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Abstract Index tracking consists in reproducing the performance of a stock-market index
by investing in a subset of the stocks included in the index. A hybrid strategy that combines
an evolutionary algorithm with quadratic programming is designed to solve this NP-hard
problem: Given a subset of assets, quadratic programming yields the optimal tracking port-
folio that invests only in the selected assets. The combinatorial problem of identifying the
appropriate assets is solved by a genetic algorithm that uses the output of the quadratic opti-
mization as fitness function. This hybrid approach allows the identification of quasi-optimal
tracking portfolios at a reduced computational cost.

Keywords Data mining · Financial modeling · Asset management

1 Introduction

Index tracking consists in constructing a portfolio whose behavior during a predefined pe-
riod of time is as similar as possible to that of the index that is being tracked. Such a portfolio
is called a tracking portfolio. The index tracking problem arises in the context of asset man-
agement. A rational investor typically wishes to obtain the highest possible performance
assuming as little risk as possible. There could be additional restrictions for investment,
which may arise from conditions imposed by the market (minimum investment in a given
asset), be the result of a quantitative analysis (e.g. capital concentration constraints from the
Black-Litterman model), or reflect expert knowledge and preferences of the investor. This
set of market constraints and investor preferences, together with the expected risk and return
of the assets determines the strategy that should be used for fund management. There are
two types of approaches to this task (Beasley et al. 2003):
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(i) Active fund management: Fund managers aim to maximize returns by selling or buying
equities based on their previous experience and expert knowledge. This kind of man-
agement is appropriate for investors who are less risk averse and who wish to maximize
the return of their investments.

(ii) Passive fund management: Fund managers are required to follow a strict set of con-
straints to guarantee a minimum level of return. The index tracking problem appears
when one of these requirements is to obtain a performance that is as close as possible
to that of a reference financial index. This kind of management is more appropriate
for conservative investors. Such investments are typically less risky and usually yield
returns that are close to the market benchmark established by the tracked index.

Broadly speaking, two different strategies can be used to track a market index. Full repli-
cation consists in purchasing every single stock included in the index. In practice, this strat-
egy is infeasible because of the high transaction costs incurred. An alternative is to find
the portfolio that minimizes the tracking error by investing in only a subset of the assets
included in the index. This strategy involves much lower transaction costs, and can in prin-
ciple achieve acceptable tracking errors. In this work we propose a computationally tractable
solution for the design of near-optimal replication strategies in which the investor limits the
number of assets that are used to track the reference index.

The tracking performance of a portfolio is measured by the tracking error. In the lit-
erature several measures of this error have been proposed (Ammann and Zimmermann
2001; Lobo et al. 2007; Shapcott 1992; Beasley et al. 2003; Buckley and Korn 1998;
Rudolf et al. 1999). Most of them are based either on correlations between the track-
ing portfolio and the index returns or on estimates of the variance of the difference be-
tween the returns of the index and the returns of the tracking portfolio (Markowitz 1987;
Buckley and Korn 1998; Shapcott 1992). However, measures based on the variance of the
tracking deviations are flawed. As noted in Beasley et al. (2003), if the difference be-
tween the returns of the index and those of the tracking portfolio is constant, then the
tracking error would be zero. This is an undesirable result because it does not take into
account the tracking bias. In the current investigation the mean squared error for the re-
turns is used as the measure of disagreement between the tracking portfolio and the index
which is being tracked. This definition of the tracking error has the advantage of being
quadratic. Furthermore it takes into account the bias of the tracking portfolio, so that con-
stant differences are also penalized (Ammann and Zimmermann 2001; Beasley et al. 2003;
Gilli and Këllezi 2001).

In the present work, the problem of replicating a financial index using only a subset of
the index assets is addressed using a hybrid evolutionary approach. The problem of selecting
the optimal subset of assets to be included in the tracking portfolio and the problem of deter-
mining the optimal asset weights are handled separately. A genetic algorithm (GA) is used
to identify the optimal subset of assets. Each chromosome in the population corresponds to
a portfolio that invests only in a subset of assets with the specified cardinality. The error of
the optimal tracking portfolio that can be constructed by investing only in the selected assets
(as determined by the chromosome) is used as fitness function in the GA. In this manner,
the combinatorial search efficacy of the genetic algorithm is combined with the efficiency
of quadratic programming to obtain near-optimal solutions to the index-tracking problem.

Most previous work on index tracking focuses on finding the portfolio that is optimal
using as inputs the recent historical evolution of the assets. Since we are interested in the
future tracking performance of the portfolio, it is necessary to make the assumption that
recent historic performance is a good predictor of the performance in the near future. In this
investigation, the validity of this assumption is tested estimating both in-sample and out-of
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sample performance. Using the language of machine learning the data is partitioned into
training data and testing data. The training data is used to construct the optimal tracking
portfolio investing in a subset of the index assets. The performance of this tracking portfolio
is then evaluated not only on the data used in the optimization (in-sample performance),
but also on an independent test set, which is not used in the optimization (out-of-sample
performance). It is seen that portfolios that are optimal with respect to the training data need
not be optimal on the test set. Conversely, portfolios that are suboptimal on the training data
can have a better out-of-sample (generalization) performance (i.e. a lower tracking error) on
the test set.

The article is structured as follows. In Sect. 2, the index tracking problem is introduced.
Section 3 reviews earlier work on this topic. In Sect. 4 a hybrid optimization strategy that
combines quadratic programming and a genetic algorithm is proposed. Section 5 presents
the results of experiments in which the hybrid optimization strategy is used to solve several
benchmark problems. Finally, Sect. 6 summarizes the conclusions of this work and proposes
some directions of future research. A proof of the NP-completeness of the index tracking
problem with cardinality constraints is given in a technical appendix.

2 Index tracking

Let {Si(t)}N
i=1 be the time series of asset prices for the N assets that are included in the

market index whose evolution we wish to replicate. Let I (t) be the time series of this index.
All time series are defined for equally spaced intervals t = 1,2, . . . , T . Time is measured in
units of �t . The series of relative returns {ri(t)}N

i=1 for the assets, and rI (t) for the index are
defined as

ri(t) = Si(t + 1) − Si(t)

Si(t)
; rI (t) = I (t + 1) − I (t)

I (t)
; t = 1,2, . . . , T (1)

The tracking portfolio invests in assets from the set ξ , which is a subset of the assets included
in the index. Assuming that the value of the portfolio at time t is

P (t) =
∑

i∈ξ

ci(t)Si(t) (2)

and that the amounts invested in each of the assets {ci(t)}i∈ξ are constant in the interval
[t, t + 1), the return of the tracking portfolio in that period is

rP (t) = P (t + 1) − P (t)

P (t)
=

∑

i∈ξ

wi(t)ri(t); wi(t) = ci(t)Si(t)∑
j∈ξ cj (t)Sj (t)

(3)

The tracking error during the period [1, . . . , T ] is defined as the mean squared deviation
between the series of returns of the tracking portfolio, rP (t), and the index returns, rI (t)

MSE(rP, rI) = 1

T

T∑

t=1

(
rP (t) − rI (t)

)2 = 1

T

T∑

t=1

(∑

i∈ξ

wi(t)ri(t) − rI (t)

)2

(4)

Expression (4) is the objective function that needs to be minimized to solve the index
tracking problem. One of the main advantages of using this measure for the tracking er-
ror is that the objective function is quadratic in the weights of the assets, so that stan-
dard and very efficient quadratic programming algorithms can be used to minimize it. If
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in (1) logarithmic returns were used instead of discrete-time returns the objective func-
tion would not be quadratic. A further advantage of (4) is that it avoids the problems
of measures based only on the variance of the deviation, which become zero when the
differences between the returns of the index and of the tracking portfolio are constant
over time (Ammann and Zimmermann 2001; Shapcott 1992; Buckley and Korn 1998;
Gilli and Këllezi 2001).

A possible strategy that can be used to replicate a financial index is to determine an in-
vestment in each asset {ci}i∈ξ , and to maintain these values constant throughout the tracking
period (buy-and-hold). Because of the changes in the market prices of the assets {Si(t)}i∈ξ

the portfolio weights evolve according to the formula

wi(t) = ciSi(t)∑
j∈ξ cjSj (t)

, i ∈ ξ (5)

Note that this strategy has low transaction costs because, after the initial investment in each
asset, no reallocation of capital is needed. However, it has the inconvenience that obtaining
the values {ci}i∈ξ that minimize (4) is a non-linear optimization problem. A second strategy
is to hold the weights of the assets in the portfolio constant (Ammann and Zimmermann
2001). This approach requires actively managing the portfolio: The absolute investments in
each asset, {ci(t)}i∈ξ needs to be adjusted at every time step to maintain the weights of the
portfolio constant

wi = ci(t)Si(t)∑
j∈ξ cj (t)Sj (t)

, i ∈ ξ (6)

The advantage of this approach is that, once the assets to be included in the tracking portfolio
are selected, it is possible to solve the index tracking problem efficiently and in an exact
manner by quadratic programming. In particular the constant weights {wi}i∈ξ that minimize
(4) can be found by solving the constrained mixed-integer quadratic optimization problem

Minw

[
1

2
w′ · H · w − g′ · w

]
(7)

with the definitions

Hij = 1

T

∑

t

ri(t)rj (t); i, j = 1,2, . . . ,N

gi = 1

T

∑

t

ri(t)rI (t); i = 1,2, . . . ,N,

(8)

subject to the constraints

N∑

i=1

wi = 1 (9)

wi � 0, ∀i = 1, . . . ,N (10)

l � A · w � u (11)

N∑

i=1

zi � c (12)

aizi � wi � bizi, ai, bi � 0, ∀i = 1, . . . ,N (13)
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where w is the N × 1 column vector of asset weights. The auxiliary binary variables z =
{zi}N

i=1 have been included to take into account the discrete nature of the asset selection
problem. In particular, zi has the value 1 if asset i is included in the portfolio (i ∈ ξ ) and 0
otherwise (i /∈ ξ ). With this definition, the return of the portfolio in the interval [t, t + 1) is

rP (t) ≡ rP (t; z) =
N∑

i=1

ziwiri(t) (14)

Equation (9) is a budget constraint. It ensures that 100% of the capital is invested in the port-
folio. The non-negativity constraint, (10), indicates that no short selling is allowed. Equa-
tion (11) expresses the capital concentration constraints in matrix form: A is an M × N

matrix whose rows are N -dimensional vectors containing the coefficients of the M linear re-
strictions. The M ×1 column vectors l, u define, respectively, the lower and upper bounds of
these restrictions. For example, one such restriction could read 0.1 � w1 + 2w3 + w4 � 0.4,
which ensures that no less than 10% and no more than 40% of the capital is invested in
the linear combination of the assets labeled 1, 3 and 4. The cardinality constraint is given
by (12). This inequality prescribes that no more than c assets can be included in the portfolio.
In the experiments performed, the index tracking problem with the inequality

∑N

i=1 zi � c,
is solved by finding the optimal among the solutions of a collection of c problems with
different equality constraints

∑N

i=1 zi = k, k = 1,2, . . . , c. Finally, (13) reflects floor and
ceiling constraints, which set upper and lower bounds on the fraction of capital that can be
allocated to each asset. Note that if asset i is not included in the portfolio then zi = 0 and,
consequently, by (13), wi = 0.

In this work, we consider the problem of finding an optimal tracking portfolio for a time
period [1, . . . , T ], which generally corresponds to the recent past, where the evolution of the
assets is known. The ultimate goal is to construct portfolios whose tracking performance in
the period [T + 1, . . . , T + L] is also close to optimal. However, the evolution of the assets
in this period is not known. Therefore, it is necessary to make the assumption that portfo-
lios that are optimal during the initial time period [1, . . . , T ] will also perform well given a
future horizon L. Provided that T + L is not too far in the future it is reasonable to assume
that the statistical properties of the asset returns in the near future are similar to those in
the recent past. As L → ∞, the validity of this hypothesis becomes more and more ques-
tionable and the tracking performance of the portfolio, which is guaranteed to be optimal
only in the initial period, typically deteriorates. Borrowing the terms used in machine learn-
ing, we refer to the initial time period [1, . . . , T ] as the training set, and to the time period
[T + 1, . . . , T + L] as the test set. In the experiments carried out we measure the tracking
performance of the selected portfolios both in the training set (in-sample performance) and
in the test set (out-of-sample performance).

3 Previous work

The problem of using a small portfolio to track an index has been addressed by numer-
ous authors. Markowitz (1987) reformulates the problem as a mean-variance optimization
making some assumptions on the statistical properties of the returns of the index assets.
This work does not consider the cardinality constraints that are the main concern of the
current investigation. Shapcott (1992) proposes to handle the problem of selecting the op-
timal subset of assets and the quadratic optimization problem that results once this subset
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is selected separately. The resulting hybrid evolutionary algorithm is similar to the one in-
vestigated in this work: both approaches use the Random Assorting Recombination (RAR)
algorithm to perform set recombination, but the objective function minimized by Shapcott
is the variance of the difference between the index returns and the tracking portfolio re-
turns. By contrast, the tracking error considered in the present work is the mean squared
error (MSE) between those returns. Shapcott mainly focuses in comparing a random search
algorithm with a genetic algorithm with and without migrations in a multiprocessor envi-
ronment, and does not take into account other realistic constraints in the model like mini-
mum and maximum investments in an asset or linear combination of assets. Buckley and
Korn (1998) apply optimal impulse control techniques to the index tracking problem with
fixed and proportional transaction costs. They also give a proof for the existence of an op-
timal strategy, which includes the possibility of holding a non-zero amount of cash at all
times. They focus on a continuous-time formulation of the problem and consider a diffu-
sion process to model the random cash flows to and from the portfolio. Alexander (1999)
proposes the construction of tracking portfolios by analyzing the cointegration structure
between the time series of each of the assets and the time series of the tracked index.
Ammann and Zimmermann (2001) investigate the relationship between several statistical
measures of tracking error (based on correlations between the index and the tracking port-
folio or on first and second moments of the tracking deviations) and asset allocation re-
strictions based on admissible weight ranges. They conclude that the tracking error can
be quite small even with fairly large admissible weight ranges. Gilli and Këllezi (2001)
propose the use of the threshold accepting (TA) heuristic to solve the problem, including
cardinality restrictions and transaction costs. The TA heuristic is a deterministic analog
of simulated annealing, where transitions are rejected only when they lead to a deteriora-
tion in performance that is above a given threshold. Initially the threshold for rejecting the
solution is large. Its value is then gradually decreased until only candidate solutions that
improve the performance are accepted. Eventually the algorithm converges to an optimum
(possibly a local one). Beasley et al. (2003) address the index tracking problem using evo-
lutionary heuristics with real-valued chromosome representations. As in the current work,
the root mean squared error is used as a measure of tracking error. Their investigation is
focused on the influence of transaction costs and portfolio rebalancing. Lobo et al. (2007)
investigate the portfolio optimization problem with transaction costs, which they address
by means of a heuristic relaxation method that consists in solving a small number of con-
vex optimization problems using fixed transaction costs. Then they apply their results to
the index tracking problem defining tracking error as the expected square differences of the
returns.

Not all work on index tracking uses quadratic objective functions. Rudolf et al. (1999)
argue that absolute deviations are more convenient and easier to interpret from a practi-
tioner’s point of view than square deviations. They then propose several piecewise linear
measures of the tracking error, and solve the problem by means of linear programming.
Consiglio and Zenios (2001) also use the linear absolute deviation to quantify the track-
ing error. In their model, which is used to track a composite government bond index, the
decisions about asset allocation among different markets and bond-picking decisions are
integrated.

4 A hybrid optimization strategy for index tracking

There exist very efficient algorithms to minimize quadratic objective functions with linear
constraints. Unfortunately, not all constraints in the formulation of the index tracking prob-
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lem given by (9)–(13) are linear. In particular, the restriction on the cardinality of the portfo-
lio (12) is discrete and therefore highly non-linear. If the values of the variables z = {zi}N

i=1

were fixed the problem would be solvable by quadratic programming. Therefore, a possible
approach to the index tracking problem is to handle separately the combinatorial optimiza-
tion problem of selecting the values of the binary variables z and the quadratic optimization
problem that consists in finding the asset weights {wi(z)}N

i=1 for a fixed value of z. The com-
binatorial search is thus guided by the quadratic optimization task. The objective function
for each candidate z is the value of the minimum obtained by solving the quadratic problem.

A naïve approach to this optimization schedule is to apply exhaustive search on the com-
binatorial part of the problem: For every possible combination of the binary variables, cal-
culate the value of the objective function by means of quadratic optimization. In small and
intermediate problems (see, for example, the Hang Seng index problem in the next section)
it is possible to obtain a solution with a considerable but realizable computational effort. In
larger problems, the complexity of the search space becomes intractable. For instance, in a
problem with N = 100 assets in the universe and a cardinality constraint c = 10,

∑10
i=1

(100
i

)

quadratic optimizations need to be performed. Assuming that each quadratic optimization
takes 1 ms, the algorithm would need more than 500 years to find the optimal solution.

A directed search is a more suitable approach for this problem. Several heuristics can be
used to explore the combinatorial search space. In this work, we propose a hybrid genetic
algorithm to solve the problem. Genetic algorithms (Holland 1975) are optimization heuris-
tics which are inspired by the process of the evolution of natural species. The pseudocode
for a basic genetic algorithm is the following:

1. Generate population of P individuals (candidate solutions).
2. While convergence criteria are not met:

a. Select a parent set composed of nP individuals from the population.
b. While parent set is not empty

i. Select two individuals.
ii. Apply crossover to the pair and generate nC children.

iii. Apply mutation to the nC children.
c. Add to the population the new nP nC/2 individuals generated.
d. Select again P individuals and create the population for the next generation.

Each individual is assigned a fitness value in the population by a function that measures
the quality of the solution encoded by the individual. The choice of the fitness function
is crucial in the design of a genetic algorithm. In this work we have chosen the function
F(z) = −MSE(rP(z), rI), which is calculated by means of quadratic optimization according
to the scheme previously outlined.

The representation of each individual (chromosome) is called the genotype. Finding an
appropriate genotype representation for the individuals in the population is also an important
factor in the success of the genetic algorithm. A common choice of chromosome represen-
tation in the GA literature is a binary representation. In this encoding, a candidate solution
is represented by a binary string of length N . For the index tracking problem, a value of 1
in the i-th position of the string means that asset i is present in the portfolio, whereas a 0
value in that position indicates that asset i is excluded from the investment. For example, in
a problem with N = 5 and c = 3, the individual
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Table 1 Example of uniform
crossover Parent 1 1101100100110111

Parent 2 0101111010110110

Child 1101101110110111

Table 2 Examples of bitwise
mutation Child 1 1101111010010110

Mutated Child 1 1111111000010110

Child 2 0100100100110111

Mutated Child 2 0100110100110011

1 2 3 4 5

0 1 1 0 1

represents the optimal tracking portfolio that can be constructed by investing in the assets
labeled 2, 3 and 5 only. The fitness value of such an individual is minus the tracking-error of
this optimal portfolio. The permutation of any two bits with different values can be used as
a mutation operator that preserves the cardinality of the individuals. For instance, from the
individual (01101), a permutation that interchanges the bits in positions 1 and 3 generates the
individual (11001), which represents the optimal tracking portfolio that can be constructed
by investing in assets 1, 2 and 5. Uniform crossover is used to avoid biases from the original
labeling of the assets. Examples of these crossover and mutation operators are displayed
in Tables 1 and 2. The uniform crossover operator has the drawback that it can generate
individuals that fail to satisfy the cardinality constraint. For instance, Table 1 shows an
example in which both parents are constrained to have 10 assets, but the resulting child is
composed of 12 assets. It is then possible to use either chromosome repair heuristics that
restore the constraint, or penalty functions that reduce the fitness of individuals violating the
cardinality constraint. Exploratory experiments show that the stochastic search process using
this binary representation and penalty functions (either linear, quadratic or logarithmic) is
not effective and tends to converge to suboptimal solutions. For this reason, an alternative
chromosome representation with especially designed mutation and recombination operators
that preserve the cardinality of the individuals is used in this work.

This alternative representation, where the chromosomes are subsets of assets, has been
successfully employed in the solution of the closely related problem of optimizing a port-
folio with cardinality constrains (Moral-Escudero et al. 2006). Index tracking and portfolio
optimization with cardinality constraints are characterized by different objective functions
and restrictions. Nonetheless, they are both mixed-integer quadratic problems and can be ap-
proached using similar techniques. In the set representation considered in (Moral-Escudero
et al. 2006) a candidate solution is encoded as the set containing the labels of the assets that
are included in the portfolio. For example, a portfolio containing the assets 2, 3 and 5 would
be represented by the set {2,3,5}. A mutation operator that preserves the cardinality of the
individual is implemented by swapping one product which is in the set with another product
which does not belong to the set. Examples of crossover operators that preserve cardinal-
ity are the Random Respectful Recombination (R3) and Random Assorting Recombination
(RAR) (Radcliffe 1992) crossover operators. Moral-Escudero et al. (2006) show that R3 has
a tendency to overexploit the information available in the parent chromosomes. This prop-
erty often leads to premature convergence. For this reason RAR is used in our work. The
implementation of the RAR crossover operator involves the following operations:
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1. Create auxiliary sets (A,B,C,D,E), where the initial compositions of the sets is
A: Assets present in both parents.
B: Assets not present in any of the parents.
C ≡ D: Assets only present in one parent.
E: Empty set.

2. Build set G

w copies of elements from A and B .
1 copy of elements from C and D.

3. Build the child chromosome
3.1. Repeat

Extract an element from G (without replacement).

• If the element comes from A or C and it is not an element of E, include it in the
child chromosome.

• If the element comes from B or D, include it in the set E.

Until chromosome is complete or set G is empty.
3.2. If chromosome is not complete include assets not yet included at random.

The advantage of the RAR operator over other set recombination operators is that the hy-
perparameter w can be used to regulate the amount of common information from the parents
that is retained by the children (i.e., the importance that is given to the common information
from the parents). As w increases, the RAR operator exploits more information common to
both parents, asymptotically approaching the R3 operator (Radcliffe 1992). A small value
of w implies that little information from both parents is retained in the children. Therefore,
the probability of selecting an asset that is present in only one of the parents is increased.
Another interesting property of this operator is that its application can produce implicit mu-
tations (by step 3.2), and include in the child assets not present in any of the parents.

The GA implemented uses RAR recombination with w = 1. The generational substitu-
tion scheme is a steady state model. In each epoch of the steady state model, a new child
replaces the worst-fitness individual in the previous generation. The parent selection strat-
egy is a binary tournament. These strategy choices result in a GA with high evolutionary
pressure, which has shown good performance in the portfolio optimization problem (Moral-
Escudero et al. 2006).

5 Experimental results

To assess the performance of the hybrid optimization algorithm several experiments on
benchmark problems from the OR-Library (Beasley 1990) are carried out. The OR-library
is a publicly available collection of test data sets for a variety of Operations Research (OR)
problems. In particular, for the index tracking problem (Beasley et al. 2003) it contains the
weekly stock prices for the period 1992 to 1997 of the assets included in major world market
indexes, such as Hang Seng (Hong Kong), DAX (Germany), FTSE (Great Britain), Standard
and Poor’s (U.S.A.) and the Nikkei index (Japan).

Before addressing the index tracking problem with actual market data, the quality of
the solutions obtained by the optimization algorithm is tested using an artificial benchmark
problem: A synthetic index is generated by investing equal amounts in the last c stocks of
each of the market indexes. Then, the hybrid optimization algorithm introduced in Sect. 4 is
used to find the tracking portfolio with a cardinality constraint c. In this problem the optimal
solution is known: it is a portfolio that invests only in the last c stocks of the index. Table 3
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Table 3 Results of the hybrid GA approach to the selection of portfolios that track synthetic indexes

Indexes Card. const. MSE (Train) MSE (Opt) Norm. MSE Mean eval. Time (s) % Opt

Hang Seng 5 9.203e-6 9.203e-6 8.396e-3 30783 0.48 100.0

(N = 31) 6 5.465e-6 5.465e-6 4.986e-3 36058 0.53 100.0

7 5.043e-6 5.043e-6 4.601e-3 41103 0.58 100.0

8 4.200e-6 4.200e-6 3.832e-3 46370 0.63 100.0

9 4.336e-6 4.336e-6 3.956e-3 51653 0.69 100.0

10 4.226e-6 4.226e-6 3.856e-3 56564 0.75 100.0

DAX (N = 85) 5 3.406e-6 3.406e-6 8.297e-3 56329 2.12 100.0

6 3.314e-6 3.314e-6 8.074e-3 66202 2.22 100.0

7 3.225e-6 – 7.857e-3 75849 2.44 100.0

8 6.293e-6 – 1.533e-2 85933 2.60 100.0

9 6.040e-6 – 1.471e-2 95483 2.79 100.0

10 5.276e-6 – 1.285e-2 105604 2.96 100.0

FTSE (N = 89) 5 2.919e-6 2.919e-6 9.626e-3 366065 19.41 100.0

6 3.108e-6 3.108e-6 1.025e-2 427199 21.65 100.0

7 2.579e-6 – 8.505e-3 488560 22.86 100.0

8 2.085e-6 – 6.876e-3 550436 23.92 100.0

9 2.296e-6 – 7.573e-3 611855 24.53 100.0

10 2.111e-6 – 6.961e-3 672879 25.59 100.0

S&P (N = 98) 5 1.215e-5 1.215e-6 5.252e-2 486830 25.15 100.0

6 1.057e-5 – 4.555e-2 567589 27.01 100.0

7 7.653e-6 – 3.297e-2 648999 27.86 100.0

8 4.534e-6 – 1.954e-2 731965 30.20 100.0

9 3.274e-6 – 1.411e-2 815576 28.67 100.0

10 4.835e-6 – 2.083e-3 895356 29.86 100.0

Nikkei (N = 225) 5 2.588e-6 – 3.175e-3 904391 31.58 100.0

6 2.416e-6 – 2.964e-3 1057976 35.12 100.0

7 2.364-6 – 2.901e-3 1208759 35.37 100.0

8 1.925e-6 – 2.362e-3 1362428 38.29 100.0

9 1.812e-6 – 2.223e-3 1514054 42.41 100.0

10 1.722e-6 – 2.113e-3 1667507 42.82 100.0

summarizes the results for this synthetic problem. Results are averaged over 30 executions
with different initial random populations. The optimal mean squared error (4th column) is
calculated by exhaustive search whenever the computation is feasible. The tracking errors
obtained are non zero because the tracking portfolio has constant weights, whereas the syn-
thetic index is constructed using constant coefficients. Since the prices of different assets
may evolve differently, the investment weights in the index vary due to market capitaliza-
tion. The fifth column displays the tracking error normalized by the variance of the index
returns in the period considered. The 6th and 7th columns report the average number of eval-
uations of the objective function per execution and the average CPU time per execution on
an AMD 64-bit dual-core processor 2.01 GHz with 2 GB RAM, respectively. The last col-
umn represents the percentage of the 30 executions in which the best solution is reached. In
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Table 4 Results of the hybrid GA approach to the selection of portfolios that track market indexes

Indexes Card.
const.

MSE
(Train)

MSE
Train
(Opt)

Norm.
MSE
(Train)

MSE
(Test)

Norm.
MSE
(Test)

Mean
eval.

Time
(s)

% Opt

Hang Seng 5 4.135e-5 4.135e-5 2.962e-2 7.218e-5 9.157e-2 30709 0.42 100.0

(N = 31) 6 3.031e-5 3.031e-5 2.171e-2 4.755e-5 6.031e-2 35796 0.47 100.0

7 2.371e-5 2.371e-5 1.699e-2 3.810e-5 4.832e-2 40951 0.52 100.0

8 1.907e-5 1.907e-5 1.366e-2 2.899e-5 3.677e-2 46093 0.59 100.0

9 1.622e-5 1.622e-5 1.161e-2 2.581e-5 3.274e-2 51288 0.64 100.0

10 1.346e-5 1.346e-5 9.643e-3 2.057e-5 2.610e-2 56520 0.68 100.0

DAX 5 2.211e-5 2.211e-5 5.699e-2 1.018e-4 2.402e-1 56269 2.10 100.0

(N = 85) 6 1.764e-5 1.764e-5 4.544e-2 8.938e-5 2.109e-1 65735 2.27 100.0

7 1.371e-5 – 3.533e-2 8.459e-5 1.996e-1 75260 2.27 100.0

8 1.110e-5 – 2.860e-2 7.928e-5 1.871e-1 84842 2.43 100.0

9 9.216e-5 – 2.375e-2 7.776e-5 1.835e-1 94531 2.51 100.0

10 8.084e-5 – 2.083e-2 7.482e-5 1.766e-1 104355 2.74 100.0

FTSE 5 6.417e-5 6.417e-5 1.721e-1 1.581e-4 6.922e-1 366296 29.73 90.0

(N = 89) 6 4.961e-5 4.961e-5 1.331e-1 1.119e-4 4.899e-1 426478 30.53 93.3

7 3.828e-5 – 1.027e-1 9.069e-5 3.970e-1 488776 30.80 90.0

8 2.903e-5 – 7.788e-2 9.662e-5 4.229e-1 550079 31.27 96.7

9 2.486e-5 – 6.669e-2 8.592e-5 3.761e-1 611690 28.36 100.0

10 2.184e-5 – 5.858e-2 8.009e-5 3.506e-1 673641 32.08 100.0

S&P 5 4.497e-5 4.497e-5 2.987e-1 1.142e-4 3.830e-1 485106 25.79 100.0

(N = 98) 6 3.373e-5 – 2.241e-1 1.007e-4 3.377e-1 566475 25.85 100.0

7 2.761e-5 – 1.834e-1 7.798e-5 2.615e-1 647951 27.19 100.0

8 2.274e-5 – 1.510e-1 6.764e-5 2.268e-1 729664 29.72 100.0

9 1.939e-5 – 1.288e-1 5.910e-5 1.982e-1 811392 30.81 90.0

10 1.657e-5 – 1.101e-1 5.546e-5 1.859e-1 893635 34.49 93.3

Nikkei 5 5.456e-5 – 6.254e-2 1.629e-4 2.151e-1 903844 42.09 90.0

(N = 225) 6 4.008e-5 – 4.595e-2 1.468e-4 1.938e-1 1054724 44.83 53.3

7 3.356e-5 – 3.846e-2 1.324e-4 1.748e-1 1206342 44.90 16.6

8 2.601e-5 – 2.981e-2 1.104e-4 1.457e-1 1358302 47.97 6.6

9 2.125e-5 – 2.436e-2 9.803e-5 1.294e-1 1510641 48.69 3.3

10 1.797e-5 – 2.060e-2 6.471e-5 8.543e-2 1664071 51.16 6.6

all cases where the calculation was feasible, the solution obtained by the algorithm is found
to be the optimal solution. For this synthetic problem, the optimum was reached in every
one of the 30 executions performed. These results confirm the validity of the hybrid strategy
adopted to solve the mixed-integer quadratic programming problem of tracking a synthetic
index. We now apply this strategy to track actual market indexes.

In the experiments carried out with real-world indexes, the tracking problem is treated
as an inductive learning task: The data of weekly returns of the stocks included in the index
are partitioned into a training set containing the first half of the data (145 values) and a test
set with the rest of the data (145 values). The training data are used to find the assets that
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Fig. 1 Normalized time series
evolution for the Hang Seng
index and the tracking portfolio
that invests in only 5 assets

make up the resulting portfolio. The test set is used to estimate the out-of-sample perfor-
mance of the selected portfolio. As noted in Sect. 1, the underlying assumption is that a
portfolio that is optimal during an initial interval in the recent past should also be close to
optimal in the near future. Figure 1 represents the evolution of the normalized time series
for both the Hang Seng index and the best-known tracking portfolio that invests in only 5
of the 31 assets that are included in the index. Results for all the indexes are summarized
in Table 4. There are two extra columns with respect to Table 3: the mean squared error in
the test set (6th column) and the value of this error normalized by the variance of the returns
(7th column). In all cases investigated where the optimal portfolio can be found by exhaus-
tive search the hybrid optimization algorithm consistently finds the optimal solution. In this
kind of problem, the mean squared error over the train set must decrease when the number
of assets in the cardinality constraint increases, because the more assets are included in the
portfolio, the better the index can be tracked. This is not necessarily the case in the problem
with synthetic indexes, where for every value of the cardinality constraint a different prob-
lem is being solved (a different synthetic index is being tracked). The values for the mean
squared error in the train and test sets are similar. In all the cases investigated, the tracking
error in the test set is higher than the corresponding training tracking error. Note also that
the mean squared error in the test set does not have to decrease as the cardinality constraint
increases. Notwithstanding, it does become smaller in the vast majority of cases. This can
be taken as an a posteriori confirmation of the validity of assuming that the performance on
the training data is a good predictor of the generalization performance on the test data.

Taking into account the complexity of the search the execution times are fairly low. Fur-
thermore, the increase of the execution time with the size of cardinality constraint seems to
be sub-linear, which is much slower than the increase in the number of candidate solutions
for small values of c.

In most of the problems investigated (Hang Seng, DAX, FTSE and S&P), the fraction
of executions in which the best-known solution is found is above 90%. By contrast, the
Nikkei index problem, composed of 225 assets, seems to be much more difficult. The frac-
tion of successful searches diminishes dramatically as the size of the cardinality constraint
increases. To shed some light on the origin of the difficulties in tracking the Nikkei index,
we have performed a detailed analysis of the solutions obtained in this problem for c = 5.
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Table 5 Composition of the optimal and suboptimal portfolios for the cardinality constraint c = 5 in the
Nikkei index problem

Optimal porfolio Asset 103 198 153 132 147

Weight 0.282841 0.264765 0.171233 0.165089 0.116071

Suboptimal portfolio Asset 103 123 75 153 35

Weight 0.292244 0.265793 0.154440 0.152062 0.135462

Fig. 2 Normalized time series
for assets 198 and 123 in the
Nikkei index problem

The composition and the weights of each asset in a best-known solution and in a near-best-
known-solution portfolio are shown in Table 5.

The assets in Table 5 are sorted according to their weights in the corresponding portfolios.
The two portfolios have only two assets in common, the ones labeled 103 and 153. For the
remaining assets, we compare the time series and weekly return series for pairs of assets
with similar weights, one from the best-known solution portfolio and one from the near
best-known one. Therefore, the pairs of assets compared are 198 and 123, 132 and 75, and
147 and 35. Figure 2 displays in the same graph the price series for the assets labeled 198
and 123. Figure 3 shows a linear regression between the series of returns for both assets.
These two series are highly correlated: the coefficient of correlation between the series of
weekly returns for both assets is ρ = 0.6975. The correlation is also high for the other pairs
of assets: In the case of assets 132 and 75, the correlation coefficient is ρ = 0.6491, and for
the assets 147 and 35, ρ = 0.6672.

Therefore, in the near best-known solution, the asset in the best-known solution is re-
placed by an asset whose time series is highly correlated with it. In the case of a cardinality
constraint c = 5, the correspondence of correlated series is simple, a one-to-one correspon-
dence. In portfolios containing more assets, more complex linear combinations appear, mak-
ing the analysis more difficult. When the universe of the problem includes a large number
of assets the probability of finding these approximate degeneracies becomes higher.

6 Conclusions

In this work, a hybrid optimization approach is proposed for index tracking. The combina-
torial optimization problem of selecting the optimal subset of assets that should be included
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Fig. 3 Weekly returns of asset
198 against those of asset 123 in
the Nikkei index problem. The
correlation coefficient is
ρ = 0.6975

in the tracking portfolio is solved by a genetic algorithm. In this GA each individual in the
evolving population corresponds to a subset of assets with the specified cardinality. The fit-
ness value of an individual is minus the tracking error of the optimal portfolio that invests
only in the assets specified by the individual’s chromosome. Since the problem of finding
the optimal tracking portfolio that invests only in a specified subset of assets is a quadratic
programming problem, the fitness function can be efficiently computed with a quadratic
solver. A set representation together with especially designed crossover and mutation opera-
tors that preserve the cardinality of the individuals is found to be an appropriate encoding for
this problem. This hybrid evolutionary approach yields good results and achieves near op-
timal solutions in both synthetic and real world problems. However, the presence of highly
correlated series when the number of assets in the universe of the problem is high makes the
convergence of the algorithm difficult.

Using a similar decomposition for the optimization problem, other heuristics, such as
simulated annealing, or ant-colony optimization, can be used to address the combinatorial
part of the problem. In this problem we have not taken into account transaction costs: Fur-
ther research is needed to take into account these costs to design realistic index tracking
strategies.

Acknowledgements This research was supported by Ministerio de Educación y Ciencia (Spain), project
TIN2004-07676-C02-02. Ruben Ruiz-Torrubiano acknowledges the Universidad Autónoma de Madrid for
financial support under an FPU grant.

Appendix: Proof that the index tracking problem with cardinality constraint is
NP-hard

In this appendix we prove that the index tracking problem with cardinality and linear con-
straints as stated in (9) to (13) is an NP-hard problem. The asset selection problem that
needs to be solved in index tracking is closely related to the Subset Sum problem, which is
known to be NP-complete. The Subset Sum problem consists in extracting from a given set
of integers S = {s1, . . . , sN } a subset of elements whose sum is equal to zero. Suppose that
an algorithm A that solves the index tracking problem in polynomial time exists. Then, the
Subset Sum problem would also be solvable in polynomial time by solving a collection of N
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index tracking problems with cardinality constraints c = 1, . . . ,N . In these index tracking
problems T = 1, the return of the tracked index is rI (t) = 0, ∀t and the asset returns are
ri(t) = si , ∀t . The floor and ceiling constraints are ai = bi = 1/c. Therefore,

MSE(rP, rI) = 1

T

T∑

t=1

(
rP (t) − rI (t)

)2 =
(

1

c

N∑

i=1

zisi

)2

(15)

And the problem translates into:

min

(
1

c

N∑

i=1

zisi

)2

s.t.
N∑

i=1

zi = c

(16)

If for some value of c the minimum found is zero, then the values of the indicator variables
{zi, i = 1,2, . . . ,N} corresponding to that minimum are a solution to the Subset Sum prob-
lem. If for all values of c the minimum found is larger than zero, then the particular instance
of the Subset Sum problem has no solution.

Given this equivalence, unless P = NP, no algorithm with the properties of A exists.
Hence the index tracking problem is at least as hard as any NP-complete problem. This
means that index-tracking is NP-hard, and that, unless P = NP, no algorithm that guarantees
finding the optimal portfolio in polynomial time exists.
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