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Abstract In this survey we attempt to give a unified presentation of a variety of results
on the lifting of valid inequalities, as well as a standard procedure combining mixed integer
rounding with lifting for the development of strong valid inequalities for knapsack and single
node flow sets. Our hope is that the latter can be used in practice to generate cutting planes
for mixed integer programs.

The survey contains essentially two parts. In the first we present lifting in a very general
way, emphasizing superadditive lifting which allows one to lift simultaneously different sets
of variables. In the second, our procedure for generating strong valid inequalities consists
of reduction to a knapsack set with a single continuous variable, construction of a mixed
integer rounding inequality, and superadditive lifting. It is applied to several generalizations
of the 0–1 single node flow set.

Keywords Lifting · Mixed integer rounding · Single node flow sets

1 Introduction

Considerable work has been carried out since the early 1970s in generating strong valid
inequalities using “lifting” as introduced by Padberg (1973). In particular lifting has been
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crucial in developing strong facet-defining inequalities for 0–1 knapsack sets (Balas 1975;
Hammer et al. 1975; Wolsey 1975), and their mixed integer counterpart, called single node
flow sets (Gu et al. 1999; Padberg et al. 1985; Stallaert 1997; Van Roy and Wolsey 1986).
What is more these inequalities have provided effective cuts for 0–1 programs (Crowder
et al. 1963) and mixed 0–1 programs (Van Roy and Wolsey 1987), and along with Gomory
mixed integer cuts (Gomory 1960) and mixed integer rounding inequalities (Nemhauser and
Wolsey 1990) form part of state-of-the-art commercial mixed integer programming systems
such as Cplex and Xpress.

Our goal here is to revisit some of this work, in particular that concerning lifting and the
generation of valid inequalities for single node flow sets.

Without being exhaustive, we aim to touch at least indirectly on the work on cover in-
equalities for 0–1 knapsack problems and on flow cover inequalities for single node flow
sets referenced above, work on variable lifting (Padberg 1973; Wolsey 1976) and super-
additive lifting (Gu et al. 2000; Wolsey 1977), work on knapsack problems with integer
and/or continuous variables (Atamtürk 2003; Ceria et al. 1998; Marchand and Wolsey 1999;
Richard et al. 2002), and on some models generalizing the knapsack and single node flow
sets (Atamtürk et al. 2001; Goemans 1989; Miller et al. 2003b; Wolsey 1990).

The viewpoint taken is close to that in Gu et al. (1999, 2000) and Marchand and Wolsey
(1999, 2001) dealing with single node flow sets, simultaneous lifting, knapsack sets with a
continuous variable and mixed integer rounding respectively. First we develop fairly general
results on the lifting of sets of variables, and then, turning specifically to single node flow
sets, we show how mixed integer rounding combined with lifting provides a unified and
computationally simple way to obtain many of the valid inequalities for mixed 0–1 sets that
have been proposed in the literature, as well as new inequalities for integer single node flow
sets.

We now describe the contents of this paper, that originally appeared as Louveaux and
Wolsey (2003). In Sect. 2 we take an abstract view of the lifting problem and of the question
how to generate valid inequalities for one set from the valid inequalities of a second lower-
dimensional subset, or of a second higher-dimensional set.

In Sect. 3 we present the problem of lifting a valid inequality to a valid inequality for a
higher dimensional set in some detail. Examples are presented to suggest some new compu-
tational possibilities. We also examine the crucial role of superadditivity in simplifying the
calculations, and allowing simultaneous lifting of several groups of variables.

We then turn to the single node flow set, denoted XN(n1, n2, b, a,u),

∑

j∈N1

xj −
∑

j∈N2

xj − s ≤ b,

xj ≤ ajyj for j ∈ N1 ∪ N2,

yj ≤ uj for j ∈ N1 ∪ N2,

x ∈ R
n1+n2+ , y ∈ Z

n1+n2+ , s ∈ R
1
+

where n1 = |N1|, n2 = |N2|, n = n1 + n2, b ∈ Z
1, a ∈ R

n, u ∈ Z
n+. In Sect. 4, we consider

the 0–1 case. Such sets were initially studied as a natural mixed integer generalization of
0–1 knapsack sets, see Remark 2 below, and because essentially every mixed integer row
can be rewritten as a single node flow set, see Nemhauser and Wolsey (1988, p. 286). Here
we show that the standard flow cover inequality derived in Van Roy and Wolsey (1986) can
be strengthened by using mixed integer rounding, and/or superadditive lifting. In addition
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we indicate how the reverse cover/flow pack inequalities of Stallaert (1997) and Atamtürk
(2001) can be derived as flow cover inequalities by reversing arc directions in the single
node flow set.

In Sect. 5, we consider the general case when the integer variables are bounded, but not
0–1. An integer version of the mixed integer rounding flow cover inequality is derived, and
results of Atamtürk (2003) for the corresponding knapsack set are used to strengthen the
inequalities.

In Sect. 6 we consider three generalizations of XN , and examine to what extent they can
be treated using our standard approach (Atamtürk et al. 2001; Miller et al. 2003a; Wolsey
1990). We terminate by mentioning a few open questions.

2 Generating valid inequalities from sub- or supersets

Throughout we consider mixed integer sets described by integer (or rational) coefficients of
the form

X = {z ∈ R
n1

+ × Z
n2

+ : Az ≤ b}
with n = n1 + n2. Here we also consider a second lower-dimensional subset

Y = X ∩ {z: Cz = e}.

Below we consider two possibilities: using knowledge about conv(X) to get complete infor-
mation about conv(Y ), or using conv(Y ) to get partial information about conv(X).

2.1 Valid inequalities from supersets

Remark 1 If Cz ≤ e for all z ∈ X, then conv(Y ) is a face of conv(X), and

conv(Y ) = conv(X) ∩ {z: Cz = e}.

Thus every facet-defining inequality of conv(Y ) corresponds to a facet-defining inequality
of conv(X).

In both examples presented below, the superset X is the 0–1 single node flow set XN

with u = 1.

Remark 2 The 0–1 knapsack set with a single continuous variable (Marchand and Wolsey
1999)

XCK =
{
(y, s) ∈ {0,1}n × R

1
+:

∑

j∈N1

ajyj ≤ b + s

}

is obtained from the single node flow set XN with n1 = n, n2 = 0 by setting xj = ajyj for
all j ∈ N1.

Remark 3 The 0–1 single node flow model with some simple bounds (Richard et al. 2002,
2003)
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Fig. 1 0–1 Single node flow set

XNC =
{
(x, y, s) ∈ R

n
+ × Z

n−r
+ × R

1
+:

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

xj ≤ ajyj , yj ≤ 1 for j ∈ (N1 \ R1) ∪ (N2 \ R2), xj ≤ aj for j ∈ R1 ∪ R2

}

is obtained from XN by setting yj = 1 for j ∈ R1 ∪ R2, where r = |R1 ∪ R2|.

Example 1 Consider the set XN(3,2,4, (3,4,5,2,3),1), or

x1 + x2 + x3 − x4 − x5 ≤ 4 + s,

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4, x5 ≤ 3y5,

x ∈ R
5
+, y ∈ {0,1}5, s ∈ R

1
+

shown in Fig. 1.
Now consider the 0–1 knapsack set with a single continuous variable XCK

3y1 + 4y2 + 5y3 − 2y4 − 3y5 ≤ 4 + s, y ∈ {0,1}5, s ∈ R
1
+.

A facet of conv(XCK), such as that represented by the inequality

2y1 + 3y2 + 4y3 − y4 − 3y5 ≤ 3 + s,

can be obtained directly from the facet

x1 − y1 + x2 − y2 + x3 − y3 − y4 − x5 ≤ 3 + s

of conv(XN) by setting x1 = 3y1, x2 = 4y2, x3 = 5y3 and x5 = 3y5.

Another consequence of Remark 1 concerns the separation problem arising when one
wishes to find a valid inequality for X cutting off a point z∗.

Remark 4 If Cz ≤ e for all z ∈ X and z∗ satisfies Cz∗ = e, then z∗ /∈ conv(X) if and only if
z∗ /∈ conv(Y ).

Thus to solve the separation problem over X, it suffices to solve the separation problem
over Y , and then convert the violated valid inequality for Y into a violated inequality for X.
The latter conversion is precisely the lifting problem that we now consider.
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2.2 Valid inequalities from subsets

Here we ask when a valid inequality for Y can be “lifted” into a valid inequality for X.
We distinguish two cases: either Cz ≤ e for all z ∈ X, i.e. conv(Y ) is a face of conv(X), as
above, or not.

Remark 5 If conv(Y ) is a face of conv(X) and π1z ≤ π0 is a valid inequality for conv(Y ),
there exists a vector π2 such that

π1z + π2(e − Cz) ≤ π0

is valid for conv(X).

It is easily verified that the inequality is valid if one takes π2
j = −M for all j ∈ N with

M sufficiently large.
On the other hand, when Cz = e cuts through the interior of conv(X), it is known that the

required multipliers may not exist. This is demonstrated by the following simple example.

Example 2 Take the integer knapsack set

X = {y ∈ Z
2
+: 3y1 + 5y2 ≤ 21, y2 ≤ 4},

and let

Y = X ∩ {y ∈ R
2: y2 = 2} = {(y1,2) ∈ Z

2
+: 3y1 ≤ 11}

with valid inequality y1 ≤ 3. Now if y1 + π2(2 − y2) ≤ 3 is a valid inequality for X, the
point (0,4) ∈ X implies π2 ≥ −3/2, whereas the point (7,0) ∈ X implies that π2 ≤ −2.
Thus there is no possible multiplier.

In the next section we consider how to find the multipliers π2 or show that there are
none. However the question is posed a little differently. Specifically, consider introducing
slack variables t = e−Cz ≥ 0. Now Y is obtained from X by setting t = 0, and the problem
is to find lifting coefficients π2 so that π1z + π2t ≤ π0 is valid.

3 Lifting valid inequalities

We consider the mixed integer sets, denoted Zτ (b), of the form

τ∑

k=1

Akzk ≤ b + s,

zk ∈ Xk for k = 1, . . . , τ, s ∈ R
m+

(1)

where Ak ∈ R
m×nk for k = 1, . . . ,K , b ∈ R

m, Xk = {zk ∈ R
n1
k × Z

n2
k : Ckzk ≤ ck} with nk =

n1
k + n2

k is a mixed integer set in R
nk for all k and 0 ∈ Xk for k = 2, . . . ,K . Here we study

how to find valid inequalities for ZK(b), starting from valid inequalities for Z1(b).
The simultaneous lifting of variables in blocks was presented by Gu et al. (2000). The

specific calculations required to lift flow cover inequalities with each block consisting of
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two variables (xk, yk) were presented in Gu et al. (1999). The description below is new in
several respects: we reduce to a single case by imposing that the variables are fixed to zero
(zk = 0) which may imply a change of variables, and we show that the structure of the lifting
functions (piecewise linear) and the sets of valid coefficients (polyhedral) is such that the
calculations are well-defined.

The lifting approach consists of the following:

1. Fix zk = 0 for k = 2, . . . ,K .
2. Find a tight valid inequality π1z1 ≤ π0 + νs for Z1(b).
3. Iterations τ = 2, . . . ,K . Given a tight valid inequality

∑τ−1
k=1 πkzk ≤ π0 +νs for Zτ−1(b),

lift the variables zτ and derive coefficients πτ such that

τ−1∑

k=1

πkzk + πτ zτ ≤ π0 + νs (2)

is valid for Zτ (b), or determine that no such πτ exists.

Relative to the description in Sect. 2, X = ZK(b) and Y = ZK(b) ∩ {(z1, . . . , zK): z2 =
· · · = zK = 0} = Z1(b).

Below we discuss theoretically how to find valid lifting coefficients πτ for τ = 2, . . . ,K ,
and then consider cases in which the required calculations may be tractable.

3.1 Lifting: basic theory

We first define a crucial function.

Definition 1 The lifting function φk : Rm → R
1 is

φk(u) = min

{
π0 + νs −

k∑

τ=1

πτ zτ : (z1, . . . , zk, s) ∈ Zk(b − u)

}
.

Note that for any u ∈ R
m and any (z1, . . . , zk) ∈ X1 × · · · × Xk , there exists s ∈ R

m+ such
that (z1, . . . , zk, s) ∈ Zk(b − u), so φk(u) is finite for all u ∈ R

m. Also from the definition, it
follows that

φ1 ≥ · · · ≥ φK.

We also introduce the set

Πk = {
π ∈ R

nk : πt ≤ φk−1(Akt) for all t ∈ Xk
}

of lifting coefficients. For most of the results, it will suffice to consider the case where
K = 2.

Proposition 1 If π1z1 ≤ π0 + νs is a tight valid inequality for Z1(b),

π1z1 + π2z2 ≤ π0 + νs

is valid for Z2(b) if and only if π2 ∈ Π2.
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Proof Suppose π2 ∈ Π2 and consider a point (z̄1, t, s̄) ∈ Z2(b). Then

π2t ≤ φ1(A2t) as t ∈ X2

≤ π0 + νs̄ − π1z̄1 as (z̄1, s̄) ∈ Z1(b − A2t)

and so the inequality is valid.
Conversely if π2t > φ1(A2t) for some t ∈ X2, take a point (z1, s) ∈ Z1(b − A2t) with

π1z1 = π0 + νs − φ1(A2t). Now (z1, t, s) ∈ Z2(b), but π1z1 + π2t > π0 + νs, and the
inequality is not valid. �

We now consider briefly the structure of the functions φk and the sets Πk , and whether
the required calculations can be carried out.

Remark 6 φk(u) is the value function of a mixed integer program. Thus there exists a finite
set of polyhedra P q = {u ∈ R

m: Dqu ≤ dq} whose union is R
m and vectors (αq,βq) ∈

R
m × R

1 such that for all q

φk(u) = αqu + βq for u ∈ P q.

Proposition 2 If each set Xk = {(x, y) ∈ R
n1
k+ × Z

n2
k+ : Ck

1x + Ck
2y ≤ ck} is a bounded mixed

integer set, then Πk is a polyhedron.

Proof We consider Π2. Now for fixed y ∈ projy(X
2) and fixed region q , with π =

(λ,μ) ∈ Π2 and t = (x, y) ∈ X2, π ∈ Π2 if and only if

λx + μy ≤ φ2(A2t) ≤ αq(A2
1x + A2

2y) + βq

for all u = A2t = A2
1x + A2

2y satisfying Dqu ≤ dq , with A2 = (A2
1,A

2
2) and C2 = (C2

1 ,C
2
2 ).

In other words π ∈ Π2 if and only if (λ−αqA2
1)x + (μ−αqA2

2)y ≤ βq for all x such that
Dq(A2

1x + A2
2y) ≤ dq , C2

1x ≤ c − C2
2y, x ≥ 0. For fixed y and q , the latter set is a bounded

polyhedron in x with a finite number of extreme points {xt }T
t=1. Thus enumerating over the

finite set of feasible integer vectors y, the finite number of regions q and the finite set of
extreme points, we obtain an explicit description:

Π2 = {
π = (λ,μ): λxt + μy ≤ αq(A2

1x
t + A2

2y) + βq ∀q, y, t
}
. �

Next if Π2 
= ∅ and lifting coefficients π2 ∈ Π2 have been selected, one needs to cal-
culate the new lifting function φ2. Rather than calculating it from scratch, it can also be
obtained by updating.

Proposition 3

φ2(u) = min
t∈X2

[
φ1(u + A2t) − π2t

]
.

Proof By definition

φ2(u) = min
z1,z2,s

{
π0 + νs − π1z1 − π2z2:

A1z1 + A2z2 ≤ b + s − u, zi ∈ Xi for i = 1,2, s ≥ 0
}
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= min
t∈X2

{
min
z1,s

{π0 + νs − π1z1: A1z1 ≤ b + s − u − A2t, z1 ∈ X1, s ≥ 0} − π2t
}

= min
t∈X2

{φ1(u + A2t) − π2t}. �

Example 3 (The lifting function and the set of lifting coefficients) Consider the set

5y1 + 5y2 + 5y3 + x4 + 2y4 ≤ 12 + s,

1y4 ≤ x4 ≤ 3y4,

yi ∈ {0,1} for i = 1,2,3, y4 ∈ {0,1,2}, x4 ∈ R
1+.

This can be modelled in the form (1) with A1 = (5,5,5), A2 = (1,2), b = 12, X1 = {0,1}3,
X2 = {(x4, y4) ∈ R

1+ × Z
1+: 1y4 ≤ x4 ≤ 3y4, y4 ≤ 2}.

As valid inequality for Z1(b), we take

3y1 + 3y2 + 3y3 ≤ 6 + s.

The lifting function φ1 is given, see Fig. 2, by

φ1(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 if u ≤ −3,

u if −3 ≤ u < 0,

0 if 0 ≤ u < 2,

u − 2 if 2 ≤ u < 5,

3 if 5 ≤ u < 7,

u − 4 if 7 ≤ u < 10,

6 if 10 ≤ u < 12,

u − 6 if 12 ≤ u.

Now we wish to find lifting coefficients π2 = (λ,μ) ∈ Π2. We note that 3 ≤ x4 + 2y4 ≤ 10
and y4 ∈ {1,2} for (x, y) ∈ X2 \ {(0,0)}.

For y4 = 1, 1 ≤ x4 ≤ 3 and thus 3 ≤ u = x4 + 2y4 ≤ 5. This just intersects the re-
gion/segment u ∈ [2,5], and the extreme points are x4 = 1 and x4 = 3.

For y4 = 2, 6 ≤ u = x4 + 2y4 ≤ 10, and two segments [5,7] and [7,10] are intersected
leading to the extreme points x4 = 1, x4 = 3 and x4 = 6.

Fig. 2 Lifting function
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So Π2 is described by the inequalities

1λ + 1μ ≤ φ1(3) = 1,

3λ + 1μ ≤ φ1(5) = 3,

2λ + 2μ ≤ φ1(6) = 3,

3λ + 2μ ≤ φ1(7) = 3,

6λ + 2μ ≤ φ1(10) = 6

with extreme points π = (−1,2) and π = (1,0) giving the valid inequalities

3y1 + 3y2 + 3y3 − z4 + 2y4 ≤ 12 + s and

3y1 + 3y2 + 3y3 + z4 ≤ 12 + s.

3.2 Superadditive lifting

Lifting requires calculation of the lifting function φk−1(u) and then finding a point πk ∈ Πk

for k = 2, . . . ,K . Calculation of φk−1(u) is typically a difficult problem, so in practice there
is a need to reduce the amount of computation. When the lifting function has appropriate
structure, more can be said and the amount of computation can be reduced.

Definition 2 A function F :D → R is superadditive on D ⊆ R
m if

F(u) + F(v) ≤ F(u + v)

for all u,v for which u,v,u + v ∈ D.

Throughout we will assume that D is a cone, so that u,v ∈ D implies u + v ∈ D. We
also limit our attention to superadditive functions that are continuous, with the property that
F̄ (d) = limt→0

F(td)

t
exists for all d ∈ D, and with F(0) = 0.

Two classes of functions will be very useful later.

Definition 3 For 0 < α < 1, the mixed integer rounding function Fα : R1 → R
1 is defined

by

Fα(d) = d� + (fd − α)+

1 − α
,

where fd = d − d�.

This function is superadditive on R
1 and is shown in Fig. 3. Note that F̄α exists, and

F̄α(d) = min[0, d
1−α

].

Definition 4 Suppose that a ∈ R
n+ with ai1 ≥ ai2 ≥ · · · ≥ air > λ ≥ air+1 . . . ain > 0, and let

At = ∑t

j=1 aij for t ≤ r with A0 = 0 and Ar+1 = ∞. Define Ga,λ : R1+ → R
1+ by

Ga,λ(u) =
⎧
⎨

⎩

(j − 1)λ if Aj−1 ≤ u ≤ Aj − λ, j = 1, . . . , r ,

(j − 1)λ + [u − (Aj − λ)] if Aj − λ ≤ u ≤ Aj , j = 1, . . . , r − 1,

(r − 1)λ + [u − (Ar − λ)] if Ar − λ ≤ u.
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Fig. 3 Superadditive MIR
function

Fig. 4 Superadditive function
Ga,λ on R

1+

This function is superadditive on R
1+ and an instance with a = (10,7,4,2) and λ = 3 is

shown in Fig. 4. Though we will not use it directly here, superadditive functions are basic
to mixed integer programming as the next proposition indicates.

Proposition 4 (Johnson 1973; Jeroslow 1979) If XMIP = {(x, y) ∈ R
n1

1+ × Z
n2

1+ : A1x +
A2y ≤ b}, F : Rm → R

1 is superadditive and nondecreasing, and F̄ exists, then

n1
1∑

j=1

F̄ (a1j )xj +
n2

1∑

j=1

F(a2j )yj ≤ F(b)

is a valid inequality for XMIP , where a1j and a2j are the columns of A1 and A2 respectively.

Now we return to the lifting problem. When the function φ1 is superadditive on some
appropriate cone D, the computation of the functions φ2, . . . , φK can be avoided.

Proposition 5 If φ1 is superadditive on D, and A2t ∈ D for all t ∈ X2, φ2 = φ1 on D.
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Proof For t ∈ X2 and u ∈ D,

φ1(u + A2t) − π2t ≥ φ1(u + A2t) − φ1(A2t) as π2t ≤ φ1(A2t)

≥ φ1(u) by superadditivity.

On the other hand as 0 ∈ X2, mint∈X2 [φ1(u + A2t) − π2t] ≤ φ1(u). Therefore for u ∈ D,
φ2(u) = mint∈X2 [φ1(u + A2t) − π2t] = φ1(u). �

Any function φ̂ ≤ φ1 is called a valid lifting function for X2 because π2t ≤ φ̂(A2t) for
all t ∈ X2 implies that π1z1 + π2z2 ≤ π0 + νs is valid for Z2(b). We say that φ̂ is used for
lifting if π2 satisfies π2t ≤ φ̂(A2t) for all t ∈ X2. When in addition φ̂ is superadditive, more
can be said.

Proposition 6 Suppose that φ̂ ≤ φ1 on D and φ̂ is superadditive on D. If A2t ∈ D for all
t ∈ X2 and φ̂ is used for lifting, then φ1 ≥ φ2 ≥ φ̂ on D.

Proof As φ̂ is used for lifting, π2t ≤ φ̂(A2t) for t ∈ X2. Now for t ∈ X2 and u ∈ D,
φ1(u + A2t) − π2t ≥ φ1(u + A2t) − φ̂(A2t) ≥ φ̂(u + A2t) − φ̂(A2t) ≥ φ̂(u) where the
last two inequalities follow from φ̂ ≤ φ1 and the superadditivity of φ̂ on D respectively.
Thus φ2(u) = mint∈X2 [φ1(u + A2t) − π2t] ≥ φ̂(u) for u ∈ D. �

So φ̂ remains a valid lifting function for φ2, . . . , φK . Thus if such a superadditive function
φ̂ is used for lifting, the ordering of the sets X2, . . . ,XK and of the calculations is irrelevant,
as shown by the following result.

Corollary 1 If φ̂ ≤ φ1 and φ̂ is superadditive on D, π̂ kt ≤ φ̂(Akt) and Akt ∈ D for all
t ∈ Xk and k = 2, . . . ,K , then

π1z1 +
K∑

k=2

π̂ kzk ≤ π0 + νs

is valid for ZK(b).

Proof If (z1, . . . , zK, s) ∈ ZK(b),

π1z1 +
K∑

k=2

π̂ kzk ≤ π0 + νs − φ1

(
K∑

k=2

Akzk

)
+

K∑

k=2

φ̂(Akzk)

≤ π0 + νs − φ1

(
K∑

k=2

Akzk

)
+ φ̂

(
K∑

k=2

Akzk

)
using superadditivity

≤ π0 + νs as φ̂ ≤ φ1. �

It is natural to ask whether functions such as φ̂ always exist.

Proposition 7 φ∗(u) = minv∈D[φ1(u + v) − φ1(v)] is superadditive on D, and φ∗ ≤ φ1

on D.
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Proof For u,v ∈ D, u + v ∈ D and so, for some w ∈ D, φ∗(u + v) = φ1(u + v + w) −
φ1(w) = φ1(u+ v +w)−φ1(v +w)+φ1(v +w)−φ1(w) ≥ φ∗(u)+φ∗(v). Also φ∗(u) ≤
φ1(u + 0) − φ(0) = φ1(u) for all u ∈ D. �

If a superadditive function has been used to generate the initial valid inequality π1z1 ≤
π0 + νs for Z1(b), there is a natural candidate to be used as a valid lifting function.

Proposition 8 Suppose that the initial valid inequality for Z1(b) is of the form

n1
1∑

j=1

F̄ (a1j )x
1
j +

n2
1∑

j=1

F(a2j )y
1
j ≤ F(b)

with F superadditive and nondecreasing on R
m. Then F̂ (u) ≡ F(b) − F(b − u) is a valid

lifting function with F̂ (u) ≤ φ1(u) for all u ∈ R
m.

Proof φ1(u) = F(b) − max{∑n1
1

j=1 F̄ (a1j )x
1
j + ∑n2

1
j=1 F(a2j )y

1
j : A1

1x
1 + A1

2y
1 ≤ b − u,

(x1, y1) ∈ R
n1

1 × Z
n2

1} ≥ F(b) − F(b − u) as
∑n1

1
j=1 F̄ (a1j )x

1
j + ∑n2

1
j=1 F(a2j )y

1
j ≤ F(b − u)

is a valid inequality for Z1(b − u). �

Now suppose that the MIR function Fα is used to generate the first inequality.

Remark 7 If fb = α, F̂ (u) = Fα(b) − Fα(b − u) = Fα(u) for all u ∈ R
m.

Thus Fα is itself a valid superadditive lifting function.

Example 4 (Simultaneous lifting) Consider the initial set X

5y1 + 5y2 + 5y3 + x4 − x5 ≤ 4 + s,

0 ≤ x4 ≤ 6y4, 0 ≤ x5 ≤ 8y5, y ∈ {0,1}5, s ∈ R
1
+.

Setting x4 = 0, y4 = 0, x5 = 8, y5 = 1, we obtain the set Y

5y1 + 5y2 + 5y3 ≤ 12 + s, y ∈ {0,1}3, s ∈ R
1
+

of Example 3.
We now rewrite the set X in the form (1).

5y1 + 5y2 + 5y3 + x4 + x̄5 − s ≤ 12,

(y1, . . . , y3) ∈ X1, (x4, y4) ∈ X2, (x̄5, ȳ5) ∈ X3, s ∈ R
1
+,

where x̄5 = 8 − x5, ȳ5 = 1 − y5, X1 = {0,1}3, A1 = (5,5,5), X2 = {(x4, y4) ∈ R
1+ ×

{0,1}: x4 ≤ 6y4}, A2 = (1), X3 = {(x̄5, ȳ5) ∈ R
1 × {0,1}: 8 ≥ x̄5 ≥ 8ȳ5}, A3 = (1) and

b = 12.
Taking the same valid inequality as in Example 3, it is easily checked that its lifting

function φ1 is superadditive on R
1+. As A2t ∈ R

1+ for all t ∈ X2 and A3t ∈ R
1+ for all t ∈ X3,

Corollary 1 of Proposition 6 is applicable.
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For the set X2, we have

Π2 = {
(λ,μ): λx4 + μy4 ≤ φ1(x4) for (x4, y4) ∈ X2

}
,

and, as shown in Gu et al. (1999), we obtain valid lifting coefficients by taking a support to
the lifting function φ1 over the range [0,6]. There are two extreme solutions (λ,μ) = (0,0)

and (λ,μ) = ( 3
4 ,− 3

2 ).
For the set X3,

Π3 = {
(λ,μ): λx̄5 + μȳ5 ≤ φ(x̄5) for (x̄5, ȳ5) ∈ X3

}

with unique extreme point (λ,μ) = (0, φ(8)) = (0,4).
So simultaneously lifting on the sets X2 and X3 gives the valid inequalities

3y1 + 3y2 + 3y3 + 4(1 − y5) ≤ 6 + s and

3y1 + 3y2 + 3y3 +
(

3

4
x4 − 3

2
y4

)
+ 4(1 − y5) ≤ 6 + s.

3.3 Further remarks on lifting

3.3.1 The role of the continuous variables s

The inclusion of the continuous variables s in the description (1) of Zk(b) for all k =
1, . . . ,K simplifies the presentation, but clearly restricts the inequalities that can be ob-
tained by lifting. If the variables s are set to zero and lifted later, we no longer have that
Zk(b − u) 
= ∅ for all u, with the result that φk can be discontinuous, and is not defined
everywhere. Calculating φk and new coefficients πk+1, and finding a valid superadditive
function that is superadditive remain difficult problems. The resulting lifting functions φk

are potentially stronger, but the final inequality may not be valid until the variables s are
lifted in. Examples of such functions can be found in Gu et al. (1999) among others.

3.3.2 Facet-defining inequalities

We have not discussed at all the question when the lifted inequalities are facet-defining.
The brief answer is that if the set Z1(b) is full-dimensional, the initial inequality is facet-
defining, the exact lifting function is used to define Πk and πk is an extreme point of Πk

for all k, then the final inequality (2) is facet-defining for ZK(b). When the sets are not
full-dimensional, more conditions are needed. See Oosten (1996) for a detailed study of this
question. Note also that most of the papers cited in the Introduction present conditions under
which the inequalities derived are facet-defining.

4 0–1 Single node flow sets

As indicated in the Introduction, single node flow sets XN are a natural generalization of
knapsack sets and single row mixed integer sets. As suggested in Sect. 2, we can take two
approaches. The first: studying conv(XN) in depth and thereby obtaining complete informa-
tion about the special cases Y (the 0–1 knapsack set with a continuous variable XCK , or the
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single node flow with simple bounds XNC ) is unfortunately still an important challenge. The
second, using knowledge about Y = XCK to obtain important, but partial knowledge about
the superset XN , is pursued here. The presentation is related to that of Marchand and Wolsey
(2001). Surprisingly we show that by using mixed integer rounding (combined with super-
additive lifting), one obtains inequalities as least as strong as all the flow cover inequalities
for XN proposed earlier.

4.1 The MIR approach

From now on we will use a standard approach to generate valid inequalities for the single
node flow set XN and its variants, which is a minor modification of the c-MIR approach in
Marchand and Wolsey (1999).

Step 1 Using slack variables for the variable upper bound constraints, relax XN to obtain
a knapsack set with a continuous variable XKC .

Step 1b (Optional) Fix the values of some variables giving a restricted set XKC−F .
Step 2 Complement certain integer variables—those in an appropriately chosen “cover”.
Step 3 Rescale the row.
Step 4 Generate a mixed integer rounding inequality for XKC or XKC−F , and rescale the

inequality.
Step 4b If variables have been fixed in Step 1b, calculate the lifting function φ1. If the

lifting function is not superadditive on some appropriate domain, look for a valid
superadditive lifting function φ̂. Generate a valid inequality for XKC .

Step 5 By complementing again, and eliminating the slack variables introduced in Step 1,
generate a valid inequality for XN .

4.2 The MIR flow cover inequalities

Consider the set XN(n1, n2, b, a,1). We now use the MIR approach described above to
derive basic valid inequalities for this set.

Definition 5 (C1,C2) is a flow cover for XN if

(i) C1 ⊆ N1,C2 ⊆ N2

(ii)
∑

j∈C1
aj − ∑

j∈C2
aj − b = λ > 0.

Proposition 9 Suppose that (C1,C2) is a flow cover, and choose ā ∈ R
1+ with ā > λ. Then

the MIR flow cover inequality

∑

j∈C1

{
xj +

[
aj + λF

(
−aj

ā

)]
(1 − yj )

}
+

∑

j∈L1

xj −
∑

j∈L1

[
aj − λF

(
aj

ā

)]
yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF

(
aj

ā

)
(1 − yj ) −

∑

j∈L2

λF

(
−aj

ā

)
yj +

∑

j∈R2

xj + s (3)

is valid for XN , where (Ci,Li,Ri) is a partition of Ni for i = 1,2 and F = Fα with α = ā−λ
ā

.

Proof Step 1. Starting from the inequality
∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,
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we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the nonnegativity
of xj for j ∈ R1 and of tj for j ∈ C2 ∪ L2 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.

Step 2. Now introducing variables ȳj = 1 − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1

aj ȳj +
∑

j∈L1

ajyj +
∑

j∈C2

aj ȳj −
∑

j∈L2

ajyj ≤ −λ +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s.

Step 3. We now divide by ā > λ.
Step 4. Generate the mixed integer rounding inequality giving

∑

j∈C1

F

(
−aj

ā

)
ȳj +

∑

j∈L1

F

(
aj

ā

)
yj +

∑

j∈C2

F

(
aj

ā

)
ȳj +

∑

j∈L2

F

(
−aj

ā

)
yj

≤ −1 + 1

λ

(
s +

∑

j∈R2

xj +
∑

j∈C1∪L1

tj

)
.

Step 5. Multiplying by λ, and restating the inequality in terms of the original variables gives
the required inequality. �

Remark 8

(i) λF(− aj

ā
) ≥ −max[min[λ,aj ], aj − (ā − λ)] with equality for aj ≤ ā + λ.

(ii) λF(− aj

ā
) = −min[λ,aj ] for aj ≤ ā.

(iii) λF(
aj

ā
) ≥ min[max[(aj − (ā − λ),0], λ] with equality for aj ≤ 2ā − λ.

(iv) λF(
aj

ā
) = max[(aj − (ā − λ),0] if aj ≤ ā.

Corollary 2 If ā = maxj∈C1 aj , the MIR flow cover inequality (3) takes the form

∑

j∈C1

{
xj + [aj − λ]+(1 − yj )

} +
∑

j∈L1

xj −
∑

j∈L1

[
aj − λF

(
aj

ā

)]
yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF

(
aj

ā

)
(1 − yj ) −

∑

j∈L2

λF

(
−aj

ā

)
yj +

∑

j∈R2

xj + s

and is at least as strong as the GFC2 inequality (Van Roy and Wolsey 1986)

∑

j∈C1

xj +
∑

j∈C1

[aj − λ]+(1 − yj ) +
∑

j∈L1

xj −
∑

j∈L1

(max[aj , ā] − λ)yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

min
[
λ, (aj − (ā − λ))+]

(1 − yj )

+
∑

j∈L2

max
[
aj − (ā − λ),λ

]
yj +

∑

j∈R2

xj + s.
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Corollary 3 If ā = maxj∈C1∩L2 aj and aj > λ for all j ∈ L2, the MIR flow cover inequal-
ity (3) takes the form

∑

j∈C1

{
xj + [aj − λ]+(1 − yj )

} +
∑

j∈L1

xj −
∑

j∈L1

[
aj − λF

(
aj

ā

)]
yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF

(
aj

ā

)
(1 − yj ) +

∑

j∈L2

λyj +
∑

j∈R2

xj + s (4)

and is at least as strong as the GFC1 inequality (Van Roy and Wolsey 1986)

∑

j∈C1

{
xj + [aj − λ]+(1 − yj )

} ≤ b +
∑

j∈C2

aj +
∑

j∈L2

λyj +
∑

j∈R2

xj + s.

4.3 A strengthened MIR flow cover inequality

Now we strengthen the inequality.

Proposition 10 Suppose that (C1,C2) is a flow cover and ā = maxj∈C1∪L2 aj > λ. Then the
lifted inequality

∑

j∈C1

{
xj + [aj − λ]+(1 − yj )

} +
∑

j∈L1

[
xj − (aj − φ1(aj ))yj

]

≤ b +
∑

j∈C2

aj −
∑

j∈C2

φ1(aj )(1 − yj ) −
∑

j∈L2

λyj +
∑

j∈R2

xj + s (5)

is valid for XN , where (Ci,Li,Ri) is a partition of Ni for i = 1,2 and φ1 = Ga,λ on R
1+

with a = (aC1 , aL2).

Proof Proceeding as in the proof of Proposition 9, we modify as follows:

Step 1b. Set yj = 0 for j ∈ L1 and ȳj = 0 for j ∈ C2.
Step 2. The restricted set takes the form:

−
∑

j∈C1

aj ȳj −
∑

j∈L2

ajyj ≤ −λ +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s.

Step 3. Divide by ā = maxj∈C1∪L2 aj .
Step 4. Generate the MIR inequality

−
∑

j∈C1

min[λ,aj ]ȳj −
∑

j∈L2

λyj ≤ −λ + σ

where σ = ∑
j∈R2

xj + ∑
j∈C1∪L1

tj + s.
Step 4b. Calculate the lifting function

φ1(u) = min
∑

j∈C1

min[λ,aj ]ȳj +
∑

j∈L2

λyj − λ + σ,
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−
∑

j∈C1

aj ȳj −
∑

j∈L2

ajyj − σ ≤ −λ − u,

ȳj ∈ {0,1} for j ∈ C1, yj ∈ {0,1} for j ∈ L2, σ ≥ 0.

It can be shown that on R
1+, φ1 is precisely the superadditive function Ga,λ with a =

(aC1 , aL2).
Lift to obtain the inequality

−
∑

j∈C1

min[λ,aj ]ȳj −
∑

j∈L2

λyj +
∑

j∈L1

Ga,λ(aj )yj +
∑

j∈C2

Ga,λ(aj )ȳj ≤ −λ + σ.

Step 5. Uncomplement variables and substitute for tj . �

Example 5 Consider the single node flow set

x1 + x2 − x3 + x4 + x5 − x6 ≤ −8 + s,

x1 ≤ 10y1, x2 ≤ 9y2, x3 ≤ 7y3, x4 ≤ 16y4, x5 ≤ 5y5, x6 ≤ 19y6,

x ∈ R
6+, s ∈ R

1+, y ∈ [0,1]6.

Taking as flow cover C1 = {1,2}, C2 = {6}, we obtain λ = 10 + 9 − 19 + 8 = 8. With
L1 = {4}, L2 = ∅, we take ā = maxj∈C1∪L2 aj = 10, α = 10−8

10 . The resulting MIR flow
cover inequality (4) is

x1 + 2(1 − y1) + x2 + 1(1 − y2) − x3 + x4 − 4y4 ≤ 11 − 15(1 − y6) + s.

To obtain the strengthened inequality (5), we calculate the lifting function φ1. With a =
(10,9), λ = 8

Ga,λ(u) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ u ≤ 2,
u − 2 if 2 ≤ u ≤ 10,
8 if 10 ≤ u ≤ 11,
u − 3 if 11 ≤ u.

As Ga,λ(16) = 13 and Ga,λ(19) = 16, we obtain the inequality

x1 + 2(1 − y1) + x2 + 1(1 − y2) − x3 + x4 − (16 − 13)y4 ≤ 11 − 16(1 − y6) + s

which in this case is stronger than the MIR inequality.

4.4 The MIR reverse flow cover inequality

We now present an explicit expression for the reverse flow cover inequality for this set. This
inequality is obtained by applying the results of the previous subsection to the single node
flow set in which the directions of the flows are all reversed.

Definition 6 (T1, T2) is a reverse flow cover for XN if

(i) T1 ⊆ N1, T2 ⊆ N2

(ii)
∑

j∈T1
aj − ∑

j∈T2
aj − b = −μ < 0.
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Proposition 11 Suppose that (T1, T2) is a reverse flow cover and ā > μ. Then the MIR
reverse flow cover inequality

∑

j∈T1

xj +
∑

j∈T1

[
μF

(
aj

ā

)]
(1 − yj ) +

∑

j∈L1

xj +
∑

j∈L1

[
μF

(
−aj

ā

)]
yj

≤
∑

j∈T1

aj −
∑

j∈T2

[
aj + μF

(
−aj

ā

)]
(1 − yj ) +

∑

j∈L2

[
aj − μF

(
aj

ā

)]
yj +

∑

j∈R2

xj + s

(6)

is valid for XN , where (Ti,Li,Ri) is a partition of Ni for i = 1,2 and F = Fα with α = ā−μ

ā
.

Corollary 4 If ā = maxj∈T2 aj , the MIR reverse flow cover takes the form

∑

j∈T1

xj +
∑

j∈T1

μF

(
aj

ā

)
(1 − yj ) +

∑

j∈L1

xj +
∑

j∈L1

[
μF

(
−aj

ā

)]
yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − μ)+(1 − yj ) +
∑

j∈L2

[
aj − μF

(
aj

ā

)]
yj +

∑

j∈R2

xj + s,

and is at least as strong as the inequality
∑

j∈T1

xj +
∑

j∈T1

min
[
aj − (ā − μ)+,μ

]
(1 − yj )

+
∑

j∈L1

xj −
∑

j∈L1

max
[
min(μ,aj ), aj − (ā − μ)

]
yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − μ)+(1 − yj )

+
∑

j∈L2

[
max

(
aj − μ,min{aj , ā − μ})]yj +

∑

j∈R2

xj + s,

obtained by fixing the variable lower bounds to zero in the inequalities of Stallaert (1997).

Corollary 5 If ā is large, the MIR reverse flow cover takes the form
∑

j∈T1

xj +
∑

j∈L1

(xj − μyj ) ≤
∑

j∈T1

aj −
∑

j∈T2

(aj − μ)+(1 − yj ) +
∑

j∈L2∪R2

xj + s.

4.5 Further remarks

The main difference between the MIR approach proposed here and the c-MIR approach
in Marchand and Wolsey (2001) is the role of the cover in determining which variables to
complement. None of the inequalities proposed in this section is really new. In particular
the strengthened MIR flow cover inequality is essentially derived in Marchand and Wolsey
(1999) and can also be seen as a special case of the LSGFCI inequality in Gu et al. (1999)
when there is an unbounded continuous variable. Also as remarked above, the reverse flow
cover inequalities are nothing but flow cover inequalities, and arc reversal was already used
in Van Roy and Wolsey (1987).
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5 Integer single node flow sets

Here we consider the case where the integer variables arising in the single node flow set
are bounded, but not all 0–1. The flow cover inequality proposed below is apparently new.
However the strengthening procedure is that for integer knapsack sets proposed by Atamtürk
(2003).

5.1 The MIR flow cover inequality

Consider now the set XN(n1, n2, b, a,u) with uj > 1 for some j ∈ N . We now derive an
MIR flow cover inequality for this set.

Definition 7 (C1,C2) is an integer flow cover for XN if

(i) C1 ⊆ N1,C2 ⊆ N2;
(ii) there exists k ∈ C1 such that

∑
j∈C1\k ajuj − ∑

j∈C2
ajuj < b and there exists unique

values λ and ηk such that

akηk +
∑

j∈C1\k
ajuj −

∑

j∈C2

ajuj = b + λ

with 0 < λ < ak , and ηk ∈ Z
1 with 1 ≤ ηk ≤ uk .

Proposition 12 Suppose that (C1,C2) is an integer flow cover. Then the integer flow cover
inequality

∑

j∈C1

xj + (ak − λ)(ηk − yk) +
∑

j∈C1\k

[
aj + λF

(
−aj

ak

)]
(uj − yj )

+
∑

j∈L1

xj −
∑

j∈L1

[
aj − λF

(
aj

ak

)]
yj

≤ b +
∑

j∈C2

ajuj −
∑

j∈C2

λF

(
aj

ak

)
(uj − yj )

−
∑

j∈L2

λF

(
−aj

ak

)
yj +

∑

j∈R2

xj + s (7)

is valid for XN , where (Ci,Li,Ri) is a partition of Ni for i = 1,2 and F = Fα with α =
ak−λ

ak
.

Proof We again use the MIR approach from the previous section. Starting from the inequal-
ity

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the nonnegativity
of xj for j ∈ R1 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.
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Now introducing variables ȳj = uj − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1

aj ȳj +
∑

j∈L1

ajyj +
∑

j∈C2

aj ȳj −
∑

j∈L2

ajyj

≤ ak(ηk − uk) − λ +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s. (8)

We now divide by ak , and then generate the mixed integer rounding inequality giving

∑

j∈C1

F

(
−aj

ak

)
ȳj +

∑

j∈L1

F

(
aj

ak

)
yj +

∑

j∈C2

F

(
aj

ak

)
ȳj +

∑

j∈L2

F

(
−aj

ak

)
yj

≤ (ηk − uk) − 1 + 1

λ

(
s +

∑

j∈R2

xj +
∑

j∈C1∪L1

tj

)
.

Multiplying by λ, and restating the inequality in terms of the original variables gives the
required inequality. �

5.2 Strengthening the integer flow cover inequality

To obtain stronger inequalities, we use results of Atamtürk (2003) on integer knapsack sets.
We start from inequality (8) in the proof of validity of Proposition 12 which we write more
compactly, after recomplementing ȳk , as

akzk −
∑

j∈I−
ajzj +

∑

j∈I+
aj zj ≤ akηk − λ + σ

zj ≤ uj , zj ∈ Z
1
+ for j ∈ {k} ∪ I− ∪ I+, σ ∈ R

1
+

where

I− = C1 \ {k} ∪ L2, I+ = C2 ∪ L1, σ = s +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj

and zj represents either yj or ȳj as appropriate.
Setting zj = 0 for j ∈ I− ∪ I+, leads to the reduced system

akzk − σ ≤ akηk − λ,

zk ≤ uk, zk ∈ Z
1
+, σ ∈ R

1
+

with valid inequality

λzk ≤ λ(ηk − 1) + σ.

The lifting function for this inequality is easily calculated, is identical to λF(ak−λ)/ak

around the origin, and explicitly takes into account the upper and lower bounds on zk :
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φ(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ηk − uk − 1)λ if v ≤ ak(ηk − uk) − λ,

(j − 1)λ + [v − (jak − λ)] if jak − λ ≤ v ≤ jak ,

j = (ηk − uk), . . . , ηk − 1,

jλ if jak ≤ v ≤ (j + 1)ak − λ,

j = (ηk − uk), . . . , ηk − 1,

(ηk − 1)λ + [v − (ηkak − λ)] if ηkak − λ ≤ v.

This function is superadditive on R
1+ and separately on R

1−.
Here we just consider the case where we first lift in the variables in I−, and then the

variables in I+. Because φ is superadditive on R
1−, the lifting coefficients do not change as

these variables in I− are lifted in. After lifting in the variables in I−, we obtain the lifting
function φ+.

This function turns out to be superadditive on R
1+ under certain conditions, see Appendix.

In the general case, we obtain a valid lifting function H+ superadditive on R
1+ by dropping

the nonnegativity constraint on zk in the mixed integer program defining φ+, namely

H+(v) = min

{
λ(ηk − 1) − λzk + σ −

∑

j∈I−
φ(−aj )zj : akzk −

∑

j∈I−
ajzj − σ

≤ akηk − λ − v, zk ≤ uk, zk ∈ Z
1, zj ≤ uj , zj ∈ Z

1
+ for j ∈ I−, σ ∈ R

1
+

}
.

To describe H+ (and φ+), we define an ordering on the indices in I−, i1, . . . , i|I−| such
that ai1 ≥ ai2 ≥ · · · ≥ ai|I−| . We also define the set I−− = {i: i ∈ I− and ai ≥ ak(uk −
ηk + 1)} with r̄ = max{r : ir ∈ I−−}. We also define ρr = ak(ηk − uk) − λ + air for r =
1, . . . , r̄ . Finally, for an index r ≤ r̄ , we consider two types of aggregate, Ur = ui1 +· · ·+uir ,
and Mr = ai1ui1 + · · · + air uir .

It is not difficult to see that as v increases from 0, the mixed integer program defining
H+(v) has optimal solutions in which the variables i1, . . . , ir ∈ I−− are used in that order.
Thus when zis = uis for s < r and zir = t , j = uk − zk takes values increasing from 0 to
uk − ηk . Once all of the variables in I−− are at their upper bound, zk then takes negative
values. Specifically

H+(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uk − ηk + 1)λ(Ur−1 + t)

if Mr−1 + tair ≤ v ≤ Mr−1 + tair + ρr, r = 1, . . . , r̄, t = 0, . . . , uir − 1,

(uk − ηk + 1)λ(Ur−1 + t) + jλ + v − Mr−1 − tair − jak − ρr

if Mr−1 + tair + ρr + jak ≤ v ≤ Mr−1 + tair + ρr + jak + λ,

r = 1, . . . , r̄, t = 0, . . . , uir − 1, j = 0, . . . , uk − ηk,

(uk − ηk + 1)λ(Ur−1 + t) + (j + 1)λ

if Mr−1 + tair + ρr + jak + λ ≤ v ≤ Mr−1 + tair + ρr + (j + 1)ak,

r = 1, . . . , r̄, t = 0, . . . , uir − 1, j = 0, . . . , uk − ηk − 1,

(uk − ηk + 1)λUr̄ + jλ if Mr̄ + jak ≤ v ≤ Mr̄ + (j + 1)ak − λ, j = 0, . . . ,

(uk − ηk + 1)λUr̄ + (j − 1)λ + v − Mr̄ − jak + λ

if Mr̄ + jak − λ ≤ v ≤ Mr̄ + jak, j = 1, . . . .
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Fig. 5 Lifting functions H+ and
φ+

An example of the valid superadditive lifting function H+ and an exact lifting func-
tion φ+ are depicted in Fig. 5.

Finally H+ can be used to lift in all the variables in I+.

Proposition 13 The inequality

λyk +
∑

j∈C1\{k}
φ(−aj )(1 − yj ) +

∑

j∈L2

φ(−aj )yj

+
∑

j∈C2

H+(aj )(1 − yj ) +
∑

j∈L1

H+(aj )yj

≤ λ(ηk − 1) +
∑

j∈R2

xj +
∑

j∈C1∪L1

(ajyj − xj ) + s

is valid for XN .

In Atamtürk (2003), similar functions are also calculated for the case when one first lifts
variables in I+, and then those in I−, which leads to another family of strong inequalities.

Example 6 Consider the set XN(2,2,4, (3,4,5,2), (2,3,2,3)), namely

x1 + x2 − x3 − x4 ≤ 4 + s,

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4,

y1 ≤ 2, y2 ≤ 3, y3 ≤ 2, y4 ≤ 3, x ∈ R
4
+, y ∈ Z

4
+, s ∈ R

1
+.

Suppose that one wishes to cut off the fractional solution

x∗ = (2,12,10,0), y∗ =
(

2

3
,3,2,0

)
, s∗ = 0.
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C = {1,2,3} with k = 1 is an integer flow cover with ak = 3, λ = 1 and ηk = 1. Inequal-
ity (7) with L1 = L2 = ∅ gives

x1 +(3−1)(1−y1)+x2 +
[

4+F 2
3

(
−4

3

)]
(3−y2) ≤

[
14−F 2

3

(
5

3

)]
(2−y3)+x4 +s, or

x1 + 2(1 − y1) + x2 + 2(3 − y2) ≤ 14 − 1(2 − y3) + x4 + s

which cuts off the fractional point, but is not facet-defining for XN .
To try to obtain a stronger inequality, we again choose C1 = {1,2}, C2 = {3} as a cover

with k = 1. Thus we consider

3y1 + 4y2 − 5y3 − x4 ≤ 4 + t1 + t2 + s.

Complementing gives

3y1 − 4ȳ2 + 5ȳ3 − x4 ≤ 2 + t1 + t2 + s.

Setting ȳ2 = ȳ3 = 0 leaves the system

3y1 − x4 ≤ 2 + t1 + t2 + s

with valid inequality

y1 − x4 ≤ t1 + t2 + s.

Now the lifting function φ is given above. If we first lift in ȳ2, φ(−4) = −2 and we obtain

y1 − 2ȳ2 − x4 ≤ t1 + t2 + s.

Using the superadditive function H+ to lift the variable ȳ3, H+(5) = 1, so we obtain the
same inequality as above.

If we calculate the exact lifting function, it turns out that φ+(5) = 2 giving the inequality

x1 − 2y1 − 2ȳ2 + 2ȳ3 − x4 ≤ t2 + s, or

x1 − 2y1 + x2 − 2y2 − 2y3 − x4 ≤ 2 + s,

which is facet-defining.

5.3 The MIR reverse flow cover inequality

Here we give an explicit formula for the reverse flow cover inequality when the bounds are
integer. We modify (ii) in Definition 7.

Definition 8 (T1, T2) is an integer reverse flow cover for XN if

(i) T1 ⊆ N1, T2 ⊆ N2

(ii) there exists k ∈ T2 such that
∑

j∈T1
ajuj − ∑

j∈T2\k ajuj > b and there exists unique
values μ and ηk such that

∑

j∈T1

ajuj −
∑

j∈T2\k
ajuj − akηk = b − μ

with 0 < μ < ak and ηk ∈ Z
1 with 1 ≤ ηk ≤ uk .
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Proposition 14 Suppose that (T1, T2) is an integer reverse flow cover for XN . The following
inequality

∑

j∈T1

[
xj + μF

(
aj

ak

)
(uj − yj )

]
+

∑

L1

[
xj + μF

(
−aj

ak

)
yj

]

≤
∑

j∈T1

ajuj − (ak − μ)(ηk − yk) −
∑

j∈T2\k

[
aj + μF

(
−aj

ak

)]
(uj − yj )

+
∑

j∈L2

[
aj − μF

(
aj

ak

)]
yj +

∑

j∈R2

xj + s (9)

is valid for XN , where (Ti,Li,Ri) is a partition of Ni for i = 1,2 and F = Fα with α =
ak−μ

ak
.

Example 7 We consider the same set XN as in Example 6. Suppose that one wishes to cut
off the fractional solution

x∗ = (0,12,2,6), y∗ =
(

0,3,
2

5
,2

)
, s∗ = 0.

T = {2,3,4} with k = 3 is an integer reverse flow cover with ak = 5, ηk = 1 and μ = 3.
Inequality (9) with L1 = L2 = ∅ gives

x2 + 3F 2
5

(
4

5

)
(3 − y2) ≤ 12 − (5 − 3)(1 − y3) −

(
2 + 3F 2

5

(
−2

5

))
(3 − y4) + s, or

x2 + 2(3 − y2) ≤ 12 − 2(1 − y3) + s,

which cuts off the fractional solution, and turns out to be facet-defining for XN .

6 Extensions

Here we consider several extensions of the single node flow set. In particular we study a set
with variable lower bounds of the form lj yj ≤ xj which can also be related to problems with
set-up times having flow constraints of the form

∑
j (xj + bjyj ) ≤ b, a set with generalized

variable upper bounds of the form xj ≤ a0j + ∑
i aij yij , and finally a set with generalized

upper bounds
∑

i yij ≤ 1.

6.1 Variable lower bounds, or set-up times

First we consider briefly the general case, namely the set

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s, lj yj ≤ xj ≤ ajyj , yj ∈ {0,1} for j ∈ N1 ∪ N2. (10)

Valid inequalities for this model were first developed in Van Roy and Wolsey (1986), see
also Marchand and Wolsey (1999); Stallaert (1997). To use the MIR approach, it suffices to
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choose as a cover disjoint sets (Cl
1,C

a
1 ,Cl

2,C
a
2 ) for which

∑

j∈Cl
1

lj +
∑

j∈Ca
1

aj −
∑

j∈Cl
2

lj −
∑

j∈Ca
2

aj − b = λ > 0.

Then given disjoint sets Ll
i,L

a
i ⊆ Ni \ (Cl

i ∪ Ca
i ) for i = 1,2, set ā = max[maxj∈Cl

1∪Ll
2
lj ,

maxj∈Ca
1 ∪La

2
aj ], introduce appropriate slacks, etc.

The resulting inequality

∑

j∈Ca
1

{
xj + (aj − λ)+(1 − yj )

} +
∑

j∈Cl
1

{
lj yj + (lj − λ)+(1 − yj )

}

+
∑

j∈La
1

[
xj −

(
aj − λF

(
aj

ā

))
yj

]
+

∑

j∈Ll
1

λF

(
lj

ā

)
yj

≤ b +
∑

j∈Ca
2

aj +
∑

j∈Cl
2

lj −
∑

j∈Ca
2

λF

(
aj

ā

)
(1 − yj )

+
∑

j∈Cl
2

[
xj − lj yj − λF

(
lj

ā

)
(1 − yj )

]
+

∑

j∈La
2

λyj

+
∑

j∈Ll
2

[xj − (lj − λ)+yj ] +
∑

j∈R2

xj + s

is valid for XN , where (Ci,Li,Ri) is a partition of Ni for i = 1,2 and F = Fα with α = ā−λ
ā

.
We now consider the special case with N2 = ∅, namely the set XV LB

∑

j∈N1

xj ≤ b + s, lj yj ≤ xj ≤ ajyj , yj ∈ {0,1} for j ∈ N1

where lj ≥ 0 for all j ∈ N1.

Remark 9 By the change of variable wj = xj − lj yj ≥ 0, this is equivalent to the “set-up
time” model XST :

∑

j∈N1

(wj + lj yj ) ≤ b + s, 0 ≤ wj ≤ ãj yj , yj ∈ {0,1} for j ∈ N1, s ≥ 0,

where ãj = aj − lj for all j ∈ N1.

With s fixed at zero, this set was first studied by Goemans (1989). Recently a closely
related model has been studied by Miller et al. (2003a) in which wj represents the amount
produced of item j and lj is the set-up time for this item. We now present the latter model.

The set considered is
∑

j∈N1

(wj + lj yj ) ≤ b, wj ≤ ρjyj + σj , wj ≤ Myj ,

for j ∈ N1, y ∈ {0,1}n1 , w ∈ R
n1+ , σ ∈ R

n1+ .
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Making the change of variable xj = wj + lj yj ≤ (ρj + lj )yj + σj , the GFC1 inequality (5)
becomes

∑

j∈C1

(wj + lj yj ) +
∑

j∈C1

(ρj + lj − λ)+(1 − yj ) ≤ b +
∑

j∈C1

σj

and the strengthened MIR inequality (5) becomes

∑

j∈C1

(wj + lj yj ) +
∑

j∈C1

(ρj + lj − λ)+(1 − yj ) +
∑

j∈L1

[
xj − ρjyj + Ga,λ(ρj + lj )yj

]

≤ b +
∑

j∈C1∪L1

σj (11)

where, in the definition of Ga,λ, aj = ρj + lj for j ∈ C1 ∪ L2.

Example 8 The instance has n = 4, b = 16, ρ = (5,4,5,10), l = (2,2,1,3). Thus a =
ρ + l = (7,6,6,13).

Taking C1 = {1,2,3} and L1 = {4}, λ = 3, ā = 7, and Ga,λ(13) = 6 giving the inequal-
ity (11)

w1 + 2y1 + (7 − 3)(1 − y1) + w2 + 2y2 + (6 − 3)(1 − y2)

+ w3 + y3 + (6 − 3)(1 − y3) + x4 − (10 − 6)y4 ≤ 16 +
4∑

i=1

σi.

Substituting for σj gives precisely the inequality (38) in Miller et al. (2003a, p. 26).

6.2 Generalized variable upper bounds

Here we consider the set XGVUB

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s, xj ≤ a0j +
∑

i∈Sj

aij yi, for j ∈ N,

xj ≥ 0 for j ∈ N, yi ∈ {0,1} for i ∈ M.

studied by Atamtürk et al. (2001).

Remark 10 This set can be obtained by projecting a face of the single node flow model

∑

i,j

wij −
∑

i,j

wij ≤ b,

0 ≤ wij ≤ aij yij , yij ∈ {0,1}
by setting y0j = 1 and xj = ∑

i wij for all j .

Here we again take a direct approach. Again we have a partition (Ck,Lk,Rk) of Nk for
k = 1,2 and a set F ⊆ M of variables fixed at zero. For simplicity we assume that L1 = ∅
and F ∩ Sj = ∅ for j ∈ C2 ∪ L2. To define a cover we need that
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∑

j∈C1

[
a0j +

∑

i∈Sj \F
aij

]
−

∑

j∈C2

[
a0j +

∑

i∈Sj

aij

]
− b −

∑

j∈L2

a0j = λ > 0.

Assuming for simplicity that the sets Sj are disjoint, we obtain using the standard MIR
approach

Proposition 15 The inequality

∑

j∈C1

[
xj +

∑

i∈Sj \F
(aij − λ)+(1 − yi)

]
+

∑

j∈C1

[ ∑

i∈Sj ∩F

φ(aij )yi

]

≤ b +
∑

j∈C2

∑

i∈Sj

aij +
∑

j∈L2

a0j

−
∑

j∈C2

∑

i∈Sj

φ(aij )(1 − yi) +
∑

j∈L2

∑

i∈Sj

min[λ,aij ]yi +
∑

j∈R2

xj + s

is valid for XGVUB where φ = Ga,λ and a consists of the terms aij for i ∈ Sj \F and j ∈ C1,
and aij for i ∈ Sj and j ∈ L2.

Example 9 (Atamtürk et al. 2001, p. 157) Consider the set XGVUB

x1 + x2 − x3 − x4 ≤ 2,

x1 ≤ 4 + 2y1 + 3y2,

x2 ≤ 3 + y3 + 2y4,

x3 ≤ 2 + y5 + 4y6,

x4 ≤ 4 + 2y7 + 2y8, x ∈ R
4
+, y ∈ {0,1}8.

Taking C1 = {1,2}, C2 = ∅, L2 = {3,4}, F = {1,2,3}, we obtain λ = a10 +a20 +a4 −a30 −
a40 − b = 1, and ā = max{2,1,4,2,2} = 4.

Taking as lifting function the MIR function φ(d) = λFα(
d
ā
) with λ = 4 and α = 4−1

4 , we
obtain φ(2) = 0 = φ(3) = 0 and φ(4) = 1. The resulting inequality is

(x1 − 4 − 2y1 − 3y2) + (x2 − 3 − y3) + (2 − 1)+(1 − y4) ≤ 8 + y5 + y6 + y7 + y8.

Using Ga,λ, as proposed in Proposition 15, leads to the same inequality.

In Atamtürk et al. (2001), a modified inequality is given for the case in which the different
generalized VUBs have 0–1 variables in common. This inequality can also be obtained
directly by the lifted MIR procedure.

6.3 Generalized upper bounds

Here we consider the set XGUB

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s, 0 ≤ xj ≤ ajyj for j ∈ N1 ∪ N2,

∑

j∈Si

yj ≤ 1 for i ∈ M1 ∪ M2.
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We assume for simplicity that the sets Si are disjoint and Si ⊆ Nk for i ∈ Mk for k = 1,2.
This model has been examined by Wolsey (1990). In addition the knapsack set with GUBs
has been studied in Gu et al. (1998) and lifted cover inequalities for such sets are used in
Cplex and Xpress.

Definition 9 C = (C1,C2) with Ck ⊆ Nk for k = 1,2 is a GUB-cover inequality if

(i) |Ck ∩ Si | ≤ 1 for i ∈ Mk and k = 1,2;

(ii)
∑

j∈C1
aj − ∑

j∈C2
aj − b = λ > 0.

In addition we let M+
k = {i ∈ Mk: |Ck ∩ Si | = 1}, and j (i) ∈ Ck ∩ Si be the unique

element of Si in the cover, if any. For each i, select a subset Ti ⊆ Si such that j (i) ∈ Ti for
all i ∈ M+

1 ∪ M+
2 .

Applying the MIR procedure, using 0–1 variables zi = ∑
j∈Ti

yj and their complements
z̄j = 1−zj for GUB sets in the cover, and taking the divisor ā very large, we obtain a simple
generalization of the GFC1 inequality (4).

Proposition 16 The inequality

∑

i∈M+
1

[
xj(i) + (aj (i) − λ)+(1 − yj(i))

]

×
∑

i∈M+
1

∑

j∈Ti\j (i)

[
xj − (max(aj , aj (i)) − λ)+)yj

]

≤ b +
∑

j∈C2

aj +
∑

i∈M+
2

∑

j∈Ti

min[λ,aj − aj(i)]+yj

+
∑

i∈M+
2

∑

j∈Si\Ti

xj +
∑

i∈M2\M+
2

∑

j∈Ti

λyj

∑

i∈M2\M+
2

∑

j∈Si\Ti

xj

is valid for XGUB.

Other inequalities can be obtained using smaller values of ā.

Example 10 Consider the set XGUB

x1 + x2 + x3 + x4 − x5 ≤ 12,

y1 + y2 + y3 ≤ 1,

x1 ≤ 6y1, x2 ≤ 7y2, x3 ≤ 8y3, x4 ≤ 9y4, x5 ≤ 6y5,

x ∈ R
5
+, y ∈ {0,1}5.

From Proposition 16 with cover C1 = {2,4},C2 = ∅, λ = 4, and sets T1 = {1,2,3} and
T2 = {4}, we obtain the valid inequality

x2 + 3(1 − y2) + x4 + 5(1 − y4) + x1 − 3y1 + x3 − 4y3 ≤ 12 + 4y5.
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Note that to carry out exact lifting for this model using the approach of Sect. 3, we need
to use multi-dimensional lifting functions, unless each set of variables Si lies within just one
of the vectors of variables xk ∈ Xk for some k.

7 Conclusions

In spite of the fact that we have concentrated in the last three sections on using MIR com-
bined with simple superadditive lifting on a knapsack set with continuous variables to obtain
strong valid inequalities for the various single node flow models, we believe that a more pro-
found polyhedral study of the single node flow model XN is warranted, especially as most
of the variants that have been studied can be viewed as faces and or projections of it.

The importance of superadditive lifting functions in permitting simultaneous lifting of
sets of variables cannot be overestimated. Thus it seems crucial to improve our understand-
ing of superadditive functions, as well as ways to calculate valid superadditive lifting func-
tions. The fact that the submodularity of certain set functions arising from flows leads to
valid inequalities with the simultaneous lifting property Wolsey (1989), and can be used to
explain certain flow cover inequalities also appears to merit further investigation. As an ex-
ample new inequalities for capacitated lot-sizing have been proposed recently Atamtürk and
Munoz (2004) where certain coefficients can be derived using such submodular lifting.

Though we have not directly discussed computation with the inequalities presented here,
various researchers have devised heuristic algorithms to choose the covers C1,C2 by solving
some version of the knapsack problem

min
∑

j∈N ′
1

(1 − x∗
j )zj −

∑

j∈N ′
2

x∗
j zj ,

∑

j∈N ′
1

aj zj −
∑

j∈N ′
2

aj zj > b, z ∈ {0,1}n′
1+n′

2

where N ′
i ⊆ Ni for i = 1,2 are suitably chosen subsets with x∗

j not too far from its up-
per bound ajy

∗
j , see Gu et al. (1998); Van Roy and Wolsey (1987) and the discussion in

Nemhauser and Wolsey (1988). Here it would undoubtedly be interesting to devise im-
proved heuristics that take into account a priori part of the effects of lifting. Another pos-
sibility would be to test existing separation heuristics against an exact separation algorithm
for conv(XN).

Acknowledgements We are grateful to A. Atamtürk and Y. Pochet for their helpful comments on an earlier
version of this paper.

Appendix

The exact lifting function of Sect. 5.2 is defined as

φ+(v) = min

{
λ(ηk − 1) − λzk + σ −

∑

j∈I−
φ(−aj )zj : akzk

−
∑

j∈I−
ajzj − σ ≤ akηk − λ − v, zj ≤ uj , zj ∈ Z

1
+ for j ∈ {k} ∪ I−, σ ∈ R

1
+

}
.
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It turns out to be superadditive on R
1+ provided that either

(i) ai ≥ ak(uk − ηk + 1) or 0 < ai ≤ ak − λ for all i ∈ I−, or
(ii) there exists i ∈ I− with ai ≥ ak(uk − ηk + 1) and ui = ∞.

Provided (i) or (ii) is satisfied, φ+ is given by

φ+(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uk − ηk + 1)λ(Ur−1 + t)

if Mr−1 + tair ≤ v ≤ Mr−1 + tair + ρr, r = 1, . . . , r̄, t = 0, . . . , uir − 1,

(uk − ηk + 1)λ(Ur−1 + t) + jλ + v − Mr−1 − tair − jak − ρr

if Mr−1 + tair + ρr + jak ≤ v ≤ Mr−1 + tair + ρr + jak + λ,

r = 1, . . . , r̄, t = 0, . . . , uir − 1, j = 0, . . . , uk − ηk,

(uk − ηk + 1)λ(Ur−1 + t) + (j + 1)λ

if Mr−1 + tair + ρr + jak + λ ≤ v ≤ Mr−1 + tair + ρr + (j + 1)ak,

r = 1, . . . , r̄, t = 0, . . . , uir − 1, j = 0, . . . , uk − ηk − 1,

(uk − ηk + 1)λUr̄ + jλ

if Mr̄ + jak ≤ v ≤ Mr̄ + (j + 1)ak − λ, j = 0, . . . , ηk − 1,

(uk − ηk + 1)λUr̄ + (j − 1)λ + v − Mr̄ − jak + λ

if Mr̄ + jak − λ ≤ v ≤ Mr̄ + jak, j = 1, . . . , ηk − 1,

(uk − ηk + 1)λUr̄ + (ηk − 1)λ + v − Mr̄ − ηkak + λ

if v ≥ Mr̄ + ηkak − λ.

References

Atamtürk, A. (2001). Flow pack facets of the single node fixed-charge flow polytope. Operations Research
Letters, 29, 107–114.

Atamtürk, A. (2003). On the facets of the mixed-integer knapsack polyhedron. Mathematical Programming,
98, 145–175.

Atamtürk, A., & Munoz (2004). A study of the lot-sizing polytope. Mathematical Programming, 99, 443–
465.

Atamtürk, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2001). Valid inequalities for problems with addi-
tive variable upper bounds. Mathematical Programming, 91, 145–162.

Balas, E. (1975). A time indexed formulation of non-preemptive single machine scheduling problems. Math-
ematical Programming, 8, 146–164.

Ceria, S., Cordier, C., Marchand, H., & Wolsey, L. A. (1998). Cutting planes for integer programs with
general integer variables. Mathematical Programming, 81, 201–214.

Crowder, H., Johnson, E. L., & Padberg, M. W. (1963). Solving large scale zero-one linear programming
problems. Operations Research, 31, 803–834.

Goemans, M. X. (1989). Valid inequalities and separation for mixed 0–1 constraints with variable upper
bounds. Operations Research Letters, 8, 315–322.

Gomory, R. E. (1960). An algorithm for the mixed integer problem. Research report RM-2597, The Rand
Corporation.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1998). Lifted flow cover inequalities for 0–1 integer
programs: computation. INFORMS J. of Computing, 10, 427–437.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1999). Lifted flow cover inequalities for mixed 0–1
integer programs. Mathematical Programming, 85, 439–468.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (2000). Sequence independent lifting in mixed integer
programing. Journal of Combinatorial Optimization, 4, 109–129.

Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0–1 polytopes. Mathematical Pro-
gramming, 8, 179–206.



Ann Oper Res (2007) 153: 47–77 77

Jeroslow, R. G. (1979). An introduction to the theory of cutting planes. Annals of Discrete Mathematics, 5,
71–95.

Johnson, E. L. (1973). Cyclic groups, cutting planes and shortest paths. In T. C. Hu, S. Robinson (Eds.),
Mathematical Programming (pp. 185–211). New York: Academic.

Louveaux, Q., & Wolsey, L. A. (2003). Lifting, superadditivity, mixed integer rounding and single node flow
sets revisited. 4OR, 1, 173–208.

Marchand, H., & Wolsey, L. A. (1999). The 0–1 knapsack problem with a single continuous variable. Math-
ematical Programming, 85, 15–33.

Marchand, H., & Wolsey, L. A. (2001). Aggregation and mixed integer rounding to solve MIPS. Operations
Research, 49, 363–371.

Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003a). A multi-item production planning model
with setup times: algorithms, reformulations, and polyhedral characterizations for a special case. Mathe-
matical Programming B, 95, 71–90.

Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003b). On the polyhedral structure of a multi-item
production planning model with setup times. Mathematical Programming B, 94, 375–406.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.
Nemhauser, G. L., & Wolsey, L. A. (1990). A recursive procedure for generating all cuts for 0–1 mixed integer

programs. Mathematical Programming, 46, 379–390.
Oosten, M. (1996). A polyhedral approach to grouping problems. Ph.D. thesis, University of Maastricht
Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Programming, 5, 199–

215.
Padberg, M. W., Van Roy, T. J., & Wolsey, L. A. (1985). Valid inequalities for fixed charge problems. Math-

ematical Programming, 33, 842–861.
Richard, J.-P. P., de Farias, I. R., & Nemhauser, G. L. (2002). Lifted inequalities for 0–1 mixed integer

programming: basic theory and algorithms. In Lecture notes in computer science, vol. 2337. Proceedings
of IPCO 2002 (pp. 161–175). Berlin: Springer.

Richard, J.-P. P., de Farias, I. R., & Nemhauser, G. L. (2003). Lifted inequalities for 0–1 mixed integer
programming: superlinear lifting. Mathematical Programming, 98, 115–143.

Stallaert, J. I. A. (1997). The complementary class of generalized flow cover inequalities. Discrete Applied
Mathematics, 77, 73–80.

Van Roy, T. J., & Wolsey, L. A. (1986). Valid inequalities for mixed 0–1 programs. Discrete Applied Mathe-
matics, 14, 199–213.

Van Roy, T. J., & Wolsey, L. A. (1987). Solving mixed 0–1 programs by automatic reformulation. Operations
Research, 35, 45–57.

Wolsey, L. A. (1975). Faces for linear inequalities in 0–1 variables. Mathematical Programming, 8, 165–178.
Wolsey, L. A. (1976). Facets and strong valid inequalities for integer programs. Operations Research, 24,

367–372.
Wolsey, L. A. (1977). Valid inequalities and superadditivity for 0–1 integer programs. Mathematics of Oper-

ations Research, 2, 66–77.
Wolsey, L. A. (1989). Submodularity and valid inequalities in capacitated fixed charge networks. Operations

Research Letters, 8, 119–124.
Wolsey, L. A. (1990). Valid inequalities for mixed integer programs with generalised upper bound constraints.

Discrete Applied Mathematics, 25, 251–261.


	Lifting, superadditivity, mixed integer rounding and single node flow sets revisited
	Abstract
	Introduction
	Generating valid inequalities from sub- or supersets
	Valid inequalities from supersets
	Valid inequalities from subsets

	Lifting valid inequalities
	Lifting: basic theory
	Superadditive lifting
	Further remarks on lifting
	The role of the continuous variables s
	Facet-defining inequalities


	0-1 Single node flow sets
	The MIR approach
	The MIR flow cover inequalities
	A strengthened MIR flow cover inequality
	The MIR reverse flow cover inequality
	Further remarks

	Integer single node flow sets
	The MIR flow cover inequality
	Strengthening the integer flow cover inequality
	The MIR reverse flow cover inequality

	Extensions
	Variable lower bounds, or set-up times
	Generalized variable upper bounds
	Generalized upper bounds

	Conclusions
	Acknowledgements

	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


