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Abstract Multiobjective Optimization (MO) has many applications in such fields as the
Internet, finance, biomedicine, management science, game theory and engineering. How-
ever, solving MO problems is not an easy task. Searching for all Pareto optimal solutions is
expensive and a time consuming process because there are usually exponentially large (or
infinite) Pareto optimal solutions. Even for simple problems determining whether a point
belongs to the Pareto set is NP-hard. In this paper, we discuss recent developments in MO.
These include optimality conditions, applications, global optimization techniques, the new
concept of epsilon Pareto optimal solution, and heuristics.

Keywords Multiobjective optimization · Pareto optimality · Duality · Generalized
convexity

The general MOP can be written as follows:

min f (x)

s.t. x ∈ X,
(1)

where X ⊆ R
n is a nonempty set, f (x) = (f1, f2, . . . , fk)

T :X → R
k is a vector-valued

function.
The feasible region X is usually expressed by a number of inequality constraints, that

is, X = {x ∈ R
n | gj (x) ≤ 0, j = 1,2, . . . , l}. If all the objective functions and the con-

straint functions are linear, then (1) is called a Multiobjective Linear Programming Problem
(MOLP). If at least one of the objective functions or the constraint functions is nonlinear,
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(1) is called a Nonlinear Multiobjective Optimization Problem (NMOP). Throughout this
paper, we will consider NMOPs. If all the objective functions and the constraint set are con-
vex, then (1) becomes a convex MOP. When at least one of the objective functions or the
constraint set is nonconvex, then (1) becomes nonconvex MOP.

Here, we generally aim at minimizing all the objective functions at the same time if there
is no conflict between the objective functions. However, for general MOP, the objective
functions are in contradiction to each other.

The present paper is organized as follows. In Sect. 1, we introduce Pareto optimality
which is the main concept of multiobjective optimization. Optimality conditions and duality
results are surveyed in Sects. 2 and 3. In Sect. 4, we discuss the optimality conditions and
duality for multiobjective fractional programming problems. Multiobjective integer linear
programming problems will be discussed briefly in Sect. 5. Section 6 covers multiobjective
optimization approaches while some multiobjective combinatorial optimization problems
are covered in Sect. 7. Finally, we discuss some applications of MO.

1 Pareto optimality

As we mentioned before there are conflicts between the objective functions of a MOP. Thus,
there should be an ordering concept in R

k in order to solve the problem comparing the
objective function values. Pareto optimality (Pareto 1964), named after the Italian econo-
mist Vilfredo Pareto (1906), is a measure of efficiency in multiobjective optimization. The
concept has a wide range of applications in economics, game theory, multiobjective opti-
mization, and the social sciences generally. According to this concept, we look for objective
vectors such that none of the components of each of those vectors can be improved with-
out deterioration to at least one of the other components of the vector. Therefore, Pareto
optimality can be defined mathematically as follows:

Definition 1 (Pareto Optimality) A point x∗ ∈ X with f (x∗) is called (globally) Pareto
optimal (or efficient or non-dominated, or non-inferior), if and only if there exists no point
x ∈ X such that fi(x) ≤ fi(x

∗) for all i = 1,2, . . . , k and fj (x) < fj (x
∗) for at least one

index j ∈ {1,2, . . . , k}.

We can also define the concept of local Pareto optimality similar to the local optimality
concept in scalar valued optimization.

Definition 2 (Local Pareto Optimality) A point x∗ ∈ X with f (x∗) is called locally Pareto
optimal, if and only if there exists δ > 0 such that x∗ is Pareto optimal in S ∩ B(x∗, δ).

Here, B(x∗, δ) is the open ball of radius δ centered at point x∗ ∈ X, that is, B(x∗, δ) = {x ∈
R

n | ‖x − x∗‖ < δ}. Note that every globally Pareto optimal solution is a locally Pareto op-
timal solution. However, the converse is not always true unless there are some assumptions
in the problem.

Theorem 1 When the MOP is convex then every locally Pareto optimal solution is also
globally Pareto optimal.

Proof Suppose to the contrary that x∗ is a locally Pareto optimal solution which is not a
globally Pareto optimal. Then there exists y ∈ X such that f (y) < f (x∗) and f (y) 	= f (x∗).
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Consider a scalar z = βx∗ + (1 − β)y such that z ∈ S ∩ B(x∗, δ) and 0 < β < 1. By the
convexity of the objective functions, we have

f (z) ≤ βf (x∗) + (1 − β)f (y) ≤ f (x∗)

and

f (x∗) + (1 − β)f (y) 	= f (x∗),

which show that x∗ would not be a locally Pareto optimal solution. �

The following theorem stated without a proof (which is similar to the above theorem’s
proof) extends the above result. For the proof, see Ruíz-Canales and Rufián-Lizana (1995).

Theorem 2 Consider the MOP with a convex feasible set and quasiconvex objective func-
tions. If at least one of the objective functions is strictly quasiconvex, then every locally
Pareto optimal solution is also globally Pareto optimal.

Before presenting further results, let us introduce the weakly Pareto optimality.

Definition 3 A point x∗ ∈ X with f (x∗) is called weakly Pareto optimal, if and only if there
exists no point x ∈ X such that fi(x) < fi(x

∗) for all i = 1,2, . . . , k.

It is easy to see that every Pareto optimal solution is weakly Pareto optimal.
For multiobjective discrete optimization, the concept of Pareto optimality can be stated

in the similar way as we defined in continuous optimization. Finding all Pareto optimal solu-
tions is often computationally problematic since there are usually exponentially (or infinite)
large Pareto optimal solutions. Furthermore, for even the simplest problems and even for
two objectives, determining whether a point belongs to the Pareto optimal set is NP-hard
(Papadimitriou and Yannakakis 2000). One way to handle those problems is to introduce
approximate Pareto solutions.

Definition 4 Given a scalar ε > 0, an ε-approximate Pareto optimal set, denoted by Pε , is
a subset of X such that there is no other solution y such that (1 + ε)fi(y) ≤ fi(x) for all
x ∈ Pε and for some i.

This definition says that every other solution is almost dominated by some solution in Pε ,
i.e. there is a solution in Pε that is within a factor of ε in all objectives.

Next, we introduce results regarding the size of the ε-approximate Pareto optimal set by
Papadimitriou and Yannakakis (2000). Before presenting the next theorems, we need some
assumptions.

Let solutions of a multiobjective optimization problem be polynomially bounded and
polynomially recognizable in the size of the problem. We also assume that if fi(x) > 0;
then fi(x) is between 2−p(|x|) and 2p(|x|) for some polynomial p and for i = 1,2, . . . , k.
Therefore, fi(x) can be calculated in polynomial time for any feasible point x.

The following theorem was obtained by Papadimitriou and Yannakakis (2000).

Theorem 3 For any MOP and any ε > 0, there is always an ε approximate Pareto set
consisting of a number of solutions that is polynomial in the input size of the problem and 1

ε
.
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2 Optimality conditions

In this section we discuss optimality conditions for the multiobjective optimization problem

min f (x)

s.t. g(x) ≤ 0,

x ∈ X,

(2)

where X is an open set in R
n.

We first present necessary conditions which can be derived without any convexity as-
sumptions. We then introduce sufficient optimality conditions under suitable convexity as-
sumptions. In order to define these optimality conditions we need the following notations.

Let

I (x) = {j ∈ {1,2, . . . , l} | gj (x) = 0}
be the index set of the active constraints in the inequality constraints at x, and let D = {x ∈
R

n | g(x) ≤ 0, x ∈ X}.

Theorem 4 (Karush-Kuhn-Tucker 1951) Let f , gj , j = 1,2, . . . , l be continuously differen-
tiable in an open set containing the feasible set of (2), and let x∗ be a locally Pareto optimal
point. Further, assume that the vectors ∇gj (x

∗), j ∈ I (x∗) are linearly independent. Then
the following optimality conditions hold:

(i) gj (x
∗) ≤ 0, j = 1,2, . . . , l.

(ii) There exist vectors α ∈ R
k and λ ∈ R

l such that

k∑

i=1

αi∇fi(x
∗) +

l∑

j=1

λj∇gj (x
∗) = 0,

λjgj (x
∗) = 0, λj ≥ 0, j = 1,2, . . . , l,

k∑

i=1

αi = 1, αi ≥ 0, i = 1,2, . . . , k.

Let us introduce the scalar-valued function

F(x) =
k∑

i=1

αifi(x). (3)

It is easy to see that the above conditions are equivalent to the claim that x∗ is a Karush-
Kuhn-Tucker point of the corresponding optimization problem with scalar valued function
F(x) and the same constraints. Furthermore, Geoffrion (1968) has shown that, if Prob-
lem (2) is convex, then x∗ is Pareto optimal in Problem (2) if and only if x∗ is global mini-
mum of the corresponding scalar valued function over the same constraint set as those in (2).
This argument gives the fact that the above optimality conditions are sufficient for x∗ to be
(globally) Pareto optimal for convex problems.

In general, the optimality conditions do not provide the complete Pareto optimal set. We
also consider second order optimality conditions which are necessary for a point x∗ to be a
local Pareto optimal solution of (2).
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Theorem 5 (Second-order necessary conditions) Let the objective and the constraint func-
tions of Problem (2) be twice continuously differentiable at a feasible point x∗. Further,
assume that the vectors ∇gj (x

∗), j ∈ I (x∗) are linearly independent. Then the following
optimality conditions hold:

(i) gj (x
∗) ≤ 0, j = 1,2, . . . , l,

(ii) There exist vectors α ∈ R
k and λ ∈ R

l such that

k∑

i=1

αi∇fi(x
∗) +

l∑

j=1

λj∇gj (x
∗) = 0,

λjgj (x
∗) = 0, λj ≥ 0, j = 1,2, . . . , l,

k∑

i=1

αi = 1, αi ≥ 0, i = 1,2, . . . , k.

(iii) dT (
∑k

i=1 αi∇2fi(x
∗) + ∑l

j=1 λj∇2gj (x
∗))d ≥ 0 for all d ∈ {d ∈ R

n \ {0} | ∇fi(x
∗)T d

≤ 0, i = 1,2, . . . , k, ∇gj (x
∗)T d = 0, j ∈ I (x∗)}.

For the proof, see Wang (1991).
Further optimality conditions for multiobjective programming can be found in, for ex-

ample, Wang (1991) and Miettinen (1999).
Several authors have been interested in sufficient optimality conditions for multiobjective

optimization problems in connection with generalized convexity. Those generalized convex-
ities include F -convexity in Hanson (1981), (F,ρ)-convexity in Preda (1992), ρ-convexity
in Vial (1983), (F,α,ρ, d)-convexity in Liang et al. (2003) and (F,α,ρ, d)-type I func-
tions in Hachimi and Aghezzaf (2004). The latter generalized convexity, (F,α,ρ, d)-type
I functions, unifies the previous generalized convexity concepts. Therefore, Hachimi and
Aghezzaf (2004) presented sufficient optimality conditions for the special case of the multi-
objective optimization problem where all the objective functions and the constraint functions
are of (F,α,ρ, d)-type I.

3 Duality in MO problems

In this section we discuss duality theory for the multiobjective optimization problem (2).
Tanina and Sawaragi (1979) introduced a duality theory for multiobjective optimization

problems using a vector-valued Lagrangian function and exploring the properties of a primal
and dual point to set maps. Bitran (1981) also presented a duality theory for the multiob-
jective optimization problem based on a vector-valued Lagrangian. In their duality theory,
a matrix of dual variables associated with the constraint functions in the original problem.
Duality theory of multiobjective optimization can also be found in many other articles and
books including Nakayama (1985), Luc (1984), Singh et al. (1996), Das and Nanda (1997)
and Sawaragi et al. (1985).

Mond and Weir (1981) have introduced a pair of symmetric dual nonlinear programs un-
der pseudo-convexity (pseudo-concavity) assumptions and derived the corresponding weak
and strong duality of these programs. These dual programs were generalized by Egudo
(1989) for multiobjective optimization problems. Here we discuss duality results established
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in Aghezzaf and Hachimi (2000) for the following Mond-Weir dual problem by Egudo
(Mond-Weir 1981).

max f (y) (4)

s.t.
k∑

i=1

λi∇fi(y) +
l∑

j=1

μj∇gj (y) = 0, (5)

μT g(y) ≥ 0, (6)

λ ≥ 0, μ ≥ 0, λ ∈ R
k, μ ∈ R

l , (7)

λT e = 1, (8)

where e = (1,1, . . . ,1)T ∈ R
l .

Before presenting the duality results for the MOP, let us introduce some definitions fol-
lowing Aghezzaf and Hachimi (2000).

Definition 5 (f, g) is said to be (def) with respect to η at x∗ ∈ X if there exists a vector
function η(x, x∗) defined on D × X such that, for all x ∈ D, (conds) hold.

(i) def: type I,
conds:

f (x) − f (x∗) ≥ ∇f (x∗)η(x, x∗),

−g(x∗) ≥ ∇g(x∗)η(x, x∗).

(ii) def: weak strictly-pseudoquasi-type I,
conds:

f (x) ≤ f (x∗), f (x) 	= f (x∗) ⇒ ∇f (x∗)η(x, x∗) < 0,

−g(x∗) ≤ 0 ⇒ ∇g(x∗)η(x, x∗) ≤ 0.

(iii) def: strong pseudoquasi-type I,
conds:

f (x) ≤ f (x∗), f (x) 	= f (x∗) ⇒ ∇f (x∗)η(x, x∗) ≤ 0, ∇f (x∗)η(x, x∗) 	= 0,

−g(x∗) ≤ 0 ⇒ ∇g(x∗)η(x, x∗) ≤ 0.

(iv) def: weak quasistrictly-pseudo-type I,
conds:

f (x) ≤ f (x∗), f (x) 	= f (x∗) ⇒ ∇f (x∗)η(x, x∗) ≤ 0,

−g(x∗) ≤ 0 ⇒ ∇g(x∗)η(x, x∗) ≤ 0, ∇g(x∗)η(x, x∗) 	= 0.

(v) def: weak strictly pseudo-type I,
conds:

f (x) ≤ f (x∗), f (x) 	= f (x∗) ⇒ ∇f (x∗)η(x, x∗) < 0,

−g(x∗) ≤ 0 ⇒ ∇g(x∗)η(x, x∗) < 0.

We are ready now to introduce the following duality theorems by Aghezzaf and Hachimi
(2000).
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Theorem 6 (Weak Duality) Suppose that any of the following holds:

(a) (f,μg) is strong pseudoquasi-type I at y with respect to η and u > 0;
(b) (f,μg) is weak strictly pseudoquasi-type I at y with respect to η;
(c) (f,μg) is weak strictly pseudo-type I at y with respect to η

for all feasible x for (2) and all feasible (y,λ,μ) for (4–8). Then the following cannot hold:

f (x) ≤ f (y), f (x) 	= f (y). (9)

Proof Suppose that f (x) ≤ f (y) and f (x) 	= f (y).
Since (f,μg) is strong pseudoquasi-type I, we have

∇f (y)η(x, y) ≤ 0, ∇f (y)η(x, y) 	= 0,

∇g(y)η(x, y) ≤ 0.

Therefore, counting λ ≥ 0 and λ 	= 0, we can write

(
k∑

i=1

λi∇fi(y) +
l∑

j=1

μj∇gj (y)

)T

η(x, y) < 0.

This is a contradiction to (5).
For the cases (b) and (c), we can give similar proof to the above. �

Theorem 7 (Strong Duality) Let x∗ be a Pareto optimal solution of (2). Suppose that x∗
satisfies a constraint qualification in Marusciac (1982) for (2). Then there exist λ∗ ∈ R

l

and μ∗ ∈ R
m such that (x∗, λ∗,μ∗) is feasible for (4–8). If also weak duality holds between

Problem (2) and Problem (4–8) then (x∗, λ∗,μ∗) is a Pareto optimal solution for (4–8).

Proof According to the Karush-Kuhn-Tucker conditions by Marusciac (1982) for the mul-
tiobjective optimization problem, there exist λ > 0, μ ≥ 0 such that

k∑

i=1

λ∗
i ∇fi(x

∗) +
l∑

j−1

μ∗
j gj (x

∗) = 0,

μ∗
j gj (x

∗) = 0, j = 1,2, . . . , l.

This means that (x∗, λ∗,μ∗) is feasible for Problem (4–8).
We now apply the weak duality theorem and can have the desired result. �

Aghezzaf and Hachimi (2000) also presented the following converse duality theorem.
We do not present the proof here because it is quite extensive.

Theorem 8 (Converse Duality) Let (x∗, λ∗,μ∗) be a Pareto point for (4), and let the hy-
potheses of the weak duality theorem hold. If the n×n Hessian matrix ∇2(

∑k

i=1 λ∗
i fi(x

∗)+∑l

j=1 μ∗
j gj (x

∗)) is negative definite and
∑l

j−1 μ∗
j∇gj (x

∗) 	= 0, then x∗ is a Pareto point
for (2).

The above results can be further extended for generalized Mond-Weir duality according to
Aghezzaf and Hachimi (2000). Recently, these results were generalized by Hachimi and
Aghezzaf (2004) under the (F,α,ρ, d)-type I assumptions.
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4 Multiobjective fractional programming problems

Fractional programming problems arise from many applied areas including portfolio selec-
tion, stock cutting, game theory and numerous decision problems in management science.
Here we discuss some recent efficiency and duality results about multiobjective fractional
programming problems.

Efficiency conditions and duality for single-objective fractional programming problem
has been studied by many researchers including Craven (1981), Weir (1990), Khan and
Hanson (1997), and Reddy and Mukherjee (1999). Hanson (1961) introduced invex func-
tions which are generalized convex functions. Under this invexity assumptions, Khan and
Hanson (1997), and Reddy and Mukherjee (1999) have obtained some optimality condi-
tions and duality results for fractional programming problems. Singh and Hanson (1991)
have applied invex functions to fractional multiobjective programming problems and de-
rived some duality results. Jeyakumar and Mond (1992) have introduced generalized invex
functions, called V -invex functions and extended the results by Singh and Hanson (1991).
Recently, Liang et al. (2001) introduced (F,α,ρ, d)-convexity, a unified formulation of the
generalized convexity, and derived optimality conditions and duality results for fractional
programming problems. Therefore, (F,α,ρ, d)-convexity has been applied to multiobjec-
tive fractional programming problems in Liang et al. (2003).

Consider the Multiobjective Fractional Programming Problem (MFP):

min

(
f1(x)

g1(x)
,
f2(x)

g2(x)
, . . . ,

fk(x)

gk(x)

)

s.t. h(x) ≤ 0,

x ∈ X,

(10)

where f = (f1, f2, . . . , fk)
T , g = (g1, g2, . . . , gk)

T and h = (h1, h2, . . . , hl)
T are vector val-

ued functions defined on an open set X ∈ R
n. Suppose that f (x) ≥ 0, g(x) > 0 for all x ∈ X.

Further we assume that fi , gi , i = 1,2, . . . , k and hj , j = 1,2, . . . , l are continuously dif-
ferentiable over X.

Definition 6 A function F : R
n → R is sublinear if for any r ∈ R+, α,α1, α2 ∈ R

n,

F(α1 + α2) ≤ F(α1) + F(α2), F (rα) = rF (α).

Definition 7 Let ρ ∈ R, α : X × X → R+ \ {0} and d : X × X → R+. A differentiable
function φ : X → R is (F,α,ρ, d)-convex at x∗ ∈ X if for any x ∈ X, F(x, x∗; ·) : R

n → R

is sublinear, and φ(x) satisfies the following conditions:

φ(x) − φ(x∗) ≥ F(x, x∗;α(x, x∗)∇φ(x∗)) + ρd(x, x∗).

In the definition, the function φ is (F,ρ)-convex if α(x, x0) = 1 for all x, x0 ∈ X; φ is
ρ-invex if F(x, x0;α(x, x0)∇φ(x0)) = ∇φ(x0)

T η(x, x0) for a certain mapping η : X ×
X → R

n.
Liang et al. (2003) proved the following property of (F,α,ρ, d)-convex functions.

Theorem 9 Let X ⊂ R
n be an open set, and let p and q be real valued differentiable func-

tions defined on X. If p and −q are (F,α,ρ, d)-convex at x0 ∈ X and p(x) ≥ 0, q(x) > 0
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for all x ∈ X, then p

q
is (F,α,ρ, d)-convex at x0, where

ᾱ(x, x0) = α(x, x0)q(x0)

q(x)
, ρ̄ = ρ

(
1 + p(x0)

q(x0)

)
, and d̄(x, x0) = d(x, x0)

q(x)
.

We will sketch the proof as follows. We can write the following statement for any x ∈ X:

p(x)

q(x)
− p(x0)

q(x0)
= p(x) − p(x0)

q(x)
− p(x0)(q(x) − q(x0))

q(x)q(x0)
.

Therefore, using the (F,α,ρ, d)-convexity assumptions we can rewrite the above as follows:

p(x)

q(x)
− p(x0)

q(x0)
≥ 1

q(x)
(F (x, x0;α(x, x0)∇p(x0)) + ρd(x, x0))

+ p(x0)

q(x)q(x0)
(F (x, x0;−α(x, x0)∇q(x0)) + ρd(x, x0)).

Now, applying sublinearity assumptions to the right hand side of the above inequality, we
can have the desired result.

The following efficiency conditions and duality results, stated without proofs, were also
obtained by Liang et al. (2003) using the above theorem.

Theorem 10 Let x∗ be a feasible solution of the MFP. Suppose that there exist λ ∈ R
k+, and

μ ∈ R
l such that

k∑

i=1

λi∇ fi(x
∗)

gi(x∗)
+

l∑

j=1

μj∇hj (x
∗) = 0,

g(x∗)μ = 0, eT λ = 1, λ,μ ≥ 0.

If fi and −gi , i = 1,2, . . . , k are (F,αi, ρi, di)-convex at x∗, hj , j = 1,2, . . . , l are
(F,βj , ζj , cj )-convex at x∗, and

k∑

i=1

λiρ̄i

d̄i (x, x∗)
ᾱi(x, x∗)

+
l∑

j=1

μj ζ̄j

c̄j (x, x∗)
β̄j (x, x∗)

≥ 0,

where ᾱi (x, x∗) = αi (x,x∗)gi (x
∗)

gi (x)
, ρ̄i = ρi(1 + fi (x

∗)

gi (x
∗)

), and d̄i (x, x∗) = di (x,x∗)

g(x)
, then x∗ is a

global Pareto optimal solution for the MFP.

The Mond-Weir dual of the problem can be written as follows:

max
f (y)

g(y)

s.t.
k∑

i=1

λi∇ fi(x
∗)

gi(x∗)
+

l∑

j=1

μj∇hj (x
∗) = 0,

g(x∗)μ ≥ 0, eT λ = 1, λ,μ ≥ 0,

y ∈ X.
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The following Duality results have been obtained by Liang et al. (2003).

Theorem 11 (Weak Duality) Suppose that x∗ is a feasible solution of the MOP and
(y∗, λ∗,μ∗) is a feasible solution of the corresponding Mond-Weir dual problem. If fi

and gi , i = 1,2, . . . , k are (F,αi, ρi, di)-convex at y∗, hj , j = 1,2, . . . , l are (F,β, ζj , cj )-
convex at y∗, and the inequality

k∑

i=1

λiρ
∗
i

d∗
i (x

∗, y∗)
α∗

i (x∗, y∗)
+

l∑

j=1

μjζ
∗
j

c∗
j (x

∗, y∗)
β∗

j (x
∗, y∗)

≥ 0

holds, where α∗
i (x

∗, y∗) = αi (x
∗,y∗)gi (y

∗)

gi (x
∗)

, ρ∗
i = ρi(1 + fi (y

∗)

gi (y
∗)

), and d∗
i (x

∗, y∗) = di (x
∗,y∗)

g(x∗)
,

then the following cannot hold:

f (x∗)
g(y∗)

≤ f (y∗)
g(y∗)

and
f (x∗)
g(y∗)

	= f (y∗)
g(y∗)

.

Theorem 12 (Strong Duality) Suppose that x∗ is an efficient solution of the MFP and the
constraint qualification in Maeda (1994) holds at x∗. Then there exists λ∗,μ∗ ∈ R

k+ × R
l+

such that (x∗, λ∗,μ∗) is a feasible solution of the corresponding dual problem, and the
objective function values of the MFP and its dual at the corresponding points are equal.
If the assumptions about the generalized convexity and the inequality in the weak duality
theorem are satisfied, then (x∗, λ∗,μ∗) is a Pareto optimal solution of the MFP.

Further duality results on multiobjective fractional programming problems can be found in
Liang et al. (2003).

For a comprehensive review of theory and applications of multiobjective programming,
the reader is referred to Hillermeier (2001), Jahn (2004), Pardalos et al. (1995), Steuer (1986)
and Miettinen (1999).

5 Multiobjective integer programming problems

Multiobjective problems with discrete variables arise naturally in many practical applica-
tions on several different areas, such as transportation and location allocation problems,
capital budgeting, and project selection. We consider the following multiobjective integer
linear programming problem (MOILP):

min Cx

s.t. Ax ≤ b,

x ≥ 0, x ∈ Z
n,

(11)

where C is an k × n matrix, A is an l × n matrix and b is an l vector.
Bitran (1977, 1979) developed methods, based on enumerative schemes, for solving

multiobjective linear programs with binary variables. Klein and Hannan (1982) proposed
a sequential procedure for generating all the efficient points of the multiobjective integer
programming problem. In this method, one of the objective functions is minimized sub-
ject to more constrained feasible sets determined by the other objective functions and pre-
viously found efficient solutions. Chalmet et al. (1986) studied the MOILP based on the
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weighted sum method. Since the weighted sum method can find only the set of supported
(see Sect. 7.3) nondominated solutions, they introduced an additional constraint to ensure
access to the nondominated solutions. Recently, Klamroth et al. (2004) studied multiobjec-
tive integer linear programming involving integer programming duality. They proposed a
general ε-constraint approach, resulting in particular single objective integer programming
problems to generate Pareto solutions.

Let F be the set of all nonincreasing functions F : R
k+l−1 → R, that is,

F = {F : R
k+l−1 → R | F(a) ≥ F(b), ∀a, b ∈ R

l , a ≤ b}.
Let Ji = {1,2, . . . , k} \ {i} and CJi

be the submatrix of C containing of the rows in Ji , i.e.,
obtained by deleting its ith column.

Klamroth et al. (2004) have shown the following result based on duality of integer pro-
gramming and the ε-constraint method for MO problems.

Theorem 13 x∗ is a Pareto optimal solution of the MOILP, if and only if there exists an index
i ∈ {1,2, . . . , k} and a function F ∗ ∈ F such that x∗ is optimal for the following composite
integer programming problem:

min xT ci − F ∗(CJi
x, b)

s.t. Ax ≤ b,

x ≥ 0, x ∈ Z
n,

(12)

where ci is the ith column of matrix C.

They have also introduced a cutting plane and a branch and bound methods to generate
optimal functions F .

6 Methods

In this section, we discuss the most popular existing deterministic methods for solving the
multiobjective optimization problem

min f (x)

s.t. x ∈ X,
(13)

where f (x) = (f1, f2, . . . , fk)
T : X → R

k . In particularly, the weighting method, ε-con-
straint method and weighted Lp-metric method will be considered.

6.1 Weighting method

This is the most widely used traditional approach to MO, where the attainment of each ob-
jective is weighted by its importance to the decision maker. These are then used to express a
single combined objective function to evaluate the decision. The method was first presented
by Zadeh (1963). Let us assign a weight, say wi ≥ 0, to each objective function. Those
weights are normalized by the following constraint:

k∑

i=1

wi = 1.
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The MOP becomes the following scalar-valued optimization problem:

min
k∑

i=1

wifi(x)

s.t. x ∈ X.

(14)

The following results can be found in, for example, Miettinen (1999).

Theorem 14 A solution of the weighting problem (14) is weakly Pareto optimal for (13).

Theorem 15 A solution of the weighting problem (14) is Pareto optimal for (13) when the
weighting coefficients are strictly positive, that is, wi > 0 for all i = 1,2, . . . , k.

Theorem 16 Suppose that (13) is convex. If x∗ is a Pareto solution for (13), then there exist
wi (i = 1,2, . . . , k) such that x∗ is optimal for (14).

Note that the last theorem does not generalize to nonconvex problems. For more theoretical
results regarding the method can be found in Miettinen (1999).

6.2 ε-constraint method

This method was presented in Haimes et al. (1971). It chooses one individual objective fj ,
j ∈ {1,2, . . . , k}, to be minimized and all the other objective functions are converted into
constraints setting upper bounds. The MOP becomes the following scalar-valued optimiza-
tion problem:

min fj

s.t. fi(x) ≤ εi, for all i = 1,2, . . . , k, i 	= j,

x ∈ X.

(15)

Theorem 17 A solution of the epsilon-constraint problem (15) is weakly Pareto optimal
for (13).

Theorem 18 A feasible point x∗ is Pareto optimal for (13) if and only if it is a solution of
(15) for every j = 1,2, . . . , k, where εi = fi(x

∗) for i = 1,2, . . . , k and i 	= j .

Proofs can be found in any textbooks about MO, for example, Miettinen (1999).

6.3 Weighted Lp-metric method

This method chooses a desired point y ∈ R
k and search for a optimal solution which is as

close as possible to this point. The Lp metric (p ∈ [1,∞)∪{∞}) is used to generate optimal
solutions. These metrics can also be weighted in order to produce different Pareto optimal
solutions.

min

(
k∑

i=1

wi |fi(x) − yi |p
)1/p

s.t. x ∈ X,

(16)

where wi ≥ 0 for all i = 1,2, . . . , k.
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Theorem 19 A solution of the weighted Lp-metric problem (16) (when 1 ≤ p < ∞) is
Pareto optimal for (13) if the solution is unique.

Theorem 20 A solution of the weighted Lp-metric problem (16) (when 1 ≤ p < ∞) is
Pareto optimal for (13) when the coefficients are strictly positive, that is, wi > 0 for all
i = 1,2, . . . , k.

For proofs, see, for example, Chankong and Haimes (1983).

7 Multiobjective combinatorial optimization problems

Combinatorial optimization is the process of finding best solutions in a well defined dis-
crete problem space. Combinatorial optimization problems occur in many fields as manage-
ment, finance, marketing, economics, engineering, biology etc. Combinatorial optimization
is extensively studied by many researchers. There are a number of classic textbooks and
thousands of articles in this field, however, multiobjective combinatorial optimization has
not been studied widely. In Sect. 5, we discussed multiobjective integer linear programming
problems briefly. Here we discuss some of the well known multiobjective combinatorial
optimization problems. In particularly, multiobjective shortest path problems, the multiob-
jective minimum spanning tree problem and the multiobjective zero-one knapsack problem
are considered. Excellent bibliographical survey of multiobjective combinatorial optimiza-
tion can be found in Ehrgott and Gandibleux (2000).

7.1 Multiobjective shortest path problems

Multiobjective shortest path problems (MSPP) appear to be the most intensively studied
multiobjective combinatorial optimization problems. MSPPs have many applications in
different fields including finance, telecommunication and transportation. MSPPs are well
known to be NP-hard (Serafini 1986). In MOSPPs, the number of parameters associated
with each arc is equal to the number of components of the objective function.

Let G = (V ,E) be an undirected and connected graph with the set V of vertices and
the set E of edges joining vertices in V . We have multiple cost functions fi : E → R

+,
i = 1,2, . . . , k such that a vector (f1(e), . . . , fk(e)) is the multiple costs associated with
an edge e ∈ E. The objective is to find a shortest path in the graph from the source node
s ∈ V to the terminal node t ∈ V . Let P be the set of all paths between nodes s and t . Then
each path P ∈ P has multiple costs Fi(T ) = ∑

p∈P fi(e), i = 1,2, . . . , k associated with it.
Formally, the general MSPP can be formulated as follows:

min (F1(T ), . . . ,Fk(T ))T

s.t. P ∈ P.
(17)

Warburton (1987) proposes a method for finding approximate Pareto optimal solution to
the problem for any degree of accuracy. The method is polynomial in the problem size and
the accuracy.

The biobjective shortest path problem is the most studied problem among MSPPs. Most
algorithms for solving the biobjective shortest path problem are applicable to the general
MSPP, however, they would add difficulties to the implementation. Huarng et al. (1996)
present computational experiments comparing several existing methods for finding Pareto
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optimal solution of the problem and report that the label correcting algorithm (Brumbaugh-
Smith and Shier 1989) is the fastest among those methods. The principle of their algorithm
is similar to the one of Dijkstra’s shortest path algorithm (Dijkstra 1959), except:

• There is a set of labels at each node,
• The algorithm does not permanently label nodes.

Skriver and Andersen (2000) later improved the label correcting algorithm by imposing
some simple domination conditions. They use Dijkstra’s shortest path algorithm with each
parameter in order to find the upper bounds on the two objectives and set bounds on all
labels. Those bounds help to prune some edges from further consideration.

Some other algorithms based on dynamic programming for solving the problem can be
found in Kostreva and Wiecek (1993), Sniedovich (1988), Warburton (1987) and Henig
(1985).

7.2 The multiobjective minimum spanning tree problem

The minimum spanning tree (MST) problem is to find a least cost tree which spans an edge
weighted graph. The cost of a tree is the summation of the weights of all edges in the tree.
There are several efficient algorithms for solving the problem (Kruskal 1956, Prim 1957,
and Sollin). These algorithms can be found in many textbooks on graph theory and network
flows, for example, in Ahuja et al. (1993). Recently, the multiobjective minimum spanning
tree problem (MMSTP), an extension of the MST problem, has received great attraction due
to some practical demands. The MMSTP can be stated as follows:

Let G = (V ,E) be an undirected and connected graph. Multiple cost functions fi : E →
R

+, i = 1,2, . . . , k, and the vector (f1(e), . . . , fk(e)) is the multiple cost associated with
an edge e ∈ E. Let ST(G) be the set of all spanning trees of G. Each tree T ∈ ST(G) has
multiple costs Fi(T ) = ∑

e∈T fi(e), i = 1,2, . . . , k associated with it. Then the MMSTP can
be formulated as:

min (F1(T ), . . . ,Fk(T ))T

s.t. T ∈ ST (G).
(18)

Finding the set of Pareto optimal solutions of the MMSTP is NP-hard problem (Camerini
et al. 1984). Corley (1985) proposed a method which is a generalization of Prim’s algorithm
to find efficient trees. Their algorithm is based on the following result.

Theorem 21 Let T = (V ,E∗) be a Pareto optimal spanning tree. Then, f (v) is a Pareto
minimum among the edges in the unique cut formed by eliminating v from T .

We will sketch the proof as follows. Let us assume the contrary, i.e., there exists an edge e

in the cut such that e ≤ v and e 	= v. Then T ′ = (V ,E∗ \ {v} ∪ {e}) is also a spanning tree.
Moreover, F(T ′) ≤ F(T ∗) and F(T ′) 	= F(T ∗) which contradict our assumption.

Corley’s algorithm is very similar to Prim’s algorithm for the single objective case ex-
cept it finds set of trees by adding a new edge to each of the previous trees along a cut
at each iteration. Every new edge is selected as a Pareto minimum among the correspond-
ing cut. However, it has been shown that the algorithm may find spanning trees which are
not efficient in Hamacher and Ruhe (1994). Hamacher and Ruhe (1994) modified Corley’s
algorithm as it excludes trees which are not Pareto optimal in each iteration.

Hamacher and Ruhe (1994) also presented an approximative algorithm which finds a
subset of the set of biobjective minimum spanning trees. Their algorithm has two phases.
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In the first phase, it finds extremal efficient spanning trees, which are on the border of the
convex hull of the set {F1(T ),F2(T ) | T ∈ ST (G)}. It is known (Hamacher and Ruhe 1994)
that an extremal efficient spanning tree is a solution of the parametric problem

min λ1F1(T ) + λ2F2(T )

s.t. T ∈ ST (G),

for some λ1 + λ2 = 1 and λi > 0, i = 1,2. In the second phase, they use a neighborhood
search to find nonextremal efficient spanning trees based on the extremal efficient spanning
trees. However, there is no guarantee that it finds all nonextremal efficient spanning trees.

Ramos et al. (1998) proposed a two phase method for finding the set of efficient spanning
trees. First, it finds the set of extremal efficient spanning trees. Second part of the algorithm
uses the branch and bound technique to obtain the set of nonextremal efficient spanning
trees.

There are many other algorithms such as an algorithm of the Kruskal-type can in
Schweigert (1990) and genetic algorithm approach in Zhou and Gen (1999).

7.3 The multiobjective zero one knapsack problem

The zero one knapsack problem is one of the classic NP-complete combinatorial optimiza-
tion problems. The multiobjective zero one knapsack problem, which is also NP-complete,
is an extension of the zero one knapsack problem and has many practical applications includ-
ing transportation planning, packaging and loading, conservation biology, capital budgeting
and financial management. The problem can also be seen as a subproblem of larger problems
including the multiobjective assignment problem and multiobjective scheduling problems.
The multiobjective zero one knapsack problem can be formulated as follows:

min Cx (19)

s.t. aT x ≤ b, (20)

x ∈ {0,1}n, (21)

where C is a k × n matrix with nonnegative entries, a is an n vector and b is a scalar.
When k = 1, the above problem is called the single constraint multiobjective zero one

knapsack problem. An excellent survey of algorithmic approaches for solving this problem
can be found in Martello and Toth (1990) and Martello et al. (1997).

A solution to the following integer programming problem is well known to be an efficient
solution of the multiobjective zero one knapsack problem and called the supported efficient
solution.

min
k∑

i=1

λic
ix

s.t. aT x ≤ b,

x ∈ {0,1}n,

for some
∑k

i=1 = 1 and λi ≥ 0, i = 1,2, . . . , k. Here ci (i = 1,2, . . . , k) is the ith row vector
of the matrix C.

Rosenblatt and Sinuany-Stern (1989) presented a branch and bound algorithm to de-
termine the set of supported efficient solutions. However, it is known that there might be
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nonsupported efficient solutions of the problem. Visée et al. (1996) have shown an example
problem where the supported efficient solutions constitute only small percentage of all effi-
cient solutions. The work by Rosenblatt and Sinuany-Stern (1989) was continued in Eben-
Chaime (1996). Eben-Chaime employed a network model for the dynamic programming
solution of knapsack problems in the case of two objectives. For given weights, a solution
to the above knapsack problem is the longest path from the source node to the terminal node
in the network.

Recently, Ulungu and Teghem (1994, 1997) and Visée et al. (1996) suggested two-phase
methods. Their algorithms construct the set of all supported efficient solutions in the first
phase. In the second phase, branch and bound algorithms are applied to find nonsupported
efficient solutions based on the supported efficient solutions.

Villarreal and Karwan (1981) proposed dynamic programming approaches for solving
the integer multiobjective multiple constraint knapsack problem. In this case, Constraint
(21) is changed by x ∈ Z and Constraint (20) is changed by Ax ≤ b, where A is a k × n

matrix and b is a k vector. Recently, Klamroth and Wiecek (2000a, 2000b) also suggested
dynamic programming approaches for solving the integer multiobjective knapsack problem.
They also discussed how their methods can apply to different models including the zero
one multiobjective knapsack problem, multiple constraint knapsack problem, and time de-
pendent knapsack problem. These approaches can be seen as generalizations of works by
Garfinkel and Nemhauser (1972) and Ibaraki (1987).

Some other approaches for solving the multiobjective knapsack problem include a
genetic algorithmic approach by Zhou and Gen (1999) and a tabu search approach by
Gandibleux and Freville (2000).

8 Applications

Most of the optimization problems arising in practice have several objectives which have
to be optimized simultaneously. These problems include different problems in engineering
design, portfolio selection, game theory, decision problems in management science, web
access problems, query optimization in databases etc.

In this section we discuss some of those application problems in multiobjective optimiza-
tion since it is impossible to mention all of them. In particular, the web access problem, the
portfolio selection problem and capital budgeting problem are considered.

8.1 The web access problem

Here, we consider the web access problem first studied in Etzioni et al. (1996). Suppose that
one wants to retrieve a list of records from the world-wide web. Then the problem can be
formulated as follows.

We are given a collection of n information sources, each of which has a known time delay
ti , cost ci and probability pi of providing the needed information, from the world-wide web.
We will end up accessing a subset S ∈ {1,2, . . . , n} of this sites. Then the total cost is in the
form

C(s) =
∑

i∈S

ci .

The total delay can be calculated as follows:

T (s) = max
i∈S

ti .
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Then the failure probability of source i is 1 −pi . We also assume that the success of a given
source is independent of the success or failure of the other sources. Therefore the overall
probability of the result will be:

P (s) = 1 −
∏

i∈S

(1 − pi).

If we assume that the above functions are the objective functions of our problem, of course,
the problem will be to minimize the first two objective functions and maximize the third
function.

Papadimitriou and Yannakakis (2000) proved the following result regarding the problem.

Theorem 22 Given an ε > 0, there is a polynomial algorithm in the input size of the problem
and 1/ε for constructing the ε approximate set for the web access problem.

Etzioni et al. (1996) studied two models, cost model and reward model, with respect to
the web access problem. In the cost model, we have to seek an order where the expected
overall cost is minimized. In the later model, we assume that a constant known reward
should be collected if at least one source returns a correct answer. Then we seek a sched-
ule of maximum expected reward. They showed that the second problem is NP-hard and
developed approximation algorithms for those problems.

8.2 Portfolio selection problems

In traditional way, we have the portfolio selection problem in the mean-variance formulation
by Markowitz (1952) which formulation has been used in finance for the last half century.
According to this theory, in the model the risk is measured with variance thus generating a
quadratic programming model. Markowitz (1952) model has been frequently criticized as
not consistent with axiomatic models of preferences for choice under risk. In Markowitz
model, it is usually assumed that at least one of the following hypotheses should be veri-
fied: the utility function of the investor is quadratic, the returns of the stocks have normal
distributions. However, quadratic utility functions are not consistent in economics. Accord-
ing to the second hypothesis, negative returns are very unlikely. Therefore, Cloquette et al.
(1995) have shown that stock returns have asymmetrical or leptokurtic distribution based on
empirical tests.

On the other hand, the multidimensional nature of the problem has been emphasized
by researchers such as Jacquillat (1972), Bell and Raiffa (1988), Khoury et al. (1993), and
Spronk and Hallerbach (1997). During the portfolio evaluation, decision makers face several
criteria including return criterion, risk criterion, liquidity criterion and size criteria. Based
on these criteria, the portfolio selection problem is usually formulated as an multiobjective
optimization problem. Several authors have employed multiobjective methods for the port-
folio selection problem including Hurson and Zopounidis (1995), Zopounidis (1999) and
Bouri et al. (2002). Further results will be discussed later on.

An excellent bibliographic survey about multiobjective optimization in finance can be
found in Steuer and Na (2003).

8.3 Capital budgeting problem

Capital budgeting is the problem of determining whether or not investment projects such
as building a new plant or investing in a long-term venture are worthwhile. In other
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words, the capital budgeting decision a company faces is to select a subset of avail-
able projects that gives the highest earnings to the company while it does not exceed
a certain budget. Traditionally capital budgeting concerns a single objective function
which is usually in the form of a maximization of company’s revenue. Capital budget-
ing process was first formulated as an optimization problem in Weingartner (1963). An-
soff (1968), Thanassoulis (1985), and Lee and Lerro (1974) later studied capital bud-
geting with multiple objectives. Typical capital budgeting model with multiple crite-
ria is usually expressed as a multiobjective knapsack problem which we discussed in
Sect. 7.3.

Klamroth and Wiecek (2000b) presented a time-dependent capital budgeting problem as
an multiobjective knapsack type problem.

Let S = {1, . . . , n} be the a set of projects that could be performed and we as-
sume that only one project can be performed at a time. Let � = {σ | σ(i) ∈ S, i =
1, . . . , p(σ ); σ(i) 	= σ(j), i 	= j}. Every sequence δ of projects represents the order of
the projects to be performed. Fixed available budget b, independent of the investment
decisions, and the cost a(i) of project i, i ∈ S, are given. There is a vector valued
function ci(t) = [c1

i (t), . . . , c
m
i (t)]T corresponding to the job i, i = 1, . . . , n, related to

choosing the project i at time t . These functions might represent different criteria such
as the time, revenue, appreciation, and sustainability needed to accomplish the projects.
In particularly, let c1

i (t) be the time needed to accomplish the project i, and let c
j

i (t)

be the other criteria such as revenue, appreciation and risk if the project is selected at
time t . The objective function of the capital budgeting model can be defined as fol-
lows:

f (δ) = (f1(δ), . . . , fm(δ))T ,

where

f1(δ) = −
p(δ)∑

i=1

c1
δ(i)(t

i ),

f2(δ) =
p(δ)∑

i=2

c2
δ(i)(t

i ),

. . .

fm(δ) =
p(δ)∑

i=1

cm
δ(i)(t

i ).

If we assume that the performing the next project is started immediately after the cur-
rent project finishes, the time constraints for the sequence δ can be written as fol-
lows:

t1 = 0,

t i+1 = t i + c1
δ(i)(t

i ).

The aim of the problem is to minimize the time needed to accomplish the projects while
maximizing all other criteria such as revenue, appreciation and sustainability.
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max f (δ)

s.t.
p(δ)∑

i=1

a(δ(i)) ≤ b,

t1 = 0,

t i+1 = t i + c1
δ(i)(t

i ),

δ ∈ �.

(22)

The above problem is called the time-dependent multiobjective knapsack problem (TDMKP).
Klamroth and Wiecek (2000a) have also shown that the dynamic programming approach by
Kostreva and Wiecek (1993) can be applied for finding the set of all efficient solutions to
the TDMKP when all cost coefficients and the budget are integer. The basic idea of their
approach is based on the following theorem:

Theorem 23 Let us assume that t1 + c1
i (t1) ≤ t2 + c1

i (t2) for all 0 ≤ t1 ≤ t2 and i ∈ S. Then
an efficient sequence of projects δ of the k-TDMKP accomplished at time tp(δ)+1 has the
property that each subsequence of projects {δ(1), . . . , δ(s)}, 1 ≤ s < p(δ) accomplished at
time t s+1 is an efficient sequence of the

∑s

i=1 aδ(i)-TDMKP.

Here, k-TPMKP is the resulting problem after changing the first constraint of Problem (22)
by

∑p(δ)

i=1 a(δ(i)) = k.
It is not difficult to see that the set of efficient solutions of Problem (22) is the set of

efficient solutions among the union of efficient solutions of k-TDMKPs, k = 1,2, . . . , b.

9 Conclusions

In this paper we have presented a number of selected recent theoretical results for MO.
Those results include optimality conditions and duality theory on different MO problems
including differentiable multiobjective programming problems, multiobjective fractional
programming problems and multiobjective integer linear programming problems. We have
also discussed some multiobjective combinatorial optimization problems. There exist sev-
eral widely used approaches for solving MO problems. These approaches are discussed in
Sect. 6. MO has many applications in many different fields. A large number of real world
practical problems are usually expressed as MO problems. We presented few applications in
the last section of the paper.

Acknowledgements This research was partially supported by NSF and Air Force grants.

References

Aghezzaf, B., & Hachimi, M. (2000). Generalized invexity and duality in multiobjective programming prob-
lems. Journal of Global Optimization, 18, 91–101.

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications.
Jersey: New Prentice–Hall.

Ansoff, H. I. (1968). Corporate strategy. Harmandsworth: Penguin.
Bell, D. E., & Raiffa, H. (1988). Risky choice revisited. In D. E. Bell, H. Raiffa & A. Tversky (Eds.), Deci-

sion making: descriptive, normative and prescriptive interactions (pp. 99–112). Cambridge: Cambridge
University Press.



48 Ann Oper Res (2007) 154: 29–50

Bhaskar, K. (1979). A multiple objective approach to capital budgeting. Accounting and Business Research,
9, 25–46.

Bitran, G. R. (1977). Linear multiple objective programs with zero-one variables. Mathematical Program-
ming, 13, 121–139.

Bitran, G. R. (1979). Theory and algorithms for linear multiple objective programs with zero-one variables.
Mathematical Programming, 17, 362–390.

Bitran, G. R. (1981). Duality for nonlinear multi-criteria optimization problems. Journal of Optimization
Theory and Applications, 35, 367–401.

Bouri, A., Martel, J. M., & Chabchoub, H. (2002). A multi-criterion approach for selecting attractive portfo-
lio. Journal of Multi-Criteria Decision Analysis, 11, 269–277.

Brumbaugh-Smith, J., & Shier, D. (1989). An empirical investigation of some bicriterion-shortest path algo-
rithms. European Journal of Operational Research, 43, 216–224.

Camerini, P.M., Galbiati, G., & Maffioli, F. (1984). The complexity of multi-constrained spanning tree prob-
lems. In Theory of algorithms (pp. 53–101). Colloquium Pecs 1984.

Chalmet, L. G., Lemonidis, L., & Elzinga, D. J. (1986). An algorithm for the bi-criterion integer programming
problem. European Journal of Operations Research, 25, 292–300.

Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making theory and methodology. New York:
Elsevier Science.

Cloquette, J. F., Gerard, M., & Hadhri, M. (1995). An empirical analysis of Belgian daily returns using
GARCH models. Cahiers Economiques de Bruxelles, 418, 513–535.

Corley, H. W. (1985). Efficient spanning trees. Journal of Optimization Theory and Applications, 45, 481–
485.

Craven, B. D. (1981). Duality for the generalized convex fractional programs. In S. Schiable & W. T. Ziemba
(Eds.), Generalized Concavity in Optimization and Economics (pp. 473–489). New York: Academic.

Das, L. N., & Nanda, S. (1997). Symmetric dual multiobjective programming. European Journal of Opera-
tional Research, 97, 167–171.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerical Mathematics, 1, 262–
271.

Eben-Chaime, M. (1996). Parametric solution for linear bicriteria knapsack models. Management Science,
42, 1565–1575.

Egudo, R. (1989). Efficiency and generalized convex duality for multiobjective programs. Journal of Mathe-
matical Analysis and Applications, 138, 84–94.

Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial
optimization. OR Spektrum, 22, 425–460.

Etzioni, O., Hanks, S., Jiang, T., Karp, R. M., Madari, O., & Waarts, O. (1996). Efficient information gathering
on the Internet. In Proceedings of the 37th IEEE symposium on foundations of computer science (pp. 234–
243).

Gandibleux, X., & Freville, A. (2000). Tabu search based procedure for solving the 0–1 multiobjective knap-
sack problem: the two objective case. Journal of Heuristics, 6, 361–383.

Garfinkel, R. S., & Nemhauser, G. L. (1972). Integer programming. New York: Wiley.
Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical

Analysis and Applications, 22, 618–630.
Hachimi, M., & Aghezzaf, B. (2004). Sufficiency and duality in differentiable multiobjective programming

involving generalized type I functions. Journal of Mathematical Analysis and Applications, 296, 382–
392.

Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the problems of
integrated system identification and system optimization. IEEE Transactions on Systems, Man and Cy-
bernetics, 1, 296–297.

Hamacher, H. W., & Ruhe, G. (1994). On spanning tree problems with multipleobjectives. Annals of Opera-
tions Research, 52, 209–230.

Hanson, M. A. (1961). A duality theorem in nonlinear programming with nonlinear constraints. Australian
Journal of Statistics, 3, 67–71.

Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and
Applications, 80, 545–550.

Henig, M. I. (1985). The shortest path problem with two objective functions. European Journal of Opera-
tional Research, 25, 281–291.

Hillermeier, C. (2001). Nonlinear multiobjective optimization: a generalized homotopy approach. Boston:
Birkhauser Verlag.

Huarng, F., Pulat, P. S., & Shih, L. (1996). A computational comparison of some bicriterion shortest path
algorithms. Journal of the Chinese Institution of Industrial Engineers, 13, 121–125.



Ann Oper Res (2007) 154: 29–50 49

Hurson, C., & Zopounidis, C. (1995). On the use of multi-criteria decision aid methods to portfolio selection.
Journal of Euro-Asian Management, 1, 69–94.

Jacquillat, B. (1972). Les modèles d’évaluation et de sélection des valeurs mobilières: panorama des
recherches américaines. Analyse Financière, 11, 68–88.

Jahn, J. (2004). Vector optimization: theory, applications and extensions. Berlin: Springer.
Jeyakumar, V. (1985). Strong and weak invexity in mathematical programming. Methods of Operations Re-

search, 55, 109–125.
Jeyakumar, V., & Mond, B. (1992). On generalized convex mathematical programming. Journal of the Aus-

tralian Mathematical Society, Series B, 34, 43–53.
Ibaraki, T. (1987). Enumerative approaches to combinatorial optimization, part ii. Annals of Operations Re-

search, 11, 343–602.
Khan, Z., & Hanson, M. A. (1997). On ratio invexity in mathematical programming. Journal of Mathematical

Analysis and Applications, 205, 330–336.
Khoury, N., Marte, J. M., & Veilleux, M. (1993). Methode multicritere de selection de portefeuilles indiciels

interantionaux. Acualite Economique, 69, 171–190.
Klamroth, K., & Wiecek, M. (2000a). Dynamic programming approaches to the multiple criteria knapsack

problem. Naval Research Logistics, 47, 57–76.
Klamroth, K., & Wiecek, M. (2000b). Time-dependent capital budgeting with multiple criteria. In Y. Y.

Haimes & R. E. Steuer (Eds.), Lecture notes in economics and mathematical systems: Vol. 487. Research
and practice in multiple criteria decision making (pp. 421–432). Berlin: Springer.

Klamroth, K., Tind, J., & Zust, S. (2004). Integer programming duality in multiple objective programming.
Journal of Global Optimization, 29, 1–18.

Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear programming problem.
European Journal of Operations Research, 93, 378–385.

Kostreva, M. M., & Wiecek, M. M. (1993). Time dependency in multiple objective dynamic programming.
Journal of Mathematical Analysis and Applications, 173, 289–307.

Kruskal, J. B. (1956). On the shortest spanning tree of a graph and the traveling salesman problem. In Pro-
ceedings of American mathematical society 7 (pp. 48–50).

Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the second
Berkeley symposium on mathematical statistics and probability (pp. 481–492). Los Angeles: University
of California Press.

Lee, S. M., & Lerro, A. J. (1974). Capital budgeting for multiple objectives. Management Science, 36, 1106–
1119.

Liang, Z. A., Huang, H. X., & Pardalos, P. M. (2001). Optimality conditions and duality for a class of nonlin-
ear fractional programming problems. Journal of Optimization Theory and Applications, 110, 611–619.

Liang, Z. A., Huang, H. X., & Pardalos, P. M. (2003). Efficiency conditions and duality for a class of multi-
objective fractional programming problems. Journal of Global Optimization, 27, 447–471.

Luc, D. T. (1984). On duality theory in multiobjective programming. Journal of Optimization Theory and
Applications, 43, 557–582.

Luc, D. T., & Schaible, S. (1997). Efficiency and generalized concavity. Journal of Optimization Theory and
Applications, 94, 147–153.

Maeda, T. (1994). Constraint qualifications in multiobjective optimization problems: differentiable case. Jour-
nal of Optimization Theory and Applications, 80, 483–500.

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. New York:

Wiley.
Martello, S., Pisinger, D., & Toth, P. (1997). New trends in exact algorithms for the 0–1 knapsack problem.

In J. Barceló (Ed.), Proceedings of EURO/IMFORMS-97 (pp. 151–160), Barcelona
Marusciac, I. (1982). On Fritz John type optimality criterion in multiobjective optimization. L’Analyse

Numérique et la Theorie de l’Approximation, 11, 109–114.
Miettinen, K. M. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic.
Mond, B., & Weir, T. (1981). Generalized concavity and duality. In S. Schaible & W. T. Ziemba (Eds.),

Generalized convexity in optimization and economics (pp. 263–280). New York: Academic.
Nakayama, H. (1985). Duality theory in vector optimization: an overview, decision making with multiple

objectives. In Y.Y. Haimes & V. Chankong (Eds.), Lecture Notes in Economics and Mathematical Systems
(Vol. 337, pp. 109–125). Berlin: Springer.

Papadimitriou, C. H., & Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of
web sources, In Proceedings of the 41st annual symposium on foundations of computer science (pp. 86–
92).

Pardalos, P. M., Siskos, Y., & Zopounidis, C. (Eds.). (1995). Advances in multicriteria analysis. Netherlands:
Kluwer Academic.



50 Ann Oper Res (2007) 154: 29–50

Pareto, V. (1964). Course d’economie politique. Genève: Libraire Drotz. The first edition in 1986.
Preda, V. (1992). On efficiency and duality for multiobjective programs. Journal of Mathematical Analysis

and Applications, 166, 365–377.
Prim, R. C. (1957). Shortest connection networks and some generations. Bell System Technical Journal, 36,

1389–1401.
Ramos, R. M., Aloso, S., Sicilia, J., & González, C. (1998). The problem of the optimal biobjective spanning

tree. European Journal of Operational Research, 111, 617–628.
Reddy, L. V., & Mukherjee, R. N. (1999). Some results on mathematical programming with generalized ratio

invexity. Journal of Mathematical Analysis and Applications, 240, 299–310.
Rosenblatt, M. J., & Sinuany-Stern, Z. (1989). Generating the discrete efficient frontier to the capital budget-

ing problem. Operations Research, 37, 38–394.
Ruíz-Canales, P., & Rufián-Lizana, A. (1995). A characterization of weakly efficient points. Mathematical

Programming, 68, 205–212.
Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization. Orlando: Academic.
Schweigert, D. (1990). Linear extensions and vector-valued spanning trees. Methods of Operations Research,

60, 219–222.
Serafini, P. (1986). Some considerations about computational complexity for multi objective combinatorial

problems. In J. Jahn & W. Krabs (Eds.), Lecture notes in economics and mathematical systems: Vol. 294.
Recent advances and historical development of vector optimization (pp. 222–231). Berlin: Springer.

Singh, C., & Hanson, M. A. (1991). Multiobjective fractional programming duality theory. Naval Research
Logistics, 38, 925–933.

Singh, C., Bhatia, D., & Rueda, N. (1996). Duality in nonlinear multiobjective programming using augmented
Lagrangian functions. Journal of Optimization Theory and Applications, 88, 659–670.

Skriver, A. J. V., & Andersen, K. A. (2000). A label correcting approach for solving bicriterion shortest path
problems. Computers and Operations Research, 27, 507–524.

Sniedovich, M. (1988). A multi-objective routing problem revisited. Engineering Optimization, 13, 99–108.
Spronk, J., & Hallerbach, W. G. (1997). Financial modelling: where to go? With an illustration for portfolio

management. European Journal of Operational Research, 99, 113–127.
Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley.
Steuer, R. E., & Na, P. (2003). Multiple criteria decision making combined with finance: a categorized bibli-

ography. European Journal of Operational Research, 150, 496–515.
Tanina, T., & Sawaragi, Y. (1979). Duality theory in multiobjective programming. Journal of Optimization

Theory and Applications, 27, 509–529.
Thanassoulis, E. (1985). Selecting a suitable solution method for a multiobjective programming capital bud-

geting problem. Journal of Business Finance and Accounting, 12, 453–471.
Ulungu, E. L., & Teghem, J. (1994). Application of the two phases method to solve the bi-objective knapsack

problem. Technical report, Dept. of Mathematics & Operational Research, Faculté Polytechnique de
Mons, Mons, Belgium, 1994.

Ulungu, E. L., & Teghem, J. (1997). Solving multiobjective knapsack problems by a branch and bound
procedure. In J. N. Climaco (Ed.), Multicriteria analysis (pp. 269–278). New-York: Springer.

Vial, J. P. (1983). Strong and weak convexity set and functions. Mathematics of Operations Research, 8,
231–259.

Villarreal, B., & Karwan, M. H. (1981). Multicriteria integer programming: a hybrid dynamic programming
recursive approach. Mathematical Programming, 21, 204–223.

Visée, M., Teghem, J., Pirlot, M., & Ulungu, E. L. (1996). Two-phases method and branch and bound pro-
cedures to solve the bi-objective knapsack problem. Technical report, Department of Mathematics &
Operational Research, Faculté Polytechnique de Mons, Belgium, 1996.

Wang, S. (1991). Second-order necessary and sufficient conditions in multiobjective programming. Numeri-
cal functional Analysis and Applications, 12, 237–252.

Warburton, A. (1987). Approximation of a Pareto optima in multiple-objective shortest-path problems. Op-
erations Research, 35, 70–79.

Weingartner, H. M. (1963). Mathematical programming and the analysis of capital budgeting problems. New
Jersey: Prentice–Hall.

Weir, T. (1990). A note on invex functions and duality in generalized fractional programming. Research
report, Department of Mathematics, The University of New South Wales, ACT 2600, Australia.

Weir, T., & Mond, B. (1988). Symmetric and self duality in multiobjective programming. Asia-Pacific Journal
of Operational Research, 5, 124–133.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic
Control, 8, 59–60.

Zhou, G., & Gen, M. (1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem.
European Journal of Operational Research, 114, 141–152.

Zopounidis, C. (1999). Multicriteria decision aid in financial management. European Journal of Operational
Research, 119, 404–415.


	A survey of recent developments in multiobjective optimization
	Abstract
	Pareto optimality
	Optimality conditions
	Duality in MO problems
	Multiobjective fractional programming problems
	Multiobjective integer programming problems
	Methods
	Weighting method
	epsilon-constraint method
	Weighted Lp-metric method

	Multiobjective combinatorial optimization problems
	Multiobjective shortest path problems
	The multiobjective minimum spanning tree problem
	The multiobjective zero one knapsack problem

	Applications
	The web access problem
	Portfolio selection problems
	Capital budgeting problem

	Conclusions
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


