
Ann Oper Res (2008) 164: 63–78
DOI 10.1007/s10479-007-0258-1

A Petri Net based algorithm for minimizing total
tardiness in flexible manufacturing systems

Gonzalo Mejía · Carlos Montoya

Published online: 14 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Petri Nets have been extensively used for modeling and simulating of the dy-
namics of flexible manufacturing systems. Petri Nets can capture features such as parallel
machines, alternative routings, batch sizes, multiplicity of resources, to name but a few.
However, Petri Nets have not been very popular for scheduling in manufacturing due to the
Petri Net “state explosion” combined with the NP-hard nature of many of such problems.
A promising approach for scheduling consists of generating only portions of the Petri Net
state space with heuristic search methods. Thus far, most of this scheduling work with Petri
Nets has been oriented to minimize makespan. The problem of minimizing total tardiness
and other due date-related criteria has received little attention. In this paper, we extend the
Beam A∗ Search algorithm presented in a previous work with capability to handle the total
tardiness criterion. Computational tests were conducted on Petri Net models of both flexible
job shop and flexible manufacturing systems. The results suggest that the Petri Net approach
is also valid to minimize due date related criteria in flexible systems.

Keywords Petri Nets · Heuristic search · Beam search · Scheduling · Flexible
manufacturing systems

Introduction

Petri Nets have been extensively used for modeling manufacturing systems due to their
capability to represent the complex features of such asynchronous, concurrent, discrete-
event dynamic systems (Moore and Gupta 1996). Petri Nets, however, suffer from “state
explosion” which has prevented their application for scheduling problems in the man-
ufacturing systems field. Some attempts have been made to reduce the enormous ef-
fort to search the state space of the Petri Nets. Perhaps the most widely used approach

G. Mejía (�) · C. Montoya
Department of Industrial Engineering, Universidad de los Andes, PYLO Research Group, Bogotá,
Colombia
e-mail: gmejia@uniandes.edu.co

mailto:gmejia@uniandes.edu.co

64 Ann Oper Res (2008) 164: 63–78

has been the application of modified versions of the widely known A∗ search algo-
rithm. The A∗ search algorithm is a branch and bound-like algorithm which expands
only the most promising nodes of the Petri Net reachability graph (the graph that con-
tains all states of the net). The first papers date from 1994 (Lee and DiCesare 1994;
Sun et al. 1994). Since then, other authors have presented improved versions of the A∗

search algorithm. For example, Sun et al. (1994), limited the expansion of the net reach-
ability graph by selectively pruning non-promising branches; Xiong and Zhou (1998) im-
plemented the A∗ search with limited back-tracking capability; Jeng and Chen (1998) used
the Petri Net state equations to calculate lower bounds for completion times; Reyes-Moro
et al. (2002) presented a staged search approach combined with a pruning strategy to reduce
the search space; Mejía (2003) and Mejía and Odrey (2005) introduced an algorithm which
combines the A∗ and Beam Search algorithms for Petri Nets.

These algorithms have focused on minimizing makespan. Problems related to tardiness
have received very little attention from the Petri Net approach. In this paper, we present a
version of the Beam A∗ Search (BAS) (Mejía and Odrey 2005) that incorporates features
to handle due dates. The BAS algorithm presented here also includes features as selective
pruning (within a beam), the non-delay branching scheme and a bounding scheme based on
dispatching rules. In this paper, we focus on the total tardiness criterion.

Definition

Total Tardiness =
n∑

j=1

Tj ,

where Ti is the tardiness of the jth job. Tj is defined as max(Cj − dj ,0) where Cj and dj

are respectively the completion time and the due date of the jth job.

Incorporating due dates implies several difficulties that will be explained later in this doc-
ument. These relate basically to the fact that the total tardiness can only be determined when
a full schedule is calculated. Thus lower bounds are difficult to obtain for partial schedules.
The later difficulty is associated with the constructive nature of the search algorithms in
which the search is directed along partial schedules.

This paper is organized as follows: First, concepts of modeling with Petri Nets are in-
troduced. Section 1 presents the modeling strategy. Time-space state equations to track the
net evolution are introduced in Sect. 2. The BAS algorithm for total tardiness is described
in detail in Sect. 3. The results of the experiments are presented in Sect. 4. Conclusions and
further research are discussed in the last section.

1 Modeling with Petri Nets

A Petri Net is a bipartite directed graph having two kinds of nodes (places and transitions),
along with an initial state called the initial marking. Arcs are always directed from a transi-
tion to a place and vice versa. In general, places represent actions or conditions and transi-
tions represent events. Entities called tokens reside in places and represent the truth of the
conditions or actions associated with the corresponding places. Tokens move throughout the
net by the effect of the transition firings. When a transition fires, it removes one token from

Ann Oper Res (2008) 164: 63–78 65

Fig. 1 An example of a Petri subnet for the routing of a job

each of its input places and puts one token on each of its output places.1 In order to fire, a
transition must be enabled. This means that there must be sufficient tokens at the transition
input places (i.e. all pre-conditions must be met). See Murata (1989) for details.

In a Timed Petri Net, time can be associated with either places or transitions. In this
paper, time is associated with places. In this particular case, a token must wait in a place at
least a time elapse corresponding to the time associated with such a place, before moving
onto the next place.

Definition Timed Petri Net (TPN): A TPN is a 6-tuple (P,T , I,O,M0, τ) where P = set
of n places, T = set of m transitions, P ∩T = { }, I = a set of input arcs (P ×T), O = a set
of output arcs (T × P), M0 = initial marking, and τ = set of time delays associated with
places.

In this paper, we assume that all jobs are available at the beginning and no new jobs
arrive to the system. For these assumptions, we follow the modeling methodology presented
in previous work (Mejía 2003). First, we model the route of each job with a Petri subnet.
Specifically, each place represents either an operation (e.g. job being processed by machine)
or a condition (e.g. job ready). Transitions in all cases represent the beginning or the end of
an operation.

Table 1 Example of Job routing
Operation 1 2 3

Resources M1 M2 or M3 M4

The Petri subnet for this job is represented as shown in Fig. 1. Table 2 shows the de-
scription for each place. This example was taken from Mejía and Odrey (2005). Notice that
there is one unique source place (no input transitions) and one unique sink place (no out-
put transitions). These represent respectively the conditions “job ready” and “job finished”.
Transitions represent the beginning and the end of each operation.

The same modeling method is followed for all jobs allocated to the system. When all jobs
are modeled, the next step is the addition of resources. This implies the addition of “resource
places” which represent the availability of a resource, and arcs from/to the resource places
to/from the transitions of the nets representing the job routings. The number of resource

1This is the definition of Ordinary Petri Nets. In the general case, the number of tokens removed/placed
depends on the arc weights.

66 Ann Oper Res (2008) 164: 63–78

Table 2 Description of places for the net in Fig. 1

p1 Job ready p5 Alternative 2 for the second operation of a
Job being processed by machine M3

p2 First operation of a Job being processed by
machine M1

p6 Operation 2 finished

p3 Operation 1 finished p7 Last operation of a Job being processed by
machine M3

p4 Alternative 1 for the second operation of a
Job being processed by machine M2

p8 Job finished

Fig. 2 Petri Net model of a
system with two jobs and three
machines

places corresponds in this case to the total number of machines. New transitions are not
added. The resource allocation occurs when a transition, having one or more resource places
as input places, fires. Resources become unavailable when allocated. Similarly, resources
are released and become available when a transition, having one or more resource places as
output places, fires.

The construction of the net must ensure that (i) a resource cannot be allocated twice be-
fore being released, and (ii) that for any outgoing arc from a resource place, there must be an
incoming arc to the resource place, as well. A similar methodology for modeling with Petri
Nets was proposed in Lee and DiCesare (1994), Mejía and Odrey (2005). Figure 2 illustrates
a full Petri Net model of a manufacturing system having two jobs to be processed and three
machines (M1, M2 and M3). Job 1 is first processed simultaneously by machines 1 (M1)
and 3 (M3) and then by machine 2 (M2). Job 2 is processed first by machine 2 (M2) and
then by both machines 1 (M1) and 3 (M3). Highlighted places (p2, p4, p7 and p9) represent
timed places and correspond to the physical operations.

2 State equations

The state equations presented are intended to track both the token evolution and timing of a
Petri Net constructed with the modeling methods presented in Sect. 1. These equations will
be used later for optimization purposes. The main feature is the augmentation of the marking
vector with the remaining processing time vector. Consider a Timed Petri Net having n

places and m transitions. The remaining time vector contains in its ith position the remaining

Ann Oper Res (2008) 164: 63–78 67

Table 3 Description of places for the net Fig. 2

Place description for Petri Net of Fig. 2

p1 Job 1 ready p6 Job 2 ready

p2 Job 1 being processed by machines 1 and 3 p7 Job 2 being processed by machine 2

p3 Operation 1 of Job 1 finished p8 Operation 1 of Job 2 finished

p4 Job 1 being processed by machine 2 p9 Job 2 being processed by machines 1 and 3

p5 Operation 2 of Job 1 finished p10 Operation 2 of Job 2 finished

M1 Machine 1 available M2 Machine 2 available

M3 Machine 3 available

time required to enable the output transition(s) of the ith place (i = 1 to n). The augmented
state space representation can be written as:

X(k + 1) = A(k)X(k) + B(k)u(k). (1)

Where: X(k) is the state vector

X(k) =
∣∣∣∣
M(k)

Mr(k)

∣∣∣∣ .

M(k) and Mr(k) are n×1 vectors. M(k) and Mr(k) are respectively the marking vector and
the remaining processing time vector after k transition firings (events).

A(k) is the system matrix. This matrix is partitioned as follows:

A(k) =
∣∣∣∣

In 0n

−Inδ(k) In

∣∣∣∣ .

Where:

In: Identity n × n matrix.
0n: Zero n × n matrix.
δ(k): Time elapse between two consecutive transition firings. δ(k) = Max(Mri(k)) ∀i

such that place pi is input to the transition firing at the kth event.
u(k): m × 1 Control vector that determines which transition fires after k firings. m is the
number of transitions in the net. uj (k) is the jth position of u at time k. uj (k) = 1 if
transition j fires, 0 otherwise.
B(k): Distribution matrix that transforms the control action u(k) into addition or removal
of tokens when firing a transition represented in vector u(k).

B(k) =
∣∣∣∣

C

T C+

∣∣∣∣ .

C : n × m Incidence matrix. C = C+ − C−.
C+ and C− are, respectively, the incidence input and output matrices. See the definition
of incidence matrix in Murata (1989).
T = {tij }: Processing time n × n diagonal matrix for operational places tii = {τi}. Where
τi is the value of the ith position of the vector of time delays associated with places as
defined in Sect. 1.

68 Ann Oper Res (2008) 164: 63–78

Intuitively, the remaining process time is calculated as follows: After k events we denote
the remaining process time vector just before a transition firing as Mr(k). Suppose that j th
transition fires at the kth event. The j th transition will fire after δ(k) units. Thus, the remain-
ing process time vector is recalculated by subtracting δ(k) time units from the vector Mr(k)

(for the places that contain tokens). We denote this temporary remaining process time vector
as M ′

r (k). In the state space equations this is represented by M ′
r (k) = Mr(k) − Inδ(k)M(k).

Negative values of the M ′
r (k) vector are set to 0 (i.e. the remaining times have been ex-

hausted). Then the corresponding tokens are moved from the input places to the j th tran-
sition output places. The remaining process time for the incoming tokens is the time delay
of such output places since the corresponding actions are ready to start but have not started
yet. The time delay of the incoming tokens is represented by the vector T C+u(k). Thus,
the remaining process time vector Mr(k) is updated with the addition of the process time
of the just-arrived tokens. This yields Mr(k + 1) = M ′

r (k) + T C+u(k). Here, we constrain
the timed places to accept at most one token to avoid duplicated remaining process times in
one single place. This could happen if more than one token is present in a single place. This
constraint is easily met by initially putting only one token in each resource place.

3 Petri Net scheduling using heuristic search for total tardiness

Perhaps one of the most promising approaches for optimization with Petri Nets is to selec-
tively search the net reachability graph with the A∗ search algorithm as suggested by Lee
and DiCesare (1994), Sun et al. (1994), Xiong and Zhou (1998). The algorithm A∗ search
expands the most promising branches of the net reachability graph according to a criterion
established with the heuristic function f (M) = g(M) + h(M). The function g(M) is the
actual cost (time in the makespan case) from the initial marking M0 to the marking M and
h(M) is an estimate of the cost from marking M to the desired final marking Mf . Those
markings having lower values of f (M) will have priority for expansion. The A∗ search algo-
rithm (Lee and DiCesare 1994) uses two lists: OPEN and CLOSE. The list OPEN contains
markings generated but not yet expanded. The list CLOSE contains the markings that have
been selected for further expansion. The OPEN list is sorted in ascending order according
to the heuristic function f (M).

The reader is referred to Russell and Norvig (1995) for further details of the A∗ search
algorithm.

Condition 1 In order to guarantee that A∗ Search finds the optimal solution, h(M) must be
greater than 0 and less than or equal to the actual value h∗(M) for all markings M (Russell
and Norvig 1995).

Additionally, if the final marking is reached for the first time using a heuristic function
h(M) that meets Condition 1, then the path from the initial marking to the final marking is
an optimal one (Russell and Norvig 1995). In this research, the generation of the successor
markings M and, the calculation of the corresponding remaining processing time vector Mr

are accomplished with the state equations described in Sect. 2. The cost g(M) is calculated
as:

g(M) = g(parent of M) + δ(M), (2)

δ(M) is the time elapse to reach M from its parent.

Ann Oper Res (2008) 164: 63–78 69

Despite the fact that A∗ search guarantees optimality, it also presents several drawbacks:

(i) The complexity of the algorithm is exponential in both time and memory requirements
(ii) The generation of a large number of non-promising markings,

(iii) The difficulties in the calculation of the heuristic function h(M).

The first two drawbacks were overcome by the BAS algorithm for makespan as shown
in Mejía and Odrey (2005). The BAS algorithm expands a maximum fixed number of mark-
ings (within a beam of width bw) at each level of the reachability graph, and filters out bad
markings with an evaluation scheme. In this way, the algorithm converges towards a final
solution at the desired speed set by the beam width. The larger the beam, the better the so-
lution is expected to be at the expense of longer computational time. In addition to those
improvements, a filtering scheme was provided (see below). The features of filtered beam
search were already implemented by Sabuncuoglu and Bayiz (1999) and Ow and Morton
(1988) with good results on classical scheduling problems. The main difference of the clas-
sical beam search and BAS is the way the graph is expanded. In the beam search, lower level
nodes are expanded first; In BAS, nodes with lower values of the heuristic function f (M)

have priority for expansion. This results in faster convergence of the algorithm towards the
final marking.

For the tardiness case two additional difficulties arise: The first one relates to the tracking
of the jobs’ completion times while the second concerns the calculations of both the actual
cost g(M) and the estimated remaining cost h(M). In the makespan case, the actual cost
g(M) is calculated as the time elapse from the initial marking to the marking M . g(M) is
clearly a lower bound of a solution that includes the marking M . The estimated remaining
cost h(M) is calculated based on the time of the remaining job operations. For the total
tardiness case these calculations are not obvious. For instance, suppose that marking M

represents a state in which no jobs have been finished. Clearly in this case, the total tardiness
cannot be determined. In addition, in the makespan case, the costs (times) accumulate as the
search moves along a path, but this is not the case for total tardiness. Likewise the remaining
cost h(M) is not obvious to evaluate. The following sections explain how these difficulties
were solved.

3.1 Filtering non-promising markings

The filtering scheme implemented here consists of pre-evaluating each children node before
performing the expensive (in terms of computational time) calculation of h(M). The com-
pletion time of each job is calculated as the sum of the actual job time plus the total time
of its remaining operations. Having the jobs’ completion times, the calculation of total tar-
diness is straight forward. Only the α best children nodes will be further evaluated with the
h(M) function. In practice the value of α was variable throughout the algorithm execution,
being a greater value at the beginning to diversify the search and a lower value towards the
end to intensify the search. The values of α were selected according to the size of the prob-
lem. In the remaining of the document the pre-evaluation filtering function will be denoted
as filter(M).

3.2 Tracking the jobs’ completion times

Since the route of each job is modeled with a Petri subnet, all that is required is tracking the
time in which a token reaches the sink place of such a Petri subnet and compare it to the due
date of the corresponding job.

70 Ann Oper Res (2008) 164: 63–78

3.3 Calculations of the f (M) function

Since the g(M) and h(M) functions do not contribute much in the context of total tardiness,
we developed a single cost function f (M) that combines the two. This function is calculated
using the common Apparent Tardiness Cost (ATC) or Earliest Due Date (EDD) dispatching
rules. This heuristic function denoted here as f (M) is given by the expression:

f (M) = frule(M), (3)

where “rule” can be either ATC or EDD. Starting from the marking M , the function frule(M)

assigns firing priorities to the transitions according to the selected rule. For instance, the ATC
rule selects the job j with the maximum Ij (t) defined as follows:

Ij (t) = wj

pj

exp

(−max(dj − pj − t,0)

Kp

)
, (4)

where wj is the weight or priority; pj is the processing time; dj is the due date; t is the
current time; K is a scaling factor and p is the average processing time of the remaining
jobs.

Again, as every transition corresponds to a job (i.e. a given transition belongs to a unique
job subnet), it is not difficult to implement the rule. An important point here is that to any
marking M reached from the initial marking, two pieces of information are required in order
to calculate the total tardiness: The number of jobs already finished at marking M and their
completion times (if any jobs have been finished). The completion times had to be calculated
previously along the best path to the marking M . This information must be stored along with
the remaining time for each marking.

Initially any problem is evaluated with the two rules (ATC and EDD) and the best rule is
selected as the rule for the frule(M) function. In about the 80% of all cases, the ATC rule was
chosen over the EDD. Notice that the Condition 1 described above cannot be guaranteed for
all markings but at least provides an upper bound for the value of total tardiness.

3.4 The beam A∗ search algorithm for total tardiness

The inputs for the BAS algorithm are the Timed Petri Net, the initial marking, the set of due
dates, the beam width (bw), the value of the filtering constant α.

The BAS algorithm follows next:

1. Select the rule for expansion (ATC or EDD). Try several values of the scaling factor K

for the ATC rule.
2. Place the initial marking M0 on the list OPEN.
3. Initialize current_depth = 0 and count_markings = 0 (counter).
4. If OPEN is empty, terminate with failure.
5. Remove the first marking M on OPEN whose depth equals the current_depth. If no

marking is on the current depth, select the first marking on OPEN whose depth is greater
than current_depth. If no marking on OPEN has a greater depth than current_depth then
select the marking with the greatest depth. Put M on CLOSE.

6. If M is the final marking Mf , construct the path from M0 to M and terminate.
7. Find the set of enabled transitions {tj } for a given marking. Generate the children mark-

ings M ′′ along with the corresponding remaining processing time vector M ′′
r that would

result from firing each enabled transition tj . Also calculate filter(M ′′) for each M ′′.
Store these markings on a temporary list (TEMPLIST).

Ann Oper Res (2008) 164: 63–78 71

8. (Filtering). Sort TEMPLIST according to filter(M ′′). Keep only the best α markings on
TEMPLIST.

9. For each of the markings M ′′ remaining on TEMPLIST do the following:
(a) Calculate frule(M

′′) according to the selected dispatching rule from step 1.
(b) If M ′′ is equal to some marking MO already on OPEN, verify if f (M ′′) < f (MO).

If that is the case redirect the path to MO. Otherwise insert M ′′ on OPEN.
(c) If M ′′ is equal to a marking MC already on CLOSE, verify if f (M ′′) < f (MC). If

that is the case delete MC from CLOSE and all its children that reside on OPEN.
Redirect the path to MC. Otherwise, insert M ′′ on CLOSE. This step follows the
same logic as step 9(b).

(d) If M ′′ is not on either list, then insert M ′′ on OPEN.
10. If count_markings < bw then add 1 to count_markings. Otherwise, set count_markings

= 0 and current_depth = current_depth + 1.
11. Go to step 4.

The following section illustrates the performance of the BAS algorithm for total tardiness.

4 Computational experiments and results

In order to test the validity of our approach, we conducted a number of computational ex-
periments on Petri Net models. The primary idea was testing the BAS algorithm for total
tardiness on a variety of problems. BAS algorithm was coded entirely in C++. All the exper-
iments were run on a personal computer having a 1.8 GHz Pentium III microprocessor and
512 MB RAM memory. The first part of this section shows the performance of the algorithm
on randomly generated problems of flexible manufacturing systems (definition below); the
second part shows results on standard and randomly generated Flexible Job Shop Scheduling
Problems (FJSSP). A FJSSP is an extension of the Classical Job Shop Scheduling Problem
(JSSP) in which there are n jobs, m workstations, no recirculation, no alternative routings
and deterministic processing times. Unlike the in the JSSP, in which there is only one ma-
chine per workstation, in the FJSSP there can be several identical parallel machines at each
station.

4.1 Results on randomly generated problems

A first set of problems consisted of instances having between 5 and 10 jobs, 5 and 10 ma-
chines, re-circulation, multiplicity of resources (one or more resources perform simulta-
neously the same operation on a job) and approximately 25% of the operations could be
performed by more than one machine. The due dates were set as 1.5 times the work time
of each job for both sets of problems. This due date assignment was proposed by Baker
(1974). In the case of alternative routings, the due date was calculated considering the short-
est route. The Petri Net model for each of these set of problems was built with the modelling
methodology described in Sect. 1.

The literature has not reported results for this kind of problems (to the best of our knowl-
edge). In addition, as pointed out by Sabuncuoglu and Bayiz (1999) optimal solutions for
tardiness related criteria are rarely known. For this reason, we had no recourse but to com-
pare our BAS algorithm against dispatching rules.

The purpose of the experiments was testing how the beam width affected the performance
of the algorithm. For each run, the average relative difference against the EDD and the ATC

72 Ann Oper Res (2008) 164: 63–78

Fig. 3 Average deviation of results. BAS algorithm vs. EDD and ATC rules

Fig. 4 Average CPU time vs. Beam Width

rules was calculated as follows:

deviation(%) = Z(rule) − Z(BAS)

Z(rule)
× 100%, (5)

where Z(rule) is the objective function (total tardiness) obtained with the selected dispatch-
ing rule and Z(BAS) is the objective function obtained with the BAS algorithm.

The results were plotted against the beam width as shown in Fig. 3. The tests also show
the CPU (computational) time varies as the beam width increases. The averages were taken
of the number of explored markings and CPU times on all 10 problems for every beam width.
The results are plotted in Fig. 4. In all cases the constant α was set to 5 after a number of
preliminary tests.

The results show that even with small beams, the BAS algorithm clearly outperforms
the EDD and ATC rules. For a beam width of 1, BAS outperforms the EDD rule on aver-
age by 45% and the ATC rule by 10%. For greater beams, BAS achieves an improvement
of approximately a 50% compared to EDD and 20% compared to ATC. BAS exhibits the
typical behavior of “diminishing returns” (i.e. no significant gains were obtained with in-

Ann Oper Res (2008) 164: 63–78 73

creasing computer effort). On the other hand, the CPU times do increase as the beam width
is increased as shown in Fig. 4. Hence, if required, small beam widths can be used with no
significant loss in the solution quality.

4.2 Results on standard flexible job shop scheduling problems

The flexible job shop scheduling problem (FJSSP) is an extension of the classical job shop
scheduling problem. In a FJSSP, there are n jobs and m workstations and jobs follow a
predetermined route. A workstation consists of mi identical parallel machines and a job op-
eration can be performed on any of the machines of the workstation. We tested our algorithm
with 12 instances proposed by Brandimarte (1993). These instances are modified versions
of a classical job shop problems having between 1 to 3 identical parallel machines in each
workstation. The instances mt10xx are 10 × 10 (jobs × machines) scheduling problems; the
setbxxx instances are 15 × 10 and the seti5xxx instances are 15 × 15. Due dates were set
with the same Baker (1974) rule as in the previous section. The filtering constant α was set
as 5 as in the previous section.

The results were compared with those of the General Shifting Bottleneck (SB) algorithm
for total weighted tardiness. Implemented in the software Lekin® (Pinedo and Chao 1999)
and the ATC, SPT (Shortest Processing Time) and EDD rules. Table 4 shows a summary of
the obtained results. The computational times for the dispatching rules were less than 0.1
seconds and are not reported here. The results reveal the advantages of the BAS approach
for total tardiness. In both sets (Brandimarte 1993 and Randomly Generated) of problems,
the proposed algorithm outperformed all the dispatching rules and the Shifting Bottleneck
(SB) algorithm in all FJSSP instances. On the other hand, the computational times favor our
algorithm when compared against the SB method. Notice that the computational times for

Table 4 Results for standard problems for total tardiness

Problem BAS(2) BAS(2) BAS(5) BAS(5) SB SB ATC SPT EDD

(CPU) (CPU) (CPU)

mt10c1 818 3 518 6 563 3 1071 1082 1345

mt10cc 548 4 378 7 376 5 793 1080 1173

mt10x 561 4 434 7 523 3 880 1313 854

mt10xyz 260 4 129 7 326 6 732 841 412

setbc9 1391 9 1273 13 2297 10 2358 2550 2201

setb4cc 1666 9 1211 13 1279 13 2528 2959 2921

setb4xx 1256 9 1101 12 2181 9 2262 3124 3253

setb4xyz 1074 10 689 15 1400 14 1908 3173 2168

setb4xy 1292 8 882 12 2123 10 1972 2563 3045

seti5c12 255 17 123 50 298 18 1478 2507 2439

seti5xxx 284 20 142 56 1332 19 1510 2566 2288

seti5xy 163 18 33 51 441 18 1318 2363 1925

seti5xyz 55 19 0 52 464 17 1071 1675 1570

BAS(x): Beam A∗ Search (x = beam width)

SB: General shifting bottleneck method for total tardiness

CPU: Computational time in seconds

74 Ann Oper Res (2008) 164: 63–78

Table 5 Results for randomly generated FJJSPs for total tardiness

Problem BAS(2) BAS(2) BAS(5) BAS(5) SB SB ATC EDD SPT

(CPU) (CPU) (CPU)

1 (25 × 6) 143 13 135 26 162 119 221 248 225

2 (30 × 8) 883 23 876 40 850 517 1099 1063 1072

3 (25 × 10) 61 26 43 45 46 301 222 324 278

4 (25 × 10) 844 20 841 31 1028 205 1066 1138 950

5 (30 × 10) 1560 22 1560 38 1661 255 1747 1744 1702

6 (35 × 4) 918 9 918 20 1232 237 1088 1123 1116

7 (30 × 5) 1335 10 1313 15 1624 169 1454 1575 1473

8 (25 × 6) 752 10 752 18 838 99 882 896 981

9 (25 × 6) 821 10 821 18 898 92 957 923 984

10 (25 × 7) 700 12 700 21 665 135 874 784 874

BAS(x): Beam A∗ Search (x = beam width)

SB: General shifting bottleneck method for total tardiness

CPU: Computational time in seconds

BAS are a fraction of those of the SB method running under the same conditions (same ma-
chine). Also notice the improvement when running larger beam widths (bw = 2 vs. bw = 5)
at the expense of longer computational times.

4.3 Results on randomly generated flexible job shop scheduling problems

The second set of problems consisted of randomly generated FJSSP instances. The num-
ber of jobs ranged from 25 to 35 and the number of workstations between 4 and 10; the
number of machines per workstation varied from 1 to 3. The assignment of due dates was
performed with the Baker rule as above. The comparison was made against the SB routine
and the aforementioned dispatching rules. The filtering constant α was set between 5 and
10 depending on the size of the problem (5 for the smaller problems and 10 for the larger
problems). Table 5 shows the results.

Similar conclusions as in Sect. 4.2 can be drawn here. BAS performed better than the SB
algorithm and all the dispatching rules. Again smaller beams produced quicker results but
at the expense of the solution quality.

It should be noticed that this Petri Net-based approach is very adaptable to many envi-
ronments such as (flexible) job shops, flow shops, parallel machines, etc. Furthermore, more
complex systems can be modeled as presented in Sect. 4.1. This is very appealing in prac-
tice since the BAS algorithm is a general purpose algorithm as opposed to many tailor-made
algorithms which are suited for only a particular framework (job shop, flow shop) and/or for
only a specific objective function.

5 Conclusions

A Petri Net-based algorithm for minimizing total tardiness has been presented in this re-
search. This paper has shown how Petri Nets can be effectively used not only for modeling
and simulation of manufacturing systems but also as a powerful optimization tool. In this

Ann Oper Res (2008) 164: 63–78 75

paper we presented an approach that exploits the modeling capability of the Petri Nets com-
bined with an intelligent search method for scheduling a wide variety of manufacturing
systems. The BAS algorithm for total tardiness features an intelligent pruning of the search
space, a controlled search deepening to avoid marking explosion and the development of
new heuristic functions to estimate and minimize total tardiness. The BAS algorithm de-
scribed here was tested on a number of randomly generated problems and showed signif-
icant improvement upon the common dispatching rules used to sequence jobs in flexible
manufacturing systems. The BAS algorithm was also tested on standard FJSSPs in order to
have a benchmark for comparison. BAS performed very well in all instances both in terms
of solution quality and in computational times.

Further research is needed on (i) improving the heuristic functions f (M), (ii) the im-
plementation of the algorithm on large problems, and (iii) the development of multi-criteria
heuristic functions.

Other areas that are the subject of further research are the utilization of the BAS algorithm
for cyclic scheduling, assembly operations where parts are incorporated into subassemblies,
re-entrant manufacturing, and re-scheduling of flexible manufacturing systems.

Appendix

Numerical example: Let the following Petri Net representation of two jobs processed by two
different machines. The description of places follows is Table 6.

Places p2 and p5 are timed places. The corresponding time delays are τ2 = 4 and τ5 = 6.
Assume the following firing sequence σ = (t1, t3, t2, t4). All transitions fire as soon as

they are enabled. The initial marking is shown in Fig. 5. Notice that both t1 and t3 fire at
time t = 0 since they are both enabled and the corresponding input places are not timed.

Definition Let tclock be the cumulative time elapse.

Fig. 5 Petri Net example

Table 6 Description of places

Place description for Petri Net of Fig. 2

p1 Job 1 ready p4 Job 2 ready

p2 Job 1 being processed by machine 1 p5 Job 1 being processed by machine 2

p3 Job 1 finished p6 Job 2 finished

M1 Machine 1 available M2 Machine 2 available

76 Ann Oper Res (2008) 164: 63–78

Notice that the (1) X(k + 1) = A(k)X(k) + B(k)u(k) can be rewritten as:

M(k + 1) = M(k) + Cu(k), (6)

Mr(k + 1) = −Inδ(k)M(k) + Mr(k) + T C+u(k). (7)

Following the definitions of Sect. 2, the corresponding matrix C for the net is:

C =

t1 t2 t3 t4

p1 −1 0 0 0
p2 1 −1 0 0
p3 0 1 0 0
p4 0 0 −1 0
p5 0 0 1 −1
p6 0 0 0 1
M1 −1 1 0 0
M2 0 0 −1 1

The time delay matrix T = diag(0, 4, 0, 0, 6, 0, 0, 0).
M(0) = M0 = [1 0 0 1 0 0 1 1]T; Mr(0) = [0 0 0 0 0 0 0 0]T and tclock = 0 or similarly

M(k + 1) = [M(k) − C−u(k)] + C+u(k), (8)

Mr(k + 1) = [−Inδ(k)M(k) + Mr(k)] + T C+u(k). (9)

The terms in brackets correspond to the removal of tokens and must be calculated first.
Denote the terms in brackets in (8) and (9) as M ′(k) and M ′

r (k) respectively. The terms
outside the brackets correspond to the update of the marking and the remaining process time
vectors. At k = 0 and t = 0, transition t1 fires. Therefore the vector u(0) is [1 0 0 0]T. Recall
that u(k) is a unit vector in which all positions are 0 except the position corresponding to
the transition firing at the event k.

The resulting marking and remaining process time vectors are: Calculation of M ′(0) and
M ′

r (0):

M ′(0) = [0 0 0 1 0 0 0 1]T.

According to the definition given in Sect. 2, δ(0) = max(Mr p1(0),Mr M1(0)) = max(0,0) =
0.

tclock = tclock + δ(0) = 0.

Hence the term −Inδ(0)M(0) is a 0 vector and M ′
r (0) = [0 0 0 0 0 0 0 0]T.

Adding the terms outside the brackets in (8) and (9) results in:

M(1) = [0 1 0 1 0 0 0 1]T.

Ann Oper Res (2008) 164: 63–78 77

Fig. 6 Marking after firing
transitions t1, t3 and t2

The term T C+u(k) is calculated as follows:

diag[0 4 0 0 6 0 0]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

1
0
0
0

∣∣∣∣∣∣∣∣

T C+ u(k)

Hence Mr(1) = [0 4 0 0 0 0 0 0]T.
Following the same logic, firing t3 yields:

u(1) = [0 0 1 0]T, δ(1) = 0,

M(2) = [0 1 0 0 1 0 0 0]T, Mr(2) = [0 4 0 0 6 0 0 0]T,

δ(1) = 0 and tclock = tclock + δ(1) = 0.

Firing t2 results in:

u(2) = [0 1 0 0]T, M ′(2) = [0 0 0 0 1 0 0 0]T, δ(2) = max(Mr p2(2)) = 4.

Hence the term −Inδ(2)M(2) results in [0 4 0 0 4 0 0 0]T and M ′
r (2) = [0 0 0 0 2 0 0 0]T.

Adding the terms outside the brackets in (8) and (9) results in:

M(3) = [0 0 1 0 1 0 1 0]T and Mr(3) = [0 0 0 0 2 0 0 0]T,

tclock = tclock + δ(2) = 4.

Notice that job 1 finishes at this time. See Fig. 6.
Finally firing t4 results in:

u(3) = [0 0 0 1]T, M ′(3) = [0 0 1 0 1 0 1 0]T, δ(3) = max(Mr p5(3)) = 2.

Hence the term −Inδ(3)M(3) results in [0 0 2 0 2 0 2 0]T and M ′
r (3) = [0 0 −2 0 0 0 −2 0]T.

Since negative remaining process times mean that the times have been exhausted, these
terms are converted into 0 s.

78 Ann Oper Res (2008) 164: 63–78

Fig. 7 Marking of the net after
all transitions have fired

Adding the terms outside the brackets in (8) and (9) results in:

M(4) = [0 0 1 0 0 1 1 1]T and Mr(4) = [0 0 0 0 0 0 0 1]T,

tclock = tclock + δ(3) = 6.

Notice that the time elapse (makespan) to complete both jobs is 6 time units since both
jobs were processed simultaneously. Job 1 finished at 4 time units and Job 2 at 6 time units
and this is consistent with the Petri Net equations. See the state of the net in Fig. 7.

References

Baker, K. R. (1974). Introduction to sequencing and scheduling. New York: Wiley.
Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations

Research, 22, 158–183.
Jeng, M. D., & Chen, S. C. (1998). A heuristic search approach using approximate solutions to Petri Net

state equations for scheduling flexible manufacturing systems. The International Journal of Flexible
Manufacturing Systems, 10, 139–162.

Lee, D. Y., & DiCesare, F. (1994). Scheduling flexible manufacturing systems using Petri Nets and heuristic
search. IEEE Transactions on Robotics and Automation, 10(2), 123–131.

Mejía, G. (2003). Timed Petri Net modeling and optimization with heuristic search for flexible manufacturing
workstations. In Proceedings of the 2003 IEEE emerging technologies and factory automation (ETFA),
Lisbon, Portugal, September 16–19, 2003.

Mejía, G., & Odrey, N. (2005). An approach using Petri Nets and improved heuristic search for manufacturing
system scheduling. Journal of Manufacturing Systems, 34(2), 79–92.

Moore, K. E., & Gupta, S. M. (1996). Petri Net models of flexible and automated manufacturing systems:
A survey. International Journal of Production Research, 34(11), 3001–3035.

Murata, T. (1989). Petri Nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541–580.
Ow, P. S., & Morton, T. E. (1988). Filtered beam search in scheduling. International Journal of Production

Research, 26, 35–62.
Pinedo, M., & Chao, X. (1999). Operations scheduling with applications in manufacturing and services. New

York: McGraw-Hill.
Reyes-Moro, A., Yu, H., Kelleher, G., & Lloyd, S. (2002). Integrating Petri Nets and hybrid heuristic search

for the scheduling of FMS. Computers in Industry, 47, 123–138.
Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs: Prentice-Hall.
Sabuncuoglu, I., & Bayiz, M. (1999). Job shop scheduling with Beam search. European Journal of Opera-

tional Research, 118(2), 390–412.
Sun, T., Cheng, W., & Fu, L. (1994). A Petri Net based approach to modeling and scheduling for an FMS and

a case study. IEEE Transactions on Industrial Electronics, 41(6), 593–601.
Xiong, H. H., & Zhou, M. C. (1998). Scheduling of semi-conductor test facility via Petri Nets and hybrid

heuristic search. IEEE Transactions on Semiconductor Manufacturing, 11(3), 384–393.

	A Petri Net based algorithm for minimizing total tardiness in flexible manufacturing systems
	Abstract
	Introduction
	Modeling with Petri Nets
	State equations
	Petri Net scheduling using heuristic search for total tardiness
	Filtering non-promising markings
	Tracking the jobs' completion times
	Calculations of the f(M) function
	The beam A* search algorithm for total tardiness

	Computational experiments and results
	Results on randomly generated problems
	Results on standard flexible job shop scheduling problems
	Results on randomly generated flexible job shop scheduling problems

	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

