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Abstract We are interested in the problem of scheduling orders for different product types
in a facility with a number of machines in parallel. Each order asks for certain amounts of
various different product types which can be produced concurrently. Each product type can
be produced on a subset of the machines. Two extreme cases of machine environments are
of interest. In the first case, each product type can be produced on one and only one machine
which is dedicated to that product type. In the second case, all machines are identical and
flexible; each product type can be produced by any one of the machines. Moreover, when a
machine in this case switches over from one product type to another, no setup is required.
Each order has a release date and a weight. Preemptions are not allowed. The objective
is minimizing the total weighted completion time of the orders. Even when all orders are
available at time 0, both types of machine environments have been shown to be NP-hard
for any fixed number (≥2) of machines. This paper focuses on the design and analysis of
approximation algorithms for these two machine environments. We also present empirical
comparisons of the various algorithms. The conclusions from the empirical analyses provide
insights into the trade-offs with regard to solution quality, speed, and memory space.
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1 Introduction

The problems under consideration in this paper are typically referred to as order schedul-
ing (Leung et al. 2005b). In such a problem, we consider a facility with m machines
in parallel, which can produce k different product types. In particular, each product type
l = 1,2, . . . , k can be produced on a subset of the m machines, namely Ml ⊆ {1,2, . . . ,m}.
Two extreme cases of machine environments are of interest. In the first case, the so-called
fully dedicated case, each product type can be produced by one and only one machine which
is dedicated to that particular product type. In the second case, referred to as the fully flexible
case, all machines are identical and flexible so that each product type can be produced by
any one of the machines. In this case, when a machine switches over from one product type
to another, no setup is required.

Assume there are n orders from n different clients. Each order j = 1,2, . . . , n requests
a quantity of product type l = 1,2, . . . , k which requires plj ≥ 0 units of processing. If
plj = 0, it implies that order j does not request any amount of product type l. Each order j

may also have a release date rj which denotes the time when the order arrives, and a weight
wj which ranks the importance of order j . The completion time of order j , denoted by Cj , is
the time when the last product type for this order has been finished on one of the machines.
Let Clj denote the individual completion time of product type l for order j on one machine,
it is obvious that Cj = maxl{Clj }.

In this paper, we focus on the objective of minimizing the total weighted completion time
of the orders, i.e.,

∑
wjCj . For due-date related objectives concerning the fully dedicated

case, the reader is referred to Ng et al. (2003) and Leung et al. (2006a). For a more general
description of order scheduling models and their many application examples, the reader is
referred to Li (2005).

Even when all orders are available at time 0, the two environments have been shown
to be NP-hard for any fixed number (≥2) of machines (Sung and Yoon 1998; Blocher and
Chhajed 1996). We focus on the design and analysis of approximation algorithms for these
two machine environments. Because of space constraints, we have to omit the proofs for our
results. The interested reader may want to go through the references.

This paper is organized as follows. In the next section, we consider the dedicated case.
The flexible case is considered in Sect. 3. In the last section we present our conclusions.

2 The dedicated machine environment

As mentioned before, in the dedicated machine environment, each machine can produce one
and only one product type. Without loss of generality, we assume that machine i is the only
machine that can produce type i and type i is the only type that can be produced on machine i

(we can always relabel the machines and product types to achieve this), so that the subscript
i refers to a machine as well as to a product type. We refer to pij as the time required
to produce the product type i requirement for order j on machine i. For convenience, we
denote the problem of minimizing

∑
wjCj as PD | rj | ∑

wjCj . The problem is strongly
NP-hard even if all rj = 0 (Sung and Yoon 1998). An overview of the past work on some
special cases of this problem can be found in Leung et al. (2005b).

Due to the strong NP-hardness of the problem, it is of interest to develop good heuristics.
The algorithms we considered are of two types: priority rules (either static or dynamic) and
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LP-based algorithms. The priority rules are only applicable to PD || ∑
wjCj , i.e., when

rj = 0 for all j .

2.1 Priority rules for PD || ∑wjCj

Let � denote the set of orders that have not yet been scheduled. Assuming a partial schedule
π , we consider five greedy ways of selecting the next order j ∗ ∈ � to be added to the partial
schedule. The first two methods described below are basically static priority rules, i.e., the
entire sequence can be determined at time t = 0 based only on information pertaining to
the orders. The third method is a two-pass rule, which schedules the orders in two passes
(the schedule information obtained in the first pass provides the data necessary for doing
the second pass). The fourth and fifth method are single pass dynamic priority rules. That
is, the schedule can be developed in a single pass; however, it cannot be done using only
information pertaining to the orders. In order to add an additional order to a partial schedule,
information pertaining to the existing partial schedule has to be taken into account as well.

– The Weighted Shortest Total Processing Time first (WSTP) rule schedules the orders in
increasing order of

∑m

i=1 pij /wj . Ties are broken arbitrarily.
– The Weighted Shortest Maximum Processing Time first (WSMP) rule schedules the orders

in increasing order of maxi{pij }/wj . Ties are broken arbitrarily.
– The Weighted Smallest Maximum Completion Time first (WSMC) rule first sequences

the orders on each machine, i = 1,2, . . . ,m, in increasing order of pij /wj . (Note that
the sequences of the orders on the various machines may be different.) The rule then
computes the completion time for order j as C

′
j = maxm

i=1{Cij }. In a second pass, the rule

schedules the orders in increasing order of C
′
j . Ties are broken arbitrarily.

– The rule that applies Weighted Shortest Processing Time first to the machine with the
largest current load (WSPL); it functions as a dynamic priority rule that generates a se-
quence of orders one at a time, each time selecting as the next order the order j ∗ ∈ � such
that

j ∗ = arg min
j∈�

{
pi∗j

wj

}

,

where i∗ is the machine with the largest workload under the partial schedule π . Ties are
broken arbitrarily.

– The Weighted Earliest Completion Time first (WECT) rule selects as the next order j ∗
which satisfies

j ∗ = arg min
j∈�

{
Cj − Ck

wj

}

,

where Ck is the finish time of the order that was scheduled immediately before order j ∗.
Ties may be broken arbitrarily.

For each heuristic described above, after a sequence of orders, say S, has been generated,
a postprocessing procedure can be applied. Let [j ] be the order scheduled in position j

of S. The postprocessing procedure works as follows: For each position j = 2,3, . . . , n in
S, interchange order [j ] (for convenience, we denote this order as j ∗) with order [j − 1]
if Cj∗ ≤ C[j−1]. Such an interchange generates a solution that is at least as good as the
original sequence. Note that the case Cj∗ ≤ C[j−1] occurs only when pi∗j∗ = 0, where i∗
refers to the machine that determines the completion time of order [j − 1] (i.e., machine
i∗ has, among all machines, the latest finishing time for order [j − 1]). If, after the swap of
orders, Cj∗ ≤ C[j−2], then we follow up with an additional interchange of order j ∗ with order
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[j − 2]. We continue with this postprocessing until Cj∗ is larger than the completion time of
the order that immediately precedes it. Note that after each swap, the finish time of j ∗ either
decreases or remains unchanged, while the finish time of each order that is swapped with
j ∗ remains unchanged. This is due to the fact that order j ∗ has zero processing time on the
machine on which the swapped order has its largest finish time. Thus, the postprocessing, if
any, produces a solution that is no worse than the one prior to the postprocessing.

Note that in each heuristic, there may at times be ties. Since ties may be broken arbitrarily,
each heuristic could lead to various different schedules with different values of objective
functions.

Through a sorting algorithm, both WSTP and WSMP can be implemented to run in
O(mn + n lgn) time, and WSMC can be implemented to run in O(mn lgn) time. Both
WSPL and WECT can be implemented in a rather straightforward manner to run in O(mn2)

time.
When m = 2, Sung and Yoon (1998) showed that both WSTP and WSMC have an ap-

proximation ratio of 2. Actually, Wang and Cheng (2003) showed that WSTP, WSMP and
WSMC are all m-approximation algorithms when applied to PDm || ∑wjCj . As for WSPL,
Leung et al. (2005a) showed that the algorithm is unbounded even when all wj = 1. How-
ever, an empirical analysis showed that it performs well in practice for wj = 1. The WECT
algorithm is a generalization of the m-approximation ECT algorithm introduced in Leung
et al. (2005a). We can show the following result whose proof can be found in Leung et
al. (2006b).

Theorem 2.1 For PD || ∑wjCj , the worst-case bound of WECT is m.

It would not be surprising that the priority rules may perform better when the processing
times of each order are subject to constraints that ensure some form of regularity in the
processing times. Sung and Yoon (1998) showed that for m = 2 the performance ratio of
WSTP can be reduced to 3/2 when the processing times satisfy (p1j + p2j )/2 ≥ |p1j − p2j |
for each j = 1,2, . . . , n. In the following two theorems we obtain tighter bounds when the
priority rules are applied to PD || ∑

wjCj with the processing times subject to additional
constraints; their proofs can be found in Leung et al. (2006b).

Theorem 2.2 If
m∑

i=1

pij /m ≥ max
1≤i≤m

{pij } − min
1≤i≤m

{pij }

for each order j = 1,2, . . . , n, then the worst-case bound of WSTP is 2 − 1
m

, while both
WSMP and WECT have a worst-case bound of

1

1 +H(m) −H(2m − 1)
,

where H(k) ≡ 1 + 1
2 + · · · + 1

k
is the harmonic series.

Note that

lim
m→∞

1

1 +H(m) −H(2m − 1)
= 1

1 − ln 2
≈ 3.259.

Theorem 2.3 If max1≤i≤m{pij } ≤ 3 min1≤i≤m{pij } for each order j = 1,2, . . . , n, then
WSTP, WSMP and WECT all have a worst-case bound of 3 − 6

m+2 .
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2.2 LP-based algorithms for PD | rj | ∑wjCj

In this subsection we allow orders to have different release dates. Preemptions are not al-
lowed. However, unforced idleness of the machines is allowed. We present two approxima-
tion algorithms based on different LP relaxations.

2.2.1 An algorithm based on a completion time formulation

Hall et al. (1997) presented a 3-approximation LP-based algorithm for 1 | rj | ∑
wjCj . We

shall extend this algorithm in order to solve PD | rj | ∑wjCj .
Let O = {1,2, . . . , n} denote the set of all orders. For any subset S ⊆ O, let pi(S) =∑
j∈S pij , and p2

i (S) = ∑
j∈S p2

ij , i = 1,2, . . . ,m. The PD | rj | ∑
wjCj problem can be

relaxed to the following linear program:

LP1 = minimize
n∑

j=1

wjCj

subject to

Cj ≥ rj + pij , i = 1, . . . ,m, j = 1, . . . , n; (1)

Cj ≥ Cij , i = 1, . . . ,m, j = 1, . . . , n; (2)

∑

j∈S
pijCij ≥ p2

i (S) + (pi(S))2

2
, i = 1, . . . ,m, for each S ⊆ O. (3)

Constraint sets (1) and (2) are trivial. However, constraint set (3) needs some justification.
Assume that S = {1,2, . . . , |S|}. It follows that for j ∈ S ,

Cij ≥
∑

k≤j

pik, i = 1, . . . ,m.

The inequality is due to the fact that there may be some idle time in the schedule because of
the release dates. Thus,

pijCij ≥ pij

∑

k≤j

pik.

Summing pijCij over all j ∈ S and simple algebra results in (3).
It is clear that (3) generates an exponential number of constraints. For the one-machine

case, Queyranne (1993) has shown that such constraints can be separated polynomially so
that the above linear program can be solved in polynomial time by a variant of ellipsoid
method (Grötschel et al. 1993). This is the key observation that the above linear program can
be used as a relaxation for approximation algorithms. Now consider the following algorithm:

An LP-based Algorithm Using Completion Times (LP1)

Step 1: Solve LP1 by the ellipsoid method; let the optimal solution be C1,C2, . . . ,Cn.
Step 2: Schedule the orders in nondecreasing order of Cj . Break ties arbitrarily. Insert an

idle time when rj is greater than the completion time of the (j − 1)th order.
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We can show the following results for the above LP-based algorithm; its proof can be
found in Leung et al. (2006b):

Theorem 2.4 The worst-case bounds of LP1 applied to PD || ∑
wjCj and PD | rj |∑

wjCj are 2 and 3, respectively.

2.2.2 An algorithm based on a time interval formulation

Inspired by the time interval indexed linear programming formulation for P | rj | ∑
wjCj

due to Hall et al. (1997), Wang and Cheng (2003) presented a 16/3-approximation algo-
rithm for PD || ∑

wjCj . In what follows, we present an extension of Wang and Cheng’s
algorithm for PD | rj | ∑wjCj .

Given λ > 1, we divide the time horizon of potential completion times into the in-
tervals: [1,1], (1, λ], (λ,λ2], . . . , (λL−1, λL], where L is the smallest integer so that λL ≥
max1≤j≤n

{
rj

} + max1≤i≤m{∑n

j=1 pij }. For convenience, let t0 = 1, and tl = λl−1, l =
1, . . . ,L. Thus, the lth interval runs from tl−1 to tl , l = 1,2, . . . ,L. Let the decision vari-
able xjl be:

xjl =
{

1, if order j is scheduled to finish within the interval (tl−1, tl];
0, otherwise.

Consider the following linear programming relaxation:

LP2 = minimize
n∑

j=1

wj

L∑

l=1

tl−1xjl

subject to

L∑

l=1

xjl = 1, j = 1, . . . , n; (4)

l∑

k=1

n∑

j=1

pijxjk =
n∑

j=1

pij

l∑

k=1

xjk ≤ tl , i = 1, . . . ,m; l = 1, . . . ,L; (5)

xjl = 0, if tl < rj + pij , j = 1, . . . , n, l = 1, . . . ,L; (6)

xjl ≥ 0, j = 1, . . . , n; l = 1, . . . ,L. (7)

The following algorithm is based on the above LP relaxation:

An LP-based Algorithm Using Time Intervals (LP2)

Step 1: Given λ, solve LP2 and let the optimal solution be x̄j l , j = 1, . . . , n, l = 1, . . . ,L.
Step 2: Let Cj = ∑L

l=1 tl−1x̄j l , j = 1, . . . , n.
Step 3: Schedule the jobs in nondecreasing order of Cj . Ties are broken arbitrarily. Insert

idle time when rj is greater than the completion time of the (j − 1)th order.

Wang and Cheng (2003) showed that, given λ = 2, LP2 is a 16/3-approximation algo-
rithm for PD || ∑

wjCj . When the orders have different release dates, we can show the
following result; its proof can be found in Leung et al. (2006b):
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Theorem 2.5 Given λ = 2, LP2 is a 19
3 -approximation algorithm for PD | rj | ∑wjCj .

For LP2, it would be of interest to investigate if a smaller λ leads to a better performance.
In what follows, we present an empirical analysis.

2.3 Empirical analysis of the algorithms

Since the priority rules apply only to PD || ∑
wjCj , we focus our experiments on the

problem with all release dates equal to zero.
For each problem size with n = 20,50,100,200 orders and m = 2,5,10,20 machines,

100 instances are randomly generated using a factor called order diversity. The order diver-
sity k is used to characterize the number of different product types each order requires. The
following three cases of order diversity are considered:

k = 2: In problem instances 1 to 20 each order requests 2 different product types. We denote
this group as G1.

k = m: In problem instances 21 to 80 each order requests the maximum number of different
product types, namely m, i.e. the number of machines. However, these 18 instances are
grouped into the following 3 subgroups:
For instances 21 to 40 in group G2, the processing times of each order have no additional
constraints.
For instances 41 to 60 in group G3, the processing times of each order j are subject to the
constraint

max
1≤i≤m

{pij } ≤ 3 min
1≤i≤m

{pij }.
For instances 61 to 80 in group G4, the processing times of each order j are subject to the
constraints

m∑

i=1

pij /m ≥ max
i

{pij } − min
i

{pij }.

k = r : In problem instances 81 to 100 in group G5 each order requests a random number (r)
of different product types; r is randomly generated from the uniform distribution [1,m].

When the number of product types, l, for each order j is determined, l machines are chosen
randomly. For each machine i that is selected, an integer processing time pij is generated
from the uniform distribution [1,100]. Note that for instances 41 to 80, the processing times
of each order are generated in such a way that they satisfy the additional requirements.
In addition to the generation of processing times, for each order j , a weight is randomly
generated from the uniform distribution [1,10]. In total, 4 × 4 × 100 = 1600 instances are
generated.

The algorithms are implemented in C++. We used the GLPK 4.4 (Makhorin 2004)
callable library to solve the linear programs in the LP2 algorithm. The running environment
is based on the Windows 2000 operating system; the PC used was a desktop computer (CPU
3.0 GHz plus 512 MB RAM). It should be noted that the time-interval LP-based algorithm
needs a significant amount of virtual memory. For example, for a problem instance with
n = 200 and m = 20, when we let λ = 21/4, the total memory usage for the time-interval
LP-based algorithm could reach 1 GB. Because of this we set the total file paging size for
the hard disk equal to 1272 MB.

We study the performance of the algorithms in terms of two aspects: the number of
times they turn out to be the best and their average costs. We also compare the average
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running times of the algorithms. In what follows, we use the following notation to refer to
the different versions of LP2.

LP ′
2: LP2 with λ = 21/4 LP ′′

2 : LP2 with λ = 21/2 LP ′′′
2 : LP2 with λ = 2

Due to space constraints, we omit the tables with the experimental results; these tables are
available at http://web.njit.edu/~leung/aor/tablesPD.pdf, see also electronic supplementary
material.

We first compare the performance of the algorithms in terms of the number of times at
which they generate the best solution. From the results obtained, we can draw the following
conclusions:

– In group G1 with k = 2, LP1, LP ′
2, and WECT have the best performance. A close study

of the results reveals that for instances with small n, LP1 is better than both LP ′
2 and

WECT , and the performance of LP ′
2 is close to that of WECT . In some occasional cases,

LP ′′
2 also produces best solutions. When n is large, LP ′

2 is significantly better than all
other algorithms. The results also reveal a counter-intuitive finding that LP1 does not
perform better than the other algorithms all the time, even though it has the best known
worst-case performance bound (note that the performance ratios of LP ′

2 and LP ′′
2 are

unknown yet).
– For the instances in group G2, for which k = m but with no additional constraints on the

processing times, LP ′
2, LP1, and WECT exhibit the best performance. For small n, LP1

and LP ′
2 perform closely, and are slightly better than WECT . However, for large n, LP ′

2
performs better than LP1, which in turn performs better than WECT . Again, LP ′′

2 also
produces best solutions for some occasional cases.

– WECT is the best algorithm in groups G3 and G4. LP ′
2 is second best, and LP1 third best.

WSTP, WSMP, WSMC, and WSPL may occasionally beat the other algorithms, especially
when n is small. However, when n becomes large, the tendency is that WECT beats all
other algorithms. These results are consistent with our theoretical analysis that the priority
rules exhibit a better performance with additional constraints on the processing times,
except that the results for LP1 are somehow counter-intuitive.

– For the instances in group G5, for which k = r , the best algorithms are LP ′
2 and LP1. For

small n, LP1 performs closely to LP ′
2. In addition, for occasional cases of small n and m,

WECT may beat the other algorithms. However, for large n, LP ′
2 becomes significantly

better than all other algorithms.

We now compare the performance of the algorithms in terms of the average costs. We
also compare the average running times of the various algorithms. For convenience, we use
the notation ≺ to indicate that algorithm A outperforms algorithm B if A ≺ B . Furthermore,
if algorithm A almost ties with algorithm B , we denote it as A ∼ B .

– For each n, the percentage of each priority rule (except for WECT) tends to increase when
m increases. This is consistent with our previous theoretical analysis which indicates that
the performance of each priority rule becomes worse when m becomes larger. In contrast,
neither LP1 nor LP2 exhibit such a relationship between their performance and the value
of m. Secondly, the results also show that a smaller λ leads to a better performance of
LP2.

– For the problem instances in group G1, when n ≥ 100, it turns out that LP ′
2 is significantly

better than all other algorithms, and we find that

LP ′
2 ≺ LP1 ≺ LP ′′

2 ≺ LP ′′′
2 ∼ WECT ∼ WSMC ≺ WSTP ≺ WSMP ≺ WSPL.
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When n is small, we find that

LP1 ≺ LP ′
2 ≺ LP ′′

2 ∼ WECT ≺ LP ′′′
2 ∼ WSMC ≺ WSTP ≺ WSMP ≺ WSPL.

– In group G2, WECT , LP1, and LP ′
2 can beat one another when n = 20. However, when

n ≥ 50, LP ′
2 is much better than all other algorithms, and we find that

LP ′
2 ≺ LP1 ≺ WECT ≺ LP ′′

2 ≺ LP ′′′
2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ WSPL.

Note that the difference between WECT and LP ′
2 is less than 2%. Thus, the performance

of WECT is actually very close to that of LP ′
2. However, the results show that LP ′

2 re-
quires hours of running time for large instances, while WECT requires only milliseconds.
As stated before, LP ′

2 requires virtual memory up to 1.2 GB. By contrast, WECT only
requires several kilobytes of memory.

– In group G3, the two best algorithms are WECT and LP ′
2. WECT tends to perform better

than the others when n is small, while LP ′
2 performs well when n is large. The results

show that

LP ′
2 ≺ LP ′′

2 ≺ LP1 ≺ WECT ≺ LP ′′′
2 ≺ WSTP ≺ WSMC ≺ WSMP ∼ WSPL.

Note that the difference between WECT and LP ′
2 is less than 0.5%. Thus, the performance

of WECT is almost the same as that of LP ′
2. However, to achieve such performance,

LP ′
2 requires more computational resources than WECT . It is also interesting to see that,

WSTP, WSMC, and WSMP perform better than LP ′′′
2 .

– In group G4, WECT is the best. In details, the algorithms are ranked as follows:

WECT ≺ LP ′
2 ≺ LP1 ≺ LP ′′

2 ≺ WSTP ≺ WSMC ∼ WSMP ≺ LP ′′′
2 ∼ WSPL.

Again, WSTP , WSMC, and WSMP perform better than LP ′′′
2 .

– For group G5, LP ′
2 is the best. The algorithms are ranked as:

LP ′
2 ≺ LP ′′

2 ≺ LP1 ≺ WECT ≺ LP ′′′
2 ≺ WSTP ≺ WSMC ≺ WSMP ≺ WSPL.

Again, the results produced by WECT are quite close to those of the LP-based algorithms.

To compare the performance versus the running times of the various versions of LP2, we
compare for each group of instances the percentages that the average costs of LP ′′

2 and LP ′′′
2

are larger than that of LP ′
2. From the results, we can see that the gap between the average

cost of LP ′′
2 and that of LP ′

2 is actually very small. For most cases, it is less than 1.0%; and
the largest one is 5.9%. Therefore, the performance of LP ′′

2 is actually very close to that of
LP ′

2. However, from the results, the average running time of LP ′
2 is much more than that of

LP ′′
2 (in some cases more than 10 times). In addition, in the experiments, we noticed that

the memory requirement of LP ′
2 is twice that of LP ′′

2 . Thus, in practice, if the use of LP2

is considered, it is recommended to choose λ = √
2 in order to strike a balance between

performance and the use of computational resources.
Summarizing the empirical analysis, we recommend the use of WECT and LP2 with

λ = √
2. It should be noted that, even though LP1 performs better than LP2 with λ = √

2,
and it does not take too much memory space, it runs very slowly. This is the main reason
why we do not recommend the use of LP1 in practice. In an environment which requires a
solution to be generated quickly with limited memory spaces, WECT is the most preferable.
It is simple to implement, requires a small amount of memory, runs fast, and produces good
results.
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3 The flexible machine environment

In the flexible case with all identical machines, each product type can be produced by any
one of the machines. We refer to plj as the time required to process product type l of order
j on any machine i = 1,2, . . . ,m. When a machine switches over from one product type
to another, we assume that no setup is required. For convenience, if k is fixed, the problem
under consideration is denoted as PF | �k | ∑

wjCj when the number of machines m is
arbitrary, and it is denoted as PFm | �k | ∑

wjCj when m is fixed. If k is arbitrary, then
the problem is denoted as either PF | � | ∑

wjCj or PFm | � | ∑
wjCj , depending on

whether the number of machines is arbitrary or fixed.
Since PF | � | ∑Cj is strongly NP-hard (Blocher and Chhajed 1996), it follows that the

more general version PF | � | ∑
wjCj is NP-hard as well. We are interested in designing

heuristics for PF | � | ∑
wjCj that consist of two phases. The first phase determines the

sequence of orders, while the second phase assigns the individual jobs within each order to
the specific machines. Based on this idea, we consider two classes of heuristics: sequential
two-phase heuristics and dynamic two-phase heuristics.

3.1 Sequential two-phase heuristics

The first phase of the sequential two-phase heuristics sequences the orders; the second phase
assigns the individual jobs of each order to the specific machines. Rules for sequencing the
orders include:

– The Weighted Shortest Total Processing time first (WSTP) rule which sequences the orders
in increasing order of

∑nj

l=1 plj

wj

.

– The Weighted Shortest LPT Makespan first (WSLM) rule which sequences the orders in
increasing order of

C
(j)
LPT

wj

, j = 1,2, . . . , n,

where C
(j)
LPT is the makespan of the schedule obtained by scheduling the jobs of order

j on all m parallel machines according to the longest processing time first (LPT) rule,
assuming each machine is available from time zero on.

– The Weighted Shortest MULTIFIT Makespan first (WSMM) rule which sequences the
orders in increasing order of

C
(j)
MF

wj

, j = 1,2, . . . , n,

where C
(j)
MF is the makespan of the schedule obtained by scheduling the jobs of order j on

all m parallel machines according to the MF assignment rule which is described below,
assuming each machine is available from time zero on.

After the sequence of orders has been determined by one of the above rules, the indi-
vidual jobs within each order are assigned to the specific machines according to one of the
assignment rules listed below:
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– The List Scheduling rule (LS) assigns in each iteration an unassigned (arbitrary) job to a
machine (or one of the machines) with the smallest workload, until all jobs are assigned.

– The Longest Processing Time first rule (LPT) assigns in each iteration an unassigned job
with the longest processing time to a machine (or one of the machines) with the smallest
workload, until all jobs are assigned.

– The Bin Packing rule (BIN) first determines a target completion time for an order using
the LPT assignment rule (just as a trial, not as a real assignment). This completion time
is used as a target completion time (bin size). At each iteration, the BIN rule assigns an
unassigned job with the longest processing time to a machine with the largest workload.
If the workload of the machine exceeds the target completion time after the assignment,
then undo this assignment and try the assignment on the machine with the second largest
workload. This try-and-check procedure is repeated until the job can be assigned to a
machine without exceeding the target completion time. If assigning the job to the machine
with the smallest workload still exceeds the target completion time, then assign it to this
machine, and reset the target completion time as the completion time of the job on this
machine. The whole procedure is repeated until all jobs are assigned to the machines.

– The MULTIFIT rule (MF) assigns the jobs of an order to the machines following
an idea that is similar to (but not exactly the same as) the MULTIFIT algorithm for
Pm || Cmax (Coffman et al. 1978). The original MULTIFIT algorithm uses the First Fit
Decreasing (FFD) rule for the bin packing problem. In contrast, we use the Best Fit
Decreasing (BFD) rule. Let j be the order whose jobs are to be assigned. In the BFD pro-
cedure, we treat the machines as bins that are partially filled, and treat the jobs of order
j as items whose sizes are exactly equal to their processing times. The jobs of order j

are pre-sorted in nonincreasing order of their processing times. Given the partial schedule
generated for the orders scheduled before order j , and given a target completion time t

(bin size), the pre-sorted jobs of order j are assigned sequentially, each going into the bin
(machine) with the largest workload into which it still fits. If all the jobs can be assigned
to the machines without exceeding t , then BFD is considered “successful”.

If we specify for t a lower bound LBt(j), and an upper bound UBt(j), by trying BFD
with different values of t in between LBt(j) and UBt(j), schedules of different length
can be generated. If the processing times are integers, a binary search procedure would
make the algorithm run faster. Using a binary search procedure, we can initially try BFD
with t = (UBt(j) + LBt(j))/2; whenever BFD succeeds, we let UBt(j) = t ; otherwise,
let LBt(j) = t . This procedure is repeated until t cannot be updated any more, or until
after a specified number of iterations, say I . The schedule obtained by trying BFD with
the latest UBt(j) as t is chosen.

Now we fix an initial setting for LBt(j) and UBt(j). Before the jobs of order j are
assigned, we denote the smallest workload of the m machines as Cmin. It is easy to see
that, an initial lower bound LBt(j) can be set as

LBt(j) = Cmin + max

{ nj∑

l=1

plj

m
, max

1≤l≤nj

{
plj

}
}

,

since LBt(j) is no larger than the completion time of an optimal assignment. As for the
initial upper bound UBt(j), we can set it as the completion time of order j obtained by
a trial assignment using the BIN rule. In case the BFD would not be successful even with
the initial upper bound as its target completion time, we accept the assignment by the BIN
rule.
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The various ways of combining sequencing rules with assignment rules lead to twelve dif-
ferent heuristics. However, we have focused only on those that appear the most promising:

– Four heuristics based on WSTP, namely, WSTP-LS, WSTP-LPT, WSTP-BIN, WSTP-MF.
– One heuristic based on WSLM, namely, WSLM-LPT.
– One heuristic based on WSMM, namely, WSMM-MF.

The unweighted version of WSTP-LS has been studied in Yang and Posner (2005). The
WSTP-LPT, WSTP-BIN and WSLM-LPT rules are generalizations of the unweighted ver-
sions which are described in Blocher and Chhajed (1996). The WSTP-MF and WSMM-MF
rules are new.

In order to determine the time complexity of these algorithms, consider first the running
time of the sequencing rules:

– WSTP needs to compute
∑nj

l=1 plj /wj for all orders, which takes O(kn) time. Then,
applying a sort procedure on

∑nj

l=1 plj /wj takes O(n lgn) time. Thus, WSTP runs in
O(kn + n lgn) time.

– WSLM needs to compute the makespan of the jobs of each order according to the LPT
rule. Since applying LPT on the jobs in each order takes O(k lgk + k lgm), n orders need
O(kn lgkm) time. In addition, after computing the makespans of the LPT schedules for
all orders, the orders have to be sorted in terms of these makespans. The sorting procedure
takes O(n lgn) time. Thus, the total running time of WSLM is O(kn lgkm + n lgn).

– WSMM needs to compute the makespan of the jobs of each order by using the MF rule.
As we can see later, this takes O(kn lgk + Iknm) time. After computing the makespans,
sorting the orders in terms of their makespans takes O(n lgn). Thus, in total, WSMM
takes O(kn lgk + Iknm + n lgn) time.

Now we consider the running time of the assignment rules:

– For LS, we can use a min-heap data structure to maintain the machines with different
workloads, it costs O(lgm) time to retrieve from the min-heap the machine with the
smallest workload, and costs another O(lgm) time to update the workload of this machine
in the heap after a job is assigned. Since LS sequentially assigns the jobs of each order in
arbitrary order, and there are O(kn) jobs, it follows that LS takes O(kn lgm) time.

– For LPT, additional time is required to sort the jobs of each order nonincreasingly in terms
of their processing times. This takes O(nk lg k) time. The subsequent assignment proce-
dure requires the same time as LS. Thus, LPT runs in O(nk lgk+kn lgm) = O(kn lgkm).

– BIN uses LPT to obtain a trial assignment, which already takes O(kn lgkm) time. Note
that in the worst case the assignment of a job needs to be tried on all m machines from the
largest-workload one to the smallest-workload one. This worst-case takes O(km) time to
assign the jobs of each order. Therefore, n orders need O(knm) time. Thus, BIN takes
O(kn lgkm + knm) time in total.

– MF first uses BIN to determine the upper bounds of target completion times before as-
signing the jobs of the n orders. This takes O(kn lgkm+knm) time. Then, for each order,
MF uses BFD to assign its jobs. Note that in the worst case the assignment of a job ac-
cording to BFD also needs to try all m machines from the one with the largest-workload
to the one with the smallest-workload. As in BIN, BFD takes O(knm) time, the number
of runs of BFD for each order is I . Thus, MF takes O(kn lgkm + Iknm) time in total.
Note that I is usually a small integer. For example, when I = 20, the gap between the
upper bound and the lower bound is 220 = 1048576, which is a very wide range for a
binary search procedure already.
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The running time of each heuristic is as follows:

Heuristic Time complexity Heuristic Time complexity

WSTP-LS O(kn lgm + n lgn) WSTP-MF O(kn lgkm + n lgn + Iknm)

WSTP-LPT O(kn lgkm + n lgn) WSLM-LPT O(kn lgkm + n lgn)

WSTP-BIN O(kn lgkm + n lgn + knm) WSMM-MF O(kn lgkm + n lgn + Iknm)

3.2 Dynamic two-phase heuristics

The second class of heuristics are referred to as dynamic two-phase heuristics. In these
heuristics, the sequence of orders is not fixed prior to the assignment of the various jobs
to the machines, i.e., the sequence is determined dynamically. The heuristics use the LPT
rule, the BIN rule or the MF rule to assign the jobs to the machines. However, to determine
the next order to be sequenced, a greedy approach is applied to make a trial assignment of
the jobs of all remaining orders by using one of three rules, and the next selected order j ∗

satisfies

j ∗ = arg min
j∈�

{
Cj − Cj ′

wj

}

,

where � is the set of unscheduled orders, and Cj ′ is the finish time of the order that was
scheduled immediately before order j ∗. Ties may be broken arbitrarily. If Cj∗ < Cj ′ , then
we can shift forward all jobs belonging to j ∗ assigned to each machine, and put them before
all jobs belonging to j ′ on that machine. Now after this shift operation, if there exists another
order j ′′ such that Cj∗ < Cj ′′ , we carry out the same shift operation between j ∗ and j ′′. This
procedure is repeated until such a case does not occur any more. Clearly, with such a shift
operation, the finish time of an order such as order j ′ remains unchanged, whereas the fin-
ish time of j ∗ decreases. This post-processing procedure helps reduce the objective cost of
the schedule. The three heuristics are referred to as Weighted Earliest Completion Time by
LPT (WECT-LPT), Weighted Earliest Completion Time by BIN (WECT-BIN) and Weighted
Earliest Completion Time by MF (WECT-MF), respectively. The first two heuristics are
generalizations of the unweighted versions presented in (Blocher and Chhajed 1996), while
WECT-MF is new. Natural implementation of each heuristic requires n2 runs of the respec-
tive assignment rule. Thus, the running times of these three algorithms are O(kn2 lgkm),
O(kn2 lgkm + kn2m) and O(kn2 lgkm + Ikn2m), respectively.

3.3 Worst-case analyses of the heuristics

In what follows, we analyze the performance bounds of the above heuristics. Blocher and
Chhajed (1996) made an empirical study for the unweighted version of WSTP-LPT, WSTP-
BIN, WECT-LPT, and WECT-BIN. Yang and Posner (2005) did a worst-case analysis for
the unweighted version of WSTP-LPT, and showed that it has a tight bound of 6/5 for the
unweighted problem with only two machines.

When n = 1, it is clear that the problem becomes P || Cmax. The results for P || Cmax

imply the following:

Lemma 3.1 For PF | � | ∑wjCj , the worst-case ratio of algorithms that use LS and LPT
cannot be less than 2 − 1

m
and 4

3 − 1
3m

, respectively.
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We can show the following result for the four heuristics based on the WSTP sequencing
rule; its proof can be found in Leung et al. (2007):

Theorem 3.2 For PF | � | ∑
wjCj , each of WSTP-LS, WSTP-LPT , WSTP-BIN, and

WSTP-MF has a worst-case bound of 2 − 1
m

.

It turns out that the remaining five algorithms, namely, WSLM-LPT, WSMM-MF, WECT-
LPT, WECT-BIN and WECT-MF, can perform very badly. To see this, consider the following
example:

– Let wj = 1, j = 1,2, . . . , n.
– Let x = ρ · m, where 0 < ρ < 1; let ε > 0.
– Each order j = 1,2, . . . , x requests m product types, each of which requires 1 unit of

processing.
– Each order j = x + 1, x + 2, . . . , x + m(m − x) requests only 1 product type requiring

1 + ε units of processing.

It is easy to see that each heuristic

H ∈ {WSLM-LPT, WSMM-MF, WECT-LPT, WECT-BIN, WECT-MF}

produces the same schedule, with the objective value being

∑
wjCj (H) =

x∑

j=1

j + m ·
m−x∑

j=1

(x + j · (1 + ε)).

On the other hand, it also easy to see that an optimal schedule has an objective value of

∑
wjCj (OPT) = m ·

m−x∑

j=1

j · (1 + ε) +
x∑

j=1

(j + (m − x)(1 + ε)).

It can be determined that

lim
m→∞

(

lim
ε→0

∑
wjCj (H)

∑
wjCj (OPT)

)

= 1 + ρ

1 − ρ
.

Thus, when ρ is close to 1, the above ratio can be arbitrarily large. This implies that the
performance ratio of these heuristics is not bounded by any constant. Actually, we can show
that the upper bound is m; its proof can be found in Leung et al. (2007).

Theorem 3.3 For PF | � | ∑wjCj , each one of the WSLM-LPT , WSMM-MF, WECT-LP,
WECT-BIN, and WECT-MF algorithms has a worst-case bound of m.

However, it is not clear whether this bound is tight or not. Note that the above example
is not a tight example.

3.4 Empirical analysis of the heuristics

We generate problem instances with different sizes that are determined by n, m and k, where
n ∈ {20,50,100,200}, m ∈ {2,5,10,20} and k ∈ {2,5,10,20,50,100}. For each combina-
tion of n, m and k, 10 problem instances are randomly generated. These 10 problem in-
stances have a similar structure and are treated as a group. To produce an instance for a
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combination of n,m and k, n orders are generated. For each order j , the number of prod-
uct types kj is generated from the uniform distribution [1, k]. Then, for each product type
l = 1,2, . . . , kj , an integer processing time plj is generated from the uniform distribution
[1,100]. In addition, a weight for order j is randomly generated from the uniform distribu-
tion [1,10]. In total, 960 instances are generated.

The algorithms have been implemented in C++. The running environment is based on
the Windows 2000 operating system; the PC used was a notebook computer (Pentium III
900 MHz plus 384 MB RAM). In what follows, we study the performance of the algorithms
in terms of two aspects: the frequencies at which they are the best and a comparison of their
average costs. We also compare their average running times. Again, due to space constraints,
we omit the tables with the experimental results, which are available at http://web.njit.edu/
~leung/aor/tablesPF.pdf.

We first compare the heuristics in terms of the frequencies at which they are the best. The
results show that WSTP-MF is the best. In addition, the tendency is that a larger k leads to
a higher percentage of WSTP-MF that are the best. The same tendency also applies to the
other two heuristics based on the MF assignment rule, i.e., WSMM-MF and WECT-MF, even
though they are inferior to WSTP-MF. Thus, it would be advantageous to apply MF-based
heuristics to instances in which each order requests many different product types. When k

is small, WSMM-BIN is comparable to WSMM-MF. This enforces our observation that MF
does not have much of an advantage when each order has only a small number of jobs. Even
though the analysis in the previous section showed that the worst-case performance bounds
of the heuristics based on WSTP are much better than the other heuristics, we could not find
a clear indication from the experimental results. Thus, we need to compare the heuristics in
terms of the average costs. From the average cost point of view, we can draw the following
conclusions:

– WSTP-MF performs the best, WSTP-BIN performs second best.
– The four heuristics based on WSTP are better than the others. This agrees with the worst-

case bounds described earlier.
– When k and n are fixed, the performances of the heuristics worsen as m increases. This is

also consistent with the corresponding worst-case bounds obtained previously.
– When n and m are fixed, the performances of the heuristics improve as k increases. In ad-

dition, as k increases, the differences in the performances of the various heuristics become
smaller.

– When m and k are fixed, the differences between the WSTP-based heuristics become
smaller as n increases. On the other hand, as k decreases, the differences between those
heuristics which are not based on WSTP and the WSTP-based heuristics become larger.

– The performances of the heuristics are sensitive to k/m. When k/m is small, the gaps
between the heuristics that are not based on the WSTP rule and the WSTP-based heuristics
are large. When k/m is large, these gaps are small.

As for the average running times of the heuristics, the results show that the WSTP-based
heuristics run faster than other heuristics. Based on the observations made above, we would
recommend for practical applications either WSTP-MF or WSTP-BIN.

4 Concluding remarks

In this paper, we presented an overview of the design and analysis of approximation algo-
rithms for two extreme cases of the customer order scheduling problem, with the minimiza-
tion of the total weighted completion time as objective.



122 Ann Oper Res (2008) 159: 107–123

For the dedicated case, the algorithms include several priority rules as well as two LP-
based algorithms. Although priority rules are easy to implement, our analysis showed that
their performance guarantees vary according to the distributional properties of the process-
ing times. In contrast, various linear programming relaxations uniformly provide tight lower
bounds for approximation algorithms. However, different relaxations may result in approx-
imation algorithm with very different performance guarantees. Fortunately, both LP-based
algorithms we presented in this paper have a fixed ratio performance guarantee. According
to our empirical analysis, we would recommend the use of WECT and LP2 with λ = √

2.
However, with regard to solution quality, speed, memory space, and implementation com-
plexity, WECT is more preferable.

For the flexible case, the heuristics considered fall into two categories, namely the se-
quential two-phase heuristics and the dynamic two-phase heuristics. We performed a worst
case as well as an empirical analysis of nine heuristics. The analyses reveal that the four
WSTP-based heuristics perform better than the five other heuristics, in spite of the fact that
the four WSTP-based heuristics are static whereas three of the other heuristics are dynamic.
This may, at first sight, appear to be an anomaly, since observations in classical schedul-
ing problems indicate that dynamic heuristics usually perform better than static heuristics.
One reason why the static WSTP-based heuristics perform better than the dynamic heuristics
may be based on the fact that the dynamic selection criteria may put some orders with many
jobs ahead of a large number of orders with a few jobs; the cumulative cost of these orders
with few jobs becomes very large, just as in the example we presented in order to show that
the static WSTP-based heuristics are better than the dynamic heuristics. Our worst-case and
empirical analyses also validate this observation. With regard to solution quality and speed,
we recommend the WSTP-based heuristics.
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