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Abstract For applications of stochastic fluid models, such as those related to wildfire spread
and containment, one wants a fast method to compute time dependent probabilities. Erlan-
gization is an approximation method that replaces various distributions at a time t by the
corresponding ones at a random time with Erlang distribution having mean t . Here, we de-
velop an efficient version of that algorithm for various first passage time distributions of a
fluid flow, exploiting recent results on fluid flows, probabilistic underpinnings, and some
special structures. Some connections with a familiar Laplace transform inversion algorithm
due to Jagerman are also noted up front.
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1 Introduction

The subject of this paper is the development of an efficient version of the “Erlangization”
procedure for the canonical Markov modulated fluid flow (MMFF) model, called by some
authors as a “fluid queue.” This procedure involves approximating the joint distribution of
the fluid level and the environment (otherwise referred to as “phase”) at time t by the corre-
sponding distribution at an independent, Erlang-distributed horizon with mean t . In addition
to the computation of the distribution at time t , it also applies to the evaluation of a variety
of first passage time distributions. The method appears to have been first used by Asmussen
et al. (2002) to approximate finite-time ruin probabilities in certain insurance risk models. It
has also been used in other contexts like models of fire spread and containment; see Stanford
et al. (2005b).
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An inversion formula, based on a theorem due to Widder, see Hirchman and Widder
(1955),

fn(t) = (−1)n

n! sn+1 dnf̃ (s)

dsn

∣
∣
∣
∣
s=(n+1)/t

providing an approximate inversion for a function f on [0,∞) from its Laplace transform
f̃ has been provided by Jagerman (1978, 1982). Noting that

f̃ (s) =
∫ ∞

0
e−stf (t) dt,

and differentiating inside the integral on the right side repeatedly, we can rewrite the Jager-
man inversion formula as

fn(t) = ( n+1
t

)n+1

�(n + 1)

∫ ∞

0
e− n+1

t uunf (u)du,

from which it is easy to see that this inversion is none other than Erlangization with an order
(n + 1) Erlang distribution. To the best of our knowledge, this fact has not been recognized
in the literature. As an important consequence of this, from Jagerman (1978, 1982) we get
not only that fn(t) → f (t) as n → ∞ pointwise, but also that the convergence is uniform
over compact intervals, and furthermore that fn(·) would inherit many properties of f (·)
such as monotonicity, absolute monotonicity, convexity, and log-convexity. Thus, not only
does Erlangization provide a quick way to compute transient results for the fluid model, but
it is also attractive as an approximation preserving some important properties of the function
approximated. We refer the reader to Jagerman (1978, 1982) for applicable error bounds, an
acceleration scheme, etc., related to this method.

For fluid models, we will show below that the method entails essentially the solution of
one non-linear problem, namely, the determination of the matrix �0 governing the phase
transition in a busy period that ends before the expiry of the first stage of the Erlang
process, and that all other quantities are determined from it through a solution of linear
equations. This is quite unlike the general Laplace inversion methods proposed by Ahn and
Ramaswami (2004, 2005, 2006), or Bean et al. (2005), which require the evaluation of the
busy period transform at a multiple set of complex values of its argument. Note that, in the
insurance context, it has been noted already in the literature (e.g., Asmussen et al. 2002;
Stanford et al. 2005a) that with even very small values of n such as 1 or 2, Erlangization
provides estimates of the required probabilities within 20% of the actual value, with the
error exceeding 10% only rarely. Thus, the method is fast and has reasonable accuracy for
many applications. While noting these nice properties of the method, we must, however,
also note its major disadvantage, namely that its errors have been shown by Jagerman to be
of order O(1/n) and therefore go to zero very slowly with n. This fact has been partially
mollified in Asmussen et al. (2002) and Stanford et al. (2005a) by resorting to a Richardson
extrapolation. Nonetheless, in practice, this method is only useful when not more than a few
decimal places of accuracy are needed in the computed probabilities; one must use more
sophisticated methods as in Ahn and Ramaswami (2005, 2006), or Ramaswami (2006), if
one needs greater levels of accuracy.

Our main contribution here is an extension of the Erlangization idea to fluid models
with arbitrary rates; prior use of this method appears to have been restricted mainly to fluid
models with unit rates of (absolute) change. In addition, we have also provided a recursive
scheme for computing the blocks of a key matrix (the busy period matrix � of the “enlarged
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model” below) and given an interesting probabilistic interpretation of its sub-blocks in terms
of the stages in the Erlangization process. A key contribution here is the identification of the
block structure of � that leads to obvious savings in computational complexity. Our deriva-
tion is also entirely probabilistic and very transparent, unlike the Feynman-Kac approach
presented in Asmussen et al. (2002).

In our analysis we draw on the approach to fluid flows initiated by Ramaswami (1999)
based on the matrix geometric method and level crossing arguments. Building on that work,
da Silva Soares and Latouche (2002) gave an alternate QBD representation besides the one
identified by Ramaswami and provided a probabilistic interpretation. Later, a more elegant
interpretation in terms of stochastic coupling of the fluid model to a queue was obtained
by Ahn and Ramaswami (2003), who also used it to provide a detailed transient analysis
of the fluid model in a rigorous manner (Ahn and Ramaswami 2004). Ahn & Ramaswami
also obtained the transient results in a somewhat easier manner via differential equations
in Ahn and Ramaswami (2006), a paper in which they derived the transient distribution
for an arbitrary initial state. This work will draw on several results from Ramaswami (1999,
2006) as well as Ahn and Ramaswami (2005) without re-deriving those results. These papers
provide some of the background enabling an efficient implementation of Erlangization.

An attractive feature of the matrix-geometric approach is the ability it provides to relate
the MMFF to a Quasi Birth-and-Death (QBD) process and thereby to compute the station-
ary distribution of the fluid level in terms of the familiar G matrix characterizing a busy
period of the QBD. For computing G, powerful algorithms like the Latouche-Ramaswami
algorithm (Latouche and Ramaswami 1993) exist. For general background on QBDs and
the matrix-geometric method, the interested reader is directed to Neuts (1981) and Latouche
and Ramaswami (1999).

2 Markov modulated fluid flows and their busy period

Consider a fluid flow F(·) modulated by a finite state Markov chain J (·). Let the Markov
chain’s infinitesimal generator be Q and fluid rates be given by a vector r. Here, the com-
ponent ri is the instantaneous rate of change of the fluid when the Markov chain is in state
i. We shall assume the state space of the Markov chain to be partitioned into subsets �+
and �− such that for i ∈ �+, we have ri > 0, and for i ∈ �−, we have ri < 0. (The restric-
tion that all ri �= 0 is not germane to the analysis, and the more general case where some
ri = 0 can be handled in a straightforward manner; see the papers of Ahn and Ramaswami
(2003, 2004).)

In the analysis, it is customary to partition various matrices that appear according to the
partitioning of the state space given above; thus, for instance the infinitesimal generator Q

gets partitioned as

Q =
[

Q++ Q+−
Q−+ Q−−

]

. (1)

In the above, the indexing by pairs of symbols + and − denote the appropriate subsets
of rows and columns appearing in the sub-matrix, and that convention shall be adopted
throughout for all partitioned matrices.

For later purposes, we define the matrices C++ and C−− as the diagonal matrices whose
diagonals are respectively the vector of absolute rates |ri | for states in �+ and for states
in �− respectively. We also define the matrix S such that S = (diag(C++,C−−))−1Q with
attending partitions.
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For the fluid model, a fundamental quantity of interest is the transform matrix �(s) of
order |�+| × |�−| and defined for Re(s) ≥ 0. Let τ denote a return time to fluid level 0
by the MMFF and let χ(·) denote an indicator function. Now, the element [�(s)]ij is the
Laplace transform of the random variable τ χ(J (τ) = j) given F(0) = 0, J (0) = i. The
matrix �(s) is called “the busy period transform” as a carry over from queueing theory.
By an abuse of notation, we shall let � = �(0); a similar convention will be adopted with
respect to all transforms of interest.

Our goal in this section is to derive an equation satisfied by �(s) that will play an im-
portant role in what follows. A particular case of that equation for s = 0 in the case when
|ri | = 1 can be found in the literature (see e.g. Asmussen et al. 2002) and has been derived
using a Feynman-Kac type equation. Our derivation is for the general case, is probabilistic,
and hopefully more transparent. The required equation is actually equivalent to an equation
derived in Ahn and Ramaswami (2005) using similar arguments as given below, but went
unrecognized as such. We state our result as a theorem.

Theorem 1 The matrix �(s) satisfies the equation

S++�(s) + S+− + �(s)(S−− − sC−1
−−) + �(s)S−+�(s) − sC−1

++�(s) = 0. (2)

Proof Choose a positive number ξ such that ξ ≥ maxi |S(i, i)|. Define the nonnegative sto-
chastic matrix P = ξ−1S + I , where I is an identity matrix. Consider a Markov renewal
process defined by a discrete time Markov chain with successive states evolving according
to the transition matrix P , whose steps are separated by time intervals which are such that
a transition interval out of state i has an exponential distribution with parameter ξ |ri | inde-
pendent of all else. It has been shown in Theorem 1 of Ahn and Ramaswami (2004) that the
resulting semi Markov process (SMP) is indeed a version of the continuous time Markov
chain with generator Q.

We can now consider the fluid flow as being modulated by the foregoing semi-Markov
process, and the advantage resulting thereby is what has been called in the literature as
“spatial uniformization,” namely that the potential change to the fluid in any interval of
transition of the SMP is i.i.d. as an exponential variable with parameter ξ .

Now, conditioning on the first step of this SMP and the amount of increment x for the
fluid level that results in it, we can write

[�(s)]ij =
∫ ∞

0
ξe−ξxe−s(x/ri )

[
∑

k∈S

[P ]ik[G(s, x)]kj
]

dx (3)

where G(s, x) is the matrix of transforms of first visit to fluid level 0 from fluid level x; in the
above, the term exp(−s(x/ri)) is the conditional transform of the time to the first transition
of the SMP given that in it we have an increment x for the fluid level. In partitioned matrix
form, we can write the above equations as

�(s) =
∫ ∞

0
e−(ξI+sC−1++)x[P++G+−(s, x) + P+−G−−(s, x)]dx. (4)

It is well-known (see e.g. Theorem 3(c) in Ahn and Ramaswami 2005) that

G−−(s, x) = eH(s)x, and G+−(s, x) = �(s)G−−(s, x),
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where H(s) = S−− + S−+�(s) − sC−1
−−. Substituting the above in (4) yields

�(s) =
∫ ∞

0
e−sxC−1++[P++�(s) + P+−]e−(ξI−H(s))x dx. (5)

Post-multiplying both sides of the above by ξI − H(s) and integrating the right side by
parts, one obtains

�(s)[ξI − H(s)] = ξ [P++�(s) + P+−] − sC−1
++�(s). (6)

The asserted equation (2) is immediately obtained by substituting for H(s) and simplifying
the above. �

Corollary 2 The matrix � satisfies the equation

�S−+� + �S−− + S++� + S+− = 0. (7)

3 Erlangization of the busy period

Our starting point is a fluid flow modulated by the finite state, continuous time Markov chain
{ϕt : t ≥ 0} with infinitesimal generator 	 and (nonzero) fluid rates r. As before, we shall
denote the fluid level at time t by Xt but the state of the underlying Markov chain by ϕt .
We shall let 
 denote the state space of this Markov chain, and use a partitioning similar
to that introduced for the general fluid flow with respect to states with positive and negative
rates. Our goal is to determine the first passage time distribution of the fluid level to zero
within an Erlang horizon; more precisely, we determine the probability that level zero has
been reached prior to a random time η which has an Erlang distribution of order L and
rate parameter λ. Here, η is thus the sum of L independent exponential random variables
each with mean 1/λ. When λ = L/t , the computed distributions at η provide an Erlangized
approximation for the distribution at time t . For later use we denote by R++ and R−− the
diagonal matrices formed by the fluid rates for states in 
+ and absolute fluid rates for states
in 
−.

As is well-known (Neuts 1981; Latouche and Ramaswami 1999), the Erlang distributed
time period can be considered to be the distribution of the absorption time in a continuous
time Markov chain which gets absorbed after spending time in a set of L transient phases in
series. The time spent in each transient phase is i.i.d. exp(λ). The infinitesimal rates for the
transient phases are governed by the L × L matrix

H = [diag(−λ), superdiag(λ)],
which is a matrix whose diagonal elements are −λ, principal super-diagonal elements are λ,
and all other elements are zero.

To facilitate the study of the fluid until the expiry of the Erlang horizon, we construct an
absorbing, composite continuous time Markov chain made up of the stages of the Erlang and
the phase of the Markov chain modulating the fluid. Denoting by ek a vector of 1’s of order
k and h = HeL, we can write the infinitesimal generator of this expanded Markov chain as

Q̃ =
[ 0 0 0

h ⊗ ek H ⊕ 	++ IL ⊗ 	+−
h ⊗ em IL ⊗ 	−+ H ⊕ 	−−

]

(8)
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=
[ 0 0 0

h ⊗ ek Q++ Q+−
h ⊗ em Q−+ Q−−

]

, say, (9)

where ⊗ denotes the Kronecker product, ⊕ the Kronecker sum, and k and m are respectively
the number of positive and negative rates ri . A typical transient state of this Markov chain
(p, i) with 1 ≤ p ≤ L, i ∈ 
 denotes that the Markov process defining the Erlang horizon
is in stage p and the phase of the original Markov chain modulating the fluid is in state i.
Entry into the absorbing state 0 of this Markov chain denotes the end of the Erlang horizon,
beyond which we have no interest. Now to view simultaneously the Markov chain defining
the Erlang horizon and the evolution of the fluid up to the end of that horizon, we may
consider a fluid model modulated by Q̃ whose fluid rate in the state (p, i) is ri .

We note that for the purpose of determining the behavior of the fluid up to the Erlang
horizon, it suffices to consider the fluid model defined on the (defective) infinitesimal gen-
erator

Q =
[

Q++ Q+−
Q−+ Q−−

]

. (10)

The states of this (defective) Markov chain are of the form (p, i) with 1 ≤ p ≤ L and i ∈ 
,
and escape from this chain marks the expiry of the Erlang horizon. This Markov chain and
the associated fluid model will henceforth be called the “expanded fluid model.”

Before we proceed further, it is convenient to consider the matrix S associated with Q.
Recall from Sect. 2 that to obtain S, we must re-scale the rates in Q by the absolute values
of fluid rates. Specifically, we have

S((·, i), (·, j)) = 1

|ri | Q((·, i), (·, j)),

and it is fairly easy to verify that we can write the matrix S in a partitioned form similar to
the Q-matrix in (10) with

Sij = (IL ⊗ Rii)
−1Qij , i, j ∈ {+,−},

where the diagonal matrices Rii are the diagonal R-matrices defined by the fluid model
(Xt , ϕt ). In the notation of Sect. 2, for the fluid model under consideration driven by the
defective Markov chain, C++ = IL ⊗ R++ and C−− = IL ⊗ R−−.

We can now prove the following structural result for the matrix � associated with the
expanded fluid model.

Theorem 3 The matrix � associated with the expanded fluid model has the structure

� =

⎡

⎢
⎢
⎢
⎣

�0 �1 �2 . . . �L−1

0 �0 �1 . . . �L−2

0 0 �0 . . . �L−3

. . . . . . . . . . . . . . .

0 0 0 . . . �0

⎤

⎥
⎥
⎥
⎦

. (11)

Furthermore, for 0 ≤ k ≤ L − 1, the block �k in the above form captures the probabilities
of returning to fluid level 0 before expiry of the Erlang horizon and while the Erlang stage
index has increased by k.
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Proof The block upper triangular structure of � arises due to the fact that the stages up to
the absorption epoch in the Erlang process form a nondecreasing sequence. The repeating
block structure of � is a consequence of the fact that up to the absorption epoch, the rates
of fluid change do not depend on the number of elapsed stages of the Erlang process. The
interpretation of the blocks is a direct consequence of what the states mean: the stage (k, j)

means that the Erlang process is in stage k at time t and ϕt = j . �

The next result is a precursor to obtaining a convenient set of recursions (see (14)) in
computing the blocks of � and leads to a full exploitation of the structural features of the
model.

Theorem 4 The matrix �0 is indeed the busy period transform associated with the original
fluid model (Xt , ϕt ) evaluated at s = λ. Furthermore, the matrices �k satisfy the equations

�0(R
−1
−−	−+)�0 + R−1

++(	++ − λIk)�0

+�0R
−1
−−(	−− − λIm) + (R−1

++	+−) = 0; (12)

�lR
−1
−−(	−− − λIm) +

l
∑

j=0

�j(R
−1
−−	−+)�l−j + R−1

++(	++ − λIk)�l

+λR−1
++�l−1 + λ�l−1R

−1
−− = 0; l = 1, . . . ,L − 1. (13)

Proof Clearly �0 contains the probabilities of the fluid process (Xt , ϕt ) visiting fluid level
0 before a single Erlang stage is completed. For the fluid Xt to hit level 0 before such an
epoch, its busy period length should be some t and no Poisson event in the Poisson process
of rate λ defining the Erlang horizon could have occurred till then. Thus �0 is none other
than the transform of the busy period of the process (Xt , ϕt ) evaluated at s = λ.

The equations (12) and (13) satisfied by the sub-blocks of � are obtained by writing out
equation (7) using the structure of � and the matrices S++ etc., appearing in it; we omit the
details. �

Given a matrix A, we define the vector vec(A) as the vector obtained by concatenating
successive columns of A to form a single vector. With this notation, it is well-known (see
Graham 1981) that we can write for a conformable matrix product AXB that

vec(AXB) = (Bt ⊗ A)vec(X),

where Bt denotes the transpose of the matrix B . We can use this to solve the linear equa-
tions (13), and obtain the following recursive solution for �l, l = 1, . . . ,L − 1:

vec{�l} = {[R−1
−−(	−− − λIm + 	−+�0)]t ⊗ Ik

+ Im ⊗ [R−1
++(	++ − λIk) + �0R

−1
−−	−+]}−1

×vec

{

−
[

λ(R−1
++�l−1 + �l−1R

−1
−−) +

l−1
∑

j=1

�jR
−1
−−	−+�l−j

]}

. (14)

This shows that the only nonlinear equation to solve is (12) for �0, but that matrix can be
efficiently computed using the quadratic algorithm for the G-matrix of a QBD (Ramaswami
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1999; Ahn and Ramaswami 2003). These steps constitute an extremely efficient compu-
tation of the matrix � as opposed to computing � directly as done in cited references.
For example, when using an Erlang-L horizon, the upper triangular structure of � is com-
prised of L(L + 1)/2 blocks, but only L of these blocks are actually unique. If one wanted
to solve for � in its entirety, one could apply the quadratically convergent algorithm of Ahn
and Ramaswami (2005), but in this case one would be solving for a matrix of dimension
L×|�+|× |�−|. Using our method, we only need apply the same Ahn & Ramaswami algo-
rithm to solve for the �0 block which is of a much smaller dimension, namely |�+|× |�−|.
Once this �0 block is determined, the remaining L − 1 blocks that are unknown can be
found recursively, each through a single application of (14), starting with �1.

Remark 1 A similar computation can be made of the transform �(s), but for our purposes
it is not needed and hence we have restricted our comments to � = �(0).

The foregoing discussion yields the following result for the busy period distribution of
the fluid model (Xt , ϕt ).

Theorem 5 Assume that X0 = 0 and the initial phase ϕ0 has a distribution given by the vec-
tor α which is a probability distribution on 
+. With λ = L/t , the quantity α

∑L−1
k=0 �k em

gives an Erlang order L approximation to the probability that a return to fluid level 0 occurs
at or before time t .

Proof This follows from the fact that by the interpretation of the matrices �k , the given
expression is the probability that the fluid level returns to 0 before the expiry of an Erlang
horizon with mean t and L transient stages. �

4 Some other first passage times

Ramaswami (2006) has provided a variety of important first passage time distributions in
the canonical fluid model. Naturally, each one of them has a corresponding Erlangized ap-
proximation which is obtained by considering a first passage occurring before an Erlang
horizon with mean t . Not to belabor the point much, we shall demonstrate how the approx-
imation is constructed with respect to the downward passage times. This discussion is kept
brief, and at a fairly intuitive level without unnecessary pedantic detail and notation. Other
passage times are handled in a very similar manner, and we omit the details which are fairly
straightforward. The interested reader is directed to Woolford (2007) where formulas for the
Erlangized approximation to many first passage times are developed. Woolford (2007) also
applies the Erlangization method for MMFFs in models for fire perimeter growth.

First passage to lower levels Since in the fluid model (Xt , ϕt ), the first passage time dis-
tribution from fluid level y + x to fluid level y, x, y > 0, is independent of y due to spatial
homogeneity, it suffices to consider a first passage from x to 0. As noted by Ahn and Ra-
maswami (2005), the transform of the downward passage time from x to 0 is given in matrix
form as eU(s)x where

U(s) = R−1
−−[	−− + 	−+�(s)] (15)

and �(s) is the busy period transform; the special case of the above for the unit rate case
has appeared in several earlier papers: Asmussen (1995), Ramaswami (1999) and da Silva
Soares and Latouche (2002).
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Underlying the formula above is a method of cutting out the return times to various
intermediate levels between x and 0 during a first passage from x to 0 and treating the
evolution of the phase a function of the purged amount of fluid which is made to play the
role of “time” in such a construction; see Ramaswami (1999), Theorem 3.2 for details of
this procedure which is also used in an earlier paper of Asmussen (1995). This construction
leads to the consideration of a Markov reward model (here reward is the transform of elapsed
clock time) whose infinitesimal changes can be described by the matrix U(s) in (15).

The first term in U(s) keeps track of the local increment in clock time when the phase
remains in the downward set of phases 
− while the second term keeps track of the clock
time (forming a return time distributed as a busy period) that needs to be excised while
treating the phase as a function of the fluid level. The appearance of the diagonal matrix
R−1

−− in the above and similar other formulae can be explained by the intuition given in Ahn
and Ramaswami (2006) as arising from a change of measure (Jacobian) that is needed to
translate increments over small time intervals to increments over small fluid levels (in phase i

a small fluid change dx translates to a small time change r−1
i dt ) and is rigorously established

in Ahn and Ramaswami (2004) and Ahn and Ramaswami (2006); see also Sect. 3.5 in Ahn
et al. (2007). Note that in creating this infinitesimal generator we start off by considering the
phase process as a function of fluid levels.

Under Erlangization, we would approximate the downward passage time distribution at
time t by an Erlang horizon with L phases and λ = L/t . Clearly, for the first passage to
occur before the end of the Erlang horizon, all the periods in question, including all the
excised periods in the above construction, should end before the Erlang horizon. Naturally,
we need to keep track of the number of stages of the Erlang process elapsing in excised
periods as well. A little thought will reveal that the matrix

Q−− + Q−+� (16)

indeed describes the evolution of the stages of the Erlang process and the phase process
of the original fluid model after the various return intervals have been excised. This is so
because in these matrices there is an automatic accounting of the stage of the Erlang we
are in as we make every transition, and also immediately after each excised interval. The
Erlangized approximation for the first passage time from x to 0 would be eUx where

U = S−− + S−+�. (17)

Once again the change from the Q-matrices to the S-matrices accounts for the change of
measure that should be effected in moving from the phase process when it is described as a
function of the fluid level in (16), as opposed to our need to describe the phase as a function
of clock time which occurs when we use the matrix in (17). We can now determine the
chance of the fluid reaching level zero prior to the expiry of the horizon.

Theorem 6 Assume that, starting at fluid level u > 0, the system is in an increasing state
with the various relative likelihoods given by initial probability vector α0. The probability
�(u,H) of reaching level 0 prior to the expiry of the horizon is

�(u,H) = (α0,0, . . . ,0)�eUue. (18)

First passage to higher levels First-passage times to higher levels require the matrix K

defined by

K = S++ + �S−+. (19)
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As first shown in Ramaswami (1999), and once again exploiting spatial homogeneity, K

is such that the element [eKx]ij represents the expected number of visits to level u + x in
increasing phase j , starting from increasing phase i, before returning to any initial level
u ≥ 0. (Here, such visits must also occur prior to expiry of the horizon, as must the various
visits we describe below without explicit mention.) Consistent with Ramaswami (2006), we
define the following two matrices: R(x), where [R(x)]ij is the expected number of visits to
level x > 0, in increasing phase j without visiting level 0, starting from level x in decreasing
phase i, and the matrix �(x) = �R(x). We interpret [�(x)]ij as the expected number of
return visits to level x > 0 in increasing phase j , without visiting level 0, starting from level
x in increasing phase i. A transform result in Ramaswami (2006), Lemma 2, enables us to
write R(x) as

R(x) =
∫ x

y=0
eUyS−+eKy dy. (20)

Fairly direct application of Ramaswami (2006), Theorem 1 yields the following theorem
and the consequent corollary:

Theorem 7 Assume that the process starts from level u ≥ 0 in increasing phase i. The
probability [uf++(u, x)]ij of reaching level x > u for the first time in an increasing phase j

prior to reaching the horizon or returning to the initial level is given by the (i, j)th element
of the matrix

uf++(u, x) = eK(x−u)[I + �(x − u)]−1. (21)

Applying the above result to the expanded model, we get the following result.

Corollary 8 Assume that, starting at fluid level u > 0, the system (Xt , ϕt ) is in an increasing
phase with the various relative likelihoods given by initial probability vector α0 on 
+. The
probability of reaching level x > u prior to the Erlang horizon is given by the quantity

(α0,0, . . . ,0) exp{K(x − u)}[I + �(x − u)]−1e. (22)

Remark 2 Badescu et al. (2005) provides an infinite series for R(x). However, an explicit,
finite solution is in fact given in Ramaswami (2006), Lemma 2, by once again vectorizing a
matrix. Applying this solution in our context, we obtain

vec{R(x)} = [KT ⊕ U ]−1vec{exp(Ux)S−+ exp(Kx) − S−+}. (23)

Remark 3 Other similar probabilities can be found via this line of reasoning, such as the
chance of reaching level zero before expiry of the horizon, starting from a decreasing
phase. These require us to exploit results pertaining to rate-reversed fluid flows found in
Ramaswami (2006) and Ahn et al. (2007), so we direct the interested reader to these papers
for the relevant exposition.
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