
Ann Oper Res (2008) 164: 97–109
DOI 10.1007/s10479-008-0343-0

An acceleration of Erlenkotter-Körkel’s algorithms
for the uncapacitated facility location problem

Jaroslav Janáček · L’uboš Buzna

Published online: 3 April 2008
© Springer Science+Business Media, LLC 2008

Abstract This contribution is focused on an acceleration of branch and bound algorithms
for the uncapacitated facility location problem. Our approach is based on the well-known
Erlenkotters’ procedures and Körkels’ multi-ascent and multi-adjustment algorithms, which
have proved to be the efficient tools for solving the large-sized instances of the uncapaci-
tated facility location problem. These two original approaches were examined and a thor-
ough analysis of their performance revealed how each particular procedure contributes to the
computational time of the whole algorithms. These analyses helped us to focus our effort
on the most frequent procedures. The unique contribution of this paper is a new dual ascent
procedure. This procedure leads to considerable acceleration of the lower bound computa-
tion process and reduces the resulting computational time. To demonstrate more efficient
performance of amended algorithms we present the results of extensive numerical experi-
ments.

Keywords Branch and bound · Uncapacitated facility location problem · Dual ascent
algorithm · DualLoc · PDLoc

1 Introduction

Location science is a well-established field in applied mathematics and in operations re-
search. Classification and broad overview of location problems and solution techniques can

J. Janáček · L. Buzna (�)
Department of Transportation Networks, Faculty of Management Science and Informatics,
University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
e-mail: buzna@frdsa.uniza.sk

J. Janáček
e-mail: jardo@frdsa.uniza.sk

L. Buzna
Institute of Transport & Economics, Faculty of Traffic and Transport Sciences, Dresden University
of Technology, Andreas-Schubert-Str. 23, 01062 Dresden, Germany
e-mail: buzna@vwi.tu-dresden.de

mailto:buzna@frdsa.uniza.sk
mailto:jardo@frdsa.uniza.sk
mailto:buzna@vwi.tu-dresden.de

98 Ann Oper Res (2008) 164: 97–109

be found, for example, in Hale and Moberg (2003), Brandeau and Chiu (1989), Owen and
Daskin (1998), Klose and Drexl (2005) and Labbé and Louveaux (1997). Location science
comprises the vast amount of problem specifications and their variations. One of the basic
but important problems is the uncapacitated facility location problem (UFLP) introduced in
Balinski (1965). The uncapacitated facility location problem belongs to the most popular
topics of theoretical research and computational analysis in the last four decades (Galvão
2004). Its attractiveness stems from several characteristics of the problem. Although the
problem is known to be NP-hard (Cornuejols et al. 1990), there was soon found an effective
exact algorithm, which enables to solve large-sized instances of the problem. This property
is very rare in the family of integer programming problems.

The other fact, which contributes to the attractiveness of this problem, is its broad applica-
bility (Janáček 2004). The solving technique can be used not only for a design of the cost
optimal structure of two-echelon distribution system, but it can be also embedded into vari-
ous algorithms, which were designed to solve more complex location problems. As reported
in (Galvão 2004), it is possible to reformulate the classical maximum distance problem,
p-median problem, and the maximum covering location problem into a form of the UFLP.
Furthermore, the algorithm for the UFLP can be employed in an approximate solving of the
p-centre problem. These circumstances motivated us to focus our research on improving the
current exact solving techniques for UFLP.

The UFLP consists of placing facilities such as warehouses, offices or hospitals in some
sites of a given finite set I and in a consecutive unique assignment of customers from a
given finite set J to the located facilities. The term “customer” can denote a real customer,
but it can also stand for an inhabitant of some region, a patient in a hospital, or a retailer
and so on. The possible operations, i.e. the facility location and the customer assignment,
should minimize the value of a cost objective function. This objective function includes both
the fixed charges fi paid for facility location at the location i and the costs cij for demand
satisfaction of the j-th customer from the location i.

Defining the variables yi ∈ {0,1} for i ∈ I (where yi = 1 means placing a new facility at
location i) and the variables zij ∈ {0,1} for i ∈ I and j ∈ J (where zij = 1 represents the
assignment of location i to customer j) we get the following model of the UFLP:

Minimize zP =
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij zij . (1)

Subject to
∑

i∈I

zij = 1 for j ∈ J, (2)

zij ≤ yi for i ∈ I and j ∈ J, (3)

yi, zij ∈ {0,1} for i ∈ I and j ∈ J. (4)

Many authors have dealt with this problem (Körkel 1989; Conn and Cornuéjols 1990;
Goldengorin et al. 2004). Nevertheless, the now seminal procedure, DualLoc, proposed
by Erlenkotter (1978) remains one of the most effective algorithms, and enables solutions
in tractable times (Crainic 2003). Inspired by this approach, the exact algorithms PDLoc
(Körkel 1989) and BBDual (Janáček and Kovačiková 1997) were implemented and tested.
These algorithms exploit the relation between the primary and dual formulation of the
strong linear programming relaxation of the original problem. And when needed, the proce-
dures, calculating the dual and induced primary solution, are followed by branch and bound
method. The duality gap was analytically studied by Mladenović et al. (2006). Conn and
Cornuéjols (1990) proposed an orthogonal projection method to solve the dual problem to

Ann Oper Res (2008) 164: 97–109 99

optimality. The boolean representation of the UFLP allows to construct the rules for reduc-
tion of the UFLP instances, and either to solve or reduce the size of solved subproblems
(Mladenović et al. 2006; Körkel 1989; Goldengorin et al. 2004). Such rules were tested in
Goldengorin et al. (2004), showing the significant reduction of the computational time. The
data correcting method (Goldengorin et al. 2003) allows to determine the exact and approx-
imate solutions of the UFLP. This method is applicable to broad spectrum of problems with
super modular objective function and performs very well also for UFLP, when combined
with elements of the Erlenkotter’s approach.

The combinatorial background of the UFLP enables simple, but a very efficient appli-
cation of modern heuristics. Alves and Almeida (1992) successfully used the simulated an-
nealing method. A genetic algorithm was employed in Kratica et al. (2001) and tabu search
strategies were used to solve UFLP in Michel and Hentenryck (2004) and in Sultan and
Fawzan (1999). In Ghosh (2003) is compared the performance of several steepest descent
local search heuristics using various neighbourhood structures. Choosing the best perform-
ing structure the tabu search strategy and the complete local search strategy were imple-
mented. In summary, Ghosh concluded a very good performance of studied algorithms on
UFLP of smaller and medium size (up to 750 customers and 750 facility locations). The hy-
brid and multi-start heuristic, combining the characteristics of several metaheuristics, was
applied in Resende and Werneck (2006) giving very good results for large set of numerical
experiments.

The broad applicability of UFLP in practise and the high efficiency of exact methods
based on branch and bound method (PDLoc and BBDual) motivated us to study the compu-
tational performance of these algorithms in detail. This effort helped us to suggest modifica-
tions which shorten the computational time when solving practical problems. The remainder
of our paper is organized as follows. In Sect. 2, we briefly introduce the existing exact solv-
ing methods PDLoc and BBDual. Section 3 presents the results of preliminary experiments,
which identify the critical points of both algorithms. The suggested improvements are then
described in Sect. 4. The benefits of our rearrangements are reported in Sect. 5. To conclude
this paper, in Sect. 6, we summarize our findings and suggest some possible directions of
further research.

2 Dual based lower bounding in branch and bound methods for UFLP

The basic idea, which was originally introduced in the algorithm DualLoc and which was
also followed by the algorithms BBDual and PDLoc, consists in relation between linear
relaxation of the original problem (1)–(4) and the associated dual problem.

After some reformulation and introduction of slack variables si , the dual problem (see
Körkel 1989) takes the following form:

Minimize zD =
∑

j∈J

νj . (5)

Subject to
∑

j∈J

max{0, νj − cij } + si = fi for i ∈ I, (6)

si ≥ 0 for i ∈ I. (7)

The dual variables νj correspond to constraints (2). Objective function value zD of any fea-
sible solution is smaller or equal to any objective function value zP of any feasible solution

100 Ann Oper Res (2008) 164: 97–109

of the linear relaxation of (1)–(4), according to the weak duality theorem. Thus, objective
function value of arbitrary feasible solution of (6)–(7) constitutes a lower bound for optimal
solution of the problem (1)–(4).

To obtain a good lower bound from the dual problem, Erlenkotter (1978) suggested com-
bination of two procedures. The first of them, the dual ascent algorithm (DA), introduced by
Bilde and Krarup (1977), starts from an arbitrary feasible solution of the dual problem and
subsequently increases the values of the νj variables as long as constraints (6) and (7) hold.

The second procedure enables a further improvement of the dual solution obtained by the
DA procedure. The dual adjustment procedure (DAD) searches for a configuration, in which
a decrease of some variable νj by value δ will create free space at least at two locations i

and i ′ from I , which can be used for an ascent of at least two different variables νk and νl

(k �= l �= j). Each found configuration is exploited and followed by the dual ascent proce-
dure. Having obtained a dual solution, an induced primal feasible solution can be obtained
by applying the complementary constraints (8)–(10):

(max{0, νj − cij })zij = 0 for i ∈ I, j ∈ J, (8)

siyi = 0 for i ∈ I, (9)

(yi − zij)max{0, νj − cij } = 0 for i ∈ I, j ∈ J. (10)

The original PRIMA procedure ensures the validity of constraints (8)–(9) and constructs the
associated primal solution to the dual solution such that the constraints (10) are violated as
slightly as possible. All these procedures are described in more detail in Erlenkotter (1978),
Körkel (1989), Janáček and Kovačiková (1997).

2.1 Algorithm BBDual

If the variables yi are fixed, the optimal values of variables zij can be easily found. It is
sufficient to assign the customer j to the facility i, for which the value of coefficient cij

is minimal. Thus, the most complex problem is to determine the setting of the variables yi .
The BBDual algorithm (see Janáček and Kovačiková 1997) is based on the branch and bound
method, in which two subproblems emerge by fixing the variables yi to zeros or ones.

The algorithm makes use of the depth first strategy. To decide if a given subproblem
should be processed or excluded from the searching process, a lower bound of high quality
is needed. Such lower bound can be obtained by successively performing the dual ascent
and the dual adjustment algorithms. These procedures provide dual feasible solution and
the corresponding value of objective function serves as the searched lower bound. Further-
more, a corresponding primal feasible solution is generated. This is done by the PRIMA
procedure, which follows the complementary conditions (8)–(10) for both the primal and
the dual problem. The best-found primal solution is stored and its objective function value
constitutes an upper bound of the optimal solution.

2.2 Algorithm PDLoc

The algorithms PDLoc and BBDual are built up on the same principles, which were in-
troduced in the original algorithm DualLoc. However, the PDLoc algorithm comprehends
a number of effective modifications and improvements on the original procedures and, in
addition, it is enhanced by several new procedures. Similar to the BBDual algorithm, the
PDLoc employs the branch and bound method to determine the optimal solution, but in

Ann Oper Res (2008) 164: 97–109 101

contrast to the BBDual, the strategy of the lowest lower bound is used in the searching tree
processing.

Varying the order of customers in the PRIMA procedure, enables to open new locations
each time and to explore a broader spectrum of primal solutions. This leads to a faster
decrease of the upper bound and to the faster termination of searching process.

In the case where the fixed charges fi are considerably higher than the allocation costs
cij , the first dual solution is calculated by the dual multi-ascent procedure (MDA) instead of
the dual ascent procedure. In the dual multi-ascent procedure, the variables νj are initially set
to some high value and then they are adjusted to meet constraints (7). Executing the original
dual ascent procedure completes this process. This rearrangement gives a considerable time
saving as shown in the next sections.

Other improvement consists of applying the simple exchange heuristic after the first pri-
mal solution is found. Moreover, when a big difference between the upper and the lower
bound occurs, it is reduced by the modified dual adjustment procedure. This procedure con-
sists of two phases. The first of them is called the primal-dual multi adjustment (PDMAdj)
and the second is the primal-dual adjustment (PDAdj). In the first phase, the values of vari-
ables νj are extensively reduced and subsequently gradually incremented using a modified
dual ascent algorithm. In the second phase, the values of variables νj are reduced in the
loop, variable by variable, and then the resulting dual solution is processed by the dual as-
cent algorithm. The number of repetitions of the dual adjustment procedure depends on the
problem size.

The used branch and bound searching scheme allows to fix the selected locations to
be permanently opened (yi = 1) or closed (yi = 0) and thereby to reduce the size of the
solved problem. To fix a variable, special conditions have to be satisfied. Evaluation of
these conditions is time consuming, especially being deep in the searching three. Therefore
the fixing of variables is preferred in the root of the searching tree (pre-processing). If a
processed branch is deep in the searching tree, the variables are fixed only if there is a
possibility to fix several variables simultaneously. For more detailed explanations we refer
the reader to the original work Körkel (1989).

3 Experimental evaluation of algorithms BBDual and PDLoc

We implemented both algorithms using the integrated development environment Delphi. In
our implementation we restricted the values of the coefficients fi and cij to integers.

Following our main goal to improve the computational properties of both algorithms,
we started with a broad set of numerical experiments, testing the algorithms BBDual and
PDLoc on a set of problems generated from the real-world transportation networks. The
experiments were not focused only on revealing the computational properties of the whole
algorithms, but we studied also the computational complexity of particular procedures. It
enabled us to compare their importance and mutual interactions. Special attention was paid
to the dependence of computational time on the size of the problem and on the ratio between
the coefficients fi and cij .

3.1 Benchmarks

Three sets of testing problems were used to perform the above-mentioned numerical experi-
ments. The first set is formed by the well-known Beasley’s testing problems (Beasley 1990)
cap41, . . . , cap134, the sizes of which (|I | × |J |) vary from 16 × 50 to 50 × 50 including

102 Ann Oper Res (2008) 164: 97–109

three testing problems capa, capb and capc of size 100 × 1000. The values of coefficients in
objective function were rounded to integers.

Since the standard Beasley’s testing problems are relatively small we have generated two
other sets, named K90 and G700. The set K90 consists of 90 testing problems derived from
the railway network of Slovak Republic. These medium sized problems are ordered in ten
groups: 45 × 457, 91 × 457, 137 × 457, 182 × 457, 229 × 457, 274 × 457, 319 × 457,
365 × 457, 411 × 457 and 457 × 457. The set G700 consists of 700 problems derived
from the road network of Slovak Republic. This set consists from ten subgroups, sizes
of which ranged from 100 × 2906, 200 × 2906, as large as 1000 × 2906. Each subgroup
contained 70 benchmarks. For each size of the benchmark 10 different random subgraphs
of the road network graph of corresponding size were generated. Each subgraph was used
as a base for creating seven benchmarks by modifying the coefficients cij and fi to cover
uniformly the whole spectrum of located facilities in optimal solution. For instance, for a
problem of size 100 × 2906 the optimal cardinality of located facilities were 1, 17, 33,
50, 66, 83 and 100 respectively. The source code of the algorithms is available from the
authors upon request. Our benchmarks were uploaded onto the supplementary Web page
http://frdsa.uniza.sk/~buzna/supplement.

3.2 Preliminary results of numerical experiments

We solved all problems by both algorithms to obtain the frequency in which the particular
procedures are called. Together with computational time and its distribution over the proce-
dures, we also evaluated the numbers of visited branches in the branch and bound method.
All numerical experiments mentioned in this paper were performed on a PC equipped with
Intel 2.4 GHz processor, 256 MB RAM and the computational time was measured with
preciseness of at least 60 ms.

The BBDual algorithm solved the Beasley’s problems cap41, . . . , cap134 in less than
60 ms. The problems capa, capb and capc needed 0.5, 5.44 and 3.13 seconds, respectively.
The PDLoc algorithm solved the problems cap41, . . . , cap134 in an average time of 85 ms
and the larger problems capa, capb and capc in 1.91, 47.18 and 107.16 seconds, respectively.

The average computation times for problem sets G700 and K90 are listed in Table 1 and
Table 2, respectively.

Table 1 Average time in seconds and corresponding standard deviation for the class of benchmarks G700

Size of problems BBDual PDLoc

t [s] stdD t [s] stdD

100 × 2906 5.343 12.64 1.44 0.93

200 × 2906 27.16 68.33 1.80 0.99

300 × 2906 52.95 143.11 2.40 1.48

400 × 2906 127.06 337.58 2.74 1.82

500 × 2906 134.17 340.52 5.29 6.52

600 × 2906 277.59 700.73 5.21 5.54

700 × 2906 277.70 704.57 6.12 5.45

800 × 2906 497.26 1248.42 8.56 8.87

900 × 2906 640.44 1652.65 11.45 11.25

1000 × 2906 644.88 1595.72 10.60 11.19

http://frdsa.uniza.sk/~buzna/supplement

Ann Oper Res (2008) 164: 97–109 103

Table 2 Average time in seconds and corresponding standard deviation for the class of benchmarks K90

Size of problems BBDual PDLoc

t [s] stdD t [s] stdD

45 × 457 0 0 0.13 0.05

91 × 457 0.05 1.64 0.29 0.24

137 × 457 0.14 34.6 0.57 0.64

182 × 457 0.18 31.6 0.56 0.54

229 × 457 1.11 5037.69 1.70 0.29

274 × 457 0.87 554.98 0.86 0.54

319 × 457 1.32 1467.69 1.23 1.05

365 × 457 1.57 577.08 1.33 0.55

411 × 457 2.59 5281.33 1.66 1.25

457 × 457 6.71 8961295.25 6.96 7.05

Fig. 1 The average distribution
of computational time among the
procedures of BBDual algorithm
in (a) and PDLoc algorithm
in (b) (these results were
obtained for set G700)

In addition to the total computational time we also measured the relative time con-
sumed by each of the particular procedures. The averaged results, obtained from the ex-
periments with the problem set G700, are shown in Fig. 1. The abbreviations “DA”, “DAD”
and “PRIMA” denote the relative average time consumed by the associated procedure. The
“REST” includes the time spent by branching operations, lower bound computation, as well
as necessary memory operations. The labels “PRIMA in” and “DA in” denote the time spent
by procedures PRIMA and DA, which are called by other procedures (i.e., the time “DA in”
includes the time spent by DA procedure when it has been called from the DAD procedure).
This also explains why the sum over all procedures is larger than 100%.

Comparing the results listed in Table 1 and Table 2, it can be found that both tested
algorithms reached almost the same average computational time solving the problems from
the set K90. On the contrary, solving the large problems from the set G700 the BBDual
algorithm was considerably slower. The standard deviation for the BBDual algorithm is
also much higher. This can be explained by the inefficient performance of BBDual on a
specific subset of solved problems. These problems can be characterized by the considerably
higher values of fi in comparison to the values cij . Such disproportion of coefficients causes
the ineffective performance of algorithm DA in its first run. This delay did not occur in
the PDLoc algorithm, since it was eliminated by the MDA procedure. The distribution of
computation time over the basic procedures DA, DAD and PRIMA differs considerably.
The BBDual algorithm spent in average 72.6% of the computational time by performing the
DA procedure, while the PDLoc algorithm spent on this procedure only 11.8% of the total
computational time.

104 Ann Oper Res (2008) 164: 97–109

Table 3 The average number of inspected branches (PV), the minimal number of inspected branches
(MinPV), the maximal number of inspected branches (MaxPV) and the corresponding standard deviation
(StdPV) (these results were obtained for set G700)

Size of problems BBDual PDLoc

PV MinPV MaxPV StdPV PV MinPV MaxPV StdPV

100 × 2906 6.9 1 59 13.9 1 1 1 0.0

200 × 2906 18.5 1 169 40.6 1 1 1 0.0

300 × 2906 15.1 1 181 37.9 1.1 1 3 0.5

400 × 2906 27.0 1 389 69.7 1.1 1 3 0.5

500 × 2906 22.9 1 337 56.1 1.6 1 7 1.3

600 × 2906 37.3 1 429 94.5 1.5 1 7 1.3

700 × 2906 34.8 1 461 79.2 1.5 1 5 1.0

800 × 2906 58.9 1 470 119.7 2.2 1 9 2.1

900 × 2906 58.9 1 630 133.4 2.3 1 11 2.2

1000 × 2906 48.9 1 693 113.6 1.7 1 11 1.7

The total time consumed by the DAD procedure is approximately the same for both algo-
rithms, but its distribution among the time-consuming activities differs considerably. In the
case of BBDual, the DAD procedure spent 50.1% of the time performing the DA procedure.
In contrary, the PDLoc algorithm needed only a small part of the time (11.6%) for the DA
procedure embedded in DAD algorithm. This implies that the PDLoc algorithm focuses on
a more intensive searching for improving operations. As a consequence the average number
of inspected branches in the branch and bound method decreases (see Table 3).

The performed analysis indicated the benefits of the MDA procedure, and also gave us a
notion about the time consumed by particular procedures and allowed us to identify the most
critical parts of the both algorithms. Moreover, the analysis helped us to estimate, how the
intensity of searching for new improvements in the DAD procedure influences the number
of visited branches in the branch and bound method.

4 Rearrangements of the algorithms BBDual and PDLoc

The preliminary experiments and the subsequent analysis of results showed that the DA
procedure is the greatest time consumer as concerns the BBDual algorithm. The next finding,
which follows from the analysis, is that the MDA procedure considerably improves the
computational process when the algorithm PDLoc is used. Taking into account these two
observations, we have focused our efforts on an improvement of the DA procedure and on
an overall rearrangement of the BBDual algorithm utilizing the MDA procedure.

4.1 New scheme of the DA procedure

The original DA procedure (see Fig. 2) processes the set of relevant customers J+, customer
by customer, in an order, which follows an input sequence of the relevant customers. At each
step, the variable νj corresponding to the customer j ∈ J+, is incremented by a value d . The
value d is determined as a maximal value, which satisfies the constraints (6). Hence, it is
obvious, that this variable cannot be increased in further steps, and thus the customer j can
be excluded from the set J+. This procedure is repeated until J+ is empty.

Ann Oper Res (2008) 164: 97–109 105

Fig. 2 The original DA
procedure as it was introduced by
Körkel (1989)

Fig. 3 The setting of parameters
showing the situation, when the
ordering of customers improves
the efficiency of DA procedure

In the following, we will show that the performance of this procedure significantly de-
pends on the order in which the set of relevant customers is processed. This drawback is ex-
plained on the example with two possible locations i1, i2 and three customers j1, j2 and j3,
depicted in Fig. 3. Let us associate two slack variables si1 and si2 with the locations i1 and i2.
An edge connecting a customer j to a location i denotes that the inequality νj ≥ cij holds
for this pair of subscripts. Denoting by symbol Kj the cardinality of set {i ∈ I : cij ≥ νj } for
a customer j , we get Kj1 = 2,Kj2 = 1 and Kj3 = 1.

The DA procedure processes the customers in the order, which is given by the sequence
in which they entered the procedure (i.e. first to be processed is the customer j1 followed by
customers j2 and j3). If the processing of customer j1 enables an increase of the variable νj1

by value β , then the lower bound increases exactly by β . The maximal theoretical increase
of the lower bound is given by the sum of si1 and si2 . In the example depicted in Fig. 3, the
increment β has to be subtracted from the both slack variables si1 and si2 , and it has to meet
constraints (6). It means that the theoretical capacity si1 + si2 is reduced by 2β in order to
increase the lower bound by β .

Taking into consideration the theoretical capacity and its possible decrease by modifying
the variables νj we formulate a new DA∗ procedure, which exploits the potential for the
increasing of the lower bound in a more efficient way. Our approach is based on prioritising
the customers, which selection promises a larger increase of the lower bound zD (5) in the
next steps. We will order ascendingly the relevant customers J+ according to cardinalities
of Kj . The benefit of this scheme can be demonstrated on the example depicted in Fig. 3.

Having applied the designed prioritisation rule, the customers are processed in the order
j2, j3 and j1. If processing of the customer j2 enables an increase of the variable νj2 by β ,
then considering the constraints (6), only the slack variable s2 has to be reduced by β . In
this way, the theoretical capacity is reduced by value β and the lower bound, accordingly,

106 Ann Oper Res (2008) 164: 97–109

Fig. 4 New DA∗ procedure

increases by β . As demonstrated, this approach may reduce the sum of slack variables si

less than the original DA procedure does, keeping the same increase of variables νj2 .

4.2 Further rearrangement of the algorithms

Based on the above-mentioned analysis and the preliminary experiments we implemented
and verified the following rearrangements:

• We applied the DA∗ procedure in the both algorithms.
• We embedded the MDA procedure into the BBDual algorithm to improve its efficiency in

the cases, when the ratio of fixed charges fi and costs cij is large.
• We amended the evaluation of subproblems in BBDual algorithm. Both newborn sub-

problems are evaluated simultaneously and the more perspective subproblem is processed
first.

In this way, we formed new versions of the original algorithms BBDual and PDLoc.
To distinguish the original and the new versions of algorithms, the modified algorithms are
denoted as BBDual∗ and PDLoc∗. It should be noted that all the above-described modi-
fications were studied also separately. None of them brought larger improvements in the
computational time as when used altogether.

5 Results of numerical experiments

The effects of suggested rearrangements were extensively examined by numerical exper-
iments performed on three sets of testing problems, described in Sect. 3.1. Similarly to
Sect. 3.2, we evaluated the computational time and its distribution among the particular
procedures together with the number of inspected branches.

Figure 5 gives an evidence of a significant time reduction, when the DA∗ procedure is
used. The total usage was reduced from 72.6% to 9% in the BBDual∗ algorithm as well
as from 11.8% to 1.4% in the PDLoc∗ algorithm. This result suggests that our new DA∗
procedure has a significant influence on the performance of the both algorithms.

The BBDual* algorithm solved Beasley’s testing problems cap41, . . . , cap134 in less
than 60 ms. The problems capa, capb and capc were solved in 0.33, 1.32 and 1.87 seconds,
respectively. The PDLoc* algorithm solved problems cap41, . . . , cap134 in an average time
of 13 ms and the larger problems capa, capb and capc in 0.55, 0.55, and 19.77 seconds,
respectively.

Ann Oper Res (2008) 164: 97–109 107

Fig. 5 The average distribution
of computational time among the
procedures of BBDual∗
algorithm in (a) and PDLoc∗
algorithm in (b) (these results
were obtained for set G700)

Table 4 Average time in seconds and corresponding standard deviation for benchmarks G700

Size of problems BBDual BBDual∗ PDLoc PDLoc∗
t [s] t [s] StdD t [s] t [s] StdD

100 × 2906 5.343 0.28 0.29 1.44 0.77 0.34

200 × 2906 27.16 0.41 0.39 1.80 0.87 0.22

300 × 2906 52.95 0.74 0.64 2.40 1.20 0.90

400 × 2906 127.06 1.01 0.47 2.74 1.46 0.88

500 × 2906 134.17 1.75 1.05 5.29 2.83 0.90

600 × 2906 277.59 2.54 1.78 5.21 3.64 2.88

700 × 2906 277.70 3.90 2.77 6.12 4.63 4.38

800 × 2906 497.26 5.07 4.23 8.56 6.45 6.35

900 × 2906 640.44 7.24 6.31 11.45 8.89 8.83

1000 × 2906 644.88 7.07 5.89 10.60 7.47 8.08

Comparison of these results with the performance of the original algorithms reported in
Sect. 3.2, indicates that the proposed modifications brought considerable time savings.

In Table 4, we report the average computational time and the standard deviation in which
the BBDual* and PDLoc* algorithms solved the testing problems G700. To facilitate the
comparison with the original algorithms, Table 4 and Table 5 list the computational time of
the original algorithms in the columns labelled BBDual and PDLoc.

Presented results show that our modifications led to considerable decrease of the overall
computational time. We should note that the using of MDA procedure in algorithm BBDual
also contributed to this significant reduction. A similar reduction of computational time was
also observed, when the benchmarks K90 were processed (see Table 5).

Table 6 reports on the average number of inspected branches, the minimal and maxi-
mal numbers of inspected branches and the standard deviation for the numbers of inspected
branches. These outputs together with the computational time give evidence of the remark-
able acceleration of the both algorithms.

6 Conclusions

In this paper we described a detailed performance analysis of two exact algorithms BBDual
and PDLoc for solving the UFLP. Our analysis revealed some bottlenecks of these algo-
rithms and helped us to identify the procedures, which contributed the most to the overall

108 Ann Oper Res (2008) 164: 97–109

Table 5 Average time in seconds and corresponding standard deviation for benchmarks K90

Size of problems BBDual BBDual∗ PDLoc PDLoc∗
t [s] t [s] StdD t [s] t [s] StdD

45 × 457 0 0.01 0.02 0.13 0.09 0.02

91 × 457 0.05 0.02 0.03 0.29 0.13 0.04

137 × 457 0.14 0.08 0.13 0.57 0.29 0.31

182 × 457 0.18 0.12 0.12 0.56 0.30 0.22

229 × 457 1.11 0.62 0.90 1.70 0.80 1.27

274 × 457 0.87 0.44 0.37 0.86 0.43 0.27

319 × 457 1.32 1.13 1.41 1.23 0.97 0.76

365 × 457 1.57 8.53 20.75 1.33 0.97 0.47

411 × 457 2.59 14.54 31.02 1.66 1.14 0.98

457 × 457 6.71 7.60 10.80 6.96 4.78 6.92

Table 6 The average number of inspected branches (PV), the minimal number of the inspected branches
(MinPV), the maximal number of inspected branches (MaxPV) and the corresponding standard deviations
(StdPV) (these results were obtained for set G700)

Size of problems BBDual∗ PDLoc∗
PV MinPV MaxPV StdPV PV MinPV MaxPV StdPV

100 × 2906 1.4 1 5 0.9 1 1 1 0

200 × 2906 1.2 1 3 0.6 1 1 1 0

300 × 2906 1.8 1 7 1.5 1.2 1 5 0.7

400 × 2906 1.5 1 7 1.2 1.0 1 3 0.2

500 × 2906 2.7 1 11 2.4 1.5 1 7 1.2

600 × 2906 3.1 1 17 3.4 1.3 1 5 0.8

700 × 2906 4.9 1 35 6.0 1.5 1 11 1.4

800 × 2906 6.2 1 47 8.5 2.1 1 9 2.1

900 × 2906 7.7 1 45 10.1 2.3 1 13 2.5

1000 × 2906 5.6 1 53 7.8 1.6 1 7 1.4

computational time. Moreover, this analysis indicated how the trade off between the inten-
sity of searching process for new lower bound and the number of visited branches influences
the computational time.

We proposed a new DA procedure, which exploits the duality slacks in a more effi-
cient way and we implemented two other minor modifications to the BBDual algorithm. To
study the effects of these modifications we created a large set of benchmarks based on real
transportation networks. Our experiments confirmed the significant improvement of both
algorithms. Applying these modifications, the BBDual∗ algorithm not only outperforms the
original version of the PDLoc algorithm, but it performs even better than improved version
PDLoc∗.

Our study of computation performance of particular procedures indicated the direction
in which we could improve the properties of both algorithms even more. This idea is based
on the classification of solved problems at the beginning of the solving process and in adap-

Ann Oper Res (2008) 164: 97–109 109

tation of the procedures and their parameters to the particular problem class. This issue will
be a subject of our forthcoming investigations.

Acknowledgements The authors are grateful for the financial support by the Ministry of Education of the
Slovak Republic (project VEGA 1/3775/06) and thank two anonymous referees for comments and sugges-
tions that greatly improved the manuscript.

References

Alves, M. L., & Almeida, M. T. (1992). Simulated annealing algorithm for simple plant location problem.
Revista investigación, 12.

Balinski, M. (1965). Integer programming: methods, uses computation. Management Science, 12, 254–313.
Beasley, J. E. (1990). OR-library: distributing test problems by electronic mail. Journal of the Operational

Research Society, 41, 1069–1072.
Bilde, O., & Krarup, J. (1977). Sharp lower bounds and efficient algorithms for the simple plant location

problem. Annals of Discrete Mathematics, 1, 77–97.
Brandeau, M. L., & Chiu, S. S. (1989). An overview of representative problems in location research. Man-

agement Science, 35(6), 645–674.
Conn, A. R., & Cornuéjols, G. (1990). A Projection method for the uncapacitated facility location problem.

Mathematical Programming, 46, 273–298.
Cornuejols, G., Nemhauser, G. L., & Wolsey, L. A. (1990). The uncapacitated facility location problem. In

P. B. Mirchandani, & R. L. Francis (Eds.), Discrete location theory (pp. 119–171). New York: Wiley.
Crainic, T. G. (2003). Long-haul freight transportation. In Handbook of transportation science. New York:

Springer.
Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations Research,

26(6), 992–1009.
Galvão, R. D. (2004). Uncapacitated facility location problems: contributions. Pesquisa Operacional, 24,

7–38.
Ghosh, D. (2003). Neighborhood search heuristics for the uncapacitated facility location problem. European

Journal of Operational Research, 150, 150–162.
Goldengorin, B., Tijssen, G. A., Ghosh, D., & Sierksma, G. (2003). Solving the simple plant location problem

using a data correcting approach. Journal of Global Optimization, 25(4), 377–406.
Goldengorin, B., Ghosh, D., & Sierksma, G. (2004). Branch and peg algorithms for the simple plant location

problem. Computers & OR, 31(2), 241–255.
Hale, T. S., & Moberg, C. R. (2003). Location science research: a review. Annals of Operations Research,

123, 21–35.
Janáček, J. (2004). Service system design in the public and private sectors. In Proceedings of the International

Conference: Mathematical Methods in Economics Virt (pp. 101–108).
Janáček, J., & Kovačiková, J. (1997). Exact solution techniques for large location problems. In Proceedings

of the International Conference: Mathematical Methods in Economics (pp. 80–84). Ostrava.
Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European Journal of

Operational Research, 162, 4–29.
Körkel, M. (1989). On then exact solution of large-scale simple plant location problem. European Journal of

Operational Research, 39(2), 157–173.
Kratica, J., Tosic, D., Filipovic, V., & Ljubic, I. (2001). Solving the simple plant location problem by genetic

algorithm. RAIRO Operations Research, 35, 127–142.
Labbé, M., & Louveaux, F. V. (1997). Location problem. In N. DellAmico, F. Maffioli, & S. Martello (Eds.),

Annotated bibliographies in combinatorial optimization (pp. 264–271). New York: Wiley.
Michel, L., & Hentenryck, P. V. (2004). A simple tabu search for warehouse location. European Journal of

Operational Research, 157(3), 576–591.
Mladenović, N., Brimberg, J., & Hansen, P. (2006). A note on duality gap in the simple plant location prob-

lem. European Journal of Operational Research, 174, 11–22.
Owen, H. O., & Daskin, M. S. (1998). Strategic facility location: a review. European journal of Operational

Research, 111, 423–447.
Resende, M. G. C., & Werneck, R. F. (2006). A hybrid multistart heuristic for the uncapacitated facility

location problem. European Journal of Operational Research, 174, 54–68.
Sultan, K. S., & Fawzan, M. A. (1999). A tabu search approach to the uncapacitated facility location problem.

Annals of Operations Research, 86, 91–103.

	An acceleration of Erlenkotter-Körkel's algorithms for the uncapacitated facility location problem
	Abstract
	Introduction
	Dual based lower bounding in branch and bound methods for UFLP
	Algorithm BBDual
	Algorithm PDLoc

	Experimental evaluation of algorithms BBDual and PDLoc
	Benchmarks
	Preliminary results of numerical experiments

	Rearrangements of the algorithms BBDual and PDLoc
	New scheme of the DA procedure
	Further rearrangement of the algorithms

	Results of numerical experiments
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

