
Ann Oper Res (2008) 159: 125–133
DOI 10.1007/s10479-007-0263-4

A GRASP algorithm for the multi-criteria minimum
spanning tree problem

José Elias Claudio Arroyo · Pedro Sampaio Vieira ·
Dalessandro Soares Vianna

Published online: 30 November 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure)
algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this
problem a vector of costs is defined for each edge of the graph and the problem is to find
all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the opti-
mization of different weighted utility functions. In each iteration, a weight vector is defined
and a solution is built using a greedy randomized constructive procedure. The found solution
is submitted to a local search trying to improve the value of the weighted utility function.
We use a drop-and-add neighborhood where the spanning trees are represented by Prufer
numbers. In order to find a variety of efficient solutions, we use different weight vectors,
which are distributed uniformly on the Pareto frontier.

The proposed algorithm is tested on problems with r = 2 and 3 criteria. For non-complete
graphs with n = 10, 20 and 30 nodes, the performance of the algorithm is tested against a
complete enumeration. For complete graphs with n = 20, 30 and 50 nodes the performance
of the algorithm is tested using two types of weighted utility functions. The algorithm is
also compared with the multi-criteria version of the Kruskal’s algorithm, which generates
supported efficient solutions.

Keywords GRASP algorithm · Multi-criteria combinatorial optimization · Minimum
spanning tree

Many practical optimization problems, generally, involve the minimization (or maximiza-
tion) of several conflicting decision criteria. For example, in the topological network design
problem it is desirable to find the best layout of components optimizing performance crite-
ria, such as financial cost, message delay, traffic, link reliability, and so on. These criteria

This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The used computer
was acquired with resource of CNPq.

J.E.C. Arroyo · P.S. Vieira · D.S. Vianna (�)
Universidade Candido Mendes—UCAM-Campos, Núcleo de Pesquisa e Desenvolvimento—NPD,
Campos dos Goytacazes, Rio de Janeiro 28040-320, Brazil
e-mail: dalessandro@ucam-campos.br

126 Ann Oper Res (2008) 159: 125–133

are conflicting and cannot be optimized simultaneously. Instead, a satisfactory trade-off has
to be found. So a Decision Maker has to select the best compromise solution, taking into
account the preference of the criteria.

The goal of multi-criteria combinatorial optimization (MCCO) is to optimize simultane-
ously r > 1 criteria or objectives finding a satisfactory trade-off. MCCO problems have a
set of optimal solutions (instead of a single optimum) in the sense that no other solutions are
superior to them when all criteria are taken into account. They are known as Pareto optimal
or efficient solutions.

Solving MCCO problems is quite different from single-objective case (r = 1), where an
optimal solution is searched. The difficulty is not only due to the combinatorial complexity
as in single-objective case, but also to the research of all elements of the efficient set, whose
cardinality grows with the number of objectives.

In the literature, some authors have proposed exact methods for solving specific MCCO
problems (Ehrgott and Gandibleux 2000). These methods are generally valid to bi-objective
(r = 2) problems but can not be adapted easily to a higher number of objectives. Also,
the exact methods are inefficient to solve large-scale NP-hard MCCO problems. As in the
single-criterion case, the use of heuristic/metaheuristic techniques seems to be the most
promising approach to MCCO because of their efficiency, generality and relative simplic-
ity of implementation. These techniques generate good approximated solutions in a short
computational time.

In a recent overview of multi-criteria metaheuristics, Jones et al. (2002) report the in-
crease of papers published in the nineties and also note that almost 80% of the papers
are dedicated to real problems, especially in the discipline of engineering. This number
reflects not only the increasing awareness of problems with multiple criteria, but also that
metaheuristics are effective techniques to cope with such problems. Metaheuristics such
as genetic algorithms (Michalewicz 1996), tabu search (Glover et al. 1996) and simulated
annealing (Kirkpatrick et al. 1983) were originally conceived for single-criterion combi-
natorial optimization and the success achieved in their application to a very large num-
ber of problems has stimulated researchers to extend them to MCCO problems. A strik-
ing revelation in the paper by Jones et al. (2002) is that 70% of the articles use genetic
algorithms as the primary metaheuristic, 24% simulated annealing and 6% tabu search.
In (Jones et al. 2002) is commented that, there is no sign in the literature reviewed of
the newer metaheuristic techniques, such as GRASP, being applied in the multi-criteria
case. More recently, Festa and Resende (2004) publish an annotated bibliography of the
GRASP metaheuristic and there are not references of GRASP application to MCCO prob-
lems.

The common argument of researchers for their preference to genetic algorithms is that
they naturally produce a population of solutions and therefore they are suitable for finding an
approximation of the set of efficient solutions. This is not so trivial and a suitable technique
to assign fitness to the elements of the population is crucial to evolve with a set of solutions
homogeneously dispersed to the set of efficient solutions (Deb et al. 2000). Coello (2000)
and Van Veldhuizen and Lamont (2000) present critical reviews and classification of the
most important approaches to genetic algorithms for multi-criteria optimization.

In the multi-criteria minimum spanning tree (mc-MST) problem, a vector of real number
(representing the cost of each criteria) is defined for each edge, and the problem is to find
all Pareto optimal spanning trees. This problem is NP-hard (Ehrgott and Gandibleux 2000)
and is not simply an extension of MST from single-criterion to multiple criteria. In general,
we cannot get the optimal solution of the problem because these multiple criteria usually

Ann Oper Res (2008) 159: 125–133 127

conflict with each other in practice. The mc-MST problem is commonly found in network-
design oriented applications. For example, the edges costs may be associated with financial
cost, message delay and traffic and link reliability.

The literature on mc-MST problem is rather scarce. An exact method is proposed in
Ramos et al. (1998). In Ehrgott and Klamroth (1997) and Hamacher and Ruhe (1994) are
proposed approximate polynomial algorithms. The method proposed in Knowles (2002) and
Zhou and Gen (1999) are based on genetic algorithms.

In this paper we propose a GRASP algorithm to solve the mc-MST problem generating
a set of approximated efficient solutions or nondominated solutions. In the construction
phase is used the Kruskal’s algorithm and in the local search procedure is used a drop-
and-add neighborhood transformation. This drop-and-add operation uses Prufer numbers
encoding (Moon 1967) for spanning tree representation.

The organization of this paper is as follows. In the next section, we present the formu-
lation of a MCCO problem, give the uses concepts and present a formal definition of the
mc-MST problem. In Sect. 2, we discuss with more details the proposed GRASP algorithm.
We present computational results in Sect. 3. Finally, Sect. 4 contains our concluding re-
marks.

1 Multi-criteria optimization description

Let G = (V ,A) be a connected and undirected graph, where V = {v1, . . . , vn} is a finite set
of nodes and A = {e1, . . . , em} is a finite set of arcs or edges ek = (i, j), i ∈ V , j ∈ V , i �= j .
Each edges ek = (i, j) has associated a vector cij = (c1

ij , . . . , c
r
ij) of r positive real numbers

(costs). A spanning tree of graph G is a subgraph T = (V ,AT) with AT ⊆ A, such that T

contains all nodes in V and connects them with exactly n − 1 edges, so that there are no
cycles. The mc-MST problem can be formulated as:

Minimizef (T) = (f1(T), . . . , fr (T)) subject to T ∈ �, (1)

where fk(T) = �∀(i,j)∈AT
ck
ij is the k-th objective function and � is the set of all the spanning

trees of graph G. The image of a solution T ∈ � is the point z = f (T) in the objective space
f (�).

A point z dominates z′ if zj = fj (T) ≤ z′
j = fj (T

′)′, ∀j = 1, . . . , r , and zj < z′
j for at

least one j . A solution T dominates T ′ if f (T) dominates f (T ′). A solution T ∗ ∈ � is
Pareto optimal (or efficient) if there is no T ∈ � such that f (T) dominates f (T ∗). The goal
is to determinate the set E of efficient solution. We call the representation of set E in f (�)

as the Pareto frontier.
A utility function is a model of the Decision Maker’s preferences that maps each point in

the objective space into a value of utility. It assumed that the goal of the Decision Maker is
to minimize the utility. We defined two types of utility functions.

Weighted Tchebycheff utility functions (u∞) are defined in the following way:

u∞ = max
j=1,...,r

{λj (fj (T) − z∗
j)}, (2)

where λ = (λ1, . . . , λr), ∀jλj > 0, is a preference or weight vector and z∗
j = minT {zj =

fj (T); j = 1, . . . , r}. z∗ = (z∗
1, . . . , z

∗
r) is called the ideal point. Each utility function of this

type has at least one global optimum belonging to the set E. For each efficient solution
T there is a weighted Tchebycheff utility function such that T is a global optimum of u∞
(Steuer 1986).

128 Ann Oper Res (2008) 159: 125–133

Fig. 1 Supported efficient
solutions and the potential
regions (triangles) of
non-supported efficient solutions

Weighted linear utility functions (u1) are defined in the following way:

u1 =
r∑

j=1

λjfj (T), (3)

where �r
j=1λj = 1 and λj ≥ 0, j = 1, . . . , r .

In the convex case (the r functions fj are convex and � is a convex set), the set E of
efficient solution coincides with the set SE of the supported efficient solutions. An efficient
solution T is supported if exists a weight vector λ = (λ1, . . . , λr) such that T is the unique
global optimum of the following parameterized single objective problem:

Minimize
r∑

j=1

λjfj (T) subject to T ∈ �. (4)

The efficient solutions which cannot be found by optimization of problem (4) are called
non-supported efficient solutions. For two objectives case, these solution are necessarily
located in the triangles generated in the objective space by two successive supported efficient
solutions, as represented in Fig. 1.

2 The multi-criteria GRASP heuristic (mc-GRASP)

GRASP—Greedy Randomized Adaptive Search Procedure (Feo and Resende 1995) is a
multi-start metaheuristic, in which each iteration consists of two phases: construction and
local search. The construction phase builds a feasible solution using a greedy randomized
algorithm, whose neighborhood is investigated until a local minimum is found during the
local search phase. The best overall solution is kept as the result.

In the construction phase, we use the Kruskal’s algorithm. The Kruskal’s algorithm
(Kruskal 1956) is a well-known polynomial time constructive algorithm for solving the sim-
ple criterion minimum spanning tree problem. Using data structures for disjoint sets, the
Kruskal’s algorithm can be implemented efficiently, requiring O(m logn) operations (Cor-
men 2001). A multi-criteria version of this algorithm, called, mc-Kruskal is easily de-
vised. By simple replacing the vector of edges costs in the graph by a weighted sum scalar-
ization of them, optimization can be carried out in one direction of the objective space. In
mc-Kruskal this procedure is iterated for many different weight vectors, giving a whole
range of solutions approximating the Pareto frontier.

2.1 mc-GRASP heuristic

The mc-GRASP heuristic is based on the optimization of a weighted utility function u(T)

corresponding to a solution T . The main idea of the heuristic is to define a weight vector

Ann Oper Res (2008) 159: 125–133 129

for each iteration. The weight vector is used in the weighted utility function. In each itera-
tion of the heuristic a solution T is built using the greedy randomized Kruskal’s algorithm
(see Sect. 2.2), and then, this solution is submitted to a local search procedure (see Sect. 2.3).

The weight vector λ = (λ1, . . . , λr), generally, determinates a search direction on the
Pareto optimal frontier and various search directions are required to find a variety of Pareto
optimal solutions. Murata et al. (2001) introduces a way of generating weight vectors distrib-
uted uniformly on the Pareto frontier. The vectors are generated combining r non-negatives
integers with the sum of s:

w1 + w2 + · · · + wr = s, where wi ∈ {0,1,2, . . . , s}.

As an example, for r = 2 criteria and s = 5 we have 6 vectors: (5,0), (4,1), (3,2),
(2,3), (1,4) and (0,5). For r = 3 and s = 3 we have 10 vectors: (3,0,0), (2,1,0), (2,0,1),
(1,2,0), (1,1,1), (0,2,1), (0,3,0), (1,0,2), (0,1,2) and (0,0,3).

In order to obtain normalized weights (
∑r

j=1 λj = 1), we considered λj = wj/s,
wj ∈ {0, . . . , s}.

The number of generated vectors for r objectives and for a value of s, Nr(s), is calculated
as follows:

N2(s) = s + 1,

N3(s) =
s∑

i=0

N2(i) = (s + 1)(s + 2)/2,

N4(s) =
s∑

i=0

N3(i) =
s∑

i=0

(i + 1)(i + 2)/2.

Algorithm 1 presents the implemented mc-GRASP algorithm that receives as input pa-
rameters the number of iterations N_iter, the percentage α ∈[0,1] (controls the amount of
greediness and randomness) used at the construction phase and the weighted utility function
to be optimized. As output, the algorithm returns the lPareto list, where the nondominated
solutions are stored. The number of iterations of the algorithm corresponds to the number of
weight vectors.

Algorithm 1 mc-GRASP(N_iter, α, u)
01. lPareto = ∅;
02. Define a set of weight vectors � = {λi = (λ1, . . . , λr); i = 1, . . . ,N_iter};
03. For i = 1 to N_iter do
04. T = Greedy_Randomized_Kruskal(α, λi);
05. Update_The_Pareto_List(T , lPareto);
06. Local_Search(T , λi , u(T), lPareto);
07. End-For
End-Algorithm

2.2 Greedy randomized construction

In the greedy randomized construction, for each edge (i, j) of the graph is computed the
weighted sum λcij = ∑r

k=1 λkc
k
ij , where cij = (c1

ij , . . . , c
r
ij) is the cost vector of the edge

(i, j) and λ = (λ1, . . . , λr) is the weight vector.

130 Ann Oper Res (2008) 159: 125–133

The candidate list C = {e1, . . . , em} contains all the edges, in a no decreasing order
of λcij . The restricted candidate list is defined as RCL = {e1, . . . , e|RLC|}, where |RLC| =
max(1, α ×|C|) is the cardinality of RLC and α ∈ [0,1]. In each iteration of the constructive
phase, an edge is selected randomly from RCL and it is added to the partial spanning tree
as in the Kruskal’s algorithm. This phase finalizes when the spanning tree has n − 1 edges.
The randomization is necessary to construct different initial solutions. In this way, it can be
obtained efficient solutions that are not supported efficient solutions.

2.3 Local search

In the Local_Search procedure, a feasible spanning tree T is represented by a Prufer
number P (vector with n − 2 nodes) and by a permutation of the n nodes B . P and B are
constructed using the Algorithm 2.

Algorithm 2 Encode (T)
01. P = ∅, B = ∅. All n − 1 edges in the tree T are labeled as temporary.
02. Construct a set D1 ⊂ V formed by degree 1 nodes of the temporarily

labeled edges of T .
03. Choose node k, such that k is the least index in D1.
04. Consider edge (k, j) ∈ T . B = B + k and P = P + j .
05. Give edge (k, j) ∈ T a permanent label. If there is only a remaining edge

(u, v) with temporary label, add u and v to B , return P and B , stop. Else,
go to Step 2.
End-Algorithm

The tree T in Fig. 2(a) is represented by B = (bj) = [1 3 4 2 6 5 7] and P = (pj) =
[6 7 2 6 5]. A new spanning tree T ∗ is formed by dropping and adding edges. To find a
neighbor T ∗ of T , we select a index j ∈ {1, . . . , n − 2}. The edge e = (bj ,pj) ∈ T is to
be dropped. This deletion creates two sub-trees T1 and T2, rooted at bj and pj respectively.
A new tree T ∗ is generated adding a edge e∗ = (bj , k), k ∈ T2, k �= pj . T ∗ is evaluated
as follows: fi(T

∗) = fi(T) − ci
e + ci

e∗ , i = 1, . . . , r . If the new solution is accepted, we
constructed the representations B∗ and P ∗ of the tree T ∗ doing two passes trough B . In the
first step, all the vertices bl ∈ T1 ∩B −{bj }, are added to B∗ and the correspondent adjacent
vertices pl ∈ P to P ∗. Next, the vertices in (bj , k) are added to B∗ and P ∗, respectively, and
finally all the vertices bl ∈ T2 ∩ B are added to B∗ (and the corresponding vertices pl ∈ P

to P ∗, l ≤ n − 2). A neighbor T ∗ of T (Fig. 2(a)) is showed in Fig. 2(b). The dropped

Fig. 2 (a) An example of an encoding, (b) drop-and-add neighborhood

Ann Oper Res (2008) 159: 125–133 131

edge is (bj ,pj) = (6,5), j = 5, and the added edge is (bj , k) = (6,7). The new tree T ∗ is
represented by B∗ = [1 4 2 6 3 5 7] and P ∗ = [6 2 6 7 7].

3 Computational experiments

All computational experiments were executed on a Pentium IV 2.2 GHz. The mc-GRASP
algorithm was implemented in C. The goal of this work is to demonstrate that using a meta-
heuristic, such as GRASP, it can be obtained others efficient solutions, which can not be
found with the mc-Kruskal algorithm. The mc-Kruskal algorithm generates some ef-
ficient solutions (or the supported efficient solutions).

The performance of mc-GRASP algorithm is tested on two sets of graphs with 2 and
3 criteria. The first set contains 5 graphs for each (n,m) = (10,45), (20,30). For these
graphs, the efficient solutions (for 2 and 3 criteria) are obtained by complete enumeration
(EC). The second set contains 5 complete graphs for each n = 20,30,50 vertices and, in
this case, the efficient solutions are not known. The edge costs c1

ij , c2
ij and c3

ij are uniformly
distributed in the intervals [30,200], [20,100] and [10,50], respectively (Zhou and Gen
1999). mc-GRASP was executed N_iter ≈ 1000 iterations. Best results were achieved for
α = 0.1,0.08,0.03 and 0.01 for graphs with n = 10,20,30 and 50, respectively.

We tested two types of weighted utility functions, linear and Tchebycheff. For mc-MST
problems with two and three criteria, the weighted linear functions give better results.

In multi-criteria optimization, there is no natural single measure that is able to capture
the quality of an approximation set H to the Pareto optimal set or reference set R (Arroyo
and Armentano 2004). In this work we measure the performance of the nondominated set
H generated by the heuristic method relative to the reference set R by using two measures:

• Cardinal measure: NRS = |H ∩ R| (number of reference solutions found by the heuristic
method) and,

• Distance measure: Dav = 1
|R|

∑
z∈R minz′∈H d(z′, z), where d(z′, z) is the Euclidean dis-

tance between z′ and z. Note that Dav is the average distance from a point z ∈ R to its
closest point in H .

When the Pareto optimal set is not known and H ′ is the set of nondominated points
generated by another heuristic, we define the reference set R as the nondominated points
of (H ∪ H ′) (Arroyo and Armentano 2004) and use the same measures mentioned above to
assess the approximation of H and H ′ relative to R.

The problems with (n,m) = (10,45) and (20,30) were solved to optimality by EC. For
a total of 10 problems, 312 and 4011 efficient solutions were generated by the EC algorithm
for 2 and 3 criteria, respectively. The mc-GRASP found 258 (82.70%) and 1949 (48.60%)
efficient solutions for problems with 2 and 3 criteria, respectively. The mean computational
time spend by the mc-GRASP on 10 problems with three criteria was 1.2 seconds.

The algorithms mc-GRASP and mc-Kruskal were tested on 15 complete graphs of
the second set considering two and three criteria. For these problems the efficient solutions
are not known. Therefore, their performance is evaluated with respect to a reference set R,
which contains the nondominated solutions from all solutions generated by the two algo-
rithms. Tables 1 and 2 display the results of the mc-GRASP algorithm and mc-Kruskal
algorithm for two and three criteria, respectively. In these tables are showed the number of
nondominated solutions in the set R and the number of reference solutions provided by each
algorithm (NRS). The mc-Kruskal algorithm generates the supported efficient solutions.

132 Ann Oper Res (2008) 159: 125–133

Table 1 Results of mc-GRASP and mc-Kruskal on complete graphs with 2 criteria

Instance |R| mc-GRASP mc-Kruskal

NS NRS Dav Time NRS Dav Time

n = 20 607 609 602 0.00001 0.25 138 0.00619 0.062

n = 30 1191 1192 1177 0.00002 0.47 244 0.00325 0.125

n = 50 2575 2579 2498 0.00002 1.20 461 0.00168 0.344

Total 4373 4380 4277 843

Table 2 Results of mc-GRASP and mc-Kruskal on complete graphs with 3 criteria

Instance |R| mc-GRASP mc-Kruskal

NS NRS Dav Time NRS Dav Time

n = 20 12437 12626 12123 0.00020 7.90 1213 0.01081 0.075

n = 30 27411 27800 26240 0.00020 21.84 2315 0.00773 0.156

n = 50 52192 52172 49345 0.00015 41.46 3882 0.00537 0.406

Total 92040 92601 87708 7410

The mc-GRASP algorithm can generate supported efficient solutions and others efficient so-
lutions, which can not be found by the mc-Kruskal algorithm. Tables 1 and 2 also display
the computational time spent by the algorithms.

For the 15 problems tested with two criteria, 4373 reference solutions were generated,
from which 4277 solutions were obtained by the mc-GRASP algorithm and 843 solutions
by the mc-Kruskal algorithm.

For the 15 problems with three criteria, 92040 reference solutions were generated, from
which 87708 solutions were obtained by the mc-GRASP algorithm and 7410 solutions by
the mc-Kruskal algorithm. It is clear that the mc-GRASP algorithm generates a larger
number of nondominated solutions for all problem sizes.

4 Conclusion

This paper presents a GRASP algorithm to generate a good approximation of the set of
efficient solutions of the mc-MST problem. The algorithm is applied to solve problems with
2 and 3 criteria and the computational results show that the heuristic proposed obtained, for
all instances tested, a number of reference solutions superior comparing with mc-Kruskal
algorithm. It is also the most efficient algorithm when the quality of the obtained solutions
(measured by the distance between solutions—Dav) is compared. High performance of the
mc-GRASP algorithm is demonstrated by applying it to mc-MST problem.

It would be very interesting to apply the proposed algorithm to other types of combina-
torial problems.

References

Arroyo, J. E. C., & Armentano, V. A. (2004). A partial enumeration heuristic for multi-objective flowshop
scheduling problems. Journal of Operations Research Society, 55, 1000–1007.

Coello, C. A. C. (2000). An updated survey of GA-based multiobjective optimization techniques. ACM Com-
puting Surveys, 32(2), 109–143.

Ann Oper Res (2008) 159: 125–133 133

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.).
McGraw-Hill: MIT Press.

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II (KanGAL Report 200001). Indian Institute of Technol-
ogy, Kanpur, India.

Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial
optimization. OR Spektrum 22, 425–460.

Ehrgott, M., & Klamroth, K. (1997). Connectedness of efficient solutions in multiple criteria combinatorial
optimization. European Journal of Operational Research, 97, 159–166.

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Global Optimization
6, 109–133.

Festa, P., & Resende, M. G. C. (2004). An annotated bibliography of GRASP (Technical Report). Submitted
for the European Journal of Operational Research.

Glover, F. (1996). Tabu search and adaptive memory programming: Advances, applications and challenges.
In: R. S. Barr, R. V. Helgason, & J. L. Kennington (Eds.), Interfaces in computer science and operations
research (pp. 1–75). Kluwer Academic.

Hamacher, H. W., & Ruhe, G. (1994). On spanning tree problems with multiple objectives. Annals of Opera-
tions Research, 52, 209–230.

Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective metaheuristics: An overview of the current
state-of-art. European Journal of Operational Research, 137, 1–19.

Kirkpatrick, S., Gellat Jr., C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220,
671–680.

Knowles, J. D. (2002). Local search and hybrid evolutionary algorithms for Pareto optimization. Thesis of
Doctorate, University of Reading, UK.

Kruskal, J. B. (1956). On the shortest spanning tree of graph and the traveling salesman problem. Proceedings
of the American Mathematical Society, 7, 48–50.

Michalewicz, Z. (1996). Genetic algorithm + data structures = evolution programs. Berlin: Springer.
Moon, J. W. (1967). Various proofs of Cayleys formula for counting trees. In Harary, F. (ed.), A seminar on

graph theory (pp. 70–78). New York: Holt, Rinehart and Winston.
Murata, T., Ishibuchi, H., & Gen, M. (2001). Specification of genetic search directions in cellular multi-

objective genetic algorithms. In Lecture notes in computer science, Vol. 1993. Evolutionary multi-
criterion optimization (pp. 82–95). EMO. Zurich: Springer.

Ramos, R. M., Alonso, S., Sicília, J., & Gonzáles, C. (1998). The problem of the optimal biobjective spanning
tree problem. European Journal of Operational Research, 111, 617–628.

Steuer, R. E. (1986). Multiple criteria optimization—theory, computation and application. Wiley
Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-

of art. Evolutionary Computation, 8(2), 125–147.
Zhou, G., & Gen, M. (1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem.

European Journal of Operational Research, 114, 141–152.

	A GRASP algorithm for the multi-criteria minimum spanning tree problem
	Abstract
	Multi-criteria optimization description
	The multi-criteria GRASP heuristic (mc-GRASP)
	mc-GRASP heuristic
	Greedy randomized construction
	Local search

	Computational experiments
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

