
Ann Oper Res (2009) 167: 307–325
DOI 10.1007/s10479-008-0339-9

Optimal location with equitable loads

Oded Berman · Zvi Drezner · Arie Tamir ·
George O. Wesolowsky

Published online: 8 April 2008
© Springer Science+Business Media, LLC 2008

Abstract The problem considered in this paper is to find p locations for p facilities such
that the weights attracted to each facility will be as close as possible to one another. We
model this problem as minimizing the maximum among all the total weights attracted to
the various facilities. We propose solution procedures for the problem on a network, and for
the special cases of the problem on a tree or on a path. The complexity of the problem is
analyzed, O(n) algorithms and an O(pn3) dynamic programming algorithm are proposed
for the problem on a path respectively for p = 2 and p > 2 facilities. Heuristic algorithms
(two types of a steepest descent approach and tabu search) are proposed for its solution.
Extensive computational results are presented.

Keywords Equitable loads · Facility location · Network

1 Introduction

In this paper we consider the following problem. A network with weights (demands) gener-
ated at its nodes is given. We wish to locate p facilities on the nodes of the network. Each

O. Berman
Joseph L. Rotman School of Management, University of Toronto, 105 St. George Street, Toronto,
ON M5S 3E6, Canada

Z. Drezner (�)
Steven G. Mihaylo College of Business and Economics, California State University-Fullerton,
Fullerton, CA 92834, USA
e-mail: zdrezner@fullerton.edu
url: http://business.fullerton.edu/isds/zdrezner

A. Tamir
Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv
University, Ramat Aviv, Tel Aviv 69978, Israel

G.O. Wesolowsky
Faculty of Business, McMaster University, Hamilton, ON L8S 4M4, Canada

mailto:zdrezner@fullerton.edu
http://business.fullerton.edu/isds/zdrezner

308 Ann Oper Res (2009) 167: 307–325

demand point selects its closest facility (in case of a tie, we either split the demand between
the tying facilities, or apply a selection rule which assigns the whole demand to one facil-
ity). Our objective is to have “equitable” load at the facilities. We formulate the problem
as minimizing the maximum weight assigned to each facility. Other objectives, such as the
variance or the range of total weights assigned to the facilities, can also be used as the objec-
tive function of such a model. Note that the average load of the facilities is constant because
the total load is fixed. Our objective can be viewed as minimizing the extra load above the
average. If, for example, the maximum load is equal to the average load, then all loads must
be equal to the average load and both the range of loads and the variance of loads is zero,
thus minimal. The problem of locating p facilities on the unit square so as to minimize the
maximal demand faced by each facility subject to closest assignments and coverage con-
straints is discussed in Baron et al. (2007) and Suzuki and Drezner (2008). The problem in
the Euclidean plane was investigated in Drezner and Drezner (2006).

This problem is closely related to the capacitated p-median (van Roy 1986) or p-center
problems (Mirchandani and Francis 1990; Drezner 1995). Each facility has a given load ca-
pacity (usually all facilities are identical thus having the same capacity). Capacitated prob-
lems seek the location of p facilities that minimize the objective function subject to the
constraints that the loads at each facility do not exceed their capacities. In our problem there
is no objective function of a p-median or p-center type. Our objective is to find the smallest
possible capacity that will have a feasible solution to the capacitated p-median or p-center
problem. In fact, the objective function of the underlying problem is irrelevant to our model.
For example, if one uses the capacitated p-median problem formulation, then the objective
function should be “0”, but we need to find the smallest capacity that yields a feasible solu-
tion to such a problem. Therefore, the capacity is a variable, and our objective function is to
minimize the capacity.

The problem is also related to the voting districting problem (Garfinkel and Nemhauser
1970; Hess et al. 1965; Meholtra et al. 1998). Districts need to be defined such that the num-
ber of voters in each district will be about the same for all districts. In the voting districting
problem the districts need to “somehow” be connected and forming simple shapes. In our
problem the “center” of each district is selected and the distribution of voters to a district
is determined by their proximity to the selected center. Our solution (in Euclidean space)
will guarantee convex, connected, well-shaped regions determined by the Voronoi diagram
of the facilities.

There are many applications for this problem. The construction of pre-fabricated facil-
ities such as health centers in an underdeveloped country, where there would be standard
staff and equipment. A lowest possible capacity for such facilities would ensure that all
facilities could cope with the demand. Carving market territories to be assigned to mar-
keting representatives (Kalcsics et al. 2002). The objective is to assign to each territory
equitable market potential. The objective of minimizing the maximum market potential
among all territories serves this objective. Another example is the problem of designing
machines with similar capacities in a production facility. The throughput of the system de-
pends on the machine with the maximum load. Therefore, the objective is to minimize the
maximum load among the machines. Designing p identical M/M/1 servers with a com-
mon given service rate for each of them (Berman and Larson 1985; Berman et al. 1987;
Wang et al. 2002), such as ATMs, towing services, etc. This is modeled as the stochastic
p-median problem. Note that the objective of minimizing the maximum of the waiting times
at the facilities is equivalent to minimizing the maximum arrival rate at the facilities (which
is proportional to the number of customers getting service at the facility) when service times
at each facility are the same. Elaboration on this problem is detailed in Baron et al. (2008)
and Berman and Drezner (2007).

Ann Oper Res (2009) 167: 307–325 309

In the next section we present and formulate two versions of the problem. The versions
differ in the case of demand points that are equally close to more than one facility. In one
version we do not allow splitting of nodes in the case of a tie whereas in the second version
we allow splitting. In Sect. 3 we analyze the complexity of the problem and propose O(n)

algorithms and an O(pn3) dynamic programming algorithm for the solution of the problem
on a path respectively for p = 2 and p > 2 facilities. We also present algorithms to find
the optimal solution of the problem for two facilities on a tree. In Sect. 4 we present meta-
heuristics for a general number of facilities, assuming that demand nodes can be split evenly
between the facilities that are equally close to them.

2 Problem definition

Let G = (V ,E) be an undirected, connected graph with node set V = {v1, . . . , vn} and edge
set E. Each edge (link) has a positive length, and each node vi ∈ V is associated with a
nonnegative demand weight wi . For any pair of nodes, vi, vj , let dij = d(vi, vj) denote the
length of a shortest path in G connecting vi and vj . For any node vi and V ′ ⊆ V , define
d(vi,V

′) = d(V ′, vi) = minvj ∈V ′ {d(vj , vi)}.
Let S ⊆ V be a subset of p nodes. For each node vi let Si = {vj ∈ S : d(vj , vi) =

d(vi, S)}. A feasible S-assignment π is an assignment where each node vi is assigned to
some node in Si . If vi is assigned to vj ∈ Si , we have π(i) = j . The total load (weight)
assigned to vj is defined by

Lπ
S (j) =

∑

i:π(i)=j

wi.

The maximum load of π is then defined by

Lπ
S = max

vj ∈S
{Lπ

S (j)}.

A feasible S-assignment π∗ is called an optimal S-assignment if it has the smallest max-
imum load among all feasible S-assignments. The value Lπ∗

S is called the maximum load of
S, and will be denoted by L∗

S .
The discrete equitable location problem, P1, is to find S ⊆ V , |S| = p, minimizing the

maximum load L∗
S .

In the continuous version of the model, the demand wi of a node vi can be split among
the nodes in Si . Any such (continuous) distribution δ of the demands {w1, . . . ,wn} is called
a feasible S-distribution. We let δi

j denote the part of the demand wi allocated to node vj .
δj will denote the total demand allocated to node vj .

The maximum load of δ is then defined by

Lδ
S = max

vj ∈S
{δj }.

A feasible S-distribution δ∗ is called an optimal S-distribution if it has the smallest max-
imum load among all feasible S-distributions. The value Lδ∗

S is called the maximum load
of S, and will be denoted by L∗

S .
The continuous equitable location problem, P2, is to find S ⊆ V , |S| = p, minimizing

the maximum load L∗
S .

The above problems can be formulated as integer programs. Consider first the discrete
model. Let us define two sets of binary decision variables xj and yij as follows:

xj = 1 if there is a facility located at node vj , and 0 otherwise,
yij = 1 if node vi is assigned to facility located at node vj , and 0 otherwise.

310 Ann Oper Res (2009) 167: 307–325

The problem denoted by (P1) is:

(P1) min{z}
s.t.

n∑

i=1

yijwi ≤ z j = 1, . . . , n,
(1)

n∑

j=1

xj = p, (2)

yij ≤ xj i, j,= 1, . . . , n, (3)

n∑

j=1

yij = 1 i = 1, . . . , n, (4)

n∑

k=1

yikdik + (F − dij)xj ≤ F i, j = 1, . . . , n, (5)

xj , yij = 0,1 i, j = 1, . . . , n, (6)

where F is a very large number (F ≥ maxi,j {dij}).
The formulation of the continuous problem, denoted by (P2) is identical to the above

except for constraints (6) where for (P2), yij ≥ 0.
The objective function and constraints (1) ensure the minimax criterion. Constraint (2)

limits the number of facilities to p. Constraints (3) ensure that node vj cannot serve node vi

unless there is a facility located at node vj . Constraints (4) state that each node is assigned
to one facility. We prove that constraints (5) guarantee (for both P1 and P2) that each node
is assigned to a closest facility.

Let J = {j |xj = 1}. For j /∈ J (5) is always true because xj = 0. By (3) yij = 0 for j /∈ J .
Therefore, the sum on the left hand side of (5) can be written as

∑
j∈J yikdik and for j ∈ J

(5) can be written as
∑

k∈J

yikdik ≤ dij (7)

For P1: if yik = 1 for dik > mint {dit}, constraint (7) will be violated for dij = mint {dit}.
Therefore, yik can be equal to 1 only for dik being the minimum distance. The objective
function (1) takes care of ties because in case of a tie, it is preferred to assign the demand to
a facility with a lower load.

For P2: By (4),
∑

k∈J yikdik ≥ mint {dit}. If there exist yik > 0 such that dik > mint {dit},
then

∑
k∈J yikdik > mint {dit} and constraint (7) will be violated for dij = mint {dit}. There-

fore, yik > 0 only for dik being the minimum distance.

2.1 Complexity analysis

2.1.1 Complexity results for problem P1

If all the distances between pairs of nodes are distinct, then for each subset S of p nodes
there is only one feasible assignment. Therefore, by considering the O(np/p!) subsets of p

nodes, problem P1 can be solved by complete enumeration in O(np+1/(p − 1)!) time on a
general network. In particular, in this case P1 is polynomially solvable for any fixed value
of p.

Ann Oper Res (2009) 167: 307–325 311

If the distances between pairs of nodes are not distinct, for each subset S we need to
apply some algorithm to compute its maximum load. The latter problem is a special case
of the minimum makespan scheduling problem of n jobs on p unrelated parallel machines
(Horowitz and Sahni 1976). Specifically, each demand point is identified as a job, and each
facility in S is identified as a machine. The processing time of job i on machine j is wi for
j ∈ J , and ∞ otherwise. This special scheduling model is called the restricted assignment
model (Azar et al. 2004).

Lenstra et al. (1990) gave a 2-approximation algorithm for this problem even when p is
variable. A stronger result which produces a feasible solution which is at most 2 times the
optimal solution for all lq norms (q ≥ 1) simultaneously, is presented in Azar et al. (2004).
(In the lq -norm model, the goal is to minimize ((δ1)

q + · · · + (δp)q)1/q , the lq norm of the
vector (δ1, . . . , δp) whose components are the loads assigned to the p-facilities. In our case
q = ∞.) Azar et al. also presented an FPTAS for the case where p is fixed. They produced
an ε-approximation in O(pn(pn/ε)p) time.

An exact pseudopolynomial algorithm with O(min[nW,pn]) complexity, (W =∑n

i=1 wi), was presented in Horowitz and Sahni (1976). (For this algorithm we assume that
wi is integer for i = 1, . . . , n.) Thus, by considering the O(np/p!) subsets of p nodes, prob-
lem P1 can be solved by complete enumeration in O(np+1W/(p − 1)!) time on a general
network.

We also note that unlike the nondegenerate case of distinct distances, in this case prob-
lem P1 is (weakly) NP-hard even when p = 2, and G is a star tree.

Consider a star tree with one center node v0 and n leaf nodes {v1, . . . , vn}. Each leaf node
is connected to v0 with an edge of unit length. Set w0 = 0. It is easy to see that when p = 2,
determining whether the optimal solution value of P1 is bounded by W/2 = ∑n

i=1 wi/2, is
equivalent to the partition problem (Garey and Johnson 1979).

We also observe that when p is variable (i.e., part of the input), problem P1 is strongly
NP-hard even for a star tree. The reduction is from the 3-partition problem, where n = 3p

(Garey and Johnson 1979). In the 3-partition problem we are given a set A of 3p elements,
a positive integer bound B , and a positive integer weight w(a) for each a ∈ A such that
B/4 < w(a) < B/2, and such that

∑
a∈A w(a) = pB . The question is whether A can be

partitioned into p disjoint sets {A1, . . . ,Ap} such that for i = 1, . . . , p,
∑

a∈Ai
w(a) = B .

(Note that each Ai must therefore contain exactly 3 elements of A.)
We reduce the 3-partition problem to a star tree as follows. The star tree has 3p leaf

nodes, corresponding to the elements in A. The weight of a leaf is the weight of the respec-
tive element of A. The weight of the center node of the star is set to 0, and the length of each
one of the 3p edges connecting the leaf nodes to the center is one unit. Again, as above, it
is easy to see that problem P1, defined on the star tree is equivalent to the given 3-partition
problem.

2.1.2 Complexity results for problem P2

The complexity for a variable p is unknown even on a general graph. However, we will show
that for a general graph, P2 is solvable in O(np+2 log(n/p)/(p − 1)!) time. We show how
to compute an optimal distribution δ∗ for a given subset S of p nodes, and the respective
maximum load in O(pn2 log(n/p)) time.

The optimal maximum load is the solution to the following transportation flow problem.
Suppose without loss of generality that S = {v1, v2, . . . , vp}. We construct the following

directed bipartite graph G′ = (U 1 ∪ S,E′) with U 1 = {u1, . . . , un}. U 1 is identified as the
set of n sources, where the supply at ui is wi . S is the set of sinks. There is a directed edge

312 Ann Oper Res (2009) 167: 307–325

connecting ui with vj in E′ if and only if the node vj is in the set consisting of all the nodes
of S in G that are closest to vi ∈ V .

For each edge (ui, vj) ∈ E′, let δi
j denote the flow on the edge. Let δj denote the total

flow into vj , and let δi denote the outflow from ui .
The flow problem is to find a flow vector δ, minimizing λ = max{δ1, . . . , δp}, subject

to the constraints δi = wi , for i = 1, . . . , n. The optimal value L∗
S is clearly the smallest

value of λ for which the above transportation flow problem with a capacity bound of λ at
each sink has a feasible solution. We use the algorithm in Gallo et al. (1989) to solve this
problem. First, we augment the above directed bipartite graph G′ with a super source, say
u0, and connect it with a directed edge to each source ui . The capacity of the augmented
edge (u0, ui) will be set to wi . Similarly, we augment a super sink, say v0, and connect each
sink vj to v0 with a directed edge of capacity λ. (The capacities of all other edges are equal
to ∞.) The augmented graph is denoted by G′(λ). Let F(λ) be the maximum flow between
u0 and v0 in G′(λ). It was shown in Gallo et al. (1989) that the function F(λ) is monotone,
concave and piecewise linear with at most n breakpoints. Moreover, since G′(λ) has O(n)

nodes and O(pn) edges, a complete description of the list of the breakpoints can be obtained
in O(pn2 log(n/p)) time. We note that L∗

S is the smallest value of λ solving the equation
F(λ) = W . Hence, L∗

S is the largest breakpoint of the function F(λ), and it can be computed
in O(pn2 log(n/p))) time. Thus, we conclude that by complete enumeration problem (P2)

can be solved in O(np+2 log(n/p)/(p − 1)!) time.

3 Problems P1 and P2 on a path and on a tree

In this section we consider the special case where p = 2 and the underlying network is either
a tree or a path. We need the following definitions and properties.

Given a tree network T = (V ,E), a node vM is a (weighted) median if
∑n

j=1 wjd(vM, vj)

≤ ∑n

j=1 wjd(vk, vj), for any k = 1, . . . , n. We let V M ⊆ V denote the set of all medians
of T . It is well known that V M induces a subtree of T , and it can be obtained in O(n) time
(Goldman 1971; Kariv and Hakimi 1979). Moreover, a node vk is a median if and only if it
is a (weighted) centroid, i.e., the total weight of any connected component obtained by the
removal of vk , is at most W/2.

3.1 Problems P1 and P2 on a path for p = 2

Assume that the path is defined by its edge set E = {(v1, v2), . . . , (vn−1, vn)}. With this
notation v1 and vn are the two leaves of the path, and for i = 1, . . . , n − 1, vi is adjacent
to vi+1.

A node vj on a path is a median if
∑j

k=1 wk ≥ W/2, and
∑n

k=j wk ≥ W/2. V M , the set
of all medians of P is a subpath. If V M contains more than one node its two endpoints, say
nodes vs and vt have positive weights. Moreover,

∑s

k=1 wk = ∑t

k=1 wk = W/2. Assuming
that s < t , the latter equation implies that wk = 0 for all s < k < t . We note that the me-
dian set can be obtained in O(n) time by solving the 1-median problem using Goldman’s
algorithm (1971).

The optimal values of both problems P1 and P2 on a path for p = 2 are clearly bounded
below by W/2. Therefore, when the median set contains more than one node, an optimal
solution to both problems is attained by setting facilities at nodes vs and vt . The optimal
solution value is then W/2.

Ann Oper Res (2009) 167: 307–325 313

Fig. 1 A 10-nodes path

Next suppose that the unique median is node vM . By definition we have wM > 0,∑M

k=1 wk ≥ W/2,
∑n

k=M wk ≥ W/2,
∑M−1

k=1 wk < W/2 and
∑n

k=M+1 wk < W/2.
Due to symmetry, suppose without loss of generality that

∑M

k=1 wk ≤ ∑n

k=M wk .
We claim that an optimal solution to P1 is attained by setting facilities at nodes vM

and vM+1. The objective function value of this solution is max(
∑M

k=1 wk,
∑n

k=M+1 wk) =∑M

k=1 wk .
To prove the claim, note that for any pair of facilities vs and vt , with s < t , there

is a node vq , such that s ≤ q ≤ t , and the respective objective function value is given
by max(

∑q

k=1 wk,
∑n

k=q+1 wk). But, for any q , we have either {1, . . . ,M} ⊆ {1, . . . , q} or
{M, . . . , n} ⊆ {q + 1, . . . , n}. Hence,

max

(q∑

k=1

wk,

n∑

k=q+1

wk

)
≥ min

(M∑

k=1

wk,

n∑

k=M

wk

)
=

M∑

k=1

wk.

Since the median node vM can be found in O(n) time using Goldman’s Algorithm (1971),
problem P1 can be solved in O(n) time on a path when p = 2.

Let us consider the 10-node path depicted in Fig. 1 where the numbers next to the nodes
are weights and the number next to the links are their lengths. By applying Goldman’s
algorithm (1971) it is easy to verify that node 5 is the unique median. Since

∑5
k=1 wk =

0.6 >
∑10

k=5 = 0.55, the optimal solution is to locate the two facilities at nodes 4 and 5 with
an optimal objective function value of 0.55.

Next consider problem P2. Suppose first that there are no pair of nodes va and vb ,
such that a < M < b and d(va, vM) = d(vM, vb). In this case the demand wM will not
be split among two nodes. Moreover, it is easy to see that in this case for any pair of
facilities vs and vt , the respective objective function value is greater than or equal to
min(

∑M

k=1 wk,
∑n

k=M wk) = ∑M

k=1 wk. Again, it follows that in this case an optimal solu-
tion is attained by setting facilities at vM and vM+1.

Suppose now that there is a pair of nodes va and vb , such that a < M < b, and
d(va, vM) = d(vM, vb). It is easy to verify that the following is an optimal solution to
problem P2 with objective value equal to W/2: Set facilities at va and vb . For each
j = 1, . . . ,M − 1,M + 1, . . . , n, arbitrarily assign the demand wj to a closest facility. Split
the demand wM to wa

M ≥ 0 and wb
M ≥ 0, such that wa

M + wb
M = wM , and wa

M + ∑M−1
k=1 wk =

wb
M + ∑n

k=M+1 wk = W/2.

We show that even in this case the effort needed to solve problem P2 is also O(n).
It is sufficient to show that in O(n) time we can check the existence of nodes va and
vb as above. Indeed, in O(n) time we compute the two sorted sequences of distances
{d(v1, vM), d(v2, vM), . . . , d(vM−1, vM)} and {d(vn, vM), d(vn−1, vM), . . . , d(vM+1, vM)}.
Next, in O(n) time we merge the two sequences in nonincreasing order. The existence
of a pair va , vb can then be checked in O(n) time by scanning the merged list. The above is
summarized in the next lemma.

Lemma 1 When p = 2, both problems P1 and P2 defined on a path network can be solved
in O(n) time.

314 Ann Oper Res (2009) 167: 307–325

We note that the lengths of the edges (distances) are irrelevant to finding an optimal
solution to problem P1 when the network is a path and p = 2 (the same is true also when
solving the 1-median problem on a tree).

As an example consider again the path in Fig. 1 with one change: d56 = 1 instead of 0.5.
Since d15 = d95 = 7, we locate the two facilities at nodes 1 and 9 and split the demand from
node 5 by allocating 1/3 of the demand to the facility at node 1 and 2/3 of the demand to the
facility at node 9.

3.2 An algorithm for problem P1 on a path for p ≥ 2

To solve problem P1 when p > 2 we use dynamic programming.

Algorithm 1 For each i = 1, . . . , n, we let P i denote the subpath connecting vi with vn.
Next, for each triplet (i, j, q), with i ≤ j , and q ≤ p, define F(i, j, q) to be the optimal
solution value of problem P1, defined on P i , provided that a total of q facilities are selected
in P i , and the leftmost facility is established at vj . From this definition the optimal solution
value of (P1) is given by min1≤j≤n−p+1 F(1, j,p).

It is then clear that F(i, j,1) = ∑n

k=i wi , for all i, j , with i ≤ j . To express the general
recursive equations we need the following definition.

For any pair of indices i < j , define the index t (i, j) to be the largest index t such that
dit ≤ dtj .

Consider the case where q ≥ 2. We have the following recursive equations.

F(i, j, q) = min
j<k≤n−q+2

[
min

(
A(j, k),max

[t (j,k)∑

m=i

wm,F (t (j, k) + 1, k, q − 1)

])]
,

where

A(j, k) = max

[t (j,k)−1∑

m=i

wm,F (t (j, k), k, q − 1)

]
,

if dj,t (j,k)) = dk,t (j,k)), and A(j, k) = ∞, otherwise.
We note that for any triplet (i, j, q) the effort to compute F(i, j, q), using terms that

have already been computed, is O(n). Therefore, the total effort to solve problem P1 is
O(pn3). (The latter bound dominates the effort needed to compute all the indices t (i, j),
1 ≤ i ≤ j ≤ n.)

Applying the algorithm to the 10-node example of Fig. 1 with p = 3, the optimal solution
is to locate the three facilities at nodes 2, 5, and 7 (or 8) where nodes 1, 2, and 3 are assigned
to the facility at node 2; nodes 4,5, and 6 are assigned to the facility at node 5; and nodes 7,
8, 9, and 10 are assigned to the facility at node 7 or 8. To illustrate the algorithm consider
F(1,2,3) which is the optimal objective function for three facilities given that the leftmost
node is 2:

F(1,2,3) = min
2<k≤9

{
min

(
A(2, k),max

(t (2,k)∑

m=1

wm,F(t (2, k) + 1, k,2)

))}
.

It can be verified that

F(1,2,3) = min

(
A(2,5),max

(t (2,5)∑

m=1

wm,F(t (2,5) + 1,5,2)

))
.

Ann Oper Res (2009) 167: 307–325 315

Since t (2,5) = 3, node 3 is the rightmost node to node 2 that can be assigned to node 2,

F(1,2,3) = min

(
A(2,5),max

(3∑

m=1

wm,F(4,5,2)

))

and A(2,5) = max{∑2
m=1 wm,F(3,5,2)}. A(2,5) represents the optimal solution taking

into account the possibility for a tie in node 3 and that only node 2 and the rest of the
nodes left to node 2 (node 1) are assigned to the facility at node 2 and the rest of the nodes
are assigned optimally to two facilities the leftmost of them is at node 5. It is easy to ver-
ify that A(2,5) = max{0.15,0.5} = 0.5 where the other facility is located at node 6. In
F(1,2,3) we take into account that node 3 is assigned to the facility at node 2. It can be
verified that F(4,5,2) = 0.35 with the optimal solution of the other facility is node 7. Since
min{A(2,5),max(

∑3
m=1 wm,F(4,5,2))} = min{0.5,max(0.35,0.35)} = 0.35, we obtain

the optimal solution.

We note that in the cases where the number of facilities p is relatively large, i.e., p =
�(logn), there is a more efficient procedure to solve P1. Consider the following algorithm:

Algorithm 2 For each i = 1, . . . , n, Define Wi = ∑i

k=1 wk . Set W0 = 0. We observe that the
optimal solution value to problem P1 on a path is of the form Wj − Wi−1, for some pair of
indices 1 ≤ i ≤ j ≤ n. Hence, the optimal value is an element in the set W ∗ = {Wj − Wi−1 :
1 ≤ i ≤ j ≤ n}, which is of O(n2) cardinality.

Next, for each W ∈ W ∗, let p(W) be the smallest number of facilities needed to ensure
that no facility will serve customers of total weight exceeding W . (A customer has to be
served by a closest facility.) It is clear that if W ′ ≤ W , then p(W ′) ≥ p(W). Therefore,
the optimal value is the smallest value of W ∈ W ∗ such that p(W) ≤ p, and we can apply a
binary search on W ∗ to find the optimal value. Specifically, the optimal value can be obtained
by calculating O(logn) values of p(W). (Note that by applying the search procedures in
Frederickson and Johnson 1984, and the references cited therein, we can search over W ∗
without explicitly generating all its O(n2) elements.)

We next show how to compute p(W) in O(n3) time for a given value of W . This will
lead to an O(n3 logn) algorithm to solve problem P1 on a path.

For a pair (i, j), i ≤ j , let p(i, j,W) denote the smallest number of facilities needed to
serve the customers [vi, . . . , vn], given that the leftmost facility is at vj , and that no facility
serves a total weight exceeding W . Without loss of generality suppose that W ≥ wi , for
i = 1, . . . , n.

As above, for any pair of indices i < j , define the index t (i, j) to be the largest index t

such that d(vi, vt) ≤ d(vt , vj).
We clearly have p(i, n,W) = 1, if Wn −Wi−1 ≤ W and p(i, n,W) = ∞, otherwise. Next,

suppose that i ≤ j < n, and consider the term p(i, j,W). Assume that Wj − Wi−1 ≤ W ,
otherwise p(i, j,W) = ∞. For each k > j , define B(j, k) = 1 + p(t (j, k) + 1, k,W), if
Wt(j,k) −Wi−1 ≤ W , B(j, k) = 1+p(t (j, k), k,W), if d(vt(j,k), vj) = d(vt(j,k), vk), Wt(j,k) −
Wi−1 > W , and Wt(j,k)−1 − Wi−1 ≤ W , and B(j, k) = ∞, otherwise.

We then have the following recursive equations.

p(i, j,W) = min
j<k≤n

B(j, k).

The effort to compute p(i, j,W) is O(n). The total time to compute p(W) =
minj=1,...,n p(1, j,W) is O(n3). Hence, we conclude that the total effort to solve P1 is
O(n3 logn).

316 Ann Oper Res (2009) 167: 307–325

3.3 An algorithm for problem P2 on a path for p ≥ 2

We first identify a set of polynomial cardinality W ∗, containing the optimal solution value to
problem P2 on a path. For this model, in case of ties, wj , the weight of node vj , can be split
between two closest facilities, which are at equal distance from vj . If the optimal solution
value is determined by a subset of customers whose weights are unsplit, then, the optimal
value is given by Wj − Wi−1 for some subsequence of nodes, [vi, . . . , vj], which are served
by the same facility. If this is not the case, the optimal value is attained as follows. For some
integer q ≤ p, the demands of [vi, . . . , vj] are equally split between q facilities selected
from {vi, . . . , vj }. In particular, each one of the facilities will be allocated the optimal value,
which is then equal to (Wj − Wi−1)/q .

Next we determine the possible ways to split a demand wt at optimality. Suppose that
for some i ≤ t ≤ j , the customers vi, . . . , vt−1 are served by the first m facilities selected
in {vi, . . . , vt }, and the demand wt of vt is split between the m-th facility and the (m + 1)st
facility into wt − y and y, respectively. y can then be determined by the equation

Wt − y − Wi−1 = m(Wj − Wi−1)/q.

Thus, for each pair (i, j), i ≤ j ≤ n, and each pair (m,q), m ≤ q ≤ p, y is uniquely de-
termined. Altogether, we can assume without loss of generality that there are only O(p2n2)

known splitting values that y can take on at vt .
The above observations lead to a polynomial discretization of the (continuous) prob-

lem P2. We can now modify the dynamic programming algorithm from the previous sub-
section to solve problem P2.

For each triplet (i, j, q) and real y, with i ≤ j , and q ≤ p, define F(i, j, q, y) to be the
optimal solution value of problem P2, defined on P i = [vi, . . . , vn], provided that a total of
q facilities are selected in P i , the leftmost facility is established at vj , and the demands at
nodes vi, . . . , vn are y,wi+1, . . . ,wn, respectively. From this definition the optimal solution
value of P2 is given by min1≤j≤n−p+1 F(1, j,p,w1).

From the above discussion we can limit the set of values that y can take on in F(i, j, q, y)

to a known subset of cardinality O(p2n2). We can then modify and mimic the recursive
equations of the Algorithm 1 in the previous section. For the sake of brevity we skip the
details. We only note that the overall complexity of this modified algorithm to solve P2 is
O(p5n7).

3.4 Problems P1 and P2 on a tree for p = 2

We have already observed in Sect. 2 that problem P1 is (weakly) NP-hard on a tree even for
p = 2, and problem P2 has a polynomial time algorithm for any fixed value of p. In this
section we refine these results for the case where the network is a tree and p = 2.

Suppose first that the tree network T = (V ,E) has a median set V M containing at least
two nodes. In this case, there are two medians, say vs and vt which are adjacent. Moreover,
from the property that a median node is also a centroid, it follows that each one of the
two subtrees obtained by removing the edge connecting vs and vt has a total weight equal
to W/2 (Kariv and Hakimi 1979). Therefore, both problems, P1 and P2 are optimized by
setting facilities at vs and vt .

Next suppose that the tree network T = (V ,E) has a unique median vM . If we remove
vM from T , it is split into connected subtrees, say {T1, T2, . . . , Tm}, none of them containing
a total demand exceeding W/2. (Note that unlike the case of a path, we may have wM = 0.)
For k = 1, . . . ,m, let W(Tk) = ∑

vj ∈Tk
wj . Assume without loss of generality that W(T1) ≥

W(Tk), k = 2, . . . ,m.

Ann Oper Res (2009) 167: 307–325 317

Lemma 2 Suppose that there is no pair of distinct nodes va and vb such that d(va, vM) =
d(vb, vM). Then an optimal solution to both problems P1 and P2 is obtained by setting
facilities at vM and at the node closest to vM in T1.

Proof Let vk denote the node closest to vM in T1. By the property of vM it follows that
if facilities are set at vM and vk , the objective value for both P1 and P2 is max(W −
W(T1),W(T1)) = W − W(T1). Consider a solution where facilities are established at nodes
vs and vt , such that d(vs, vM) < d(vt , vM). In particular, vt does not coincide with vM and
the demand wM is allocated to vs .

If vt ∈ T1 the demands of all the nodes which are outside T1 are allocated to vs . Therefore,
the objective value of such a solution is greater than or equal to W − W(T1). Suppose that
vt ∈ Tk for some k > 1. Then the demands of all the nodes which are outside Tk are allocated
to vs . Therefore, the objective value of such a solution is greater than or equal to W −W(Tk).
By definition W − W(Tk) ≥ W − W(T1). This completes the proof. �

Lemma 3 Let va and vb be a pair of distinct nodes such that d(va, vM) = d(vb, vM). Then
an optimal solution to problem P2 is obtained by setting facilities at va ans vb . The optimal
objective value is then W/2.

Proof Suppose first that va and vb are both in Tk for some k = 1, . . . ,m. Define Wa(Tk) =∑
vj ∈Tk :d(vj ,va)≤d(vj ,vb) wj , and Wb(Tk) = W(Tk) − Wa(Tk). The total demand of the nodes

outside Tk , W − W(Tk), is greater than or equal to W(Tk). The demand of each node vj

outside Tk can arbitrarily be split between va and vb . Let xj be the part of wj allocated to va .
Any solution to the following continuous knapsack problem,

∑
vj ∈T −Tk

xj = W/2−Wa(Tk),
0 ≤ xj ≤ wj , for all vj ∈ T − Tk , will yield an objective value of W/2 to problem P2.

Next, suppose that va ∈ Tk and vb ∈ Tq for some pair of distinct indices k, q = 1, . . . ,m.
The demands of the nodes in Tk (Tq) are fully allocated to va (vb). Again, as above, the
demand of each node vj outside Tk ∪Tq can arbitrarily be split between va and vb . Let xj be
the part of wj allocated to va . Any solution to the following continuous knapsack problem,∑

vj ∈T −(Tk∪Tq) xj = W/2 − W(Tk), 0 ≤ xj ≤ wj , for all vj ∈ T − (Tk ∪ Tq), will yield an
objective value of W/2 to problem P2. This concludes the proof. �

From the above results we conclude that problem P2 on a tree with p = 2 can be solved
in O(n logn) time by the following algorithm.

Algorithm 3

Step 1: Use the algorithms in Goldman (1971) or Kariv and Hakimi (1979 to compute the
weighted median set, V M ⊆ V .

Step 2: If |V M | > 1, let vs and vt be two adjacent nodes in V M . Set facilities in vs and vt .
Stop.

Step 3: Let V M = {vM}. Compute and sort the set of distances {d(vj , vM) : j = 1, . . . , n}.
By scanning the list of the sorted distances, check whether there is a pair of distinct
nodes va and vb such that d(va, vM) = d(vb, vM).

Step 4: If there is a pair of distinct nodes va and vb such that d(va, vM) = d(vb, vM), set
facilities at va and vb . Otherwise, remove vM , and find the connected component
with the maximum total node weights, say T1. Set facilities at vM and at the node
of T1, adjacent to vM .

318 Ann Oper Res (2009) 167: 307–325

Fig. 2 The 9-node tree

The complexity of the above algorithm is dominated by the O(n logn) effort spent in
Step 3 to sort the set of distances from the median node vM .

To illustrate the procedure we refer to the 9-node tree example depicted in Fig. 2. The
numbers next to the nodes and the links are demand weights and links lengths respectively.
By applying Goldman’s algorithm it is easy to verify that node 4 is the unique median. Since
d34 = d46 = 5, we can locate the two facilities at nodes 3 and 6 and split the demand at node
4 which is equal to 0.15 by allocating 1

3 of the demand (0.05) to the facility at node 3 and
2
3 of the demand (0.15) to the facility at node 6. The optimal value of the objective function
is 0.5.

4 Using metaheuristics

In this section we assume that if there is a tie in the closest distance to a facility, then the
weight of the demand point is evenly divided among the tying facilities.

We propose to apply a descent algorithm, an improved descent algorithm, and a tabu
search for the solution of this problem. Various metaheuristics were successfully applied for
the solution of location problems such the p-median location problem which has a structure
similar to our problem. Among these papers we mention Alp et al. (2003), Chiyoshi and
Galvao (2000), Murray and Church (1996), Rolland et al. (1997), Hansen and Mladenovic
(1997), Mladenovic et al. (2003, 2007).

In the following section a short cut for the calculation of the value of the objective func-
tion is described.

4.1 The short cut

When a facility is moved to another node, we first calculate the weights at each selected
node by adding the portion of the weight assigned to the original node to the remaining
selected nodes (only for nodes that were closest to the original node). Then, the weight of
the newly selected node is calculated by considering all nodes that the new one is closest

Ann Oper Res (2009) 167: 307–325 319

to them, and “moving” the weight from the previous closest node to the new one. Ties in
the shortest distance have to be calculated properly. This approach is especially useful when
all possible moves of facilities have to be evaluated. We need to calculate the effect of de-
selecting the original node only once per all the evaluations the selection of new nodes.
This scheme improved run times by orders of magnitude. We did not examine simulated
annealing (Kirpatrick et al. 1983) because we lose the advantage of the short cut. Every
iteration involves just one facility move and we lose the advantage of checking all possible
moves efficiently.

4.2 A descent algorithm

A straight forward descent algorithm can be constructed based on the principle employed
by Teitz and Bart’s (1968) descent algorithm for the p-median problem.

1. Select p distinct nodes as a starting solution.
2. Go over all pairs of (selected node, non selected node) in random order and evaluate the

change in the value of the objective function by moving a facility from the selected node
to the non-selected node.

3. If an improving move is found, move the facility to the non-selected node which now
becomes a selected node and go to Step 2.

4. The algorithm terminates when no facility move improves the value of the objective
function.

4.3 An improved descent

The above descent algorithm is not that effective, because when there are several facili-
ties which are tied for the maximum total weight, it is unlikely to be able to reduce all
their weights by one move. We therefore suggest to establish ranking between two solu-
tions which have the same maximum total weight. One possible ranking is the count of
how many facilities tie for the maximum total weight. A lower number of tying facilities
is better because it increases the chance that an additional move will improve the value of
the objective function. We opted to have as a tie breaker, the variance of the total weights
among the facilities. This idea is similar to the one suggested in Dear and Drezner (2000).
Since the mean of the total weight is the same for any selection of nodes, the ranking of the
variance is identical to the ranking of the sum of squares. The sum of squares of the total
weights SS and the mean of the total weight (a constant W) are calculated. SS/p − W 2 is
the variance of the vector of the total weights. We add to the value of the objective func-
tion 10−6 × (SS − pW 2), and apply the same descent algorithm. Such an improved descent
algorithm may perform moves that do not improve the value of the objective function, but
improve the ranking, possibly resulting in better solutions. Since the number of iterations
increases, the required run time for the improved descent is increased. See the computational
results section.

4.4 A tabu search

We propose to extend the improved descent by a tabu search approach (Glover 1986; Glover
and Laguna 1997). The tabu search proceeds from the terminal solution of the improved
descent algorithm, by allowing upward moves in the hope that following several upward
moves downward moves will be possible leading to a solution at a better local minimum.
The tabu search can be visualized by the following description. A landscape has a lot of

320 Ann Oper Res (2009) 167: 307–325

craters representing local minima. The search (for example, the terminal solution of a decent
algorithm) is at the bottom of one crater when a local minimum is encountered. In order to
move the search to a deeper crater we “must” go uphill, at least initially. The reverse of each
selected move (constituting the tabu list) is disallowed for a given number of iterations (the
tabu tenure T), so that the search will not “slide back” into the same crater. However, once T

iterations have passed, the reverse move is allowed because we assume that we are already
“outside” the crater and there is no need to restrict the search.

In our application of the tabu search, the tabu list consists of all nodes removed from
the selected p nodes during recent iterations so that they cannot be selected again for T

iterations.

4.4.1 The tabu search algorithm

1. Select the result of the improved decent algorithm as a starting solution and as the best
found solution. Empty the tabu list.

2. Select the tabu tenure, T , in the range [tmin, tmax]. Go over all pairs of (selected node,
non-selected node) in random order and evaluate the change in the objective function by
moving the facility from the selected node to the non-selected one.

3. If a move (removing a facility from selected node iout , and assigning a facility to a
presently non-selected node iin) yields a solution better than the best found one, move
the facility, update the best found solution, empty the tabu list, and go to Step 2.

4. If no move yields a solution better than the best found solution, select the move (iout,
iin as described above) which leads to the best value of the objective function (whether
improving or not) as long as node’s iin tenure, if in the tabu list, does not exceed T .

5. Add node iout to the tabu list, and if the length of the tabu list exceeds tmax remove the
most tenured node from the tabu list. Go to Step 2.

6. Repeat Steps 2–5 until the prespecified number of iterations is reached.

We tested the tabu search with many variants of the parameters. The best parameters in
our tests, that are reported in the computational experiments section, were tmin = 0.1 × n,
tmax = 0.2 × n, and 5n iterations.

5 Computational experiments

We experimented with the 40 problems from the OR library suggested by Beasley (1990) for
p-median experimentations. The problems range between 100 and 900 nodes, and p ranges
between 5 and 200 facilities. Programs in FORTRAN were coded and run on a 2.8 GHz
computer. In Table 1 we report the best found results for the descent algorithm, the improved
descent algorithm (both were run for 1000 replications) and the tabu search (was run for 10
replications). The lower bound (LB) is simply n

p
. In Table 2 we report the averages for each

of the algorithms. For each problem and algorithm we report the percentages of: the best
solution found, the average solution found, and the maximum solution found, over the best
known solution reported in Table 1. We also report the total run time in seconds for all
replications.

By examining Tables 1 and 2 we conclude that, in terms of solution quality, the tabu
search is best, the improved descent is second, and the simple decent is third. The best
solution found by the simple descent algorithm was, on the average, 20% over the best
known, while the improved descent was only 0.8%, and the tabu search was only 0.16%
over the best known. However, in terms of the run times they are ranked in reverse order.

Ann Oper Res (2009) 167: 307–325 321

Table 1 Best solutions found

n p LB BK Descent Improved Tabu

100 5 20.000 20.000 20.000 20.000 20.000

100 10 10.000 10.500 11.000 10.500 11.000

100 10 10.000 10.000 10.500 10.500 10.000

100 20 5.000 6.000 6.000 6.000 6.000

100 33 3.030 4.000 5.000 4.000 4.000

200 5 40.000 40.000 40.000 40.000 40.000

200 10 20.000 20.833 20.833 20.833 20.833

200 20 10.000 10.833 12.000 11.000 10.833

200 40 5.000 6.000 8.000 6.000 6.000

200 67 2.985 4.000 6.000 4.000 4.000

300 5 60.000 60.333 60.833 60.500 60.333

300 10 30.000 30.500 30.500 31.000 30.833

300 30 10.000 11.000 12.000 11.000 11.000

300 60 5.000 6.000 9.000 6.000 6.000

300 100 3.000 4.000 6.000 4.000 4.000

400 5 80.000 80.333 80.500 80.833 80.333

400 10 40.000 40.833 41.000 40.833 41.000

400 40 10.000 11.000 13.000 11.333 11.000

400 80 5.000 6.000 9.500 6.000 6.000

400 133 3.008 4.000 6.000 4.000 4.000

500 5 100.000 100.500 101.167 101.167 100.500

500 10 50.000 51.000 51.333 51.333 51.000

500 50 10.000 11.167 13.000 11.500 11.167

500 100 5.000 6.000 9.500 6.000 6.000

500 167 2.994 4.000 6.500 4.000 4.000

600 5 120.000 121.500 121.667 121.500 121.500

600 10 60.000 61.000 61.750 61.583 61.000

600 60 10.000 11.333 13.500 11.500 11.333

600 120 5.000 6.000 10.000 6.000 6.000

600 200 3.000 4.000 7.000 4.000 4.000

700 5 140.000 141.667 142.500 142.000 141.667

700 10 70.000 71.500 71.667 71.917 71.500

700 70 10.000 11.333 13.000 11.500 11.333

700 140 5.000 6.000 10.000 6.250 6.000

800 5 160.000 162.250 163.583 163.417 162.250

800 10 80.000 81.917 82.000 82.000 81.917

800 80 10.000 11.333 14.500 11.533 11.333

900 5 180.000 182.833 184.333 183.833 182.833

900 10 90.000 92.333 92.617 93.083 92.333

900 90 10.000 11.500 14.000 11.833 11.500

322 Ann Oper Res (2009) 167: 307–325

Table 2 Average performance

n p Descent Improved descent Tabu search

Percent over BK Total Percent over BK Total Percent over BK Total

Min. Aver. Max. time Min. Aver. Max. time Min. Aver. Max. time

100 5 0.00 7.56 27.50 2.05 0.00 6.52 22.50 2.65 0.00 0.75 2.50 4.47

100 10 4.76 22.93 71.43 3.52 0.00 12.31 23.81 6.73 4.76 8.10 14.29 7.60

100 10 5.00 23.93 60.00 3.32 5.00 12.82 30.00 6.25 0.00 4.83 10.00 8.04

100 20 0.00 46.30 116.67 3.94 0.00 1.47 16.67 12.83 0.00 0.00 0.00 12.94

100 33 25.00 85.03 175.00 4.83 0.00 6.75 50.00 16.15 0.00 5.00 25.00 17.67

200 5 0.00 4.80 17.50 9.55 0.00 4.53 14.58 11.07 0.00 0.88 1.25 39.22

200 10 0.00 11.75 39.20 20.63 0.00 7.84 24.80 30.67 0.00 1.08 3.20 71.80

200 20 10.77 36.84 112.31 22.11 1.54 8.75 20.00 68.56 0.00 1.38 1.54 124.14

200 40 33.33 78.22 166.67 28.12 0.00 6.08 16.67 127.08 0.00 0.00 0.00 179.64

200 67 50.00 116.48 212.50 51.44 0.00 5.20 50.00 191.87 0.00 3.75 25.00 305.31

300 5 0.83 4.98 15.47 26.06 0.28 5.03 21.55 26.62 0.00 0.66 1.11 123.19

300 10 0.00 7.80 24.59 49.02 1.64 6.83 19.67 62.94 1.09 1.58 1.64 257.89

300 30 9.09 48.79 131.82 68.25 0.00 9.16 22.73 261.13 0.00 1.29 4.55 503.09

300 60 50.00 90.60 166.67 108.25 0.00 6.73 25.00 545.23 0.00 0.00 0.00 1045.33

300 100 50.00 119.18 225.00 194.17 0.00 3.68 62.50 856.99 0.00 1.25 12.50 1663.17

400 5 0.21 4.25 14.94 45.53 0.62 4.32 15.15 46.59 0.00 0.58 0.83 298.16

400 10 0.41 6.19 18.37 97.70 0.00 5.92 17.55 110.73 0.41 0.61 1.22 490.14

400 40 18.18 54.05 122.73 145.80 3.03 10.03 18.18 680.64 0.00 1.85 4.55 1653.02

400 80 58.33 102.90 183.33 324.77 0.00 9.28 25.00 1828.00 0.00 0.83 8.33 4040.35

400 133 50.00 105.48 225.00 485.05 0.00 4.25 37.50 2399.17 0.00 1.25 12.50 5749.32

500 5 0.66 3.74 10.28 73.78 0.66 3.81 16.17 73.94 0.00 0.67 1.66 591.25

500 10 0.65 5.52 21.57 164.43 0.65 5.33 15.69 178.97 0.00 0.51 1.63 1102.74

500 50 16.41 61.93 119.40 278.56 2.98 9.86 20.89 1494.34 0.00 1.93 2.98 4440.04

500 100 58.33 119.55 250.00 710.89 0.00 10.97 33.33 4033.61 0.00 2.22 8.33 9728.91

500 167 62.50 122.43 225.00 1075.36 0.00 3.48 25.00 5534.39 0.00 0.00 0.00 14696.25

600 5 0.14 3.09 13.10 106.15 0.00 3.18 16.94 110.20 0.00 0.21 0.55 976.71

600 10 1.23 6.41 21.04 258.25 0.96 6.18 24.64 281.33 0.00 1.22 1.91 1871.13

600 60 19.12 60.98 120.59 508.53 1.47 8.73 19.12 2823.51 0.00 1.03 1.47 9461.52

600 120 66.67 118.57 225.00 1273.14 0.00 12.17 25.00 7716.53 0.00 6.38 8.33 21810.53

600 200 75.00 132.73 312.50 2186.62 0.00 5.55 25.00 12280.75 0.00 0.00 0.00 36393.22

700 5 0.59 3.03 9.53 145.94 0.24 3.08 11.53 150.07 0.00 0.26 0.53 1482.17

700 10 0.23 4.63 15.15 344.22 0.58 4.55 11.65 362.43 0.00 0.43 0.93 2912.69

700 70 14.71 63.38 142.65 939.49 1.47 8.44 19.12 5442.67 0.00 1.10 1.47 20912.39

700 140 66.67 124.22 225.00 2374.57 4.17 12.20 25.00 14721.06 0.00 5.62 8.33 45469.84

800 5 0.82 3.26 15.00 199.22 0.72 3.44 12.24 198.43 0.00 0.28 0.62 2197.56

800 10 0.10 3.96 10.17 448.28 0.10 3.89 12.82 461.72 0.00 0.27 0.51 4266.83

800 80 27.94 64.38 129.42 1568.81 1.76 9.06 19.12 9251.69 0.00 0.72 1.47 40209.83

900 5 0.82 3.19 13.23 248.36 0.55 3.12 9.73 254.72 0.00 0.45 0.82 2674.08

900 10 0.31 4.28 12.28 565.69 0.81 4.20 12.85 585.71 0.00 0.60 1.26 5970.53

900 90 21.74 65.21 126.09 2429.27 2.90 8.23 17.39 15074.47 0.00 0.00 0.00 64472.25

Average 20.01 48.81 103.59 439.84 0.80 6.67 22.68 2208.06 0.16 1.49 4.32 7705.87

Ann Oper Res (2009) 167: 307–325 323

Run time for the improved descent was about five times longer than that for the simple
descent. The total run time for the tabu search was about 3.5 times longer than that of the
improved descent.

In only three cases the tabu search failed to find the best known solution, while the im-
proved descent failed to find it in over half of the cases (and no case with n ≥ 700). The
descent algorithm found it only five times out of 40 problems. It is interesting that for one
problem (n = 300, p = 10) the descent algorithm was the only one that found the best
known solution. It seems that the most significant improvement is observed between the
descent algorithm and the improved descent. It is not clear whether the extra improvement
observed for the tabu search justifies the extra required computer time.

We also experimented with CPLEX in an attempt to solve the problems optimally. We
were not able to solve even one problem out of forty. The five problems with n = 100 were
terminated after two hours and the solutions at the time the run was stopped were far from
the best known solutions reported in Table 1. They were (27, 23, 19, 11, 8) compared with
(20, 10.5, 10, 6, 4), respectively. The problems with n = 200 were either out of memory or
stopped after two hours with bad solutions. We also attempted problems with n = 300,400
and the first phase was not completed because of “out of memory” error message so we did
not even get an integer feasible solution.

6 Conclusions

We analyzed and solved the problem of locating p facilities such that each facility services
about the same number of customers. The objective used for this equity measure is the mini-
mization of the maximum number of customers serviced among all facilities. Properties and
complexity analysis is presented for the general problem on a network. O(n) algorithms are
proposed for the problem on a path for the case p = 2 and an O(pn3) dynamic program-
ming algorithm is presented for the general problem on a path. Optimal procedures are also
presented for a tree network with p = 2 facilities.

Heuristic algorithms were suggested to solve large problems. We proposed a steepest
descent, an improved descent, and tabu search. While the tabu search provides the best
quality solutions, it takes the longest. The improved descent was second best both in terms
of the quality of the solution and the run time. We recommend to apply the improved descent
which yields pretty good solutions in a reasonable run time.

As future research we propose to design more efficient algorithms for the heuristic solu-
tions of this problem. We also propose to consider other equity measures such as minimizing
the variance or the range of the total weights. Another extension to this model is to consider a
different selection rule by customers rather than the assumption that each customer chooses
the closest facility. It may be more realistic to assume that customers select a facility accord-
ing to the gravity rule (see for example, Drezner and Drezner 2001).

Acknowledgements This research was supported, in part, by the Natural Sciences and Engineering Re-
search Council of Canada. Part of this research was accomplished while the second author was visiting the
Graduate School of Management, University of California, Irvine.

References

Alp, O., Drezner, Z., & Erkut, E. (2003). An efficient genetic algorithm for the p-median problem. Annals of
Operations Research, 122, 21–42.

324 Ann Oper Res (2009) 167: 307–325

Azar, Y., Epstein, L., Richter, Y., & Woeginger, G. (2004). All-norm approximation algorithms. Journal of
Algorithms, 52, 120–133.

Baron, O., Berman, O., Krass, D., & Wang, Q. (2007). The equitable location problem on the plane. European
Journal of Operational Research, 183, 578–590.

Baron, O., Berman, O., & Krass, D. (2008, accepted). Facility location with stochastic demand and constraints
on waiting time. Manufacturing and Service Operations Management.

Beasley, J. E. (1990). OR-library—distributing test problems by electronic mail. Journal of the Operational
Research Society, 41, 1069–1072. Also available at http://mscmga.ms.ic.ac.uk/jeb/orlib/pmedinfo.html.

Berman, O., & Larson, R. C. (1985). Optimal 2-facility network districting in the presence of queuing. Trans-
portation Science, 19, 261–277.

Berman, O., & Drezner, Z. (2007). The multiple server location problem. Journal of the Operational Research
Society, 58, 91–99.

Berman, O., Larson, R. C., & Parkan, C. (1987). The stochastic queue p-median problem. Transportation
Science, 21, 207–216.

Chiyoshi, F., & Galvao, R. D. (2000). A statistical analysis of simulated annealing applied to the p-median
problem. Annals of Operations Research, 96, 61–74.

Dear, R., & Drezner, Z. (2000). Applying combinatorial optimization metaheuristics to the golf scramble
problem. International Transactions of Operations Research, 7, 331–347.

Drezner, Z. (Ed.). (1995). Facility location: a survey of applications and methods. New York: Springer.
Drezner, T., & Drezner, Z. (2001). A note on applying the gravity rule to the airline hub problem. Journal of

Regional Science, 41, 67–73.
Drezner, T., & Drezner, Z. (2006). Multiple facilities location in the plane using the gravity model. Geo-

graphical Analysis, 38, 391–406.
Frederickson, G. N., & Johnson, D. B. (1984). Generalized selection and ranking: sorted matrices. SIAM

Journal on Computing, 13, 14–30.
Gallo, G., Grigoriadis, M., & Tarjan, R. E. (1989). A fast parametric network flow problem. SIAM Journal

on Computing, 18, 30–55.
Garey, M. R., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness.

New York: Freeman.
Garfinkel, R. S., & Nemhauser, G. L. (1970). Optimal political districting by implicit enumeration techniques.

Management Science, 16(8), B-495–B-508.
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers and

Operations Research, 13, 533–549.
Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.
Goldman, A. J. (1971). Optimal center location in simple networks. Transportation Science, 5, 212–221.
Hansen, P., & Mladenovic, N. (1997). Variable neighborhood search for the p-median. Location Science, 5,

207–226.
Hess, S., Weaver, J., Siegfeldt, H., Whelan, J., & Zitlau, P. (1965). Non-partisan political redistricting by

computer. Operations Research, 13, 993–1006.
Horowitz, E., & Sahni, S. (1976). Exact and approximate algorithms for scheduling nonidentical processors.

Journal of the ACM, 23, 317–327.
Kalcsics, J., Melo, T., & Nickel, S. (2002). Planning sales territories—a facility location approach. In ISOLDE

IX Conference, Fredericton, New Brunswick, Canada, June 2002.
Kariv, O., & Hakimi, L. S. (1979). An algorithmic approach to network location problems. Part 2. The

p-medians. SIAM Journal on Applied Mathematics, 37, 539–560.
Kirpatrick, S., Gelat, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220,

671–680.
Lenstra, J. K., Shmoys, D. B., & Tardos, E. (1990). Approximation algorithms for scheduling unrelated

machines. Mathematical Programming, 46, 259–271.
Meholtra, A. A., Johnson, E. L., & Nemhauser, G. L. (1998). An optimization based heuristic for political

districting. Management Science, 44, 1100–1114.
Mirchandani, P. B., & Francis, R. L. (Eds.). (1990). Discrete location theory. New York: Wiley.
Mladenovic, N., Labbe, M., & Hansen, P. (2003). Solving the p-center problem with tabu search and variable

neighborhood search. Networks, 42, 48–64.
Mladenovic, N., Brimberg, J., Hansen, P., & Moreno-Perez, J. A. (2007). The p-median problem: a survey of

metaheuristic approaches. European Journal of Operational Research, 179, 927–939.
Murray, A. T., & Church, R. L. (1996). Applying simulated annealing to location-planning models. Journal

of Heuristics, 2, 31–53.
Rolland, E., Schilling, D. A., & Current, J. R. (1997). An efficient tabu search procedure for the p-median

problem. European Journal of Operational Research, 96, 329–342.

Ann Oper Res (2009) 167: 307–325 325

Suzuki, A., & Drezner, Z. (2008, in press). The minimum equitable radius location problem with continuous
demand. European Journal of Operational Research.

Teitz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex median of a weighted
graph. Operations Research, 16, 955–961.

van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research,
34, 145–163.

Wang, Q., Batta, R., & Rump, C. M. (2002). Algorithms for a facility location problems with stochastic cus-
tomer demand and immobile servers. In O. Berman & D. Krass (Eds.), Annals of operations research:
Vol. 111. Recent developments in the theory and applications of location models part II (pp. 17–34).
Dordrecht: Kluwer Academic.

	Optimal location with equitable loads
	Abstract
	Introduction
	Problem definition
	Complexity analysis
	Complexity results for problem P1
	Complexity results for problem P2

	Problems P1 and P2 on a path and on a tree
	 Problems P1 and P2 on a path for p=2
	An algorithm for problem P1 on a path for p>=2
	An algorithm for problem P2 on a path for p>=2
	Problems P1 and P2 on a tree for p=2

	Using metaheuristics
	The short cut
	A descent algorithm
	An improved descent
	A tabu search
	The tabu search algorithm

	Computational experiments
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

