DMSUs. The assessment of two-stage processes has been studied also
relying on a game theory approach. In particular, Liang et al. (2006) compared a leader-
follower and a cooperative relationship between DMSUs of a supply chain. Finally, Chen
et al. (2006) proposed a DEA game model and proved the existence of numerous Nash
equilibria efficiency plans for the DMSUs.

4.1.3 Evaluating the efficiency of DMSUs

The knowledge of the internal structure of the observed DMUs allows to determine whether
better performances could be obtained by merging the technologies of their substructures. In
addition, assessing the efficiency of each subunit might prevent that the inefficiency of some
of them may be compensated by the efficiency of others. Hence the need, when intermediate
flows exist, to develop models aiming at evaluating subunit efficiencies and at studying the
influence of such values to the efficiency of the DMU the subunits belong to.

In this context, Castelli et al. (2001) introduced a DEA-like model to compare non-
homogenous and interdependent subunits belonging to the same DMU. A given subunit
r may be evaluated according to three different sets: (a) all the subunits homogeneous to it,
(b) all the subunits of the DMU, and (c) with respect to a given output, all the subunits yield-
ing that output. In this last case, the rationale is that these subunits, although not necessarily
homogeneous, have a certain degree of commonality because they can be considered as po-
tential substitutes for each other, as far as the production of that output is concerned. Thus
the interest in comparing them. As a possible limitation, Lewis and Sexton (2004) pointed
out that this approach may lead to small reference sets. In addition, Castelli et al. (2001)
linked the subunits’ and DMU efficiencies by defining an efficiency value W obtained by
maximizing the product of the efficiency of the subunit under evaluation and the efficiency
of the DMU it belongs to. In this way, subunits not only maximize their own efficiency, but
also positively contribute to the efficiency of the whole system they are part of: the authors
proved that a subunit seeking to optimize its W efficiency behaves with a benevolent atti-
tude, i.e., being equal to other conditions, it also maximizes a combination of the efficiencies
of the other subunits. Finally, they showed that the whole DMU is efficient if and only if all
its subunits are W efficient.
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Also Sexton and Lewis (2003) and Lewis and Sexton (2004) explicitly computed the
efficiencies of the subunits. Model (16) is easily adapted to this task by optimizing the
efficiency of subunit r belonging to DMU 0 and by adequately rewriting constraints (16b)–
(16d). Both input and output oriented formulations are presented. In a simple case of DMUs
composed of two subunits S1 and S2 in series, DMU 0 is defined as efficient when its output
values are equal to the output values produced in the case that S2 is efficient and uses the
intermediate product levels that would have arrived at it had S1 been efficient. When the
internal structure of each DMU can be modeled as an acyclic direct graph, where the nodes
represent the subunits and one origin and one destination node are added, Lewis and Sexton
(2004) stated that the existence of a path from origin to destination along with every subunit
is efficient is a necessary (but not sufficient) condition for the whole DMU to be efficient.
As a consequence, it is possible that when considering the internal structure all DMUs under
evaluation are inefficient.

5 Other areas of research

In this section we present studies for the efficiency evaluation of DMUs that take into ac-
count their internal structures but are not strictly related to the elementary formulations (1)
and (2) or their extensions described in the previous sections.

5.1 Aggregate efficiency

Farrell (1957) introduced the concept of assessing the aggregate efficiency value of a group
of subunits belonging to the same DMU. In this context, Blackorby and Russell (1999) pro-
vided a major result showing that consistent aggregation is feasible only under very strong
restrictions. In particular, the index for the aggregate efficiency is defined as consistent when
it can be derived as a continuous and increasing function of the subunit efficiency indices.
The authors prove that “the aggregation requires linearity of the efficiency indices in out-
puts and inputs jointly”. This result implies that some well-known measures of technical
efficiency, such as in Debreu (1951); Farrell (1957) and Färe and Lovell (1978), cannot
satisfy the above aggregation condition for any technology set. A quantification of such ag-
gregation inconsistency is provided by Ten Raa (2005). Nevertheless, measures of efficiency
can be aggregated by introducing weights (the output shadow prices) as proposed by Li and
Ng (1995) and Li and Cheng (2007). The role of weights in the efficiency aggregation is also
discussed in Ylvinger (2000). Other measures of aggregate efficiency are described in Briec
et al. (2003) and Färe and Zelenyuk (2003) which generalize to multiple outputs the Farrell
(1957) efficiency framework. In the same context, Färe et al. (2004) showed how to aggre-
gate efficiency measures when both the allocative and technical components are considered.
Alternate approaches and measures that differ from those of Blackorby and Russell (1999)
have been proposed by Cooper et al. (2007). In addition, they have shown how to meet all
conditions these authors have specified for satisfactory aggregation of DEA performance
evaluations.

5.2 DMUs as components of a greater structure

The models introduced in the previous sections aim at comparing ex-post the efficiency
values of different structured DMUs. On the contrary, in this subsection we consider a single
DMU that maximizes its future global targets’ achievements by maximizing each subunit
contribution to the global objectives. The DMU is usually assumed to pursue its objective
by re-allocating resources or fixing targets among its subunits.
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5.2.1 Resource allocation

In this framework, a DMU is empowered to reallocate the resources among its subunits such
that a global objective is attained instead of possible myopic and specific goals individually
achieved by the DMSUs.

Golany and Tamir (1995) proposed a very simple DEA model to allocate m resources
among n subunits producing a single output. The objective is to maximize the overall output
produced which is equal to the sum of the outputs produced by each subunit. Also, relying
on their notation, we denote the i-th input and the output of the DMSU k as x̂ik and ŷk ,
respectively, before the reallocation phase takes place. Let Bi be the amount of available
resource i, xil and yl the amount of allocated resource i to DMSU l and the amount of output
produced by DMSU l, respectively, once the resource reallocation has been performed.

Q∗ = max
∑

l

yl (17a)

∑
k

λkl x̂ik ≤ xil ∀i, l (17b)

∑
k

λkl ŷk ≥ yl ∀l (17c)

∑
l

xil ≤ Bi ∀i (17d)

∑
k

λkl = 1 ∀l (17e)

λkl, xil, yl ≥ 0 ∀i, k, l. (17f)

Constraints (17d) allow to redistribute an amount Bi of resource i among DMSUs so that
the production plan of any DMSU l falls inside the production set defined by the observed
DMSUs (constraints (17b) and (17c)). The objective (17a), which maximizes the output
production, guarantees that the planned DMSUs are on the production frontier.

The theoretical underpinnings of resource allocation models can be found in Bogetoft
(1993, 1994). More recently Bogetoft (2000) also introduced an accurate literature analy-
sis and suggested the following principal-agent perspective for governing the relationships
among DMUs and their subunits. Asymmetric information exists between a DMU and its
subunits: each DMSU knows its production costs exactly, but this information is not granted
to the higher level DMU. In this context, a DMU may use DEA-based models to estimate the
optimal production possibilities and then limiting the costs that the subunits can claim for
their productions. In Bogetoft (2000) regulation problems are considered for a DMU that
provides some kind of public utility or service. Agrell et al. (2002) applied the principal-
agent perspective in private industry. They suggested an incentive system to promote in-
formation sharing as opposite to incentive schemes to regulate costs in the public utilities
context.

Many other papers deal with resource reallocation among subunits on the basis of the
efficiency values of the different DMUs. Athanassopoulos and Gounaris (2001) considered
the Greek hospitals and Athanassopoulos (2004) dealt with the Hellenic Tobacco Organi-
zation. Korhonen et al. (2001) provided a description on how to carry out an efficiency
analysis of academic research with DEA to support resource reallocation. As an example,
they focussed on the data to collect, and suggested how to interpret the results of classical
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DEA models. Also for an academic context, Caballero et al. (2004) proposed a three-step
algorithm to allocate financial resources. In a first phase, the technical efficiency of each
teaching and research unit is evaluated through DEA. On the basis of the efficiency lev-
els obtained, resources are redistributed using a Multi-Criteria Decision Making (MCDM)
approach. Finally, the technical efficiency of each DMU is evaluated again after resource
redistribution.

Lozano and Villa (2004) proposed models that consider both radial and non-radial mea-
sures of efficiency for DMUs and then applied them to the recycling operations (Lozano
et al. 2004). In particular, the model that considers a radial measure of efficiency can be
seen as the dual of a variable returns to scale version of Model (15) when no additional in-
puts/outpus are present. Beasley (2003) considered the problem of allocating both resources
and fixed costs. Korhonen and Syrjanen (2004) proposed an iterative procedure to deter-
mine a resource allocation plan in the assumption that subunits can slightly modify their
production within the current production set.

Ross (2000), dealing with resource allocation in the downstream petroleum industry,
proposed a profit maximization model for distribution planning for the DMUs. In this case,
the subunits are the delivery vehicles, and their efficiency evaluation is used to set minimal
performance requirements on the demand served and on the number of deliveries for each
vehicle. Thanassoulis (1996) considered the problem of allocating resources to public ser-
vices (e.g., schools, hospitals) on the basis of Marginal Resource Levels (MRLs), i.e., “the
rates of resource entitlement per unit of each activity or output of an operating unit (e.g., the
level of funding per pupil)”. He estimated MRLs as by-products of the efficiency evaluation
of the subunits.

Other studies include the evaluation subunits’ efficiencies through classical DEA models
in a principal-agent perspective. For example, Chien et al. (2003) dealt with possible reor-
ganizations of power plants. Park and Park (2003) and Ahn and Lee (2004) considered the
problem in the supply chain context. Kirkley et al. (2003) showed how the efficiencies of
subunits can be used in a regulatory framework that aims at an eco-sustainable development.
In particular, they studied the fishery industry.

Fang and Zhang (2008) proposed a multiple-objective programming model when the
central unit is interested in maximizing both the total efficiency and the efficiency of the
subunits by allocating available resources to them.

5.2.2 Target setting

Athanassopoulos (1995) proposed an approach based on targets. In the DEA literature, the
targets of a DMU usually are the levels of outputs/inputs that a DMU must reach by increas-
ing/decreasing its current yield/consumption to become efficient. Generally, different targets
can be set for an inefficient DMU. In classical DEA models a DMU is required either to re-
duce all the inputs of the same proportion while keeping fixed the outputs or, vice versa, to
increase all the outputs of the same proportion while keeping fixed the inputs. Such choices
are strictly related to the definition of a radial measure of the efficiency. As an example,
consider Fig. 4.

The classical (constant returns to scale) DEA models would suggest to reduce the inputs
of DMU A so that A is projected on A′. Golany (1988) argued that preference informa-
tion should be considered in setting performance targets. Thanassoulis and Dyson (1992)
suggested that the target levels may be fixed differently for each output/input to reflect de-
cision maker preferences. Considering again Fig. 4, DMU A can become efficient by any
appropriate reduction of its inputs which projects it on any point of the production frontier



Ann Oper Res (2010) 173: 207–235 225

Fig. 4 Projections of DMU A on
the actual production frontier and
on the estimated production
frontier given DMUs
A,B,C,D,E,F,G

included between A1 and A2. Athanassopoulos (1995) started from the work by Thanas-
soulis and Dyson (1992) and developed a model that merges goal programming and data
envelopment analysis to compute the optimal targets for each subunit. The model considers
two sets of targets. The first set includes targets that are fixed and are possibly not related to
the subunit efficiencies but to other objectives, such as efficacy or equity. On the contrary,
the second set includes targets concerning the subunit efficiencies. The model assesses the
targets by choosing the ones that minimize the deviation of the current performances of the
observed DMSUs. Different weights are used to penalize the deviation from the different
targets. Athanassopoulos (1995) applied his model to the reallocation of central funds to lo-
cal authorities of Greece. The same author proposed the use of a DEA model to set targets to
power plants (Athanassopoulos et al. 1999). Here, a centralized management uses weights to
set different priorities for targets. Similar models are developed in Athanassopoulos (1996)
and Athanassopoulos and Triantis (1998). Finally, Athanassopoulos (1998) proposed a four-
step procedure that allocates resources according to the principal-agent paradigm. In this
context, the subunit efficiencies are evaluated to determine marginal rates of transforma-
tion between inputs and outputs of the whole process governed by the DMU. The reader
is referred to Athanassopoulos (1998) also for an analysis of the literature on allocation of
resources in multilevel public structures.

6 Conclusions

In this work we provide a classification of the main DEA models assessing the efficiency
of Decision Making Units when their internal structure is no longer considered as a black
box, but insight on their inner processes is available. The interaction in each DMU among
the input and output flows and its subunits identifies three broad categories of models. In
particular, shared flow models apply when it is possible to partition a DMU as a collection
of components that contend their inputs and/or outputs to other components of the same
DMU. Multilevel models are referred to when some of the inputs (or outputs) of a DMU are
also inputs (or outputs) of its subunits, and some other inputs (or outputs) are not. Further-
more, network models are introduced when intermediate flows among the subunits are taken
into account. We show that these formulations are different generalizations of the same ele-
mentary model. We extend our analysis to discuss the aggregation of the subunit efficiency
indexes into an overall DMU efficiency measure. We finally approach the issue of a single
DMU considered as a central authority that reallocates resources or sets predefined targets to
its components to maximize its efficiency. Except for the DEA seminal works, Table 1 dis-
plays the references that are in common between the papers we analyze. They are organized
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according to the sections in which they appear. We observe that our classification is consis-
tent with the references’ groupings. Nevertheless, in this work we provide linkages between
the different formulations and we encourage the researchers to benefit from previous work
for their new speculations.

From a theoretical point of view, the knowledge of the internal structure of DMUs should
spot the sources of organizational inefficiency by, e.g., preventing compensations among the
subunits. In mathematical terms this translates into linking a DMU and its subunits’ efficien-
cies. This relationship may vary across the different models. But, as a general result, a DMU
cannot be efficient if none of its subunits are efficient. Furthermore, several applications
show that the discrimination power of a DEA model which considers the internal structure
of the DMU always increases with respect to the black box approach. As an extreme case,
in some situations all DMUs may turn out to be inefficient.

We conclude the paper by pointing out a few future directions with the understanding that
there is large scope of research in the area of this type of DEA models both from a theoretical
and application-oriented perspective. Besides the original DEA formulation (Charnes et al.
1978) representing DMUs as black boxes in a constant returns to scale environment, many
authors have proposed more sophisticated or alternative approaches taking into account,
e.g., nonradial measures of efficiency, value judgements, economic measures of efficiency
(see Fried et al. 2008, Chap. 3, for a comprehensive survey of such DEA models). So far,
little attention has been devoted to these extensions when DMUs have an identifiable in-
ternal structure, especially in the case of multilevel and network models. However, these
advances may provide interesting insights, for example the incorporation of intertemporal
effects among subunits identifies further sources of inefficiency as shown by Chen (2008)
in the case of dynamic network models. Other initial findings in the field of network DEA
consider variable returns to scale (Chen et al. 2008) and undesirable factors (Hua and Bian
2008). Then, these new features might also be included into formulations that simultane-
ously integrate multilevel, network and shared flow characteristics. In this context, Yu and
Lin (2008) proposed a first step toward a unified shared flow and network model.

Furthermore, a DMU may pursue its objectives by re-allocating resources or fixing tar-
gets among its subunits (see Sect. 5.2). This idea may evolve into two different directions.
First, we can consider the possibility that resources are re-allocated and targets are set
through DMSU negotiation with each others, and not by decision of the central authority.
In this situation, each DMSU maximizes both its efficiency and the one of the whole DMU.
Second, resources might be re-allocated and targets set to interdependent DMSUs, as in a
supply chain, and not only to homogeneous and independent DMSUs. In this context, the
role of asymmetric information between DMSUs and their DMU (see, e.g., Bogetoft 2000)
can be extended to the case when such asymmetry exists among DMSUs which make their
decisions by means of a negotiation process.
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