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Abstract In this paper we study multiprocessor and open shop scheduling problems
from several points of view. We explore a tight dependence of the polynomial solvabil-
ity/intractability on the number of allowed preemptions. For an exhaustive interrelation, we
address the geometry of problems by means of a novel graphical representation. We use the
so-called preemption and machine-dependency graphs for preemptive multiprocessor and
shop scheduling problems, respectively. In a natural manner, we call a scheduling problem
acyclic if the corresponding graph is acyclic. There is a substantial interrelation between the
structure of these graphs and the complexity of the problems. Acyclic scheduling problems
are quite restrictive; at the same time, many of them still remain NP-hard. We believe that
an exhaustive study of acyclic scheduling problems can lead to a better understanding and
give a better insight of general scheduling problems.

We show that not only acyclic but also a special non-acyclic version of periodic job-shop
scheduling can be solved in polynomial (linear) time. In that version, the corresponding
machine dependency graph is allowed to have a special type of the so-called parti-colored
cycles. We show that trivial extensions of this problem become NP-hard. Then we suggest a
linear-time algorithm for the acyclic open-shop problem in which at most m − 2 preemptions
are allowed, where m is the number of machines. This result is also tight, as we show that if
we allow one less preemption, then this strongly restricted version of the classical open-shop
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scheduling problem becomes NP-hard. In general, we show that very simple acyclic shop
scheduling problems are NP-hard. As an example, any flow-shop problem with a single job
with three operations and the rest of the jobs with a single non-zero length operation is NP-
hard. We suggest linear-time approximation algorithm with the worst-case performance of
‖M‖ + 2‖J ‖ (‖M‖ + ‖J ‖, respectively) for acyclic job-shop (open-shop, respectively),
where ‖J ‖ (‖M‖, respectively) is the maximal job length (machine load, respectively).
We show that no algorithm for scheduling acyclic job-shop can guarantee a better worst-
case performance than ‖M‖ + ‖J ‖. We consider two special cases of the acyclic job-shop
with the so-called short jobs and short operations (restricting the maximal job and opera-
tion length) and solve them optimally in linear time. We show that scheduling m identical
processors with at most m − 2 preemptions is NP-hard, whereas a venerable early linear-
time algorithm by McNaughton yields m− 1 preemptions. Another multiprocessor schedul-
ing problem we consider is that of scheduling m unrelated processors with an additional
restriction that the processing time of any job on any machine is no more than the optimal
schedule makespan C∗

max. We show that the (2m − 3)-preemptive version of this problem
is polynomially solvable, whereas the (2m − 4)-preemptive version becomes NP-hard. For
general unrelated processors, we guarantee near-optimal (2m − 3)-preemptive schedules.
The makespan of such a schedule is no more than either the corresponding non-preemptive
schedule makespan or max{C∗

max,pmax}, where C∗
max is the optimal (preemptive) schedule

makespan and pmax is the maximal job processing time.

Keywords Algorithm · Shop scheduling · Multiprocessor scheduling · Time complexity ·
Preemption

1 Introduction

In a scheduling problem n jobs from the set J = {J 1, . . . , J n} need to be processed by m

machines or processors from the set M = {M1, . . . ,Mm}. Certain restrictions on how this
can be done define the set of all feasible schedules. One of the principle restrictions are
resource (machine) restrictions: each machine can handle no more than one job at a time.
Likewise, we can have precedence relations between the jobs, i.e., the job set can be partially
ordered (some jobs cannot be started before the other are not completed). Both type of
restrictions imply that the jobs have to be processed in a sequential manner. The precedence
restrictions are traditionally represented by directed graphs, the so-called precedence (task)
graphs.

Job preemptions might be allowed or not; correspondingly, a scheduling problem might
be preemptive or non-preemptive. Quite often, a non-preemptive scheduling problem P
is NP-hard, whereas its preemptive version Ppmtn is polynomially solvable. Let us call a
scheduling problem π -preemptive if at most π preemptions are allowed in it, π being any
non-negative integer. A natural question to ask is whether k-preemptive and l-preemptive
problems have the same complexity, k and l being non-negative integers. If a 0-preemptive
(non-preemptive) problem is NP-hard, does the corresponding k-preemptive problem, for
k = 1,2, . . . , remain NP-hard? Typically, there exists some positive integer π such that cor-
responding k-preemptive versions, for k ≥ π , become polynomially solvable. Then what is
the minimal π such that the π -preemptive version is polynomially solvable (we call such π

the critical number of preemptions for the problem)? Traditionally, a preemptive scheduling
problem implies an arbitrary number of preemptions: so a k-preemptive problem for a fixed
integer k > 0 would not be treated as a preemptive scheduling problem (unless k is “suffi-
ciently” large magnitude not known in advance and changing from problem to problem). So,
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though a k-preemptive problem (k > 0) is not a non-preemptive problem, it might neither be
a preemptive problem in the traditional sense. It seems to be appropriate to refine the clas-
sification of scheduling problems (into preemptive or non-preemptive ones) by specifying
the maximal number of preemptions which is allowed for a particular problem, i.e., consider
π -preemptive scheduling problems.

A polynomial-time algorithm for a preemptive problem Ppmtn imposes a certain number
of preemptions, the maximal number of which can be usually estimated. In most of the
real-life problems the number of preemptions is a crucial factor which has to be made as
small as possible: each preemption implies additional communication cost and may also
yield a forced job migration. How small the overall number of preemptions can be made,
i.e., what is the critical number of preemptions for Ppmtn? This kind of question has also
posed by Shachnai et al. (2002). They showed that scheduling uniform machines with at
most 2m − 2 preemptions Q/pmtn(2m − 2)/Cmax is NP-hard, whereas an O(n + m logm)

algorithm by Gonzalez and Sahni (1978a) yields at most 2m−1 preemptions. Thus 2m−1 is
the critical number of preemptions for Q/pmtn/Cmax. As to scheduling identical processors
P/pmtn/Cmax, we show that P/pmtn(m − 2)/Cmax is NP-hard, whereas a venerable linear-
time algorithm by McNaughton (1959) yields m − 1 preemptions. Thus m − 1 is the critical
number of preemptions for P/pmtn/Cmax.

In this paper we expose the machine dependency graph (dependency graph for short)
which is a convenient form for presenting machine restrictions as follows: each node rep-
resents a unique machine and an edge (P,Q) labeled with job J indicates that J has to be
scheduled (is scheduled) on both machines P and Q. Depending on a particular schedul-
ing problem, a dependency graph may represent either a problem instance or already some
distribution of jobs on machines (a distribution assigns jobs or their parts to machines with-
out specifying the start times; the latter is done on the sequencing stage which completely
defines a schedule). For example, in shop scheduling problems each job has to processed
on different machines and hence, there is a unique machine dependency graph representing
each problem instance. On the other hand, in preemptive multiprocessor scheduling prob-
lems, a job might be split into different parts assigned to different machines. In this case
the machine dependency graph will represent a particular distribution of jobs on machines,
which may vary from a schedule to a schedule. For this reason, we use the term preemp-
tion graph for distributions in multiprocessor scheduling (instead of machine dependency
graph). At the same time, a shop scheduling problem already gives some distribution and the
corresponding machine dependency graph represents that particular distribution. It is well-
known that the structure of a precedence graph is important in the complexity analysis of
scheduling problems. Quite similarly, the structure of a machine dependency (preemption)
graph is important is this analysis. A distribution or a shop scheduling problem is acyclic,
if its preemption (dependency) graph is acyclic. Acyclic problems are quite restrictive: for
example, in any acyclic open-shop no two jobs may have two (non-dummy) operations on
the same two machines.

Multiprocessor and open-shop scheduling problems are intimately related with acyclic
distributions. An optimal schedule can be obtained in two stages. On the first stage an op-
timal distribution is constructed in polynomial time by linear programming. This optimal
distribution has at most m − 1 preemptions, i.e., it is acyclic (see Potts 1985 and Shchepin
and Vakhania 2005a for details). Scheduling acyclic distributions turned out to be an ef-
ficient tool for the exact solution of R/pmtn/Cmax (see Lawler and Labetoulle 1978) and
an approximate solution of its non-preemptive version R//Cmax (see Lenstra et al. 1990
and Shchepin and Vakhania 2005a). Acyclic shop scheduling problems are also interesting
from the other point of view: they may represent the maximal polynomially solvable cases
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of the corresponding non-acyclic versions. Since acyclic graphs are easier to treat, acyclic
problems turn out to be more “transparent” than their corresponding non-acyclic versions.
Moreover, the study of acyclic problems may give a better insight into general (non-acyclic)
scheduling problems.

One of the acyclic problem we deal with in this paper is preemptive open-shop schedul-
ing O/acyclic,pmtn(m − 3)/Cmax. General preemptive open-shop problem O/pmtn/Cmax

is well-known to be solvable in polynomial (no worse than O(n4)) time, and its non-
preemptive version O//Cmax is NP-hard due to the early classical results by Gonzalez
and Sahni (1976). As we show here, (m − 3)-preemptive open-shop scheduling and even
its acyclic version O/acyclic,pmtn(m − 3)/Cmax remains NP-hard. At the same time, we
present a linear-time algorithm for O/acyclic,pmtn(m − 2)/Cmax showing in this way that
m − 2 is the critical number of preemptions. The early polynomial algorithm of Gonzalez
and Sahni (1976) for the general preemptive open-shop imposes up to O(n2m) preemptions.

Scheduling m unrelated processors is much more complicated than that of m uniform
processors and is among the heaviest NP-hard scheduling problems. We suggest a slightly
restricted but easier treatable version of an unrelated processor system. The additional re-
striction we impose is that the processing time of any job on any machine is no more than
the optimal schedule makespan C∗

max; i.e., there is no machine which is too slow for some
job. It might be assumed that the most of the unrelated machine systems, in practice, satisfy
this restriction: intuitively, there is not much sense in having an extremely slow proces-
sor for some job. We call such processors non-lazy unrelated processors and abbreviate
the problem by R/pij ≤ C∗

max/Cmax adopting the standard notation for scheduling prob-
lems. We show that R/pij ≤ C∗

max,pmtn(2m − 3)/Cmax is polynomially solvable, whereas
R/pij ≤ C∗

max,pmtn(2m− 4)/Cmax becomes NP-hard. For general unrelated processors, the
polynomial algorithm by Lawler and Labetoulle (1978) gives up to 4m2 − 5m + 2 preemp-
tions. We can reduce this number to (2m− 3) guaranteeing though a near-optimal schedule.
The makespan of such a schedule is no more than either the corresponding non-preemptive
schedule makespan or max{C∗

max,pmax}, where C∗
max is the optimal (preemptive) schedule

makespan and pmax is the maximal job processing time.
Our other results concern shop scheduling. There is a considerable list of the polyno-

mially solvable open-shop and flow-shop scheduling problems with unit-length operations.
If operation lengths are arbitrary, open-shop problem with 2 machines is solvable in linear
time, whereas it becomes NP-hard if either there are 3 machines or 3 jobs Gonzalez and
Sahni (1976). As already mentioned, any acyclic open-shop is NP-hard if we allow at most
m − 3 preemptions. In job-shop scheduling, if there are only two machines and two opera-
tions per job, the problem is solvable in O(n logn) time Jackson (1955). The problem can be
solved in linear time with two machines and unit-length operations Hefetz and Adiri (1982).
With two machines, if we allow jobs with three operations, or with three machines even if
there are no more than two operations per job, the problem becomes NP-hard, see Lenstra
et al. (1977) and Gonzalez and Sahni (1978b). Periodic shop scheduling, in general, is eas-
ier. For example, it is quite straightforward to solve periodic open-shop O,periodic//Cmax.
Hall et al. (2002) have shown that scheduling periodic 2-machine job-shop in which each
job is allowed to have 3 operations is NP-hard, but periodic job-shop problem can be solved
in linear time if each job has at most two operations. We show that a wider subclass of the
periodic job-shop problem can be solved in linear time. To each instance from this subclass
corresponds a machine dependency graph which may contain special type of the so-called
parti-colored cycles. In terms of the number of operations, this implies that for any 2 jobs
with 3 or more operations there can be at most 1 couple of operations (of different jobs) have
to be scheduled on the same machine. We show that the class of simplest shop instances for
which this condition does not hold, becomes NP-hard.
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We also suggest approximation algorithms for non-preemptive acyclic job-shop and
open-shop. Our liner-time algorithm for J/acyclic/Cmax has the worst-case performance
ratio ‖M‖ + 2‖J ‖, and the linear-time approximation algorithm for O/acyclic/Cmax has
the worst-case performance ratio ‖M‖ + ‖J ‖, where ‖J ‖ is the maximal job length and
‖M‖ is the maximal machine load (both magnitudes are lower bounds on the optimal
schedule makespan). We show that no algorithm for J/acyclic/Cmax can guarantee a better
worst-case performance than ‖M‖+‖J ‖. If we restrict the maximal job (operation, respec-
tively) length, we can solve the acyclic job-shop problem optimally. We abbreviate the ver-

sion with short jobs as J/acyclic,maxj

∑
i pij ≤ maxi

∑
j pij

m
/Cmax and with short operations

as J/acyclic,pij ≤ maxi

∑
j pij

2m−1 /Cmax, restricting the maximal job (operation, respectively)
length as indicated. We propose linear-time algorithms for the above problems.

We show that very simple classes of acyclic shop instances are NP-hard. For example,
any flow-shop with a single job with 3 operations and with the rest of the jobs with a single
non-zero operation is NP-hard.

The paper is divided into 5 sections. After this introductory section, we give the basics
in Sect. 2. Section 3 contains our polynomial-time algorithms, and Sect. 4 contains our NP-
hardness results. Our concluding remarks are given in Sect. 5. Some results from this paper
were published in the proceedings of the 2nd Multidisciplinary International Conference on
Scheduling: Theory and Applications (Shchepin and Vakhania 2005b), and in the proceed-
ings of the 9th WSEAS International Conference on Applied Mathematics (Shchepin and
Vakhania 2006).

2 Summary of basic concepts and notations

This section contains glossary of notions and notations used further in this paper. The reader
may choose to have a brief look on it or skip it at all now and return to it later upon necessity.
Not all the introduced notations are widely used in the literature, however we do find them
convenient.

Multiprocessor and shop scheduling problems A multiprocessor is a triple constituted by
the sets of jobs J and machines M and a processing time function f , a mapping from
J × M to R+, where the value of this function for a pair J,M is the processing time
(length) of job J on machine M denoted by M(J). A multiprocessor without any restriction
on its processing time function is called a system of unrelated processors. In a system of
identical processors for each P and Q from M and for each J ∈ J , P (J ) = Q(J).

We will deal with three basic shop scheduling problems and will occasionally use J ,M
to denote a shop scheduling instance with the set of jobs J = {J1, . . . , Jn} and the set of
machines M = {M1, . . . ,Mm}. In an instance of the job-shop J//Cmax each job from J
is an ordered set of elements called operations. Each operation is to be scheduled on one
particular machine from M. J

j

i is the operation of job J j to be performed on machine Mi

(we shall deal with job-shops in which every job has no more than one operation to be
scheduled on one particular machine). We will write J

j

i → J
j

k if J
j

i immediately precedes
J

j

k according to the operation order in J j . Operation J
j

i has a processing time or length p
j

i ,
which is the amount of time it takes on machine Mi . J

j

i is a dummy operation of job J j on
machine Mi if p

j

i = 0.
The open-shop O//Cmax is a special case of the job-shop in which there is no precedence

order between the operations of any job, these operations can be processed in an arbitrary
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order on their corresponding machines. The flow-shop F//Cmax is another special case of
job-shop scheduling problem in which the operation order in all jobs is the same, i.e., every
job is processed by the machines in the same predetermined order.

A restriction J ′,M′ of a shop instance J ,M is another shop instance with M′ ⊂ M
and J ′ ⊆ J ; J ,M is an extension of J ′,M′. If J

j

i ∈ J j and Mi ∈ M \ M′, operation J
j

i

disappears in J ′,M′; a job will completely disappear if all its (non-dummy) operations dis-
appear. We will say that a shop instance J ′,M′ is an elementary extension of a shop instance
J ,M if J ′,M′ is an extension of J ,M such that all jobs from J ′ \J are elementary jobs,
that is, they consist of a single operation.

Distributions and assignments A distribution δ of jobs from J on machines from M is
a mapping δ:J × M → R+, such that

∑
M∈M δ(J,M) = 1, for all J ∈ J . The processing

time (length) of job J on M in distribution δ is |J |δM = δ(J,M)M(J ). The (total) processing
time of J in δ is |J |δ = ∑

M∈M |J |δM . We use |δ|max for the maximal job processing time in
δ and we use the traditional pmax for the maximal job processing time.

The load |M|δ of M ∈ M in δ is
∑

J∈J |J |δM . Adopting the common terminology for
schedules, we shall refer to the maximal machine load in δ as the makespan of δ and denote
it by |δ|max. Note that the distribution, corresponding to each instance of a shop scheduling
problem J ,M is already given by that instance; in particular, this distribution is defined by

δ(J j ,Mi) = |J j
i

|
|J j | , and the machine load then can also be expressed as |Mi | = ∑n

j=1 p
j

i .
A distribution δ for J ,M with the minimal |δ|max is called an optimal distribution. A uni-

form distribution (shop problem) is one, in which all machine loads are equal. An acyclic
shop problem is one with an acyclic distribution.

The sequential makespan of δ, ‖δ‖ = max{|δ|max, |δ|max}. It is clear that ‖δ‖ is a lower
bound on the makespan of any feasible schedule for the corresponding open-shop prob-
lem; Gonzalez and Sahni (1976) have shown that ‖δ‖ is achievable in a (feasible) schedule
associated with distribution δ (see also Lawler and Labetoulle 1978).

An assignment of jobs of J on machines of M is a binary relation on J × M. Any
distribution δ of J on M generates an assignment {(J,M) | δ(J,M) > 0}. We will not use
any special letter for an assignment, instead, we will use δ(J ) for {M ∈ M | δ(J,M) > 0}.
A distribution δ is non-preemptive if δ(J,M) takes value 0 or 1 for any J,M . The number
of preemptions of job J in δ is prJ (δ) = |δ(J )| − 1. pr(δ) = ∑

J∈J prJ (δ) is the (total)
number of preemption in δ.

Schedules A schedule indicates which job (operation) is in process on each machine at
any time moment; if for some machine no operation for some time moment is specified, this
machine is idle at that moment. Since a machine can process at most one job at any moment,
a schedule can be seen as a mapping from M × [0, T ), for some T ≥ 0, to J , or a graph
of such a mapping, i.e., a subset of the product J × M × [0, T ). (J,M, t) ∈ σ signifies
that job J is processed by machine M at the moment t in σ . T is called the makespan of
σ and is denoted by ‖σ‖. Note that for any given distribution, there are infinitely many
schedules with that distribution. Conversely, with each schedule σ a distribution δσ defined
as δσ (J,M) = |σ(J,M)|

M(J)
is associated.

Besides the above finite schedules, we deal with periodic (infinite) schedules. A periodic
schedule is defined as a pair (σ,T ), where σ is an (infinite) schedule and T ∈ R+ is the
period of σ . The period T is the minimal non-negative real number, such that: (a) at any time
moment t , (J,M, t) ∈ σ implies (J,M, t + T ) ∈ σ ; (b) each job J is completely processed
in the time interval [s, s + T ), where s is the starting time of the earliest schedule operation
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of job J . Due to the similarity between the period of a periodic schedule and the makespan
of a finite schedule, the period T of σ will be also denoted by ‖σ‖.

By our convention, we use the left-interval representation, i.e., all processing intervals
are left half-intervals of the form [p,q) (observe that the whole time axis R+ is also a left
half-interval). A schedule component is the maximal time interval during which a machine
processes a unique job. A schedule can be completely given by all its components. Formally,
a component of a schedule σ is a triple (J,M, [p,q)), where J is a job, M is a machine and
[p,q) is a time interval which is a connectivity component in σ(J,M). We will refer to a
component (J,M, [p,q)) as a J -component of σ on M or a (J,M)-component.

For a pair J,M ∈ J ×M, σ(J,M) = {t ∈ R+ | (J,M, t) ∈ σ }. If σ is finite then σ(J,M)

is a union of a finite number of left half-intervals, will call such a union a multi-interval. A T -
periodic interval, generated by an interval [p,q) is the union of all half-intervals

⋃∞
k=0[p +

kT , q + kT ). For a periodic schedule σ , σ(J,M) is a ‖σ‖-periodic multi-interval that is, a
union of a finite number of ‖σ‖-periodic intervals. The length of a finite multi-interval I ,
|I| is the sum of lengths of all its disjoint intervals. If I is a T -periodic multi-interval, then
|I| = limk→∞ |I∩[0,kT )|

k
.

The total length of σ(J,M), |σ(J,M)|, is the processing time of J on M in σ . For M ∈
M and t ∈ R+, the job-set σ(M, t) is σ(M, t) = {J ∈ J | (J,M, t) ∈ σ }. σ is sequential on
machine M if the job set σ(M, t) contains at most one element for any t , i.e., M handles
at most one job at any time moment. Likewise, σ is sequential on job J if the machine
set σ(J, t) = {M ∈ M | (J,M, t) ∈ σ } contains at most one element for any t , i.e., J is
processed by at most one machine at any time moment. A sequential schedule is one which
is sequential on all jobs and all machines. Some sequential schedules are represented on
Figs. 7, 5a, 8 and 9.

If σ is sequential on job J , different J -components do not intersect in time and hence
they are naturally ordered. Suppose [p,q) and [p′, q ′) are J -components corresponding to
different operations of job J . We will say that [p′, q ′) is a continuation of [p,q) if q ≤ p′
and there is no other J -component, scheduled within the interval [q,p′). A sequential sched-
ule σ on J is said to be continuous on job J if the continuation of every J -component
[p′, q ′) is another J -component [p,q) with q = p′ (except for the latest scheduled operation
of J ). Similarly, a sequential schedule σ on M is continuous on machine M , if for every J -
component [p,q), different from the last scheduled one, there is some J ′-component [p′, q ′)
on M , with p′ = q . A continuous schedule is one which is continuous on all machines and
jobs. The schedule from Fig. 7 is continuous on all 3 machines and is continuous on jobs J 1

and J 2; the schedule from Fig. 8 is continuous on all machines and on job J 0.
In general, a feasible schedule σ is a sequential schedule in which each job is completely

processed. In other words,

(1) The job-set σ(M, t) = {J ∈ J | (J,M, t) ∈ σ } contains at most one element, for every
M ∈ M;

(2) The machine-set σ(J, t) = {M ∈ M | (J,M, t) ∈ σ } contains at most one element, for
every J ∈ J ;

(3)
∑

M∈M
|σ(J,M)|

M(J)
= 1, for every J ∈ J .

Besides the above conditions, depending on a particular scheduling problem, some addi-
tional restrictions for a feasible schedule may exist. For example, in a feasible schedule σ

for a job-shop (flow-shop) problem the precedence relations between the operations of each
job must be respected, i.e., if J

j

i → J
j

k then the continuation of any (J j ,Mi)-component
of σ is a (J j ,Mk)-component (this condition also provides that σ is sequential on each job).
In addition, if no job preemptions are allowed, then the length of the (J,M)-component
must be |σ(J,M)|, for any J ∈ J and M ∈ M.
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A feasible schedule σ with the minimal (makespan/period) ‖σ‖ is optimal. Observe that
any continuous periodic schedule for job-shop J ,M has the period max{‖M‖,‖J ‖}. This
period/makespan is optimal for periodic as well as finite schedules, because any feasible
schedule is sequential on both, machines and jobs:

Lemma 1 For any feasible schedule σ , ‖σ‖ ≥ ‖M‖ and ‖σ‖ ≥ ‖J ‖. Hence, σ is optimal
if ‖σ‖ = max{‖M‖,‖J ‖}.

We call a feasible schedule tight, if no machine is idle from time 0 to its completion
time (that is, the completion time of the latest job scheduled on that machine). A tight non-
preemptive schedule, associated with a distribution δ can uniquely be given by indicating a
sequence of jobs for each machine. The makespan of this (not necessarily feasible) schedule
is |δ|max.

A boundary point of the set σ(J,M) is called a switching point of J on M . At such a
point, M interrupts the processing of J or (re)starts its processing. In the schedule S ′ on
Fig. 1, [p,q) is a J ∗-component and p and q are switching points. Job J is split on machine
M if σ(J,M) is a multi-interval, i.e., it consists of two or more J -components. The number
of splittings of job J on machine M in σ , sp(σ (J,M)) is the number or components in
σ(J,M) minus 1. sp(σ (M)) = ∑

J∈J sp(σ (J,M)) is the number of splittings in σ on M ;
sp(σ ) = ∑

M∈M sp(σ (M)) is the total number of splittings in σ .
The total number of preemptions in σ , pr(σ ) = sp(σ ) + pr(δσ ): a preemption in σ may

come either from δσ , or it might be a splitting.

Schedule rotation, shifting and job insertion Given a schedule σ , we may distinguish its
m parts on m different machines, and permit to “move circularly” (or rotate) these parts by
some constant. We will say that σ ′ is obtained by a φ-rotation on machine M ∈ M from σ

if (J,M, t) ∈ σ iff (J,M, (t + φ(M)) mod |σ |) ∈ σ ′, for a real number φ(M) (φ is a real
function). We will say that a rotation of σ is coherent if φ(M) = φ(P ), for every M and P

from M. We denote by σφ the schedule, obtained from σ by a coherent φ-rotation (here φ

is a constant). The following basic properties are easily seen: (1) |σφ | = |σ |; (2) associated
distribution is invariant under rotations; (3) there may occur at most one additional splitting
in σφ on each M ∈ M; (4) if φ is a coherent rotation and σ is feasible, σφ is also feasible.

Instead of rotating, we may just shift completely schedule σ : for a positive number x,
the x-shifting of σ is a schedule σx , such that σx = {(J,M, t) | (J,M, t − x) ∈ σ }. For a
negative x, we define σx similarly with the additional condition that the starting time of an
earliest scheduled job in σ is no less than |x|. Schedule Sx from Fig. 1 is the x = |[r,p]|-
shifting of the schedule S from the same figure.

We will say that σ ′ is obtained from σ by inserting job J ∗ on machine M0 into the time
interval [p,q) if for any J and M :

Fig. 1 Job insertion and
schedule shifting
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(1) σ(J,M) = σ ′(J,M) if M = M0;
(2) (J,M0, t) ∈ σ iff (J,M0, t) ∈ σ ′, for any t < p;
(3) (J,M0, t − (q − p)) ∈ σ iff (J,M0, t) ∈ σ ′, for any t ≥ q;
(4) σ ′(M0, t) = J ∗, for any t ∈ [p,q).

The schedule S ′ on Fig. 1 is obtained from schedule S by inserting job J ∗ into the inter-
val [p,q).

Graphical representation Recall that there is a unique node in a dependency graph G for
each machine from M, each edge in G represents a job shared by the corresponding cou-
ple of machines. For an instance of job-shop problem J ,M, there is an edge (Ml,Mk) in
the corresponding machine dependency graph G labeled by job J j , iff J

j

l → J
j

k . The J -
component of G, G[J ] is its subgraph formed by the union of all edges of G, labeled by
job J . It is easily seen that each J -component forms an acyclic path without any branching
in G and that only non-elementary jobs from J are presented in G. On Figs. 2 and 3 de-
pendency graphs with 5 and 6 J -components are depicted; empty nodes represent machines
sharing at most one non-elementary job and the labeled nodes represent machines sharing
two or more non-elementary jobs.

Recall also that preemption graphs are defined for distributions. In the full preemption
graph of a distribution δ there is an edge (Mi,Mj ) between nodes Mi and Mj labeled by
job J , iff both δ(J,Mi) and δ(J,Mj ) are positive. The (reduced) preemption graph of δ is a
subgraph G(δ) of the full preemption graph, in which all redundant edges are eliminated: an
edge (Mi,Mj ) labeled by J is redundant, if there exists k, i < k < j , such that δ(J,Mk) > 0
(according to our machine numbering in M). Any subgraph of the full preemption graph of
δ constituted by all nodes representing machines sharing some job J with all edges labeled
by J , is a complete graph. The corresponding subgraph in the reduced preemption graph
G(δ) is a simple path in G(δ). To different enumerations in M different preemption graphs
correspond. However, it is easily seen that G(δ) is acyclic if and only if the preemption

Fig. 2 An acyclic dependency
graph with 5 jobs
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Fig. 3 An non-acyclic dependency graph with 5 jobs

graph, corresponding to any enumeration in M is acyclic. The following two observations
are also evident. First, the number of preemptions in δ is equal to the number of edges
in G(δ). Second, the preemption graph of δ is not connected iff J can be partitioned into
subsets J1 ∪J2 = J , such that δ(J1) ∩ δ(J2) = ∅, for each J1 ∈ J1 and J2 ∈ J2.

Let now again G be a dependency graph of a job-shop instance. Operation order does not
influence on the acyclicity of G. That is, if the dependency graph of some instance of job-
shop is acyclic then the dependency graph of any other instance of job-shop obtained from
the former instance by changing arbitrarily the operation order of all jobs is also acyclic.
Equivalently, any job-shop instance, obtained from some acyclic open-shop instance by im-
posing some operation order for each job is acyclic, and vice-versa. Using this fact, we can
define the machine dependency graph for an open-shop instance as that of any correspond-
ing job-shop instance. We can associate with the machine dependency graph G representing
an instance of job-shop, a bipartite assignment graph GB representing the corresponding
open-shop instance (see Lenstra et al. 1990). In GB , the two sets of vertices are formed by
the set of jobs J and set of machines of M, respectively, and there is an edge (J j ,Mi) iff
p

j

i > 0. To prove our claim, it will suffice to show that G is acyclic if any only if GB is
acyclic:

Lemma 2 The bipartite assignment graph GB is acyclic if and only if the associated ma-
chine dependency graph G is acyclic.

Proof Each simple cycle in G is formed by a sequence of distinct machines M0,M1, . . . ,Mk ,
such that Mi and Mi+1, i = 0,1, . . . , k −1, share a job, denoted by J i , and M0 and Mk share
a job, denoted by J k . Note that we may have J i = J j for some is and j s, but as each J -
component G[J ] is acyclic, at least two edges in the cycle are labeled by different jobs. If all
jobs on the cycle are different, then corresponding to this cycle in G there is a simple cycle
M0, J

0,M1, J
1, . . . ,Mk, J

k,M0 in GB . Otherwise, we find i and j such that J i = J j , and
all jobs in between are different. Then J i,Mi+1, J

i+1, . . . ,Mj , J
j is a simple cycle in GB .
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Conversely, suppose M0, J
0,M1, J

1, . . . ,Mk, J
k,M0 is a simple cycle in GB . Now not

necessarily M0,M1, . . . ,Mk forms a cycle in G as for some is, operations J i
i and J i

i+1 from
the cycle may not be two successive operations in J i . But we can form a cycle in G using a
path between each Mi and Mi+1 in G (which always exists and belongs to the J i -component
of G). �

The next observation immediately follows:

Observation 1 All elementary extensions of any shop instance have the same dependency
graph.

Let us say that a shop instance is finitely (periodically or continuously, respectively)
solvable if there is a polynomial-time algorithm which constructs an optimal finite (opti-
mal periodic or continuous, respectively) schedule for all elementary extensions of this shop
instance. Likewise, a shop instance is said to be finitely (periodically or continuously, re-
spectively) unsolvable if the problem of constructing of an optimal finite (optimal periodic
or continuous, respectively) schedule for any its elementary extension is NP-hard. A depen-
dency graph is said to be finitely (periodically or continuously, respectively) solvable if there
is a polynomial time algorithm, which for every shop instance with this dependency graph
constructs an optimal finite (optimal periodic or continuous, respectively) schedule. Later
on, we will use solvable (unsolvable) for finitely solvable (finitely unsolvable).

Observation 2 If a shop instance has a finitely (periodically or continuously, respectively)
solvable dependency graph then it is finitely (periodically or continuously, respectively) solv-
able.

Proof Immediately follows from the fact that all elementary extensions of any shop instance
have the same dependency graph. �

Note that the converted statement is not true: the solvability of a particular shop instance
depends on job data such as operation lengths which are irrelevant in the dependency graphs.

Let us return to Figs. 2 and 3 and observe again that each J -component G[J ] is an
acyclic path in G. Observe also that if G is acyclic then one of the ends of any G[J ] is a
leaf. Let us call a J -component G[J ] a marginal component in G if G[J ] contains at most
one node, associated with an edge not in G[J ]. Thus G[J ] can be connected with the rest of
G by at most one common node in G (or can be an isolated component of G). This means
that job J shares at most one machine with any other (non-elementary) job from G. The
components J4, J1 and J0 are marginal components in the dependency graph of Fig. 2 and
the machines W,Z and X are the ones with more than one elementary job.

We apply the following decomposition of an acyclic dependency graph G from Shchepin
and Vakhania (2002). We find any marginal component in G = G0, G[J 0] and form the
subgraph G1 of G0 by deleting all edges and nodes from the G[J 0] component in G0, except
the common node of G[J ] in G0. We proceed with G1 applying the same procedure: we find
a marginal component G[J 1] of G1 and form the next graph G2 similarly. We continue until
an empty graph Gk is obtained. Note that during this decomposition, former common nodes
become non-common in the consequently obtained subgraphs and they are deleted. We call
the sequence G0,G1, . . . ,Gk a collapsing of G and the corresponding sequence of jobs
J 0, . . . , J k−1 a collapsing sequence of jobs. For the dependency graph of Fig. 2, one of the
possible collapsing sequences of jobs is J0, J1, J2, J3, J4; G1 is obtained from G = G0 by
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deleting all nodes and edges of G[J 0] except the common node W of G0, G2 is obtained by
deleting from G1 all nodes and edges of G[J 1] except the common node Z of G1 (W is no
longer a common node in G1), G3 is obtained from G2 by deleting the two edges of G[J 2]
(the common node Y is not deleted), G4 is obtained from G3 by deleting the two edges
of G[J 3] (node Y is again left) and G5 is the final empty graph. Thus G0,G1, . . . ,G5 is a
possible collapsing of G. The rough estimation on the time needed for the construction of a
collapsing is O(m2), but this can be done in time O(m), see Shchepin and Vakhania (2002).

3 Polynomial time algorithms

3.1 Periodic job-shop

In this subsection we give a linear-time algorithm for the special subclass of the periodic
job-shop scheduling problem. Later in the next section we will show that trivial extensions
of this subclass become NP-hard. Each problem from the subclass is represented by machine
dependency graph whose any cycle is simple parti-colored: a simple cycle in a dependency
graph is parti-colored if all its edges have different labels. A machine dependency graph
of Fig. 3 has a simple parti-colored cycle X,J1, Y, J2,W,J3,Z,J4. We can see from the
figure that any non-elementary job may contribute with at most one edge in the cycle: while
some two operations of a non-elementary job may correspond to two distinct machines
from the cycle, any other operation of that job is to be scheduled on a machine which is not
from the cycle. We call a job-shop problem which machine dependency graph may contain
only simple parti-colored cycles a parti-cyclic job-shop and abbreviate the periodic version
as J,periodic/parti-cyclic/Cmax.

An extension J ′,M′ of J ,M is said to be its simple extension with job I if (i) J ′ =
J ∪ {I }; (ii) there is no operation on any machine of M′ \ M of any job from J , whereas
job I has one operation on each of these machines; (iii) besides, job I has one operation on
one of the machines in M.

Lemma 3 Let σ be a continuous finite schedule for job-shop J ,M. Then there is an O(m)

algorithm which constructs a continuous finite schedule σI for a simple extension J ′,M′ of
J ,M with job I .

Proof Let M be the machine of M with an operation o of I . Since no operation of job I

is scheduled on any machine of M except machine M , o can be scheduled on machine M

at the completion time of M in σ and the resulting schedule will remain continuous (on
all its jobs and all its machines). We complete the construction of σI by inserting job I

on the rest of the machines from M′ \ M in the continuous manner (the operation order
in I is respected, σI being continuous on I ): we insert first the successive to o operations
continuously and then, similarly, the preceding to o operations continuously in the reversed
precedence order. Inserted in this way operations of job I will not overlap with any job from
J as there is no such a job on any machine from M′ \M. O(m) is clearly an upper bound
on the running time. �

For an enumeration of jobs J 1, J 2, . . . , J k , k ≤ n of J , let us define the corresponding
sequence of machine subsets M1,M2, . . . ,Mk , as follows: M1 consists of all machines
with an operation of job J 1; each Mi is Mi−1 completed with all machines of M \ Mi−1

with an operation of job J i . Clearly, for any given enumeration of jobs there is a unique cor-
responding sequence of machine subsets and this sequence can be obtained in time O(nm).
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Lemma 4 A continuous finite schedule σ for an instance of acyclic job shop J ,M can be
constructed in time O(nm).

Proof Let G be the machine dependency graph of our job-shop instance, J 1, J 2, . . . , J k

be the collapsing sequence of jobs of G (Sect. 3), Ji = {J k, J k−1, . . . , J k−i+1} (i =
1,2, . . . , k), and let M1,M2, . . . ,Mk be the sequence of machine subsets corresponding to
J 1, J 2, . . . , J k . Our algorithm for the construction of σ is simple. First construct a contin-
uous schedule σ1 for J 1,M1 (this is easy since there is only one job in J 1). The job shop
J i+1,Mi+1 is a simple extension of J i ,Mi , for all i = 1,2, . . . , k − 1. Hence, for each
i = 2,3, . . . , k − 1, we can extend the continuous schedule σi for J i ,Mi to the continuous
schedule σi+1 for Ji+1,Mi+1 by Lemma 3. The construction of the collapsing sequence and
the corresponding sequence of machine subsets, respectively, takes time O(m) and O(nm),
respectively. Since the construction of each extension takes time O(m) (Lemma 3) and
k ≤ n, the overall time complexity is O(nm). �

Lemma 5 From a finite continuous schedule σ , a periodic continuous schedule σP for job-
shop J ,M with the optimal period T = max{‖J ‖,‖M‖} can be obtained in time O(nm).

Proof We obtain σ by Lemma 4, and we build the destiny periodic schedule σP by the
periodic extension of σ , σP = ⋃∞

k=1 σ kT , where σ kT is the kT -shifting of σ . It is not difficult
to see that σP is a periodic sequential schedule. Indeed, let S and C be the starting and
completion time, respectively of M ∈ M in σ . Since σ is continuous, C − S ≤ T and hence
for any k, the kT -shifting of the interval [S,C) will be disjoint from the (k + 1)T -shifting.
Analogously, σP is sequential on any job in J . Finally, we observe that σP has the optimal
period T = max{‖J ‖,‖M‖} (see Lemma 1). �

We already have an O(nm) algorithm for J,periodic/acyclic/Cmax. Indeed, we construct
a finite continuous schedule σ for all non-elementary jobs of our job-shop by Lemma 4.
Then we insert all elementary jobs obtaining another continuous schedule. Finally, we peri-
odically extend the latter continuous schedule by Lemma 5.

Theorem 1 There is an O(nm) algorithm for J,periodic/acyclic/Cmax.

Now we generalize this result for the periodic parti-cyclic job-shop using the following
lemmas.

Lemma 6 A dependency graph G is continuously solvable in linear-time if it is a simple
parti-colored cycle.

Proof Let J ,M be a job-shop instance with the dependency graph G, and let J ′ and M′
be the set of jobs and machines presented in G (elementary jobs from J \ J ′ and their
corresponding machines from M \ M′ are not presented in G). Observe that each non-
elementary job from J ′ is associated with a single edge of G, representing two unique
operations of this job to be scheduled on two distinct machines of M. Since G is a parti-
colored cycle, for each machine M ∈ M′, there are only two operations (of two different
jobs of J ′) have to be performed on M . Let T be the maximal operation length in J ′.
Then we schedule one of the above operations to be completed at time T , starting the other
operation at time T , depending on the precedence order. In particular, let J

j

l and J
j

k , with
J

j

l → J
j

k , be operations of a J j ∈ J ′. Then we schedule operation J
j

l to be finished at time
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T on machine Ml ∈ M′ and we start operation J
j

k at time T on machine Mk ∈ M′. By
this construction, the resulting schedule is continuous on all machines of M′ and all jobs
of J ′. We extend this continuous schedule to another continuous schedule by adding a single
operation of each elementary job from J \J ′ without creating any machine idle time. �

Lemma 7 Let G be a dependency graph, partitioned into subgraphs G1 and G2 with a sin-
gle connecting edge E. Then G is continuously solvable if both, G1 and G2 are continuously
solvable.

Proof Let J ,M be a job-shop with the dependency graph G. We enumerate the set M
in such a way that the first p machines belong to G1 and the last m − p machines belong
to G2, with E = (Mp,Mp+1). Let M1 = {M1, . . . ,Mp,Mp+1} and M2 = {Mp+1, . . . ,Mm},
and J j be the job, shared by machines Mp and Mp+1 with J

j
p → J

j

p+1. Suppose J i ,Mi is
the restriction of J ,M on Mi , and σi is a continuous schedule for J i ,Mi , i = 1,2. Let
f be the completion time of J j in σ1 and s be the starting time of J j in σ2. Further, let σ s

1

and σ
f

2 , respectively, be the s-shifting of s1 and the f -shifting of s2, respectively. Then it is
easily seen that σ = σ s

1 ∪ σ
f

2 is a feasible continuous schedule for J ,M. �

Theorem 2 There is an O(nm) algorithm for J,periodic/parti − cyclic/Cmax.

Proof The proof is analogous to the proof of Theorem 1 with the additional use of Lem-
mas 6 and 7. Here is a sketch. First, we use a semi-collapsing Gk ⊂ Gk−1 ⊂ · · · ⊂ G0 = G

of G defined analogously as a collapsing with the only difference that each Gi \ Gi+1 is
either a marginal component (as in collapsing) or it is a parti-colored cycle of G (a semi-
collapsing of G can be constructed in linear time, quite similarly as a collapsing). As in
Lemma 4, we iteratively apply our semi-collapsing and generate the resulting continuous
schedule. We construct the initial partial schedule as in Lemma 4 if Gk is acyclic, or we
apply Lemma 6 if Gk is a parti-colored cycle. Iteratively, we apply Lemma 3 if Gi \ Gi+1

is a marginal component. If Gi \ Gi+1 is a parti-colored cycle, then we first construct a
continuous schedule for the cycle applying Lemma 6; then we apply Lemma 7 to unify the
latter continuous schedule with the (already constructed) continuous schedule for Gi+1. As
in Theorem 1, the T -periodic extension of σ (T = max{‖M‖,‖J ‖}) is an optimal feasible
periodic schedule for J ,M. �

3.2 Preemptive open-shop

In this section we show that acyclic open-shop problem with up to m − 2 preemptions
O/acyclic,pmtn(m − 2)/Cmax can be efficiently solved. Later in the next section we prove
that the problem with one less preemption becomes NP-hard.

Theorem 3 O/acyclic,pmtn(m − 2)/Cmax can be solved in time O(nm).

Proof First we generate a job-shop instance, corresponding to our open-shop instance by
imposing any operation order in each job. Applying Theorem 1, we construct a periodic
schedule σP with the optimal period ‖σP ‖ = max{‖J ‖,‖M‖} for this job-shop instance.
σP is a periodic extension of a continuous finite schedule. Hence, each J j is continuous
in σP . Consider any switching point τ , such that J

j

i completes at time τ on machine Mi and
(its immediate successor) operation J

j

k starts at the same time on machine Mk .
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To obtain our destiny schedule σ , we coherently rotate a finite segment of σP . In particu-
lar, let σ be the coherent (−τ )-rotation of the finite schedule σP ∩J ×M×[τ, τ +‖σP ‖).
Observe that after the rotation, J

j

i (J j

k , respectively) will be the last (the first, respectively)
scheduled operation on Mi (Mk , respectively), and J

j

k will start at time 0 in σ . Since τ is
a switching point for machines Mi and Mk in σP , there will be no preemption on these
machines in σ . At the same time, in the worst case, there will occur a single preemption
on each of the other m − 2 machines at time 0 (such a preemption will occur on machine
M ∈ M if τ was not a switching point for the job processed in σP at moment τ on M : the
part of the corresponding operation scheduled after time τ in σP will be scheduled from
time 0 on M and the other part will be scheduled the last on M and will be completed right
at the moment ‖σ‖ in σ ). Thus σ has at most m − 2 preemptions and σ is optimal as its
makespan is T (Lemma 1). �

3.3 Non-preemptive job-shop and open-shop

In this subsection we propose linear-time approximation algorithm for acyclic job-shop with
the worst-case performance of ‖M‖ + 2‖J ‖ and linear-time approximation algorithm for
acyclic open-shop with the worst-case performance of ‖M‖ + ‖J ‖; then we show that
the bound ‖M‖ + ‖J ‖ is tight for J/acyclic/Cmax, i.e., there always exist acyclic job-shop
instances for which ‖M‖+‖J ‖ is the optimal makespan, hence no algorithm can guarantee
a better approximation for this problem. Finally, we suggest two exact linear-time algorithms
for special case of acyclic job-shop restricting the maximal operation and job lengths.

3.3.1 Approximation algorithms for acyclic job-shop and open-shop

Theorem 4 A feasible schedule σ with ‖σ‖ ≤ ‖M‖ + 2‖J ‖ ≤ 3Cmax for J/acyclic/Cmax

can be obtained in time O(nm).

Proof For our job-shop J ,M, let J 1, . . . , J l be the collapsing sequence of jobs for our job-
shop and let M1, . . . ,Ml be the corresponding sequence of machine subsets (see Sect. 3.1).
We describe below the algorithm which builds our destiny schedule σ .

Initial step. Initially we construct schedule s1 for the restriction of J ,M on M1 as follows.
Schedule the first in the precedence order operation of J 1 on machine M1 so that to ter-
minate it at the moment ‖M‖ + ‖J ‖. Schedule all other operations on M1 starting from
the moment ‖J ‖ continuously without idle times. By this construction, the last of these
operations will be completed no later than operation J 1

1 was started. So all operations on
M1 will be processed within the time interval [‖J ‖,‖J ‖+‖M‖). Schedule each succeed-
ing to J 1

1 operation of job J 1 on its corresponding machine providing the continuity of σ1

on J 1. Then the completion time of the latest scheduled operation of J 1 will be no more
than ‖M‖ + 2‖J ‖ − p1

1 (see Fig. 4).
General step. At each consequent iteration, we already have a schedule σk defined on the

restriction of our job-shop on Mk and we extend it to Mk+1. If there is no operation of
J k+1 to be scheduled on any machine of Mk , we define the schedule on Mk+1 \ Mk

similarly as in the Initial step. Suppose Mq is the unique machine from Mk sharing job
J k+1. Operation J k+1

q is scheduled at time ‖J ‖ on Mq (Fig. 4). We shall distinguish two
cases for scheduling the other operations of job J k+1: the first case deals with the operations
of job J k+1 preceding operation J k+1

q , and the second case deals with the operations of
J k+1, succeeding J k+1

q .
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Fig. 4 Approximation algorithm for acyclic job-shop

Case 1. Suppose J k+1
p → J k+1

q , for some p. The schedule on machine Mp is constructed as
follows: J k+1

p is scheduled the first so that it terminates at the moment ‖J ‖ and all other
operations are scheduled continuously in an arbitrary order on Mp (Fig. 4). The operations
of J k+1, preceding J k+1

q are scheduled similarly as operation J k+1
p , in a continuous manner:

each such an operation, say J k+1
i , will be scheduled the first on Mi inside the time interval

(‖J ‖−|J k+1|,‖J ‖) and the rest of the jobs on Mi will be scheduled continuously starting
from the moment ‖J ‖.

Case 2. Suppose J k+1
q → J k+1

r , for some r . The schedule on machine Mr is constructed as
follows. J k+1

r is scheduled last on Mr starting at the moment ‖M‖ + ‖J ‖ and other oper-
ations on Mr are scheduled continuously, in an arbitrary order, starting from the moment
‖J ‖ (Fig. 4). The operations of J k+1, succeeding J k+1

q are scheduled similarly as opera-

tion J k+1
r , in a continuous manner: each such an operation, say J k+1

i , will be scheduled the
last on machine Mi inside the time interval (‖J ‖ + ‖M‖,‖J ‖ + ‖M‖ + |J k+1|) and the
rest of the jobs on Mi will be scheduled continuously starting from the moment ‖J ‖.
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Fig. 5 (a) A 2-approximation
job-shop instance. (b) An acyclic
dependency graph for the
job-shop instance of Example 1

(a) (b)

By the construction, all operations in each σk will be started no earlier than at time 0 and
will be completed no later than at time ‖J ‖ + ‖M‖ + ‖J ‖ (Fig. 4) and σl = σ is a feasible
schedule for J ,M with the makespan of at most ‖M‖ + 2‖J ‖. �

The 3-approximation algorithm from the above proof can be easily adopted to a
2-approximation algorithm for O/acyclic/Cmax. In the case of open-shop, we may always
treat the operation J k+1

p as the last operation of job J k+1 and we can schedule continuously
all other operations of J k+1 before that operation. Then no operation will be completed after
time ‖M‖ + ‖J ‖ and we obtain a 2-approximation algorithm:

Theorem 5 A feasible schedule σ with ‖σ‖ ≤ ‖|J || + |M‖ ≤ 2Cmax for O/acyclic/Cmax

can be obtained in time O(nm).

The final example of this subsection shows that the bound ‖M‖ + ‖J ‖ is tight
for J/acyclic/Cmax:

Theorem 6 For any ε > 0 there exists an instance of an acyclic job-shop J ,M, such that
for any its feasible finite schedule σ , ‖σ‖ > ‖M‖ + ‖J ‖ − ε.

Proof Let μ be a natural number such that 1/μ < ε. We will construct a job-shop with
μ2 −μ+1 machines and μ jobs. The set of machines consists of one distinguished machine
M1, and μ2 − μ other machines enumerated as Mij , 1 ≤ i ≤ μ and 1 < j ≤ μ. The length
of all operations is 1/μ and the first (in the precedence order) operation of every job is to
be scheduled on machine M1. The rest of the operations of each job J i are to be scheduled
on machines Mi2,Mi3, . . . ,Miμ in this order. As we can see from Fig. 5b, the dependency
graph of the defined job-shop is acyclic. ‖J ‖ = ‖M‖ = 1 and the makespan of the optimal
schedule is ‖J ‖ + ‖M‖ − 1/μ > ‖J ‖ + ‖M‖ − ε (see Fig. 5a). �

3.3.2 Scheduling job-shop with short jobs

We use the following notations in the rest of this section. T = ‖M‖ (which is a lower bound
on the optimal makespan), [J j

i ] is the number of operations of job J j preceding opera-
tion J J

i , |J j |i is the total summary length of all operations of job J j preceding operation J
j

i
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Fig. 6 Machine enumeration in
the proof of Theorem 8

and [J j ] is the total number of operations of job J j minus 1. Let us say that an instance of
job-shop J ,M is one with short jobs if m‖J ‖ ≤ T .

Theorem 7 There is an O(nm) algorithm, which for any acyclic job-shop J ,M with short
jobs constructs an optimal schedule σ with ‖σ‖ = T .

First we describe the algorithm and then give the proof.

Algorithm As in our previous algorithms, we start with the construction of a collapsing
sequence of jobs J 1, . . . , J ν of the dependency graph G of J ,M and the corresponding se-
quence of machine sets M1, . . . ,Mν = M. Before we schedule each machine one-by-one,
we enumerate first the machines of M1, then the machines of M2 \ M1, and so on, finally
we enumerate the machines of Mν \Mν−1 as follows. For i = 1, . . . , ν, if no operation of J i

is to be scheduled on any machine of Mi−1, then the machine numbering inside Mi \Mi−1

is according to the operation order in J i (this rule, in particular, applies to M1). Otherwise,
there is a unique operation J i

p to be assigned to some machine of Mi−1. In this case, we first
number all machines of Mi \Mi−1 corresponding to the operations of J i , preceding J i

p ac-
cording to the order, inverse to the operation order in J i ; then we number all machines with
operations succeeding J i

p according to the operation order in J i . Note that this enumeration
takes O(m) time. (In Fig. 6 is depicted a dependency graph with two marginal components
corresponding to jobs J 1 and J 2, where for the job sequence J 1, J 2, M1 = {1,2,3} and
M2 = {1, . . . ,8}, where M2 \M1 = {4,5,6,7,8}.)

We will have ν outer iterations: on iteration 1 we schedule machine M1, then machine
M2 and so on, lastly on iteration ν we schedule machine Mν . We partition non-elementary
jobs, to be assigned to each Mi , in two groups: in the first group (a) are included the jobs
which have not been yet scheduled on any Ml , l < i; the second group (b) is the comple-
ment of group (a). Let the estimated starting time of an operation J

j

i ∈ J j be defined as
t (J

j

i ) = [J j

i ]T/m + |J j |i . The scheduling of each Mi goes into 3 steps; Step 1 deals with
the elementary jobs, Step 2 deals with the jobs of group (a) and Step 3 deals with the jobs
of group (b):

Step 1. Starting from time 0, schedule continuously in any order all elementary jobs to be
assigned to Mi .

Step 2. Schedule the jobs of category (a) in the non-decreasing order of their estimated
starting times as follows: if no operation is processed on Mi at time t (J

j

i ) or t (J
j

i ) is a
switching point of Mi , then insert J

j

i in the interval [t (J j

i ), t (J
j

i ) + p
j

i ); otherwise, insert
J

j

i at the completion time of the above operation.
Step 3. Since the dependency graph G is acyclic, there is a unique job J j already scheduled

on some machine Ml , l < i, whereas there is no other non-elementary job to be scheduled
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on machine Mi . (On Fig. 6, J 2 = J j , Ml can be any of the machines 2,4,5,7 whereas
Mi can be any of the machines 4,5,6,7,8; the possible pairs (Ml,Mi) are (2,4), (4,5),
(5,6) and (2,7), (7,8).) Due to our machine numbering, the operation J

j

l either immediately
precedes or immediately succeeds the operation J

j

i , consider each case separately.

Case 1. J
j

i → J
j

l . Let s be the starting time of J
j

l . If s − p
j

i is a switching point of Mi or
there is no operation processed by Mi at the moment s − p

j

i , then insert J
j

i in the interval
[s − p

j

i , s). If there exists such an operation, then insert J
j

i just before it.
Case 2. J

j

l → J
j

i . Let f be the completion time of J
j

l . If f + p
j

i is a switching point of Mi

or there is no operation processed by Mi at the moment f + p
j

i , then insert J j on Mi in
the interval [f,f + p

j

i ). If there exists such an operation, then insert J
j

i just after it. This
completes the description of the algorithm.

Proof To prove the theorem, we will show that all operations on each Mi are processed
within the time interval [0, T ]. At Step 1, the elementary jobs are continuously scheduled
starting from time 0. Since no insertion of any non-elementary job causes an idle time before
the elementary jobs, the completion time of any elementary job will not exceed the load
time of corresponding machine and hence T . Similarly, the our claim holds if Mi has an
idle time. As we have seen, no idle time can occur at Step 1. Let us check our schedule
on Mi after Step 2. Let J j be the job, scheduled right after the last idle interval on Mi .
Operation J

j

i is scheduled at its estimated starting time and all operations, scheduled after
J

j

i belong to non-elementary jobs; let k be the number of these jobs. J
j

i completes at the
moment [J j

i ]T/m+|J j |i +p
j

i ≤ [J j

i ]T/m+|J j | ≤ ([J j

i ]+1)T /m (the last inequality hods
as we have an instance with short jobs). Hence, the last operation on Mi will complete no
later than ([J j

i ] + 1 + k)T /m. Further, since G is acyclic,
∑

j [J j ] ≤ m − 1, where index j

runs through all non-elementary jobs. Then [J j

i ] + k ≤ m − 1 which in turn implies that the
completion time of Mi is no more than T .

Now consider the Step 3 which produces the final schedule on Mi . At this step we insert
only one additional job J j , already have been scheduled on Ml . If J j is inserted no later
than at the completion time of the last job, scheduled on Step 2, then it will increase the
completion time of Mi by no more than T/m. But since [J j

i ] + k < m − 1, the completion
time of Mi will be no more than T . Consider the last possibility when job J j is the latest
scheduled job after some idle interval on Step 3. Then it was started exactly at the comple-
tion time of its direct predecessor operation. Let J

j
p be the earliest scheduled operation of

job J j . This operation was originally scheduled to be completed no later than at time t (J
j
p )+

T/m + |J j
p |. After i insertions before this operation, the completion time of J

j
p will be no

more than t (J
j
p ) + (i + 1)T /m + p

j
p = ([J j

p ] + i + 1)T /m + p
j
p + |J j |p . To estimate the

completion time of the next scheduled operation, we add to the above magnitude the length
of that operation and T/m, which is the maximal possible delay which the algorithm may
induce. Then the completion time of the operation J

j
r , directly preceding J

j

i , will be no more
than ([J j

r ] + i + 1)T /m + p
j
r + |J j |r . Since J

j

i starts right at the completion time of J
j
r ,

we get that its completion time is no more than ([J j
r ] + i + 1)T /m + p

j
r + |J j |r + p

j

i ≤
([J j

r ]+ i+1)T /m+|J j | ≤ ([J j
r ]+ i+2)T /m. But [J j

r ] < [J j ], hence ([J j
r ]+ i+2)T /m ≤

[J j ] + i + 1. Now [J j ] + i ≤ m − 1 implies our claim.
Finally, we show that all operations are scheduled no earlier than at time 0 by our al-

gorithm. Let J
j
r be the earliest scheduled operation of J j . Then its starting time is at least

its estimated starting time t (J
j
r ) = [J j

r ]T/m + |J j |r . The preceding operation J
j

r−1 will be
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scheduled no earlier than at time t (J
j
r )−p

j

r−1 −T/m = [J j
r ]T/m+|J j |r −p

j

r−1 −T/m =
([J j

r ] − 1)T /m + |J j |r−1| = [J j

r−1]T/m + |J j |r−1| = t (J
j

r−1) and the starting time of this
operation is also no less than its estimated starting time. In general, the starting time of all
operations, scheduled before J

j
r on Mr is no less than their estimated starting times. But

the estimated starting time of the earliest scheduled operation on Mi is 0 and hence all
operations are scheduled at non-negative time moments. �

3.3.3 Scheduling job-shop with short operations

We will say that a job-shop instance J ,M is one with short operations if for any opera-
tion J

j

i , (2m − 1)p
j

i ≤ T .

Theorem 8 There is an O(nm) algorithm, which for any acyclic job-shop J ,M with short
operations constructs an optimal schedule σ with ‖σ‖ = T .

We first describe the algorithm and then give the proof.

Algorithm We again start with the construction of a collapsing sequence of jobs J 1, . . . , J ν

and the corresponding sequence of machine sets M1, . . . ,Mν = M. Let M1, . . .Mp, . . . ,Mk

be all machines of Mj \Mj−1 numbered according to the processing order of the operations
of J j , Mp being the unique machine from Mj−1. We schedule job J j at iteration j with
k embedded iterations for scheduling each machine from Mj \ Mj−1. These k iterations
are split into three parts: first are scheduled machines M1, . . . ,Mk−1, then machine Mp and
then machines Mp+1, . . . ,Mk :

Part 1. For i = 1 to p − 1 do {schedule machines M1, . . . ,Mp−1}.

(i) Determine the (possibly empty) subsequence of J 1, . . . , J ν , such that the first (in
the precedence order) operation of each job from this subsequence is to be assigned
to Mi ; starting from time 0, schedule these jobs continuously on Mi in the order of
their appearance in the subsequence.

(ii) Continue by scheduling all elementary jobs on Mi (in an arbitrary order) continuously
without leaving any idle time on Mi .

(iii) If i = 1, insert J
j

i at the completion time of its immediate predecessor operation (al-
ready scheduled iteration i − 1) if at that time Mi is idle; otherwise, insert J

j

i at the
completion time of the operation, processed by Mi at that time.

Part 2. {Schedule J
j
p if p > 1 (if p = 1, J

j

1 is already scheduled on Mp at step (i)).}
If p > 1 then schedule J

j
p last on machine Mp : schedule J

j
p at the completion time of

its direct predecessor-operation if this time is no less than the completion time of Mp ;
otherwise, schedule J

j
p at the completion time of Mp .

Part 3. Schedule machines Mp+1, . . . ,Mk as the first p − 1 machines.

Proof To prove that the above described algorithm gives a schedule σ with the makespan T ,
it is sufficient to show that the latest scheduled operation of any job completes no later
than T . Since the algorithm does not imply idle intervals before elementary jobs, the com-
pletion time of any elementary job will not exceed the load time of the corresponding ma-
chine and hence T . Next we deal with the non-elementary jobs. From

∑j

k=1[J k] ≤ m − 1
we obtain (2

∑j

k=1[J k] + 1)T /(2m − 1) ≤ T .
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We will use the induction to prove that the completion time of a non-elementary job J j

is no more than (2
∑j

k=1[J k] + 1)T /(2m − 1). We prove the base for J 1. J 1
1 is scheduled at

time 0 and hence completes no later than at T/(2m − 1) (which is the maximal operation
length); J 1

2 starts no later than 2T/(2m − 1) and completes no later than at 3T/(2m − 1).
Thus the completion time of ith operation is no more than (2i − 1)T /(2m − 1). Now the
completion time of J 1 does not exceed T since the total number of its operations is no more
than m.

Now suppose that our claim holds for J j−1. If there is no operation of J j sched-
uled on a machine of Mj−1, then we can estimate the completion time of J j similarly
as for J 1. Otherwise, let Mp be the machine from Mj−1 with an operation of J j , and
let M1, . . . ,Mp, . . . ,Mk be the sequence of all machines with operations of J j , enumer-
ated according to the operation order in J j . The starting time of J

j

1 does not exceed
(j − 1)T /(2m − 1), because before J

j

1 there might be scheduled at most j − 1 operations
(the first operations of the previous j − 1 jobs of the collapsing sequence of jobs). If p = 1,
then all the rest of the operations of J j are scheduled in Part 3: the completion time of
an operation does not exceed the completion time of its direct predecessor operation plus
2T/(2m−1). Then the completion time of J j is no more than ((j −1)+2[J j ]))T /(2m−1).
Since [J k] ≥ 1 for any k, (j − 1) + 2[J j ] ≤ (2

∑j

k=1[J k] + 1).
Now assume that p > 1. Then the completion time t of the operation, directly preced-

ing J
j
p is no more than ((j − 1) + 2(p − 2))T /(2m − 1). There are two possibilities for

scheduling J
j
p . With the first possibility the starting time of J

j
p is t . In this case the com-

pletion time of J j is no more than ((j − 1) + 2(p − 2) + 1 + 2(k − p))T /(2m − 1) =
(j +2k−4)T /(2m−1) which is less than ((2

∑j

k=1[J k]+1)(T /(2m−1)). With the second
possibility, J

j
p is scheduled right after the completion of an operation of some other job. By

the induction hypothesis, this completion time is no more than (2
∑j−1

k=1[J k]+1)T /(2m−1).
Hence, the completion time of J j is no more than (2

∑j−1
k=1[J k] + 1)T /(2m − 1) + (2(k −

p) + 1)T /(2m − 1). But since p > 1, (2(k − p) + 1) ≤ 2(k − 1) = 2[J j ]. �

3.4 Preemptive scheduling of (non-lazy) unrelated processors

Theorem 9 R/pij ≤ C∗
max,pmtn(2m − 3)/Cmax is polynomially solvable.

Proof On the first stage, we obtain an optimal distribution δ by solving the linear program:

minimize Dopt,

subject to
n∑

i=1

xij tij ≤ Dopt, j = 1, . . . ,m,

m∑

j=1

xij = 1, i = 1, . . . , n,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,

where we let tij = Mj(Ji) and xij = δ(Ji,Mj ). δ is acyclic (see Potts 1985), hence its pre-
emption graph Gδ is acyclic. Let σδ be tight schedule, associated with δ (it can be easily
obtained in linear time). We have |σδ| = |δ|max. Since δ is acyclic, σδ has at most m − 1
preemptions. However, not necessarily σδ is sequential on all jobs. We construct the desired
sequential schedule with the distribution δ rotating iteratively σδ (at the expense of creating
at most m − 2 additional preemptions).
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Let G0 ⊃ G1 ⊃ · · · ⊃ Gm−1 be a collapsing of Gδ (G0 = Gδ), and let σk stand for the
schedule of iteration k. Since Gm−1 consists of a single machine, σm−1 = σδ is sequential
for Gm−1, i.e., for the single machine in Gm−1. Suppose that we have already constructed
a rotated schedule σk+1, which is sequential for the machines in Gk+1. Now we define a
rotation which results a sequential schedule σk for Gk . Let (M,M ′) be the unique edge from
Gk \ Gk+1, M being the machine from Gk \ Gk+1 and M ′ being the corresponding machine
from Gk+1, and let J be the job associated with (M,M ′). Suppose M ′′ is the machine
in σk+1 on which job J scheduled the earliest. We coherently rotate σk+1 so that in the
resultant schedule σ ′

k+1, the starting time of job J on M ′′ becomes 0. Note that σ ′
k+1 remains

sequential for the machines in Gk+1. Let t be the completion time of J on the machine, on
which it is scheduled the last in σ ′

k+1. Then we rotate σ ′
k+1, now only on machine M in such

a way that the starting time of J on M becomes t . Since J is the only job shared by machine
M and the machines of Gk+1, the resultant rotated schedule σk is sequential already for all
machines in Gk . This completes the inductive step in the case Gδ is a tree. If it is a forest,
we merely apply the above procedure separately to each component of Gδ . Since no job is
shared by the machines from different components, the resultant sequential schedule σ is
easily obtained by simply joining the sequenced machines of different components.

To complete our proof, we need two additional observations.
First, it easily follows from the above construction that the makespan of the schedule of

each iteration, including that of the last iteration σ = σ0 is the same as that of σδ which,
in turn, equals to the sequential makespan of δ. Since δ is optimal, |δ|max ≤ C∗

max. Be-
sides for each J ∈ J , because of our imposed restriction |J |δ = ∑

M∈M δ(J,M)M(J ) ≤∑
M∈M δ(J,M)pmax = pmax ≤ C∗

max. Hence, ‖δ‖ ≤ C∗
max and so σ has the optimal

makespan.
Second, since δ is acyclic, σδ has at most m − 1 preemptions. We may have at most

one additional split in σ on each of the machines as a result of our rotations. Hence in the
worst-case, we will have 2m − 1 preemptions in σ , i.e., there will be both, a split and a
preempted job on each of the machines. We can eliminate two of these splits by a further
rotation (similarly as in the proof of Theorem 3). Indeed, let J be any preempted job. Since
σ is sequential on J , there are machines M and P , such that the completion time t of J

on M is equal to the starting time of J on P . We coherently rotate σ in such a way that t

becomes 0. Then neither M nor P will have a split job. Thus the total number of preemptions
in our final schedule is 2m − 3. �

If pij ≤ C∗
max does not hold, our distribution δ may assign some job J ∈ J to some (slow)

machines(s) from M so that the total processing time of J in δ is already more than C∗
max;

i.e., the sequential makespan of δ is more than the optimal preemptive schedule makespan.
Two observations follow. First, we have the bound max{C∗

max,pmax} for general unrelated
processors. Second, a better bound cannot be obtained using distribution δ from the proof
of Theorem 9. Let C0

max be the optimal non-preemptive schedule (equivalently, distribution)
makespan. Observe that in an optimal non-preemptive distribution (schedule) no job on any
of the machines can take more than C0

max. Then to obtain the bound C0
max, we can impose this

additional restriction in our distribution δ. In particular, whenever δ(J,M) > 0 we require
that M(J) ≤ C0

max, and also |d|max ≤ C0
max. Using linear programming with binary search,

it is possible to find among all distributions with the above property one with the minimal
makespan in polynomial time (the reader may look for the details in Lenstra et al. 1990
and Shchepin and Vakhania 2005a). The distribution has at most m − 1 preemptions and
its sequential makespan is C0

max. Then we can apply the proof of Theorem 9 to obtain a
sequential schedule with at most 2m − 3 preemptions and with the makespan no more than
C0

max. Thus we have the following result:
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Theorem 10 There is a polynomial time algorithm, which for any instance of R/pmtn/Cmax

constructs a feasible schedule σ with pr(σ ) ≤ 2m − 3 and with the makespan ‖σ‖ ≤
min{max{C∗

max,pmax},C0
max}.

4 NP-hardness results

4.1 NP-hardness of a trivial extension of J,periodic/parti-cyclic/Cmax

In this section we show that trivial extensions of J,periodic/parti-cyclic/Cmax become NP-
hard. Recall from Sect. 3.1 that in the parti-cyclic job-shop we can have no job with three
or more operations on any cycle in the dependency graph G. We shall prove that if we have
two jobs with three operations on a cycle in G, then even periodic flow-shop with only two
possible operation lengths 1 or 2 is periodically unsolvable:

Example 1 We define FS(3) to be a flow-shop instance with three machines M1,M2 and
M3, and two jobs J 1 and J 2. p1

1 = p2
1 = 2, while other operations of J 1 and J 2 have the

length 1 (there is no dummy operation in J 1 or in J 2). The processing order of each job is
M1,M2,M3.

Theorem 11 FS(3) is periodically unsolvable.

Proof We use the reduction from PARTITION. Let X = {x1, x2, . . . , xk} be an instance of
PARTITION with S = ∑k

i=1 xi . We define an elementary extension FS(3,X) of FS(3) as
follows: we add k partition jobs J 3, . . . , J k+2 on machine M2 with pi+2

2 = 2xi/S (with the
total length of 2). We show that the problem of construction of a feasible periodic schedule
with the optimal period 4 for FS(3,X) is equivalent to the construction of a partition for X.

Suppose first that
∑l

i=1 xi = S/2 is a partition of X (for the notation simplicity, we
renumber the partition elements respectively). Then we define a periodic schedule σ with
the period 4 by specifying the processing intervals of all jobs as follows:

σ(J 1,M1) = [0,2) and σ(J 2,M1) = [2,4),

σ (J 1,M2) = [2,3) and σ(J 2,M2) = [4,5),

σ (J 1,M3) = [3,4) and σ(J 2,M3) = [5,6).

On Fig. 7 is depicted the resulting schedule, dashed regions represent gaps and dark regions
represent the partition jobs. The first l partition jobs are continuously scheduled from mo-
ment 3 on M2, they exactly fill in the interval [3,4); other partition jobs are continuously
scheduled from moment 5 and exactly fill in the interval [5,6); all jobs are then scheduled
periodically with the period 4. The constructed schedule with the period 4 is optimal since
4 is the load time of M1 (Lemma 1).

Fig. 7 Flow-shop problem with
2 non-elementary jobs
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In the other way, suppose we have a feasible schedule σ for FS(3,X) with the period 4
and t is the completion time of J 1

1 on M1. Note that σ has to be continuous on J 1 and J 2

because the length of these jobs is 4. Besides, σ has to be continuous on M1 because its load
time is also 4. It follows that t must be the starting time of J 1

2 on M2 and at the same time it
must be the starting time of J 2

1 on M1. Then the completion time of J 2
1 on M1 is t +2, which

is also the starting time of J 2
2 . The schedule has to be continuous on M2 as well because its

load time is 4. Hence, in the interval [t + 1, t + 2) between second operations of J 1 and J 2

must be continuously scheduled partition jobs to fill in completely this interval of length 1.
This gives a solution to the PARTITION and the lemma is proved. �

4.2 NP-hardness of P/pmtn(m − 2)/Cmax

In this subsection we show that P/pmtn(m−2)/Cmax is NP-hard. We use the reduction from
the NP-complete PARTITION problem for the decision version of P/pmtn(m−2)/Cmax. In
the PARTITION problem we are given a finite set of integer numbers C = {c1, c2, . . . , cn}
with S = ∑n

i=1 ci .1 This decision problem gives a “yes” answer iff there exists a subset of
C which sums up to S/2. Given an arbitrary instance of a PARTITION, let us define our
scheduling instance with n + 2m + 2 jobs with the total length of 2m + 1

2m as follows.
There are m pairs of the so-called big jobs denoted by B±

i , i = 1, . . . ,m with |B+
i | =

1 + 1/2i , and |B−
i | = 1 − 1/2i . So the total length of all big jobs is 2m.

There are two median jobs denoted by D and D′, with |D| = 1
2m − 5

m2m+2 and |D′| =
3

m2m+2 . So total length of the two median jobs is 1
2m − 1

m2m+1 .
There are n small jobs Ci with |Ci | = ci

mS2m+1 . So the total length of small jobs is 1
m2m+1 .

This transformation is polynomial as the number of jobs is bounded by the polynomial
in n and m, and all magnitudes can be represented in binary encoding in O(m) bits.

Now we prove that there exists a feasible schedule with less than m − 1 preemptions and
with the optimal makespan 2 + 1

m2m iff there exists a solution to our PARTITION. In one di-

rection, suppose
∑k

i=1 ci = S/2, for some k < n, i.e. we have a solution to the PARTITION.
Then we define a tight schedule σ with the makespan 2 + 1

m2m as follows. The job sequence
on M1 is: B−

1 ,B+
1 ,D′,C1, . . . ,Ck ; so the completion time of M1 is 2 + 3

m2m+2 + 1
m2m+2 =

2 + 1
m2m (the load of M1). The job sequence on M2 is: B−

2 ,D,Ck+1, . . . ,Cn,B
+
2 , where

we have only a part of D with the length 3
m2m+2 = 3

4
1

m2m (providing that the load of M2 is
2 + 1

m2m ). The rest of D is divided into equal parts of the length 1
m2m and is distributed on

the machines Mi , i > 2. The schedule on Mi , i > 2 is tight and is generated by the sequence
B−,D,B+.

To see that σ is feasible, we need to check the sequentiality of σ on D, which is the
only preempted job in σ . The completion time of D on Mi is no more than 1 − 1

2i + 1
m2m ≤

1 − 1
2i + 1

m2m+1 ≤ 1 − 1
2i + 1

2i+1 = 1 − 1
2i+1 , and its starting time on Mi+1 is 1 − 1

2i+1 . Hence,
σ is sequential and has the makespan 2 + 1

m2m . This completes the proof in one direction.
We need the following lemma for the other direction:

Lemma 8 If there exists a uniform distribution δ of jobs of J on m identical processors
from M with less than m − 1 preemptions, then there is a subset J ′ of J with the total
length of k|δ|max, for some natural k < m.

1In this and the following subsection n stands exclusively for the number of elements in PARTITION; in the
rest of the paper n denotes the number of jobs.
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Proof Since pr(δ) < m − 1, G(δ) has less than m − 1 edges and hence any its connected
component contains k < m machines (we may have two or more such components). Let J ′
be the set of all jobs distributed on machines in any of the connected components. Since δ

is uniform, the total length of these jobs is k|δ|max. �

Assume now σ is a tight (m−2)-preemptive schedule for our scheduling instance. A dis-
tribution, generated by σ also has no more than m − 2 preemptions and the load on all ma-
chines in this distribution is 2 + 1

m2m . We will prove that this distribution already gives a
solution to our instance of PARTITION.

Suppose J ′ is a subset of J with the total length of |J ′| = 2k + k 1
m2m (see Lemma 8).

First we note that J ′ contains exactly 2k big jobs. Indeed, J ′ cannot contain more than 2k

big jobs, because the total length of the smallest 2k + 1 big jobs is 2k + 1 −∑k+1
i=1

1
2i = 2k +

1
2k+1 ≥ 2k + 1

2m > 2k + k 1
m2m = |J ′|. At the same time, the total length of the longest 2k − 1

big jobs together with all median and small jobs is less than 2k. Further, the total length B ′
of all big jobs from J ′ is 2k. Indeed if B ′ − 2k is not 0, it must have an absolute value of
at least 1

2m . If B ′ < 2k, then B ′ plus the total length of all non-big jobs (which is no more
than 1

2m ) will be no more than 2k. This contradicts our assumption that |J ′| = 2k + k 1
m2m .

Similarly, if B ′ > 2k, then the above magnitude is at least 2k + 1
2m > 2k + k 1

m2m = |J ′|,
which again is a contradiction. Thus, B ′ = 2k.

It follows that the total length of the big jobs from J c is 2(m − k), J c being the com-
plement of J ′ in J , and hence without loss of generality, we can assume that k ≤ m/2.
In this case, D cannot belong to J ′, because |D| > k 1

m2m . On the other hand, D′ must be-
long to J ′. Indeed, denote by C ′ the total length of all small jobs from J ′. If J ′ does not
contain a median job, then |J ′| = B ′ + C ′ ≤ 2k + 1

m2m+1 , which contradicts our conjec-
ture that |J ′| = 2k + k 1

m2m . Therefore, D′ ∈ J ′. In this case |J ′| = B ′ + C ′ + |D′|. This
implies that k 1

m2m = C ′ + 3
m2m+2 . But since C ′ ≤ 1

m2m+1 , the only possible value of k is 1.
Then C ′ = 1

m2m − 3
2m+2m

= 1
m2m+2 , which is S/2 and we have obtained a solution to the

PARTITION. We have proved this section’s main result:

Theorem 12 P/pmtn(m − 2)/Cmax is NP-hard.

4.3 The NP-hardness of O/acyclic,pmtn(m − 3)/Cmax

In this section we prove that acyclic open-shop with at most m − 3 preemptions is NP-hard:

Theorem 13 O/acyclic,pmtn(m − 3)/Cmax is NP-hard.

Below we describe the reduction from the PARTITION problem. We transform the
PARTITION problem to O/pmtn/Cmax. Let C = {c1, c2, . . . , cn} and S/2, S = ∑n

i=1 ci ,
form again an arbitrary instance of a PARTITION. We define our open shop instance
O(C,m) as follows (assuming without loss of generality that m ≥ 3). O(C,m) deals with
1 + n(m − 2) + 2m − 2 = (n + 2)m − 2n − 1 jobs and m machines {Mi}m

i=1. We divide the
set of jobs into the following three categories:

(1) There is one common job I to be distributed on all machines. The processing require-
ment of I on Mi , i = 1,2, . . . ,m, is 1. Hence, the total processing time of I is m.

(2) The jobs from the second category are called partition jobs. We introduce n partition
jobs for each of the machines, except the first one M1 and the last one Mm (we call these
machines extremal, and the rest of machines intermediate). The j th, j ≤ n, partition
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job to be distributed on machine Mi (1 < i < m) is denoted by Pi,j . The processing
time of Pi,j is

cj

S2i . Note that the total processing time of all partition jobs on each Mi

(1 < i < m) is equal to 1
S2i−1 , which is a magnitude, strictly less than 1.

(3) The jobs from the third category are called fixers and are denoted as F1,F
+
2 ,F−

2 ,F+
3 ,

F−
3 , . . . ,F+

m−1,F
−
m−1,Fm. So there is only one fixer on machines M1 and Mm, and there

are two fixers on any intermediate machine. The processing time of F1 and Fm is m− 1.
The processing time of the first fixer for machine Mi , F+

i , 1 < i < m, is equal to (i − 1)

− 1
2S2i−1 , and the processing time of the second fixer F−

i is (m − i) − 1
2S2i−1 .

The operations which we have not explicitly defined are dummy ones providing that
O(C,m) is acyclic. Our transformation is obviously polynomial (similarly as in the previ-
ous subsection). The load of each machine in O(C,m) is m and any feasible schedule for
O(C,m) with the makespan m is tight and hence optimal. Given a solution

∑
i≤k ci = S/2

to our PARTITION instance (we renumber elements in PARTITION correspondingly), a
feasible schedule for O(C,m) without any splitting and with the optimal makespan m can
easily be built. On M1 first is scheduled the fixer F1 and then the common job I . On the
last machine, first I is scheduled and then Fm. On each intermediate machine Mi , jobs are
scheduled in the following order: first the fixer F+

i , then all Pi,j , j ≤ k (in any order), then
job I followed by the rest of the partition jobs Pi,j , j > k, and finally the second fixer F−

i .
In the opposite direction, a feasible schedule σ with at most m − 3 preemptions for our

open-shop yields a solution to PARTITION. Indeed, since there are at most m− 3 splittings,
no job on at least one intermediate machine Mi is split. An important observation is that,
without loss of generality, it might be assumed that the common job I is scheduled within
the interval [i − 1, i] on Mi . Suppose this is not the case. If I is processed out of interval
[1,m] then σ is not tight and hence optimal. At the same time, any part of I scheduled out
of the interval [i − 1, i] will yield at least two splits on one of the other machines. Indeed,
there must be a machine Mj on which job I is split, and hence at least one of the fixers will
be split on the same machine. We apply the same reasoning now for machine Mj and find
another machine with two splits. We can continue in the same manner finding machines with
at least two splits. But this contradicts our assumption that there are at most m − 3 splits.

Thus we can assume that job I is processed within the interval [i − 1, i] in σ . Since
we have no split on Mi , the fixers F+

i and F−
i must be scheduled before and after job I .

We are left with the intervals of the same length 1
2S2i−1 before and after job I within which

the partition jobs must be scheduled. Since no partition job can be split, these jobs must be
partitioned into two subsets with the same total length. This solves the PARTITION problem
and proves Theorem 13.

4.4 NP-hardness of simple acyclic shop problems

In this section we show that very simple classes of acyclic shop scheduling problems are
NP-hard.

Lemma 9 There is an unsolvable flow-shop instance with a single job J 0 with 3 operations.

Proof We use the reduction from KNAPSACK. Let X = {x1, . . . , xk} and C ≤ ∑
i xi be an

arbitrary instance of KNAPSACK. In our scheduling instance we have 3 machines M1,M2

and M3 and all jobs have to be processed in this order. Job J 0 is such that p0
1 = C and

p0
1 + p0

3 = ∑
i xi . We consider the following elementary extension with k + 2 jobs of this

flow-shop instance. Job J 1 is added to M1 with p1
1 = p0

2 + p0
3 ; job J 2 is added to M3 with
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Fig. 8 Unsolvable acyclic
job-shop instance with a single
non-elementary job

p2
3 = p0

1 + p0
2 ; finally, k jobs J 3, . . . , J k+2 with pi

2 = xi , i = 3, . . . , k + 2 are added to M2.
The rest of operations of all jobs are dummy. It is clear that the problem of constructing of a
feasible schedule with the optimal makespan p0

1 + p0
2 + p0

3 is equivalent to finding a subset
X′ of X with

∑
i∈X′ xi = C (see Fig. 8 on which dark regions represent partition jobs). �

Given a schedule σ , let us denote by [σ ] the schedule, which components are defined as
{(M,J, [[p], [q])}, for each component (M,J, [p,q)) of σ ([x] is the integral part of x).

Lemma 10 Any subgraph G′ of a solvable dependency graph G is also solvable.

Proof Let J ′,M′ and J ,M be job-shop instances with dependency graphs G′ and G,
respectively. Since operation lengths are irrelevant in dependency graphs, without loss of
generality, we can assume that the operation lengths in J ′ are integers and that the total
length of all operations from J \J ′ is strictly less than 1.

Let σ be an optimal schedule for J ,M. Then obviously, [σ ] is a feasible schedule for
J ′,M′ with ‖[σ ]‖ ≤ ‖σ‖. We claim that [σ ] is also optimal. Assume that σ ′ is an optimal
schedule for J ′,M′ with ‖σ ′‖ < ‖[σ ]‖. Since all operation lengths in σ ′ are integers and
‖[σ ]‖ ≤ ‖σ‖, ‖σ ′‖+1 ≤ ‖σ‖. We will come to a contradiction by extending σ ′ to a feasible
schedule for J ,M with the makespan, less than σ . This schedule is constructed step-by-
step, at each step a single job from J \J ′ is inserted; we denote by σ i the schedule obtained
after the ith insertion, σ 0 = σ ′. Suppose J

j

i is an operation of job J j ∈ J \ J ′ inserted at
step i in σ i−1. Let t be the completion time of the latest predecessor-operation of J

j

i already
scheduled in σ i−1 (t = 0 if there is no such operation). σ i is obtained from σ i−1 by inserting
J

j

i at time t and shifting all operations, scheduled after t in σ i−1 by p
j

i . It is easily seen that
σ k , k = |J \ J ′| is a feasible schedule for J ,M. Besides, ‖σ k‖ < ‖σ ′‖ + 1, as the overall
shifting in σ k does not exceed the summary length of all operations in J \J ′ which is strictly
less than 1. But since ‖σ ′‖ + 1 ≤ ‖σ‖, ‖σ k‖ < ‖σ‖ and we came to a contradiction. �

The next result immediately follows from Lemmas 9 and 10:

Theorem 14 Any flow-shop problem with at least 1 job with at least 3 operations is (finitely)
unsolvable.

Our second example is a flow-shop instance with 7 jobs which is finitely unsolvable with
respect to the extensions with short jobs (an analogous example with short operations can
be similarly constructed and proved).

Example 2 We define FS(7) to be the following flow-shop instance with three machines Mi

(i = 1,2,3) and seven jobs J i (i = 1,2, . . . ,7). The processing order of each job coincides
with the machine numbering and all operations of all these jobs have length 1.
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Fig. 9 NP-hard flow-shop
problem for elementary
extensions with short jobs

Theorem 15 The problem of construction of an optimal finite schedule for any elementary
extension of FS(7) with short jobs is NP-hard.

Proof We again use PARTITION X = {x1, . . . , xk} and S = ∑
i xi . Let us consider an el-

ementary extension FS(7,X) of FS(7): we add two jobs I 1 and I 2 with the length 2 on
machines M1 and M3, respectively, and k partition jobs P1, . . . ,Pk on machine M2 with
|Pi | = xi/S, where we let S = 2. Since the load time of all machines in FS(7,X) is 9, and
the length of any job does not exceed 3, we have a flow-shop instance with short jobs.

The construction of a feasible schedule with the optimal makespan 9 is equivalent to
finding a solution to the PARTITION. Indeed, suppose we have a partition

∑l

i=1 xi = S/2.
Then we easily define a feasible schedule with makespan 9 by continuously scheduling the
jobs on M1,M2 and M3 in the following order (see Fig. 9 on which dark regions represent
partition jobs):

J 1, J 2, J 3, . . . , J 7, I 1 on M1,

P1,P2, . . . ,Pl, J
1, J 2, . . . , J 7,Pl+1, . . . ,Pk on M2,

I 2, J 1, J 2, . . . , J 7 on M3.

In the other direction, suppose there is a feasible schedule for FS(7,X) with the
makespan 9. Without loss of generality, assume that jobs J 1, . . . , J 7 are scheduled in this
same order machine on M1. Then the starting time of J 7

1 on M1 cannot be less than 6.
But it cannot be more than 6, because |J 7| = 3 and this job has to be completed by
time 9. Hence, our schedule on M1 is continuous and has the following operation order:
J 1, J 2, J 3, . . . , J 7, I 1.

On machine M3, the operation J 7
3 cannot be completed before time 9 and hence the

latest scheduled operation on machine M3 has to be J 7
3 . Similarly, the preceding oper-

ation has to be J 6
3 , and so on. Thus the only possible ordering of operations on M3 is

I 2, J 1, J 2, J 3, . . . , J 7.
Now, on machine M2, J1 has to be started at time 1, J 2 at time 2, and so on, J 7 has to

be started at time 7. These jobs are to be scheduled continuously in the time interval [2,7).
Hence, the partition operations must be divided into two non-intersecting subsets with the
overall length of 1 in each subset: operations from one subset are to be scheduled in the in-
terval [0,1) and operations from the second subset are to be scheduled in the interval [7,8).
This gives a solution to our PARTITION instance. �
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4.5 NP-hardness of R/pij ≤ C∗
max,pmtn(2m − 4)/Cmax

In this section we use the earlier NP-hardness result for O/acyclic,pmtn(m − 3)/Cmax and
show that R/pij ≤ C∗

max,pmtn(2m − 4)/Cmax is NP-hard. First we prove the following aux-
iliary lemma:

Lemma 11 Two distributions δ and δ′ are equal if they have the same acyclic assignment
and the load on all machines in both δ and δ′ is the same.

Proof Assume δ and δ′ are two arbitrary distributions satisfying the lemma. The proof is
by the induction on the number of machines. Suppose the lemma is proved for distributions
with <m machines.

Let δ and δ′ be two acyclic distributions with m machines from M. Since δ and δ′ have
the same acyclic preemption graph, there is a node of degree one N in this graph. Let I be
the job, corresponding to the (only) edge of M . Note that the rest of the jobs, distributed in
δ and δ′ on M have no preemption, i.e., they are assigned completely to M . Therefore, the
length of all these jobs in δ and δ′ is the same. But since the load of M in δ and δ′ is the
same, the length of the portion of I on M in both δ and δ′, must be also the same. Hence
δ(J,M) = δ′(J,M) for all J . To apply the induction hypothesis, we define distributions δ0

and δ′
0 on M \ M in the following way: δ0(J,M) = δ(J,M) if J = I and δ(J,M) > 0,

δ0(I,M) = δ(I,M) 1
1−δ(I,M)

; δ′
0(J,M) = δ′(J,M) if J = I and δ′(J,M) > 0, δ′

0(I,M) =
δ′(I,M) 1

1−δ′(I,M)
. Distributions δ0 and δ′

0 coincide the by induction hypothesis. This implies
that δ = δ′. �

Given a multiprocessor J ,M, let us say that a distribution δ on J ,M generates an open
shop O on J ,M, if |J i

j | = δ(J j ,Mi)Mi(J
j ).

Theorem 16 For any uniform acyclic open shop O on J ,M, there is a processing time
function f and a distribution δ for the multiprocessor J ,M with this processing function,
such that δ generates O and δ is a unique optimal distribution for J ,M.

Proof First we define f as follows: Mi(J
j ) = |J j | + ε if J

j

i is dummy, and Mi(J
j ) =

|J j | otherwise, where ε is a positive real number. Now we define the distribution δ

as δ(J j ,Mi) = |J j

i |/|J j |. Note that if |J j

i | > 0, then δ(J j ,Mi)Mi(J
j ) = Mi(J

j )
|J j

i
|

|J j | =
|Jj | |J j

i
|

|J j | = |J j

i |. Similarly, |J j

i | = 0 implies δ(Jj ,Mi) = 0. Hence, (Mi)δ(J
j ) = |J j

i | holds
for all i, j and δ generates O . Since O is uniform, δ is also uniform and the total processing
time of δ is m|δ|max. Besides, every job in δ is distributed on its fastest machine (i.e. the
machine where this job can be processed in the minimal time). This implies that δ has the
minimal possible total processing time, and since δ is uniform, it is optimal.

It remains to show that δ is unique. Assume δ′ is another optimal distribution such that
δ′ generates O . The total processing time in δ′ is no more than m|δ′|max, but the latter by
our assumption is no more than m|δ|max; now since m|δ|max is the minimal possible total
processing time, the total processing time in δ′ is to be equal to m|δ|max. Hence, m|δ′|max =
m|δ|max and δ′ is also uniform, i.e., loads on all machines in both, δ and δ′ are equal. At
the same time, δ′ has to distribute each job on the fastest machine. But the processing time
function is defined in such a way that a machine M is fastest for a job J iff δ(J,M) > 0.
Hence, δ′ and δ have the same acyclic assignment and our claim follows from Lemma 11. �
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Theorem 17 R/pij ≤ C∗
max,pmtn(2m − 4)/Cmax is NP-hard.

Proof We prove that the corresponding decision problem is NP-complete. Recall that the
open-shop problem O(C,m) of Sect. 4 is acyclic and uniform. We apply Theorem 16 with
ε ≤ 1 to O(C,m) to construct a processing time function f for multiprocessor J ,M, and a
distribution δ, such that δ generate O(C,m). Note that |δ|max = m and pmax = m, hence the
multiprocessor J ,M, defined by the processing time function f , is non-lazy (i.e., pmax ≤
Cmax).

It is not difficult to see that our decision problem, “does there exist a feasible schedule σ

for the multiprocessor J ,M with ||σ || ≤ m and with pr(σ ) ≤ 2m−4?”, has a “yes” answer
if and only if there exists a tight schedule for O(C,m) with the makespan, not exceeding m

and with less than m − 2 splittings. Indeed, if σ is such a schedule for O(C,m), then σ is a
feasible schedule for the multiprocessor J ,M with less than (m − 1) + (m − 2) = 2m − 3
preemptions.

In the other direction, suppose σ is a feasible schedule for J ,M with ‖σ‖ ≤ m and
pr(σ ) < 2m − 3. Then the makespan of any distribution associated with σ is m and it
is optimal. Since there is only one such a distribution (Theorem 16), it is precisely the
distribution‘δ. δ has exactly m − 1 preemptions. It follows that σ is a feasible schedule for
O(C,m) with the number of splittings pr(σ ) − (m − 1) < m − 2. �

5 Further research

We have seen that acyclic scheduling problems, though very restrictive in nature, remain
hard; allowing preemptions do help. The iterative application of the collapsing of depen-
dency (preemption) graphs was intensively used for sequencing stages. It might be possible
to extend this approach for scheduling problems with non-acyclic graphs by exploiting more
general structures than the collapsing. For example, instead of a single edge between two
neighboring elements in a collapsing, two or more edges might be allowed, which would
require more sophisticated sequencing tools for incorporating two or more jobs on a single
iteration.

We have exploited acyclic distributions obtained by linear programming which are pre-
emptive. An optimal sequencing of these distributions is not a trivial task: an optimal dis-
tribution not necessarily yields an optimal schedule, as the total length of some job(s) in
our distribution may exceed the optimal schedule makespan. We believe that a closer study
of these distributions is possible. Firstly, there may exist conditions which provide distrib-
utions without such long jobs or guarantee their limited number. This might be natural to
expect; roughly, an optimal distribution cannot allocate many jobs to inefficient processors.
Secondly, it might be possible to convert an optimal distribution with long jobs to another
optimal distribution without such jobs. A straightforward scheme would redistribute long
jobs to more efficient processors, while some jobs distributed to these processors would
move to other “sufficiently efficient” processors so that they would not turn to long jobs.

In the other direction, it seems to us that approximation algorithms for shop schedul-
ing problems with their worst-case performance depending on the number of cycles in the
machine dependency graphs should exist. Further study of the solvability/unsolvability con-
ditions is also of a prior interest.
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