
Ann Oper Res (2008) 159: 135–159
DOI 10.1007/s10479-007-0283-0

A branch and bound method for the job-shop problem
with sequence-dependent setup times

Christian Artigues · Dominique Feillet

Published online: 1 December 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper deals with the job-shop scheduling problem with sequence-dependent
setup times. We propose a new method to solve the makespan minimization problem to opti-
mality. The method is based on iterative solving via branch and bound decisional versions of
the problem. At each node of the branch and bound tree, constraint propagation algorithms
adapted to setup times are performed for domain filtering and feasibility check. Relaxations
based on the traveling salesman problem with time windows are also solved to perform addi-
tional pruning. The traveling salesman problem is formulated as an elementary shortest path
problem with resource constraints and solved through dynamic programming. This method
allows to close previously unsolved benchmark instances of the literature and also provides
new lower and upper bounds.

Keywords Job-shop scheduling · Sequence-dependent setup times · Branch and bound ·
Constraint propagation · Dynamic programming

1 Introduction

This work deals with the job-shop problem with sequence dependent setup times (SDST-
JSP). The job-shop problem considers the scheduling of a set of jobs on distinct machines.
This problem is widely investigated in the literature and many efficient approaches exist for
its resolution (Blazewicz et al. 1996; Nowicki and Smutnicki 1996; Jain and Meeran 1999;
Vaessens et al. 1996). The SDST-JSP is a variant problem where machines have to be re-
configured between two consecutive operations. We address here the optimal solution of

C. Artigues (�)
Université de Toulouse, LAAS–CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France
e-mail: artigues@laas.fr

D. Feillet
LIA—Université d’Avignon, 339 Chemin Meinajariés, Agroparc, BP 1228, 84911 Avignon Cedex 9,
France
e-mail: Dominique.Feillet@univ-avignon.fr

136 Ann Oper Res (2008) 159: 135–159

the SDST-JSP with a makespan minimization criterion. The method is based on the iter-
ative solving of decisional versions of the problem, via branch and bound. Within branch
and bound trees, constraint propagation algorithms are performed for domain filtering and
feasibility check. Relaxations based on the traveling salesman problem with time window
(TSPTW) are also solved to perform additional pruning. The traveling salesman problem is
formulated as an elementary shortest path with resource constraints (Feillet et al. 2004) and
solved through dynamic programming.

We present the considered problem in Sect. 2 and the traveling salesman problem with
time windows relaxation in Sect. 3. The disjunctive graph representation is recalled in
Sect. 4. A review of the relevant literature is given in Sect. 5. The sketch of the branch and
bound algorithm is provided in Sect. 6 and its components are detailed in the subsequent
sections. The heuristic used to compute feasible solutions is described in Sect. 7. Feasibil-
ity checks and domain filtering algorithms based on constraint propagation are described
in Sect. 8. Section 9 gives the formulation of the TSPTW as an elementary shortest path
problem with resource constraints and presents the dynamic programming algorithm used
to solve it. In Sect. 10, the proposed branching scheme and the associated dominance rule
are described. In Sect. 11, the results of the branch and bound method on the set of instances
proposed by Brucker and Thiele (1996) are discussed. Concluding remarks are drawn in
Sect. 12.

2 The job-shop problem with sequence dependent setup times

The SDST-JSP considers a set of n ≥ 1 jobs J = {Ji}1≤i≤n and a set of m ≥ 1 machines
M = {Mk}1≤k≤m. Each job Ji ∈ J is defined as a set of m operations Ji = {Oij }1≤j≤m.
Each operation Oij has a non zero integer duration pij ∈ N and requires a single machine
mij ∈ M. The operations of a same job all require distinct machines and are subject to
precedence constraints. Operation Oij precedes operation Oi,j+1 for all i = 1, . . . , n and for
all j = 1, . . . ,m − 1. The set of all operations is denoted O = ⋃

1≤i≤n Ji while Ok denotes
the set of operations assigned to machine Mk .

A sequence dependent setup time, denoted sijk , is defined for each couple of distinct jobs
(Ji, Jj) and for each machine Mk . An initial setup time s0ik is defined for each job Ji and for
each machine Mk . It is assumed that the triangular inequality holds: for each machine Mk

and for each triplet of distinct jobs (Ji, Jj , Jx), we have sixk ≤ sijk + sjxk ; for each machine
Mk and for each couple of distinct jobs (Ji, Jj), we have s0jk ≤ s0ik + sijk .

A schedule is a mapping T of operations to time periods where T = (tij)Oij ∈O and
tij ∈ N. In this paper we consider the makespan objective for the SDST-JSP. This partic-
ular problem is denoted J |sij |Cmax in the standard three-field scheduling notation and we
will denote it (P) in the remaining of the paper.

(P) min Cmax (1)

subject to

Cmax ≥ tij + pij ∀Oij ∈ O, (2)

tij + pij ≤ ti,j+1 ∀Ji ∈ J ,∀j ∈ [1,m − 1], (3)

tij + pij + sixk ≤ txy or

txy + pxy + sxik ≤ tij ∀Oij ,Oxy ∈ Ok,Oij �= Oxy, (4)

Ann Oper Res (2008) 159: 135–159 137

tij ≥ s0imij
∀Oij ∈ O. (5)

The objective (1) is the minimization of the makespan Cmax, the maximum completion
time of all jobs (2). Constraints (3) are the job precedence constraints, stating that an opera-
tion Oi,j+1 cannot start before the end of its preceding operation Oij in job Ji . It follows that
the operations of a job form a chain. Constraints (4) are the machine constraints which state
that two distinct operations Oij and Oxy sharing the same machine k cannot be scheduled
simultaneously and that the machine must be set up between two consecutive operations.
Hence either Oij cannot start before the end of Oxy plus the necessary setup time sxik , or
Oxy cannot start before the end of Oij plus the necessary setup time sixk . Constraints (5)
enforce the start time of any operation to occur after the initial setup time on its assigned
machine.

An alternative representation of the setup times lies in defining a set F of f ≥ 1 families
such that each operation Oij ∈ O is associated with a family fij ∈ F . Now setup time sixk

on machine Mk from an operation Oij ∈ Ok of job Ji to an operation Oxy ∈ Ok of job Jx

can be written sfij fxy . This representation can be interesting when the number of families is
significantly smaller than the number of operations. Then, efficient preprocessing techniques
can be carried out (see Sect. 8.1).

The job-shop scheduling problem with sequence dependent setup times is a NP-hard
problem, as an extension of the standard job-shop scheduling problem, denoted J ||Cmax,
where all setup times are equal to zero. In this paper, the optimal solution of (P) is searched
by iteratively solving the decisional version (FP) defined as follows. Let T ≥ 0 be a tenta-
tive upper bound of the makespan. We consider problem FP(T) as the problem of finding
a schedule T such that Cmax ≤ T and constraints (2–5) are satisfied. Let UB denote the
makespan of any feasible schedule. Let LB denote a lower bound of the optimal solution of
(P). Let C∗

max denote the optimal solution of (P). We have:

C∗
max = min

LB≤T ≤UB
{T |FP(T) has a solution}. (6)

3 The traveling salesman problem with time windows relaxation

When m = 1, problem (P) is denoted 1|sij |Cmax and is equivalent to the traveling salesman
problem (TSP) as stated by Conway et al. (1967). Since m = 1 we drop the machine and
operation indices in the notations. We can define a depot represented by node 0 and n cities
represented by nodes 1, . . . , n. Then the distance matrix (lij)0≤i,j≤n is given by

l0i = s0i ∀i ∈ [1, n], (7)

lij = sij ∀i, j ∈ [1, n], i �= j, (8)

li0 = 0 ∀i ∈ [0, n]. (9)

Since the sum of the operation processing times is a constant, problem 1|sij |Cmax and the
above defined TSP are equivalent. It follows that when m > 1, a lower bound LBTSP of the
optimal solution of (P) can be computed as follows by using l∗(TSPOk

), the length of the
optimal tour of the traveling salesman relaxation considering only the operations on Mk .

LBTSP = max
Mk∈M

(

l∗(TSPOk
) +

∑

Oij ∈Ok

pij

)

. (10)

138 Ann Oper Res (2008) 159: 135–159

This relaxation can be strengthened by computing time windows for all operations given
an upper bound UB of the optimal makespan. Let rij denote the earliest start time of opera-
tion Oij . Let dij denote the latest completion time of operation Oij . For a given upper bound
UB we can compute the following valid values for the time windows:

ri1 = s0imi1 ∀Ji ∈ J , (11)

rij = max(s0imij
, ri(j−1) + pi(j−1)) ∀Ji ∈ J ,∀j ∈ [2,m], (12)

dim = UB ∀Ji ∈ J , (13)

dij = di(j+1) − pi(j+1) ∀Ji ∈ J ,∀j ∈ [1,m − 1]. (14)

Any solution of (P) with a makespan not greater than UB must obviously verify rij ≤ tij ≤
dij − pij for each operation Oij ∈ O. In Sect. 8, we will present methods to compute tighter
valid time windows. Let us now consider the relaxation of (P) considering only operations
assigned to machine k. We obtain a makespan minimization one machine problem with time
windows and sequence-dependent setup time denoted 1|ri, di, sij |Cmax, the solution of which
is a lower bound for (P). When setup times are all equal to 0, the problem is already NP-
hard but it can be efficiently solved by the well-known Carlier’s algorithm (Carlier 1982).
Otherwise this problem is a traveling salesman problem with time windows (TSPTW) with
depot 0, cities 1, . . . , n, distance matrix (lij)0≤i,j≤n given by (7–9), service times pi for
1 ≤ i ≤ n and time windows [ri, di − pi]. More precisely the problem is a TSPTW variant
where the objective function is the minimization of total travel times plus total waiting time
(Focacci et al. 2002; Artigues et al. 2004; Balas et al. 2005). Let C∗

max(TSPTWOk
) denote

the optimal solution of the TSPTW relaxation considering only the operations on Mk . We
obtain the lower bound LBTSPTW as follows.

LBTSPTW = max
Mk∈M

(C∗
max(TSPTWOk

)). (15)

Note that this lower bound depends on the upper bound UB and on the way the time windows
are computed.

Let us now consider the decisional version FP(T) tackled in this paper. Since we have a
tentative upper bound T and a feasibility problem, the subproblem reduces to the search fea-
sible solutions for the above-defined TSPTW. Finding a machine k such that the associated
TSPTWOk

is infeasible would indeed mean than value T renders FP(T) infeasible. This
problem (denoted F-TSPTW in what follows) is known to be NP hard (Savelsberg 1985). In
the next section, we will see how comparable relaxations are tackled by the previously pro-
posed exact methods for the SDST-JSP and its variants. In this paper, we propose to solve
the TSPTW relaxation of problem FP(T) exactly by a dynamic programming algorithm
(see Sect. 9), the time windows being sharpened by constraint propagation techniques (see
Sect. 8). We use the solution of the relaxations to prune the search in the case unfeasibility
is proven or to derive a feasible solution to (P) when a feasible TSPTW solution is found.

4 The disjunctive-graph representation

A useful tool for the solution of scheduling problems is the so-called disjunctive graph
initially proposed for the standard job-shop problem (Roy and Sussman 1964). This graph
provides an efficient representation of the decisions, while limiting the solution space. It is
defined as follows.

Ann Oper Res (2008) 159: 135–159 139

Let G = (X,U,E) be the disjunctive graph. The set of vertices X is made up of the
set of operations plus two dummy vertices representing the beginning and the end of the
schedule. Thus, X has n × m + 2 vertices. A set of arcs U and a set of edges E are defined.
Arcs in U represent precedence constraints between operations and are called conjunctive
arcs. They are weighted with the processing time of the origin vertex of the arc. Edges in
E represent disjunctive constraints between operations on a same machine and are called
disjunctive arcs. Actually, disjunctive arcs can be interpreted as the union of two exclusive
arcs with opposite directions.

By definition, a selection is a state of the disjunctive graph where a direction is chosen
for some disjunctive arcs. A selection is said to be complete when every arc has a direction.
A complete selection corresponds to a unique semi-active schedule (in which no operation
can be left-shifted of one time unit) if the resulting graph is acyclic. Once they are directed,
disjunctive arcs are weighted with the sum of the processing time of the origin vertex of the
arc plus the setup time required between the origin and the destination vertices. Minimizing
the makespan then reduces to the search of the longest path in the graph, the makespan
being the length of such a path. Hence, (P) can be defined as the problem of finding a
complete acyclic selection for which the longest path is minimum. This standpoint relies on
the property that it is possible to consider only semi-active scheduling (when disjunctive and
conjunctive constraints are satisfied), to find an optimal solution.

5 Literature review

Problem J |sij |Cmax received only little attention in the literature, albeit being a natural ex-
tension of the job-shop problem with many applications in manufacturing (Allahverdi et al.
1999). In this section, we review the methods previously proposed to solve this problem
and its close variants or extensions that we classify into three categories: priority-rule based
(dispatching) methods, local search methods and exact methods.

5.1 Priority-rule based methods

The earliest proposed methods are based on simulation: each time a machine becomes avail-
able the dispatching rule selects a job already waiting for this machine, i.e. which as no pre-
decessor or whose predecessor is completed before the machine gets available. Wilbrecht
and Prescott (1969) were to our knowledge the first to study under this framework the influ-
ence of setup times on job shop performance. They propose a simple but efficient priority
rule which aims at selecting the job yielding the smallest setup time. Kim and Bobrowski
(1994) extend the preceding work to various performance measures and propose compound
priority rules. Noivo and Ramalhinho-Lourenço (1998) propose also new priority-rules con-
sidering setup times and compare them with classical priority-rules. Ovacik and Uzsoy
(1994a) propose a more sophisticated priority-rule based algorithm for problem J |sij |Lmax

with reentrant jobs (a job may use a machine more than once). Indeed the set of candidate
operations considered when a machine becomes available is no more restricted to the al-
ready pending operations but extended to the operations having their preceding operation
in process. This is justified intuitively because they may require a sufficiently large setup
time to be taken in consideration. Theoretical aspects of the interest of extending this can-
didate set is linked to dominance properties of active schedules (see Sect. 7 and Artigues
et al. 2005b). Ovacik and Uzsoy were to the best of our knowledge the first to use an exact
solution of the TSPTW relaxation as a routine to guide the search. Indeed, among the pro-
posed priority-rules, one amounts to select the first operation in the optimal sequence of the

140 Ann Oper Res (2008) 159: 135–159

one-machine subproblem restricted to the set of candidate operations. This subproblem is
here denoted 1|ri, sij |Lmax and its decisional variant amounts to F-TSPTW. This problem is
possibly solved by a specific branch and bound method (Ovacik and Uzsoy 1994b) which
has reasonable computational times only for less than 10 operations.

As a priority-rule heuristic embedded in their exact method that will be discussed later,
Brucker and Thiele (1996) propose an extension of the Giffler-Thompson algorithm which
defines an active schedule generation scheme in the standard job-shop problem. They pro-
pose a second heuristic based on maximal matchings on bipartite graph. Brucker and Thiele
(1996) also generated a set of 15 SDST-JSP instances which we use in Sect. 11 to evaluate
our method and compare our results with the state-of-the-art exact methods.

Artigues et al. (2005b) propose several new priority-rule based methods, improving the
results obtained by Brucker and Thiele (1996) on the 10 largest BT instances. One of these
methods being used in our exact procedure, we will give more details in Sect. 7 and explain
why it has better dominance properties than all the previously-proposed priority-rule based
methods.

5.2 Local search methods

Among local search methods, Choi and Korkmaz (1997) propose a mixed-integer program-
ming formulation of the problem. They formally identify the problem as a multi-traveling
salesman problem with side constraints (precedence constraints). They propose a heuristic
based upon sequentially identifying a pair of operations that provides a minimum lower
bound on the makespan of the associated two-job/m-machine problem with release times.
They show their heuristic outperform the one proposed by Zhou and Egbelu (1989). Choi
and Choi (2002) propose a local search method based on the iterative application of dispatch-
ing rules for a problem involving alternative operations in conjunction with setup-times.

The other local search methods proposed so-far for the SDST-JSP are generally based
on the disjunctive graph representation. Based on this model, Candido et al. (1998) propose
a genetic algorithm for a job-shop problem involving setup times among multiple practical
characteristics such as multiresource operations, machine calendars and alternative routings.
A simple tabu search heuristic has been tested on the BT instances by Buscaylet and Artigues
(2003). This latter method has been applied by Artigues et al. (2005a) to improve the results
on the 10 largest BT instances of the priority-rule based methods proposed by Artigues et
al. (2005b).

A large number of local search methods are based on the shifting bottleneck heuristic.
This efficient heuristic has been proposed by Adams et al. (1988) for the job shop problems.
It has been successfully extended to tackle practical characteristics of actual job shops. Fo-
cusing only on extension to setup times, several variants of the shifting bottleneck heuris-
tic have been proposed (Ovacik and Uzsoy 1992; Schutten 1995; Sun and Noble 1999;
Mason et al. 2002; Balas et al. 2005). The shifting bottleneck heuristic can be defined as a
large neighborhood search which solves at each iteration exactly or approximately the one-
machine relaxation of the problem. Hence, most of these methods solve in a specific way
the TSPTW relaxation and are therefore of interest for our study. However because of the
complexity of the subproblem and because most of these works describe applications on
large-size industrial problems, the sub-problem is mostly solved by heuristics (Ovacik and
Uzsoy 1992; Schutten 1995; Sun and Noble 1999; Mason et al. 2002). The subproblem con-
sidered by Balas et al. (2005) corresponds to the TSPTW subproblem which provides the
LBTSPTW lower bound described in Sect. 3. To solve this subproblem, the authors trans-
form the TSPTW in a TSP with precedence constraints having a special structure. This spe-
cial structure allows to solve the TSP in linear time by dynamic programming (Balas 1996;

Ann Oper Res (2008) 159: 135–159 141

Balas and Simonetti 2001). However the TSPTW subproblem does not have in general the
required restrictions and the methods is turned into an efficient heuristic. The shifting bot-
tleneck heuristic proposed by Balas et al. (2005) obtains equivalent or better solutions than
the multistart tabu search method of Artigues et al. (2005a) for all the BT instances.

5.3 Exact methods

To our knowledge, the only exact methods that have been developed so far for the SDST-JSP
are the ones of Brucker and Thiele (1996), Focacci et al. (2000) and Artigues et al. (2004).

Brucker and Thiele (1996) propose a branch and bound method that extends the one pro-
posed in Brucker et al. (1994b) for the standard JSP. The problem considered by Brucker
and Thiele (1996) is the general shop problem with sequence-dependent setup time which
includes the SDST-JSP as a special case. The method is based on the disjunctive graph repre-
sentation and a node of the branch and bound tree corresponds to a partial selection. Lower
bounds are computed at each node by applying several polynomially-solvable extensions
of the Jackson’s preemptive schedule relaxation (Carlier and Pinson 1989) to setup times.
Branching is based on the analysis of blocks of operations on the critical path of a feasible
schedule issued from the current node. The method was able to solve to optimality the 5
smallest BT instances and provided lower and upper bounds for the 10 largest instances.

At each node, Brucker and Thiele (1996) apply filtering algorithms to compute the earli-
est start times rij of the operations, so-called heads, as well as the tails qij which are linked
to the latest start times by the relation qij = UB − dij and also to deduce implied prece-
dence constraints that enrich the current selection. These filtering algorithms are based on
the so-called immediate selections and edge-finding techniques that have been shown to
be very efficient to solve the standard JSP (Carlier and Pinson 1989; Brucker et al. 1994a;
Baptiste et al. 2001). These techniques can be defined as constraint propagation algorithms
for the one-machine problem. To extend efficiently these algorithms to the presence of setup
times, Brucker and Thiele propose several lower bound of the minimal setup time necessary
between operations sharing the same machine.

Vilím and Barták (2002) proposed another version of the one-machine constraint prop-
agation algorithms, in the context of a batching and scheduling problem with sequence-
dependent setup times. In Sect. 8.2, we describe the simple version of the filtering algorithm
we have implemented for the branch and bound method proposed in this paper, adapting the
algorithms of Brucker and Thiele (1996), Vilím and Barták (2002) and Nuijten (1994) to the
SDST-JSP.

Focacci et al. (2000) propose a branch-and bound method in a constraint programming
framework for another variant of the SDST-JSP involving alternative resources for the op-
erations. They also consider total setup time minimization in conjunction with makespan
minimization. Their method combines the standard (with no setup) one-machine constraint
propagation algorithms and reduced cost-based domain filtering techniques. The latter is
based on the relaxation of the TSPTW into an assignment problem solvable in polynomial
time. Solving the relaxation provides a lower bound and also a reduced cost matrix. Such
reduced costs give information about the additional increase of the lower bound when the
corresponding variable assignment is performed. Whenever the increase exceeds the upper
bound then the value can be removed from the variable domain. It is worth to note that the
reduced cost-based constraint propagation methods have also been successfully applied to
solve TSPTW instances (Focacci et al. 2002). For the SDST-JSP, Focacci et al. (2000) do
not report results for the makespan minimization only. However, when the objective is to
minimize the makespan and the total setup time in a lexicographic way, they found all the

142 Ann Oper Res (2008) 159: 135–159

optimal makespans of the 5 smallest BT instances. They also report upper bounds for 2 large
instances.

A preliminary version of the branch and bound procedure proposed in this paper was
presented by Artigues et al. (2004). The main idea of the method is to solve exactly the
F-TSPTW relaxation of problem (FP) to prune the search instead of solving the Jackson’s
preemptive schedule relaxation as in (Brucker and Thiele 1996) or the assignment problem
relaxation as in Focacci et al. 2000. (FP) is formulated as a one-machine scheduling problem
and solved by means of the commercial solver (ILOG scheduler). In addition, the TSPTW
solutions found during the search are stored in a dictionary. Each time a TSPTW problem
has to be solved, the dictionary is searched to avoid the subproblem resolution if a feasible
solution is encountered. This method solved all the smallest BT instances to optimality and
closed 2 open instances.

6 The branch and bound method

The branch and bound method we propose is based on the disjunctive graph representation.
It aims at making further experiments in the direction initiated by Artigues et al. (2004).
As in the method of Brucker and Thiele (1996), a node of the branch and bound tree cor-
responds to a partial selection E where E is a set of directed arcs obtained from a partial or
complete orientation of disjunctive edges E. A node is also defined by operation time win-
dows compatible with the current selection. Hence a node ν is denoted by a triple (R,D,E)

with R = (rij)Oij ∈O and D = (dij)Oij ∈O . The branch and bound is given in Algorithm 1. It
takes as input a tentative makespan T and returns a failure or a success and in the latter case
a feasible schedule T . The time windows are initialized according to T and (11–14) (step 1).
The root node with an empty selection is created (step 2). A first constraint propagation al-
gorithm (SHAVING) is applied to check the feasibility of the root node and to strengthen
the time windows and insert arcs in the selection (step 3). The algorithm is described in
Sect. 8.3. If no unfeasibility is detected by SHAVING, the branch and bound algorithm starts
and a node stack is initialized with the root node (step 6). Steps 8–19 are repeated until the
stack is empty or a maximal number of nodes is reached. For each node ν, a second (faster)
constraint propagation algorithm (PROPAGATE) is applied (step 9). This algorithm is de-
tailed in Sect. 8.2. If unfeasibility is not detected, PROPAGATE has possibly tightened the
time windows and the selection of the current node, and a dynamic programming method
SOLVETSPTW (described in Sect. 9) is used to solve the F-TSPTW relaxation (step 10).
If SOLVETSPTW does not detect unfeasibility, a solution (represented by start time T ′) to
the m TSPTW has been found. A heuristic is then applied (step 11). This heuristic, which
searches a solution from the current node ν information and solution T ′ of the TSPTW, is
described in Sect. 7. If solution T found by the heuristic has a makespan not greater than T ,
the problem is feasible and the branch and bound stops. Otherwise, we have to update the
node stack by branching (step 16). The branching procedure is described in Sect. 10.

7 A priority-rule based serial heuristic

The function HEURISTIC returns a feasible schedule T taking as input the current node
ν = (R,D,E) and a TSPTW solution T ′ possibly computed. Note that T ′ satisfies in any
case the machine constraints but possibly violates one or more precedence constraints.

HEURISTIC first check whether setting T = R, T = D − p or T = T ′ yields a fea-
sible schedule. In that case, this solution is returned. Otherwise we apply a priority-rule

Ann Oper Res (2008) 159: 135–159 143

Algorithm 1 BRANCHANDBOUND(T ,T): returns failure or success

1: initialize R0 and D0 with (11–14) and UB = T

2: ν0 ← (R0,D0,∅)

3: if SHAVING(ν0) = failure then
4: Solution Found: unfeasible
5: else
6: BBQ ← {ν0}
7: while BBQ is not empty do
8: ν ← pop(BBQ)
9: if PROPAGATE(ν) �= failure then

10: if SOLVETSPTW(T ′)(ν) �= failure then
11: T ← HEURISTIC(ν,T ′)
12: if Cmax(T) ≤ T then
13: return success
14: else
15: BBQ ← BRANCH(ν,BBQ)

16: end if
17: end if
18: end if
19: end while
20: return failure
21: end if

based heuristic SERIALSGS which returns a feasible schedule taking a priority function

π : O → R.

SERIALSGS is applied 3 times by setting successively π = R, π = D − p, π = T ′ and

the schedule with the lower makespan returned. We explain hereafter the principles and the

interest of SERIALSGS.

None of the other priority-rule based heuristics described in Sect. 5.1 was explicitly de-

signed for having the ability to generate (all) schedules in the classical active, semi-active

and non-delay schedule sets. However, it is well-known that active and semi-active schedules

are dominant for makespan generation. Artigues et al. (2005b) propose several schedule gen-

eration schemes aiming at generating semi-active, active and non-delay schedules and study

the dominance properties of the reachable schedules. This analysis reveals that most of the

priority-rule based heuristics proposed so far generate sets of schedules possibly excluding

all optimal solutions. For instance, the extension of the Giffler and Thompson algorithm

proposed by Brucker and Thiele (1996) does not generate dominant schedules. In this paper

we use the serial schedule generation scheme (SGS) which generates only active schedules

and for which the dominance property holds (Artigues et al. 2005b). This algorithm is a is

an adaptation for the SDST-JSP of the serial SGS widely used for the resource-constrained

project scheduling problem (Kolisch 1996). Algorithm 2 implements the serial schedule

generation scheme with an O(nm2) time complexity.

144 Ann Oper Res (2008) 159: 135–159

Algorithm 2 SERIALSGS(π): returns a feasible schedule T
1: Q ← {Oi1|i = 1, . . . , n}
2: Sk ← ∅, ∀k ∈ M
3: while Q is not empty do
4: select Oi∗j∗ ← arg minOij ∈Q π(Oij) and let k = mi∗j∗
5: t ← s0i∗k

6: for each operations Oxy ∈ Sk do
7: if t + pi∗j∗ + si∗xk ≤ txy then
8: insert Oi∗j∗ before Oxy in Sk

9: break
10: else
11: t ← max(t, txy + pxy + sxi∗k)

12: end if
13: end for
14: if Oi∗j∗ �∈ Sk then
15: append Oi∗j∗ to Sk

16: end if
17: ti∗j∗ ← t

18: Q ← Q \ {Oi∗j∗ }
19: if j ∗ < m then
20: Q ← Q ∪ {Oi∗(j∗+1)}
21: end if
22: end while
23: returnT = (tij)Oij ∈O

8 Feasibility tests and adjustments based on constraint propagation

8.1 Setup preprocessing

The feasibility tests we have implemented make use of extensions to setup times of well-
known one-machine constraint propagation algorithms, such as immediate selections and
edge-finding (Carlier and Pinson 1989; Brucker et al. 1994a; Baptiste et al. 2001). Such ex-
tensions have been proposed by Brucker and Thiele (1996) and Vilím and Barták (2002). Im-
mediate selections aim at detecting new precedence constraints among operations assigned
to the same machine, and consequently enrich the current selection by new conjunctive arcs.
To perform these deductions the constraint propagation algorithms make use of the minimal
duration without idle times of subsets of operations � ⊆ Ok , for each machine Mk ∈ M.
When there are no setup times, the minimal duration of a set � is denoted p� and is trivially
equal to p� = ∑

Oij ∈� pij .
When there are setup times, the minimal duration of � ⊆ Ok , is equal to p� + s� where

s� is the solution of a modified TSP� where the distance from the depot to each node is null.
Hence, given a set �, computing s� is NP-hard.

When the setup times are computed with operations families, operations of a same family
can be gathered together and sequenced consecutively. Hence, the TSP might equivalently be
solved with a single operation of each family f ∈ F� = ⋃

Oij ∈�{fij }. If |F�| is sufficiently
lower than |�| then the computational time of the corresponding TSP may become tractable.
In the following we note equivalently sF�

and s�.

Ann Oper Res (2008) 159: 135–159 145

The filtering algorithm needs more precisely, for each family subset F ′ ⊆ FOk
and for

each family f ∈ F ′, the values denoted sf →F ′ and sF ′→f . These values correspond to the
minimal setup times to schedule a set of operations yielding family set F ′ if f is the family
of the first (last) operation of the set, respectively. Note that we have sF ′ = minf ∈F ′ sf →F ′ =
minf ∈F ′ sF ′→f .

Brucker and Thiele (1996) use several TSP lower bounds to estimate sf →F ′ and sF ′→f

and use also the optimal value obtained by complete enumeration, with an O(|F ′|!) time
complexity.

In this paper we follow the method of Vilím and Barták (2002) who propose to precom-
pute values sf →F ′ and sF ′→f once before starting the search. Each family set F ′ is coded by
a binary representation of the corresponding permutation so that sf →F ′ and sF ′→f are ob-
tainable in O(1) once the precomputation is made. Values sf →F ′ for each subset F ′ ⊆ FOk

and each family f ∈ F ′ can be computed in O(|FOk
|22|FOk

|) by the following recursion:

sf →{f } = 0 ∀Ff ⊆ FOk
, (16)

sf →F ′∪{f } = min
g∈F ′{sfg + sg→F ′ } ∀F ′ ⊆ FOk

,∀f ∈ FOk
\F ′. (17)

Values sF ′→f for each subset F ′ ⊆ FOk
and each family f ∈ F ′ can be computed in a

symmetric fashion.
We also introduce the following notation linked to a set of operations � useful in what

follows.

r� = min
Oij ∈�

rij , (18)

d� = max
Oij ∈�

dij . (19)

8.2 Local constraint propagation

The function PROPAGATE(R,D,E) of our branch and bound procedure aims at computing
adjustments on earliest start times R and on latest completion times D compatible with the
current selection E , returning a failure when unfeasibility is detected.

It calls iteratively functions UPDATEEARLIESTSTART, UPDATELATESTCOMPLETION,
IMMEDIATESELECTION and EDGEFINDING, each performing specific deductions. The se-
quence of calls is repeated until a failure occurs or no more adjustments are performed.
Algorithms UPDATEEARLIESTSTART and UPDATELATESTCOMPLETION are adapted from
Brucker and Thiele (1996). They update rij and dij for all operations Oij ∈ O considering
only the precedence relations given by the job precedence constraints and current selec-
tion E . The earliest start times can be updated with the following rules:

rij ≥ s0imij
∀Oij ∈ O, (20)

rij ≥ ri(j−1) + pi(j−1) ∀Oij ∈ O, j > 1, (21)

rij ≥ r� + p� + sF�∪{fij }→fij
∀Oij ∈ O,∀� ⊆ {Oxy |(Oxy,Oij) ∈ E}. (22)

The latest completion times can be updated with the following symmetric rules:

dij ≤ T , (23)

dij ≤ di(j+1) − pi(j+1) ∀Oij ∈ O, j < m, (24)

146 Ann Oper Res (2008) 159: 135–159

dij ≤ d� − p� − sfij →F�∪{fij } ∀Oij ∈ O,∀� ⊆ {Oxy |(Oxy,Oij) ∈ E}. (25)

Algorithm 3 describes UPDATEEARLIESTSTART. Its time complexity is O(n2m logn).
Brucker and Thiele (1996) prove that the algorithm provides the largest adjustment accord-
ing to rule (22) provided that the triangular inequality is verified for setup times. Note that
the complexity of our algorithm is lower than the one obtained by Brucker and Thiele
(1996) thanks to the setup preprocessing. Since the procedures are applied iteratively the
consistency check performed in step 12 detects any cycle in G(E) = (X,U ∪ E). Algorithm
UPDATELATESTCOMPLETION is symmetric.

Algorithm 3 UPDATEEARLIESTSTART(R,D,E): returns failure or success
1: for Oij ∈ O do
2: rij ← max(rij , s0imij

)

3: if j > 1 then
4: rij ← max(rij , ri(j−1) + pi(j−1))

5: end if
6: � ← {Oxy |(Oxy,Oij) ∈ E}
7: sort operations of � according to increasing earliest start times
8: for Oxy ∈ � do
9: rij ← max(rij ,p� + sF�∪{fij }→fij

)

10: � ← � \ {Oxy}
11: end for
12: if rij + pij > dij then
13: return failure
14: end if
15: end for
16: return success

Algorithm IMMEDIATESELECTION is a simple constraint propagation algorithm for
the disjunctive resource constraints whose objective is to detect new precedence con-
straints between two operations assigned to the same machine. It is based on the rules:
∀Mk ∈ M,∀Oij ,Ox,y ∈ Ok,Oij �= Ox,y :

rij + pij + pxy + sixk > dxy =⇒ (Oxy,Oij) ∈ E, (26)

(Oxy,Oij) ∈ E =⇒ rij ≥ rxy + pxy + sxik and dxy ≤ dij − pij − sxik. (27)

It is implemented trivially in O(n2m). IMMEDIATESELECTION returns a failure whenever
any update on the time window of an operation Oij yields rij + pij > dij .

Last, algorithm EDGEFINDING aims at performing additional immediate selections and
time windows adjustments considering an operation Oij assigned to a machine Mk and a set
� ⊆ Ok \ {Oij }. More precisely it is based on the following so-called primal and dual rules.
The primal rule states that ∀Mk ∈ M, ∀Oij ∈ Ok , ∀� ⊆ Ok \ {Oij }:

r�∪{Oij } + p�∪{Oij } + sF�∪{Oij } > d� =⇒ ∀Oxy ∈ �,(Oxy,Oij) ∈ E . (28)

The dual rule states that ∀Mk ∈ M, ∀Oij ∈ Ok , ∀� ⊆ Ok \ {Oij }
d�∪{Oij } − p�∪{Oij } − sF�∪{Oij } < r� =⇒ ∀Oxy ∈ �,(Oij ,Oxy) ∈ E . (29)

Ann Oper Res (2008) 159: 135–159 147

Roughly both primal and dual rules detect that operation Oij is not insertable inside set �.
The primal rule detects in addition that Oij has to be scheduled after all the operations of
� on machine Mk whereas the dual rule detects that Oij has to be scheduled before all
the operations of �. Rules (22) and (25) can be combined with the primal and dual rules,
respectively, to perform the time windows adjustments brought by the new arcs added in E .

The combination of the primal and dual rule gives the following feasibility check, also
called consistency rule. It generates a failure whenever the following condition holds. ∀Mk ∈
M, ∀� ⊆ Ok

r� + p� + sF�
> d�. (30)

Vilím and Barták (2002) propose a O(|F |n2) algorithm to perform all edge finding de-
ductions and an other O(n logn) algorithm to perform all deductions of the consistency rule.
In this paper we propose an extension of Nuijten’s edge finding algorithm (Nuijten 1994) for
which all consistency checks and adjustments are performed jointly. This extension, which
runs in O(|F |n2), is detailed in Algorithm 4 for the primal part.

We recall the principles of Nuijten’s algorithm and explain the changes we have made
to take account of setup times, in the spirit of the method proposed by Vilím and Barták
(2002).

The main loop enumerate all possible operation families f . The second level loop makes
all the updates relative to all relevant sets � such that d� = dij . The first third-level loop
(steps 6–17), plays two different roles. Through the update of C, it performs the consistency
checks (30). Since setup times verify the triangular inequality, set �(Oxy,Oij) = {Ovw ∈
Ok|d� ≤ dij , r� ≥ rxy} is dominant for rule (30) over any other set �′ such that r�′ = rxy

and r�′ = dij . The set of sets � generated at step 9 includes all sets �(Oxy,Oij). Hence C

provides the largest possible left side value of inequality (30). The second role is to prepare,
through the computation of D, the updates of the earliest start times of family f operations
due to rules (28) and (22). Hence at step 16, cxy is the largest earliest start time update of
an operation Oxy if Oxy has to be scheduled after all previously generated relevant sets �,
such that r� ≥ rxy . Note that this update is only valid here if fxy = f . The second third-level
loop (steps 6–17) makes the adjustments detected by rules (28) and (22). The same relevant
sets � are generated in the reverse order, starting from the last generated one. At step 21,
H corresponds to the largest earliest completion time of the all previously generated sets �

such that r� ≤ rxy provided that a type f operation will be inserted in the set, considering
only the setup time of this operation (the left side of the inequality of rule (28) minus the
operation duration which is here still unknown). Any operation Oxy such that dxy > dij is
candidate for being updated by rule (28). Step 25 performs the test of rule (28) for such an
operation Oxy and current set �, verifying r� ≥ rxy . Note that the current set is stronger
than all the sets that remains to be generated for operation Oxy and rule (28), since the setup
times verify the triangular inequality and P = p� is maximal. Step 26 updates the earliest
start time if the test is positive using value cxy (see definition above). Step 28 performs the
test of rule (28) for operation Oxy and the strongest set previously generated, and verifying
r� ≤ rxy (see computation of H above). Step 29 performs the update of the earliest start time
using value D (see definition above), the largest earliest completion time among all sets �

such that d� = dij , (because no operation of any of these sets can start after Oxy).

8.3 Global constraint propagation

At the root node of the branch and bound tree, we perform a global constraint propagation
algorithm, so-called SHAVING, which can be seen as a one level breadth first search from

148 Ann Oper Res (2008) 159: 135–159

Algorithm 4 PRIMALEDGEFINDING(k,R,D): returns failure or success
1: for f ∈ FOk

do
2: for Oij ∈ Ok according to increasing earliest start times do
3: P ← 0
4: C ← 0
5: � ← ∅
6: for Oxy ∈ Ok according to decreasing earliest start times do
7: if dxy ≤ dij then
8: P ← P + pxy

9: � ← � ∪ {Oxy}
10: C ← max(C, rxy + P + sF�

)

11: D ← max(D, rxy + P + sF�∪{f }→f)

12: if C > dij then
13: return failure
14: end if
15: end if
16: cxy ← D

17: end for
18: H ← 0
19: for Oxy ∈ Ok according to increasing earliest start times do
20: if dxy ≤ dij then
21: H ← max(H, rxy + P + sF�∪{f })
22: P ← P − pxy

23: � ← � \ {Oxy}
24: else if fxy = f then
25: if rxy + P + pxy + sF�∪{f } > dij then
26: rxy ← max(rxy, cxy)

27: end if
28: if H + pxy > dij then
29: rxy ← max(rxy,D)

30: end if
31: end if
32: end for
33: end for
34: end for
35: return success

the root node where the possible start times of all operations inside their time windows are
tried, yielding possibly

∑
Oij ∈O(dij − pij − rij) tries. More precisely for each operation

Oij , a tentative to reduce its time window to [rij , rij] is done and function PROPAGATE is
called. If a failure occurs then rij is set to rij + 1 and the process iterates until a global
failure occurs (the time window becomes empty) or there are no more adjustments. If no
global failure occurs, another operation is considered. The same process is carried out for
the latest start time. At the end of the SHAVING process, either a global failure is detected,
or the time windows are “shaved”. We refer to (Peridy 1996; Martin and Shmoys 1996;
Torres and Lopez 2000; Demassey et al. 2005) for more efficient implementations and other
variants of the shaving technique.

Ann Oper Res (2008) 159: 135–159 149

9 Feasibility tests based on TSPTW solutions

The TSPTW can be defined as a particular elementary shortest path problem with resource
constraints (ESPPRC) (Feillet et al. 2004). The ESPPRC considers a network, a origin node,
a destination node and arcs valuated by a cost cuv and consuming resources. The number of
resources is denoted Q. Traversing an arc (u, v) consumes an amount l

q
uv of each resource q ,

with 1 ≤ q ≤ Q. Values l
q
uv are assumed to satisfy the triangle inequality for each resource.

Each node u of the network is associated with an interval [aq
u, b

q
u] such that the consumption

of a resource q along a path from the origin node to u is constrained to belong to the interval.
More precisely, if the elementary path uses arc (u, v), the consumption Wq

v of resource q

between the origin node and v has to satisfy Wq
v ≥ max(aq

v ,W
q
u + l

q
uv) and Wq

v ≤ bq
v . The

objective is to find an elementary path of minimal cost from the origin to the destination
node while satisfying these resource constraints.

F-TSPTW relaxation of (FP) can be represented as an ESPPRC. Let us consider a
machine k and the set of operations Ok . A node is introduced for each operation of Ok .
An arc (u, v) is introduced between each pair of operations (u = Oij , v = Oxy), with a
cost cuv = −M , where M is an arbitrary large constant. A single resource (Q = 1) is de-
fined, with l1

uv = sixk + pxy . The resource window for node u = Oij is set as [a1
u, b

1
u] =

[rij + pij , dij]. Two additional nodes are introduced for the origin and the destination. An
arc with a resource consumption s0ik is added between the origin and every operation node
u = Oij , while an arc with a resource consumption 0 is added between every operation
node and the destination. Note that the triangular inequality is respected since we have
sijk ≤ sizk + szjk =⇒ sijk +pj ≤ sizk +pz + szjk +pj , for all distinct i ∈ [0, n], j, z ∈ [1, n].
Costs are defined such that the optimal ESPPRC solution visits all nodes if possible. Solving
the ESPPRC thus permits to solve the F-TSPTW, as expected.

We solve the problem by using the dynamic algorithm proposed by Feillet et al. (2004)
This algorithm follows the classical Bellman’s algorithm. The principle is to associate a label
with each possible partial path and to extend these labels checking the resource constraint,
until the best feasible paths are obtained. Dummy resources (indicating the reachability of
nodes) are introduced to preserve path elementarity. Dominance rules are used to compare
labels and remove some of them. The algorithm is adapted to avoid extending a label for
which a non-visited node is unreachable.

To speed up the resolution process, we use a lower bound computation for each generated
label. Let t denote the time associated to a label corresponding to a partial path from the
origin node to a node v = Oij , i.e. t = Wq

v for this label. Let Ok ⊂ Ok denote the set of
operations on machine k still unvisited by the partial path. We can use consistency rule (30)
adapted to set �∪{Oij }. Then, it is not useful to extend the current label whenever ∃� ⊆ Ok ,
t + pij + p� + sfij →�∪{fij } > d�. Since the number of generated labels can be very large we
keep the complexity of the lower bound linear by considering only � = Ok .

10 Branching scheme and dominance rule

Several branching schemes have been proposed for the standard job-shop problem (Jain and
Meeran 1999). For the SDST-JSP, Brucker and Thiele (1996) consider blocks of operations
on the critical path of a feasible schedule issued from the current node. Branching is based
on the property that to improve the current feasible solution, at least one operation has to be
scheduled either before all the other ones in its block (if it not already the first one) or after
all the other ones (if it not already the last one in its block). Hence from a current selection,

150 Ann Oper Res (2008) 159: 135–159

the child nodes are generated by numerating these different possibilities and by making the
induced selection updates. Focacci et al. (2000) use a sequence-based branching scheme
by memorizing which operation has been scheduled last on each machine. The branching
scheme consist in selecting an unscheduled operation and perform a binary branching for
this operation. For the left branch, the operation is scheduled next in the sequence of its
machine. For the right branch the operation is scheduled as a successor but not next of the
last sequenced operation.

In this paper we use a mixed chronological/active branching scheme based on the current
partial selection. Let Eij ⊆ E denote the set of undirected disjunctive edges connected to
Oij at the current node ν = (R,D,E). When the selection E is complete, we have Eij = ∅,
for each operation Oij ∈ O.

Let Oi∗j∗ denote the operation such that Ei∗j∗ �= ∅ and

ri∗j∗ = min
Oij ∈O,Eij �=∅

rij . (31)

Let C denote the set of operations “conflicting” with Oi∗j∗ , i.e. such that:

C = {Oij ∈ O|Eij �= ∅,mij = mi∗j∗ , rij < ri∗j∗ + pi∗j∗ + si∗imij
}. (32)

The branching scheme we propose aims generates |C| nodes {νij }Oij ∈C from the current node
ν where νij = (R,D,E ∪ {(Oij ,Oxy)}Oxy∈C\Oij

).
It has to be underlined that such a conflict set definition may result in non active sched-

ules since the conflict set is defined only with necessary conditions. Indeed, there may be
some operations in C whose earliest start time is not fixed and may increase in the descen-
dence of the current node. This cannot be the case for operation Oi∗j∗ because it has the
smallest earliest start time among operations linked to undirected disjunctive edges. How-
ever considering an operation Oij �= Oi∗j∗ of set C then a child node of νij for which rij

becomes greater than or equal to ri∗j∗ + pi∗j∗ + si∗imij
can be erased. This can be simply

achieved by setting dij = ri∗j∗ + pi∗j∗ + si∗imij
+ pij − 1.

11 Computational results

In this section, we present computational experiments conducted to evaluate the quality of
our approach. For this purpose, we use the benchmark instances from Brucker and Thiele
(1996). These instances are issued from the classical Lawrence instances (Lawrence 1984)
devoted to the Job Shop Problem, introducing setup times. Each instance is characterized
by a number of machines, a number of jobs to be scheduled and a number of setup types
for the operations. These three parameters define a triplet with the format (machines × jobs
× types). There are 15 instances with sequence dependent setup times (named t2-ps01 to
t2-ps15). Instances t2-ps01 to t2-ps05 are of type 5 × 10 × 5 (small instances). Instances
t2-ps06 to t2-ps10 are of type 5 × 15 × 5 (medium instances). Instances t2-ps11 to t2-ps15
are of type 5 × 20 × 10 instances (large instances). Brucker and Thiele (1996) remarked
that the corresponding Lawrence instances without setup times (LA01 to LA15) were all
easily solved by their branch and bound method. On the opposite, only the small sequence-
dependent setup time instances (t2-ps01 to t2-ps05) were solved to optimality.

Since the branch and bound method is designed to solve problem FP(T) we apply it
different times to find the optimal solution of (P) according to principle (6). Due to the suc-
cessive runs, we set a limit NBB to the number of nodes of the branch and bound described
in Sect. 6 and we also apply the following refinements:

Ann Oper Res (2008) 159: 135–159 151

(i) To keep the time spent at each branch and bound node reasonable, we set a limit NDP
on the number of iterations (label extensions) of the dynamic programming algorithm
used to solve the TSPTW relaxations (see Sect. 9). When this limit is reached, nothing
can be deduced from SOLVETSPTW and branching is necessary.

(ii) For diversification purposes, we also use a randomized version of the heuristic SERI-
ALSGS described in Sect. 7. This randomized version selects at step 4 an operation
different than the one with the minimal priority according to a random factor. At each
node, SERIALSGS is called 6 times with the priority values given in Sect. 7 but for
both the deterministic and randomized versions.

(iii) The heuristic keeps track of the best found solution, even if its makespan is greater
than the current threshold T . Furthermore, each time the heuristic improves the best
solution found so far, the randomized version of SERIALSGS is called NH times with
the current priority value, for intensification purposes.

Then the following strategies have been implemented to solve (P):
Strategy 1: A binary search is performed between an initial trivial lower bound (set to the

longest job duration) and an initial upper bound set of one call of the serial SGS with the
earliest start priority rule. Parameters are NBB = 500000, NDP = 1500 and NH = 50000.

Strategy 2: An increasing linear search is performed, starting from the same initial trivial
lower bound as for strategy 1 with parameters NBB = 20 × 106, NDP = 3000, NH = 50000.

The algorithms are coded in C++ and the tests are carried out on a PC with AMD64
architecture under Linux. In Table 1, we give the results of strategy 1. For each instance, we
give the best found lower (LB1) and upper (UB1) bounds, the total number of branch and
bound nodes (#nodes), the total CPU time in seconds (CPU), the initial lower bound value
(LB0), the initial upperbound value (UB0), the number of calls of BRANCHANDBOUND

by the binary search (IT) and the number of times a TSPTW relaxation could not be solved
because the iteration limit NDP has been reached (TO).

As seen in Table 1, Strategy 1 solves to optimality 8 problems out of 15: all the 5 small
instances, 3 out of 5 medium instances and none of the large instances. The previously
unsolved problem t2-ps06 is closed with an optimal value of 1009, in 6157 seconds. The
large CPU time values for the medium and large instances are due to the very large initial
gap (since we did not take the best known lower and upper bound as initial bounds, but
rather trivial ones) and to the maximal number of nodes which is reached for all values
between the best found lower and upper bounds. All the best known lower bounds (see also
Table 4) of the previously unsolved instances are improved. Two best known upper bounds
are improved for instances t2-ps06 and t2-ps14 (see also Table 5).

In Table 2, we give the results of strategy 2 giving the same information as for strategy 1,
but omitting the number of iterations and the number of time outs for the dynamic program-
ming method. Note the number of iterations is obtained here by subtracting the initial lower
bound from the obtained lower bound. For the computation of lower bounds, strategy 2 ob-
tains better results than strategy 1 (see also Table 4). Indeed, strategy 2 solves all the small
instances and 4 out of 5 medium instances. The previously unsolved problem t2-ps08 is
closed with an optimal value of 963 in 349923 seconds. None of the large instances can be
solved to optimality but all lower bounds are significantly improved, at the expense of very
large computational times. Except for instance t2-ps08, the upper bounds found by strategy 2
are not as good as the ones obtained by strategy 1 (see also Table 5). This is not surprising
since the linear search is performed increasingly from the lower bound. Consequently, the
heuristics are never guided by a feasible makespan value, except for the optimal one.

Besides the results shown in Tables 1 and 2, we notice that solving the TSPTW problems
at each node appears crucial for the efficiency of the method. To take a single example,

152 Ann Oper Res (2008) 159: 135–159

Table 1 Best lower and upper bounds obtained by strategy 1

Problem LB1 UB1 #nodes CPU LB0 UB0 #IT #TO

t2-ps01 798∗ 798∗ 173697 400.6 433 844 8 747

t2-ps02 784∗ 784∗ 24380 105.1 434 992 7 2810

t2-ps03 749∗ 749∗ 150885 352.6 359 946 9 8323

t2-ps04 730∗ 730∗ 2414 16.3 399 921 7 215

t2-ps05 691∗ 691∗ 3345 16.2 390 733 5 182

t2-ps06 1009∗ 1009∗ 1143776 6156.2 433 1120 8 150768

t2-ps07 970∗ 970∗ 1533045 10012.6 416 1129 10 336768

t2-ps08 946 982 2583663 22716.5 399 1066 10 507641

t2-ps09 1049 1061 2210868 26754.5 412 1174 9 490508

t2-ps10 1018∗ 1047 1499685 6391.1 463 1187 9 20895

t2-ps11 1373 1494 4512218 39489.9 483 1719 13 671506

t2-ps12 1219 1381 3072119 26678.8 498 1425 10 411984

t2-ps13 1317 1457 5414824 50336.8 462 1531 14 864255

t2-ps14 1429 1483 3583123 37236.1 463 1549 10 509888

t2-ps15 1392 1661 4342505 46590 431 1749 13 696812

Value in bold: best known result on the instance is reached
Value underlined: previously best known result on the instance is improved
∗Tight bound

removing the TSPTW resolution (i.e. only the constraint propagation algorithms are applied)
for the t2-ps05 instance increases the number of nodes up to 389992 nodes and the CPU
time to 346.71 whereas the problem is solved in 3345 nodes and 16.2 seconds if the TSPTW
relaxation is used. Martin and Shmoys (1996) notice that for the standard job-shop problem,
solving exactly the one-machine problem at each node with the Carlier’s algorithms brings
only a little improvement compared to using edge finding and immediate selections. This
seems to be no more the case when sequence-dependent setup times are introduced.

Table 3 provides the results of the strategy 1-based exact method on the corresponding
job-shop instances without setup times (Lawrence 1984). All of these instances are easily
solved by our method, which confirms the difficulty of the setup times constraints, as stated
by Brucker and Thiele (1996).

Table 4 gives the result of several lower bounds on the 15 SDST-JSP instances, to eval-
uate the different components of our method and to make comparisons with other lower
bounds. Column LB0 recalls the value of the trivial lower bound based on longest path com-
putations in the precedence graph. Column SHAVING gives the lower bound obtained if only
the shaving process is applied, i.e. the greatest value for which shaving can prove infeasibil-
ity. The lower bound value and the CPU times are given. Column TSPTW gives the lower
bound obtained by applying only shaving followed by the resolution of the TSPTW relax-
ation. This is done by setting the branch and bound node limit to 1 and by setting no limit
to the number of label extensions of the dynamic programming algorithm. The lower bound
value and the maximal experienced number of iterations of the dynamic programming algo-
rithm are provided. Column LB1 and LB2 recall the results of the best lower bounds by the
two strategies we have implemented. We provide the results obtained by the root node lower

Ann Oper Res (2008) 159: 135–159 153

Table 2 Best lower and upper bounds obtained by strategy 2

Problem LB2 UB2 #nodes CPU LB0 UB0

t2-ps01 798∗ 798∗ 1 56.7 433 844

t2-ps02 784∗ 784∗ 9498 242.3 434 992

t2-ps03 749∗ 749∗ 181090 699.3 359 946

t2-ps04 730∗ 730∗ 3594 251.6 399 921

t2-ps05 691∗ 691∗ 2918 58.2 390 733

t2-ps06 1009∗ 1009∗ 256520 1797.6 433 1120

t2-ps07 970∗ 970∗ 71106 781.8 416 1129

t2-ps08 963∗ 963∗ 33491952 349923 399 1066

t2-ps09 1051 1061 20105686 169582 412 1174

t2-ps10 1018∗ 1018∗ 227 35.1 463 1187

t2-ps11 1395 1617 57981046 916833 483 1719

t2-ps12 1242 1424 69387629 914086 498 1425

t2-ps13 1342 1457 58651163 895059 462 1531

t2-ps14 1432 1499 19999854 306899 463 1549

t2-ps15 1406 1671 52337255 792196 431 1749

Value in bold: best known result on the instance is reached
Value underlined: previously best known result on the instance is improved
∗Tight bound

bound of the branch and bound method proposed by Brucker and Thiele (1996) (BT96), the
root node and the best lower bound of the branch and bound method proposed in Artigues
et al. (2004) (ABF04). The root node lower bound of Artigues et al. (2004) corresponds to
the resolution of the TSPTW relaxation without tightening the time window by the shaving
process. The best lower bound of (Artigues et al. 2004) was obtained by branch and bound.

The following ranking can be expected and is verified:
LB(BT96) < LB root(ABF04), LB(SHAVING) < LB(TSPTW) < LB1 < LB2. Note, how-
ever, that since there is a number of dynamic programming iterations limited to 1500 in
our implementation of strategy 1, the TSPTW bound is not obtained without branching in
our methods. One can observe that truncating the dynamic programming was necessary,
due to an important number of iterations (label extensions) for the medium instances. The
TSPTW bound could not even be obtained in a reasonable amount of time for the large in-
stances. The shaving based-bound is tight 2 times and is generally better than the TSPTW
bound without shaving (LB root ABF04) and than the Brucker and Thiele (1996) bound (LB
root BT96), which indicates the good results of the constraint propagation algorithms and
confirms the power of the shaving technique already experienced for the standard job-shop
problem (Peridy 1996; Martin and Shmoys 1996). The computational time of the shaving
algorithm is rather high but one could considerably accelerate it by performing a bisection
search on the time window as described by Martin and Shmoys (1996). As a main result of
our approach, strategy 2 obtains all the best known lower bounds on all instances, outper-
forming all other methods.

Table 5 gives the results of the state-of-the-art method in terms of the best obtained feasi-
ble solutions. BT96, FNL00, ALA05, ABF04, ABF05, BSV05 stand for the solutions found

154 Ann Oper Res (2008) 159: 135–159

Table 3 Results of strategy 1 on the instances with no setup times

Problem Opt #nodes CPU #IT #TO

LA01 (t2-ps01) 666∗ 1 7.5 7 1

LA02 (t2-ps02) 655∗ 22150 70.1 8 752

LA03 (t2-ps03) 597∗ 2 8.5 8 1

LA04 (t2-ps04) 590∗ 42 13 8 8

LA05 (t2-ps05) 593∗ 1 2.2 8 1

LA06 (t2-ps06) 926∗ 1 4.6 6 1

LA07 (t2-ps07) 890∗ 107 17.2 7 74

LA08 (t2-ps08) 863∗ 1 27.42 8 1

LA09 (t2-ps09) 951∗ 1 39.4 9 1

LA10 (t2-ps10) 958∗ 1 32.2 8 1

LA11 (t2-ps11) 1222∗ 1 14.6 9 1

LA12 (t2-ps12) 1039∗ 15 112.6 9 15

LA13 (t2-ps13) 1150∗ 19 29.33 8 19

LA14 (t2-ps14) 1292∗ 1 207.1 8 1

LA15 (t2-ps15) 1207∗ 1080 92.3 10 366

by (Brucker and Thiele 1996; Focacci et al. 2000; Artigues et al. 2005b; Artigues et al. 2004;
Artigues et al. 2005a; Balas et al. 2005), respectively. The results show that the heuristic so-
lutions found by our algorithm are not so far from the best known solutions mostly obtained
by the shifting bottleneck heuristic of Balas et al. (2005) with reasonable computational re-
quirements. We improve upon the results of Balas et al. (2005) for small instance t2-ps05,
for 3 medium instances out of 5 (t2-ps06, t2-ps07 and t2-ps08) and for 1 large instance out
of 5 (t2-ps14). The results of Balas et al. (2005) are better than ours for instance t2-ps09 and
for all large instances except t2-ps14. As already underlined, the solutions found by strategy
1 on large instances are better than the one obtained by strategy 2. Note the initial heuristic
(UB0), which carries out a single run of the serial SGS with the earliest-start priority-rule,
obtains better results than the truncated branch-and-bound methods of Brucker and Thiele
(1996) and Focacci et al. (2000) on 1 medium instance and on 3 large instances. It follows,
as already mentioned by Artigues et al. (2005b), that the latter methods could be highly
strengthened by integrating the serial SGS in the set of heuristics they use.

Last, Table 6 gives the evolution the gap between the best known lower and upper bound
across all concerned studies since the paper of Brucker and Thiele (1996) as well as the
number of improved lower bounds, upper bounds and closed instances obtained by each
previous work. The results show that the present study has significantly reduced the gap on
all unsolved instances. The gap is reduced to less than 1% on the unsolved medium instance
and to less that 8% on all the large instances. Solving all the medium sized instances will be
probably achieved in a near future. However the large instances remain challenging.

12 Concluding remarks

We have proposed a new exact method to solve the job-shop problem with sequence-
dependent setup times which significantly reduces all gaps for the unsolved problem in-

Ann Oper Res (2008) 159: 135–159 155

Ta
bl

e
4

L
ow

er
bo

un
d

co
m

pa
ri

so
n

Pr
ob

le
m

L
B

0
S

H
A

V
IN

G
T

S
P

T
W

L
B

1
L

B
2

L
B

ro
ot

L
B

ro
ot

L
B

L
B

(C
PU

)
L

B
(D

PI
T

)
B

T
96

A
B

F0
4

A
B

F0
4

t2
-p

s0
1

43
3

78
1

(9
.5

)
79

6
(1

08
47

)
79

8∗
79

8∗
75

6
79

6
79

8∗
t2

-p
s0

2
43

4
74

5
(7

.3
)

74
5

(1
36

67
)

78
4∗

78
4∗

70
5

71
5

78
4∗

t2
-p

s0
3

35
9

71
0

(6
.7

)
71

0
(9

07
9)

74
9∗

74
9∗

65
8

67
8

74
9∗

t2
-p

s0
4

39
9

70
7

(9
.7

)
70

7
(1

09
45

)
73

0∗
73

0∗
62

7
64

7
73

0∗
t2

-p
s0

5
39

0
68

7
(4

.2
)

69
0

(9
04

9)
69

1∗
69

1∗
65

3
67

1
69

1∗

t2
-p

s0
6

43
3

10
06

(5
2.

2)
10

06
(2

39
22

1)
10

09
∗

10
09

∗
98

6
99

6
99

6

t2
-p

s0
7

41
6

97
0∗

(2
0.

0)
97

0∗
(9

27
51

5)
97

0∗
97

0∗
94

0
92

7
97

0∗
t2

-p
s0

8
39

9
92

3
(1

4.
7)

93
0

(1
13

00
61

)
94

6
96

3∗
91

3
92

3
92

3

t2
-p

s0
9

41
2

10
11

(1
6.

1)
10

12
(8

58
93

9)
10

49
10

51
10

01
10

12
10

37

t2
-p

s1
0

46
3

10
18

∗
(1

9.
3)

10
18

∗
(7

88
71

1)
10

18
∗

10
18

∗
10

08
10

18
∗

10
18

∗

t2
-p

s1
1

48
3

13
60

(8
3.

5)
–

–
13

73
13

95
13

22
N

A
N

A

t2
-p

s1
2

49
8

11
75

(1
45

.8
)

–
–

12
19

12
42

11
39

11
59

11
59

t2
-p

s1
3

46
2

12
80

(6
8.

6)
–

–
13

17
13

42
12

50
12

50
12

50

t2
-p

s1
4

46
3

14
12

(1
81

.8
)

–
–

14
29

14
32

14
02

N
A

N
A

t2
-p

s1
5

43
1

13
57

(1
82

.4
)

–
–

13
92

14
06

13
07

N
A

N
A

V
al

ue
in

bo
ld

:b
es

tk
no

w
n

re
su

lt
on

th
e

in
st

an
ce

is
re

ac
he

d
V

al
ue

un
de

rl
in

ed
:p

re
vi

ou
sl

y
be

st
kn

ow
n

re
su

lt
on

th
e

in
st

an
ce

is
im

pr
ov

ed
∗ T

ig
ht

bo
un

d

156 Ann Oper Res (2008) 159: 135–159

Table 5 Upper bound comparison

Problem UB0 BT96 FNL00 ALA05 ABF04 ABF05 BSV05 UB1 UB2

t2-ps01 844 798∗ 798∗ 818 798∗ 798∗ 798∗ 798∗ 798∗
t2-ps02 992 784∗ 784∗ 829 784∗ 784∗ 784∗ 784∗ 784∗
t2-ps03 946 749∗ 749∗ 782 749∗ 771 749∗ 749∗ 749∗
t2-ps04 921 730∗ 730∗ 745 730∗ 743 730∗ 730∗ 730∗
t2-ps05 733 691∗ 691∗ 704 691∗ 693 693 691∗ 691∗

t2-ps06 1120 1056 NA 1026 1026 1026 1018 1009∗ 1009∗
t2-ps07 1129 1087 NA 1033 970∗ 1022 1003 970∗ 970∗
t2-ps08 1066 1096 NA 1002 1002 994 975 982 963∗
t2-ps09 1174 1119 NA 1060 1060 1060 1060 1061 1061

t2-ps10 1187 1058 NA 1036 1018∗ 1018∗ 1018∗ 1047 1018∗

t2-ps11 1719 1658 NA 1478 NA 1509 1470 1494 1617

t2-ps12 1425 1528 1448 1319 1319 1305 1305 1381 1424

t2-ps13 1531 1549 1658 1439 1439 1439 1439 1457 1457

t2-ps14 1549 1592 NA 1492 NA 1492 1485 1483 1499

t2-ps15 1749 1744 NA 1559 NA 1556 1527 1661 1671

Value in bold: best known result on the instance is reached
Value underlined: previously best known result on the instance is improved
∗Tight bound

Table 6 Chronological evolution of the gap (1 − LB/UB) × 100 for the SDST-JSP instances

Problem BT96 FNL00 ALA05 ABF04 ABF05 BSV05 Our results

t2-ps01 0

t2-ps02 0

t2-ps03 0

t2-ps04 0

t2-ps05 0

t2-ps07 13.52 – 9.00 0

t2-ps10 4.73 – 2.70 0

t2-ps06 6.62 – 3.90 2.92 – 2.16 0

t2-ps08 16.70 – 8.88 7.88 7.14 5.33 0

t2-ps09 10.54 – 5.56 2.17 – – 0.85

t2-ps11 20.27 – 10.55 – – 10.06 5.10

t2-ps12 25.46 21.33 13.64 12.13 11.18 – 4.83

t2-ps13 19.30 – 13.13 – – – 6.74

t2-ps14 11.93 – 6.03 – – 5.59 3.44

t2-ps15 25.05 – 16.16 – 16.00 14.40 7.92

LB impr 15 0 0 6 0 0 8

UB impr 15 1 10 2 3 5 3

closed 5 0 0 2 0 0 2

Ann Oper Res (2008) 159: 135–159 157

stances proposed by Brucker and Thiele (1996). The results are obtained thanks to a coop-
eration between constraint propagation techniques extended to setup times and a truncated
dynamic programming-based resolution of TSPTW relaxations. The feasible solutions are
obtained by a serial schedule generation scheme with a priority-rule based on the solutions
of the TSPTW relaxations.

The cooperation between constraint propagation and TSPTW relaxations could be fur-
ther increased, for instance by solving smaller TSPTW corresponding to special subsets of
operations sequenced on the same machine or conversely by designing time windows up-
date methods based on the analysis of the TSPTW. The feasible solutions of the TSPTW
could also be maintained by local search algorithms adapting to the branching decisions. In
the near future, we will focus on improvements that can be brought to speed up the solving
process of the dynamic programming algorithm. A better resolution of the TSPTW could be
the key to solve larger instances.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job-shop scheduling. Man-
agement Science, 34, 391–401.

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling research involving setup
considerations. Omega, 27, 219–239.

Artigues, C., Belmokhtar, S., & Feillet, D. (2004). A new exact solution algorithm for the job shop problem
with sequence-dependent setup times. In J. C. Régin & M. Rueher (Eds.), 1st international confer-
ence on integration of AI and OR techniques in constraint programming for combinatorial optimization
problems: Vol. 3011. Lecture notes in computer science (pp. 37–49). Berlin: Springer.

Artigues, C., Buscaylet, F., & Feillet, D. (2005a). Lower and upper bound for the job shop scheduling prob-
lem with sequence-dependent setup times. In Proceedings of the second multidisciplinary international
conference on scheduling: theory and applications (MISTA’2005). New York.

Artigues, C., Lopez, P., & Ayache, P. D. (2005b). Schedule generation schemes and priority rules for the job-
shop problem with sequence-dependent setup times: Dominance properties and computational analysis.
Annals of Operations Research, 138(1), 21–52.

Balas, E. (1996). New classes of efficiently solvable generalized traveling salesman problems (Technical
Report #MSRR-615). Graduate School of Industrial Administration, Carnegie Mellon University.

Balas, E., & Simonetti, N. (2001). Linear time dynamic programming algorithms for new classes of restricted
TSPs. INFORMS, Journal on Computing, 13, 56–75.

Balas, E., Simonetti, N., & Vazacopoulos, A. (2005). Job shop scheduling with setup-times, deadlines and
precedence constraints. In Proceedings of the second multidisciplinary international conference on
scheduling: theory and applications (MISTA’2005). New York.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). In Constraint-based scheduling: Vol. 39. International series
in operations research & management science. Berlin: Springer.

Blazewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional and new
solution techniques. European Journal of Operational Research, 93(1), 1–33.

Brucker, P., & Thiele, O. (1996). A branch and bound method for the general-shop problem with sequence-
dependent setup times. Operations Research Spektrum, 18, 145–161.

Brucker, P., Jurisch, P., & Krämer, A. (1994a). The job-shop problem and immediate selection. Annals of
Operations Research, 50, 73–114.

Brucker, P., Jurisch, P., & Sievers, B. (1994b). A fast branch and bound algorithm for the job-shop scheduling
problem. Discrete Applied Mathematics, 49, 107–127.

Buscaylet, F., & Artigues, C. (2003). A fast tabu search method for the job-shop problem with sequence-
dependent setup times. In Metaheuristic international conference MIC’2003.

Candido, M. A. B., Khator, S. K., & Barcias, R. M. (1998). A genetic algorithm based procedure for more
realistic job shop scheduling problems. International Journal of Production Research, 36(12), 3437–
3457.

Carlier, J. (1982). The one machine sequencing problem. European Journal of Operational Research, 11,
42–47.

Carlier, J., & Pinson, E. (1989). An algorithm for solving the job-shop problem. Management Science, 35,
164–176.

158 Ann Oper Res (2008) 159: 135–159

Choi, I.-C., & Korkmaz, O. (1997). Job shop scheduling with separable sequence-dependent setups. Annals
of Operations Research, 70, 155–170.

Choi, I.-N., & Choi, D.-S. (2002). A local search algorithm for job-shop scheduling problems with alternative
operations and sequence-dependent setups. Computers and Industrial Engineering, 42, 43–58.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. Reading: Addison–Wesley.
Demassey, S., Artigues, C., & Michelon, P. (2005). Constraint propagation-based cutting planes: an applica-

tion to the resource-constrained project scheduling problem. INFORMS Journal on Computing, 17(1),
52–65.

Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the elementary shortest
path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3),
216–229.

Focacci, F., Laborie, P., & Nuijten, W. (2000). Solving scheduling problems with setup times and alternative
resources. In Fifth international conference on artificial intelligence planning and scheduling (pp. 92–
101).

Focacci, F., Lodi, A., & Milano, M. (2002). A hybrid exact algorithm for the tsptw. INFORMS, Journal on
Computing, 14, 403–417.

Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future. European
Journal of Operational Research, 113(2), 390–434.

Kim, S. C., & Bobrowski, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling
performance. International Journal of Production Research, 32(7), 1503–1520.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: theory and
computation. European Journal of Operational Research, 90, 320–333.

Lawrence, S. (1984). Resource constrained project scheduling: an experimental investigation of heuristic
scheduling techniques (supplement) (Technical report). Graduate School of Industrial Administration,
Carnegie Mellon University.

Martin, P., & Shmoys, D. B. (1996). A new approach to computing optimal schedules for the job-shop
scheduling problem. In W. H. Cunningham, S. T. McCormick & M. Queyranne (Eds.), Proceedings
of the 5th international conference on integer programming and combinatorial optimization IPCO’96
(pp. 389–403). Vancouver, British Columbia, Canada.

Mason, S. J., Fowler, J. W., & Matthew Carlyle, W. (2002). A modified shifting bottleneck heuristic for
minimizing total weighted tardiness in complex job shops. Journal of Scheduling, 5(3), 247–262.

Noivo, J. A., & Ramalhinho-Lourenço, H. (1998). Solving two production scheduling problems with
sequence-dependent set-up times (Technical Report No. 138). Department of Economics and Business,
Universitat Pompeu Fabra, Barcelona.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management
Science, 42, 797–813.

Nuijten, W. P. M. (1994). Time and resource constrained scheduling: a constraint satisfaction approach.
Eindhoven University of Technology: Ph.D. thesis.

Ovacik, I. M., & Uzsoy, R. (1992). A shifting bottleneck algorithm for scheduling semiconductor testing
operations. Journal of Electronics Manufacturing, 2, 119–134.

Ovacik, I. M., & Uzsoy, R. (1994a). Exploiting shop floor status information to schedule complex job shop.
Journal of manufacturing systems, 13, 73–84.

Ovacik, I. M., & Uzsoy, R. (1994b). Rolling horizon algorithms for a single machine dynamic scheduling
problem with sequence-dependent setup times. International Journal of Production Research, 32(6),
1243–1263.

Peridy, L. (1996). Le problème de job-shop: arbitrages et adjustments. Université de Technologie de Com-
piègne: Ph.D. thesis.

Roy, B., & Sussman, B. (1964). Les problèmes d’ordonnancement avec contraintes disjonctives (Technical
Report Note DS No. 9bis). SEMA, Paris.

Savelsberg, M. W. P. (1985). Local search in routing problems with time windows. Annals of Operations
Research, 4, 285–305.

Schutten, J. M. J. (1995). Practical job shop scheduling (Technical Report LPOM-95-12). Laboratory of
Production and Operations Management, Department of Mechanical Engineering, University of Twente,
The Netherlands.

Sun, X., & Noble, J. S. (1999). A modified shifting bottleneck approach to job shop scheduling with sequence
dependent setups. Journal of Manufacturing Systems, 18(6), 416–430.

Torres, P., & Lopez, P. (2000). Overview and possible extensions of shaving techniques for job-shop prob-
lems. In Proceedings of the workshop on integration of AI and OR techniques in constraint programming
for combinatorial optimization problems, CPAIOR’00 (pp. 181–186). Paderborn, Germany.

Vaessens, R. J. M., Aarts, E. H. L., & Lenstra, J. K. (1996). Job shop scheduling by local search. INFORMS
Journal on Computing, 8, 302–317.

Ann Oper Res (2008) 159: 135–159 159

Vilím, P., & Barták, R. (2002). Filtering algorithms for batch processing with sequence dependent setup times.
In M. Ghallab, J. Hertzberg & P. Traverso (Eds.), Proceedings of the sixth international conference on
artificial intelligence planning and scheduling (AIPS 2002) (pp. 312–320). Menlo Park: AAAI Press.

Wilbrecht, J. K., & Prescott, W. B. (1969). The influence of setup time on job shop performance. Management
Science, 16(4), B274–B280.

Zhou, C., & Egbelu, P. G. (1989). Scheduling in manufacturing shop with sequence-dependent setups. Ro-
botics and Computer Integrated Manufacturing, 5, 73–81.

	A branch and bound method for the job-shop problem with sequence-dependent setup times
	Abstract
	Introduction
	The job-shop problem with sequence dependent setup times
	The traveling salesman problem with time windows relaxation
	The disjunctive-graph representation
	Literature review
	Priority-rule based methods
	Local search methods
	Exact methods

	The branch and bound method
	A priority-rule based serial heuristic
	Feasibility tests and adjustments based on constraint propagation
	Setup preprocessing
	Local constraint propagation
	Global constraint propagation

	Feasibility tests based on TSPTW solutions
	Branching scheme and dominance rule
	Computational results
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

