
Ann Oper Res (2007) 153: 9–27
DOI 10.1007/s10479-007-0169-1

The omnipresence of Lagrange

Claude Lemaréchal

Published online: 17 May 2007
© Springer Science+Business Media, LLC 2007

Abstract Lagrangian relaxation is usually considered in the combinatorial optimization
community as a mere technique, sometimes useful to compute bounds. It is actually a very
general method, inevitable as soon as one bounds optimal values, relaxes constraints, con-
vexifies sets, generates columns, etc. In this paper we review this method, from both points
of view of theory (to dualize a given problem) and algorithms (to solve the dual by non-
smooth optimization).

Keywords Combinatorial optimization · Lagrange relaxation · Duality · Column
generation

This paper is devoted to Lagrangian relaxation. Its earlier version (Lemaréchal 2003) was
written in the spirit of (Lemaréchal 2001), which was itself inspired from (Hiriart-Urruty
and Lemaréchal 1993); Chap. XII of this latter work is devoted to the theory of Lagrangian
relaxation, and its Chap. XV gives a detailed account of bundle methods. For a simplified
account in the framework of combinatorial optimization, we can suggest (Geoffrion 1974;
Reeves 1993, Chap. 6) among others.

1 The basic idea

Consider an optimization problem, which we write abstractly as:

supf (x), x ∈ X, c(x) = 0 ∈ R
m [i.e. cj (x) = 0, j = 1, . . . ,m]. (1)

We will call it the primal problem.

This is an updated version of the paper that appeared in 4OR, 1(1), 7–25 (2003).

C. Lemaréchal (�)
655 avenue de l’Europe, Montbonnot, 38s334 Saint Ismier, France
e-mail: Claude.Lemarechal@inrialpes.fr

10 Ann Oper Res (2007) 153: 9–27

Remark 1 Some preliminary observations are already worth mentioning:

(i) Notationally, we write sup rather than max because existence of an optimal solution
to (1) is not guaranteed yet. We will continue to use this notation throughout, to suggest
the fact that we are generally more interested by values of functions, than by values of
their arguments.

(ii) No assumption is made on f , X, c, at least for the moment. In particular, the set X is
completely abstract: it could be a finite set, the space R

n, or something more general.
One of our aims is to illustrate the flexibility of Lagrangian relaxation, with many
possible forms for X.

(iii) In a way, our sole assumption concerns the set of constraint-values: R
m, considered

as a Euclidean space (which could even be infinite-dimensional). To make it simple,
we will denote by u�c its inner product, even though something like 〈u, c〉 would be
preferable. The reason we mention this subtlety will come in Sect. 2.6, where R

m will
be the space R

p(p+1)/2 of symmetric p × p matrices. Because u�c is definitely not an
inner product when u and c are two matrices, we will have to use a special notation
there.

(iv) Considering both a constraint function c(x) and a set X, which may itself be defined
by constraints, is somewhat redundant. The difference will become apparent in (2, 3)
below. Actually, the crux of Lagrangian relaxation precisely lies there; more will be
said on this in Remark 5 and Sect. 2.

Introduce the Lagrangian, a function of the primal variable x ∈ X, but also of the dual
variable u ∈ R

m:

X × R
m � (x,u) �→ L(x,u) := f (x) − u�c(x). (2)

In other words, the constraints c(x) = 0 are relaxed, or dualized; by contrast, X (the “envi-
ronment set”) gathers the hard constraints, those that are kept intact in the duality scheme
(1, 2).

If, for fixed u ∈ R
m, we maximize L(x,u) over x ∈ X, we obtain a well-defined number

which depends on the particular u. We call it the dual function associated with (1, 2):

θ(u) := sup
x∈X

L(x,u). (3)

Definition 2 Lagrangian relaxation consists in solving the so-called dual problem

inf
u∈Rm

θ(u). (4)

This will be motivated shortly. In anticipation to Sect. 3, let us mention here and now
that the dual problem is always easy, in some sense. Lagrangian relaxation will therefore be
(possibly useless but) implementable if (3) is itself “easy”.

Remark 3 Concerning (3), several cases may occur:

(i) The Lagrangian is unbounded from above; then it is natural to set θ(u) = +∞, the
corresponding u is certainly of no use for the dual problem.

(ii) A finite upper bound does exist (θ(u) < +∞) but is not attained: think of a Lagrangian
like L(x,u) = uex with u < 0.

Ann Oper Res (2007) 153: 9–27 11

(iii) The Lagrangian attains its maximum at a unique xu,
(iv) or at several primal points, so that the above xu is ambiguous.

Examples of (i) will be given below in Sects. 2.1, 2.2. As for (iv), it is in fact a typical
situation.

We will assume that a Lagrangian oracle is available to maximize L(·, u), producing
θ(u), as well as some corresponding maximizer xu ∈ X if there exists at least one (see
Fig. 1). We will see in Sects. 3 and 4 that an important object is the constraint value c(xu) ∈
R

m. In contrast with θ(u), which is always a well-defined number (possibly +∞), c(xu) is
well defined only in case (iii) above.

The dual approach has several motivations:

(j) Symmetrically to θ , introduce the function

X � x �→ ϕ(x) := inf
u∈Rm

L(x,u) =
{
f (x) if c(x) = 0,

−∞ otherwise.

Obviously, (1) is nothing other than maximizing ϕ(x) over X; this somewhat artificial
formulation reveals a first connection between (1) and (4):

primal dual
sup

x

inf
u

L(x,u) sup
u

inf
x

L(x,u).

(jj) A more convincing connection is the well-known weak duality property: by definition,
θ(u) ≥ L(x,u) for all x ∈ X; and if c(x) = 0, then L(x,u) = f (x). Thus any θ(u) is an
upper bound on the optimal value of (1); the dual problem therefore consists in finding
the least such upper bound.

(jjj) After all, our ultimate wish is to find u so that the oracle produces an xu which is primal
optimal. For this, one must at least have c(xu) = 0, in which case L(xu,u) = f (xu);
but since L(xu,u) = θ(u) by definition of xu, we actually have f (xu) = θ(u), so we
conclude by weak duality: to reach our goal,

− it is necessary that u minimizes θ ;
− it is sufficient that xu is feasible in (1).

Let us sum up this last motivation: the xu’s obtained from (3) that are also optimal in
(1) are exactly those that are feasible (satisfying c(xu) = 0); and the only chance to
obtain any of them is to solve the dual problem.

In view of (jj) above, the following concept is relevant.

Definition 4 The duality gap is the (nonnegative) difference between the optimal values of
(1) and (4).

Accordingly, Lagrangian relaxation will be successful if the duality gap is small, hope-
fully zero.

Fig. 1 The Lagrangian oracle

12 Ann Oper Res (2007) 153: 9–27

Remark 5 It is important to understand that, for a given primal problem (1), there may
exist many possible duality schemes, which are just characterized by the choice of the La-
grangian. Section 2.2 will give a rudimentary illustration of this.

Selecting an appropriate Lagrangian is actually an art, in which a balance must be found
between two elements:

− How easily can (3) be solved?
− How good is the duality gap?

2 Examples

The examples below will illustrate the approach; they will also reveal how versatile and how
ubiquitous Lagrangian relaxation can be.

2.1 Inequalities

Suppose that the relaxed constraints in (1) are actually inequalities: we wish to apply duality
to

supf (x), x ∈ X, c(x) ≤ 0. (5)

A simple way to recover the previous framework is to introduce slack variables: our problem
can be written

supf (x), x ∈ X, y ≥ 0 ∈ R
m, c(x) + y = 0. (6)

Changing the primal variable x ∈ X to (x, y) ∈ X × R
m+, we form the “slackened” La-

grangian f (x) − u�(c(x) + y) = L(x,u) − u�y, where L is still the function (2). Clearly,
the dual function is now

sup
x∈X,y≥0

L(x,u) − u�y =
{
θ(u) if u ≥ 0,

+∞ otherwise,

θ still being the function (3). The corresponding dual problem is just (4), with the constraint
u ≥ 0 inserted. We recognize a familiar fact: inequality constraints result in signed dual
variables.

We have here an illustration of Remark 3(i): the dual function may take on the value
+∞; but we have good information concerning the so-called domain of the dual function
(the set over which it is finite). Thus, the oracle of Fig. 1 will of course not be called with
an u �≥ 0. We have also an illustration of Remark 3(iv): in fact, let u ≥ 0 be given; then the
primal point in Fig. 1 has two components:

− One is xu ∈ X, which may exist or not, be unique or not.
− The other is yu ∈ R

m. For a positive component uj , the corresponding y
j
u is unambigu-

ously 0; but if uj = 0, then the whole half-line [0,+∞[is valid for y
j
u .

2.2 Linear programming

Let (1) be a linear program in standard form:

supb�x, x ≥ 0 ∈ R
n, Ax = a ∈ R

m.

For illustration, we consider two duality schemes.

Ann Oper Res (2007) 153: 9–27 13

Dualizing the linking constraints First take X := R
n+ and c(x) := Ax − a, so that the

Lagrangian is

b�x − u�(Ax − a) = (
b − A�u

)�
x + a�u.

The resulting dual function is obtained just as in the previous example:

sup
x≥0

(
b − A�u

)�
x + a�u =

{
a�u if b − A�u ≤ 0,

+∞ otherwise,

which results in the familiar dual linear program: to minimize a�u subject to A�u ≥ b.

Dualizing all constraints Now set X := R
n, so that there are two types of constraints:

Ax − a = 0 as before (with multipliers u ∈ R
m), and −x ≤ 0 (with multipliers v ∈ R

n+).
This gives raise to the Lagrangian

b�x − u�(Ax − a) + v�x = (
b − A�u + v

)�
x + a�u,

which must be maximized over the whole of R
n: the dual function is

sup
x∈Rn

(
b − A�u + v

)�
x + a�u =

{
a�u if b − A�u + v = 0,

+∞ otherwise.

Needless to say, the extra dual variable v plays no role: in fact v = A�u − b, which must be
nonnegative; we recover the previous dual problem.

With relation to Remark 5, this is an example where both duality schemes are just the
same.

2.3 Column generation

Consider a linear version of (1), namely:

supb�x, x ∈ X, Ax = a; (7)

here X is usually a discrete set; anyway we assume here for simplicity that X is finite.
A particular technique to solve (7) is column generation. Its essential idea starts by extracting
from X a subset {x̃k}K

k=1 of moderate size, thereby simplifying (7). The resulting restricted
problem is further simplified by convexification, i.e. we take the convex hull of the x̃k’s.
Thus, (7) is replaced by the restricted master program of Dantzig–Wolfe

supb�x, x ∈ XK := conv {x̃1, . . . , x̃K}, Ax = a. (8)

Remark 6 Column generation can be derived as in (Wolsey 1998, Chap. 11; Vanderbeck
2000), which gives an interesting anticipation to Theorem 12 below. Call ∝ (a supposedly
big integer) the total number of points in X. Clearly, (7) can be formulated as the equivalent
master program

sup
∝∑

k=1

αkb
�x̃k,

∝∑
k=1

αkAx̃k = a, αk ∈ {0,1},
∝∑

k=1

αk = 1.

14 Ann Oper Res (2007) 153: 9–27

If we relax the 0–1 constraints to αk ∈ [0,1] and if we restrict the number ∝ of columns
down to K , we obtain

sup
K∑

k=1

αkb
�x̃k,

K∑
k=1

αkAx̃k = a, αk ≥ 0,

K∑
k=1

αk = 1,

which is clearly the restricted master (8) in terms of convex components of x.

Now comes the question of iterating the algorithm with a new “column” x̃K+1. For this,
call uK the vector of multipliers associated with Ax = a in the restricted master (8); then
x̃K+1 is taken as solving the subproblem or satellite: to maximize b�x − u�

KAx over the
whole of X (this problem has always an optimal solution because X is a finite set). Naturally,
the satellite is just equivalent to solving supx∈X L(x,uK), the constant term a�uK being
neglected.

The whole business of this technique is to find appropriate polyhedra XK , i.e. in fact
appropriate columns x̃k , i.e. in fact appropriate multipliers uk . The role of the optimal so-
lutions of (8)—call them x̂—is only to approximate optimal solutions of (7); they have no
influence on the progress of the algorithm. Keeping in mind point (jjj) in Sect. 1, we are
bound to conclude that column generation does the same thing as Lagrangian relaxation,
and with the same tool: it has to minimize the dual function with the help of the oracle of
Fig. 1. Indeed, we will see in Sect. 4.2 that Dantzig–Wolfe is indeed a particular—and not
particularly efficient—algorithm to minimize θ(u).

Remark 7 Identity between the two approaches is often hard to distinguish because:

− Lagrangian relaxation emphasizes the oracle, which “softens” the linking constraints
Ax = a and keeps X as a “hard” set;

− in column generation, one usually does the contrary, emphasizing the restricted master
(8) which keeps Ax = a as “hard”, while X is “softened” via the operation X � XK .

Thus the two approaches tackle the same problem (7), but from two opposite points of view.

Lagrangian relaxation elevates column generation to the level of a general methodology,
with its theory (Sect. 3) as well as algorithms (Sect. 4), and allowing generalizations of (7)
to (1).

2.4 Quadratic programming

With a symmetric n × n matrix Q, let us dualize the linear–quadratic problem
supAx=a b�x − 1

2x�Qx (where the constraints could also be inequalities). The Lagrangian
is the quadratic function

L(x,u) = (
b − A�u

)�
x − 1

2
x�Qx + a�u.

Without entering tedious algebraic details, we just make some simple observations:

− If Q is not positive semidefinite, θ(u) is clearly +∞ for all u. Lagrangian relaxation
leads nowhere in this situation.

Ann Oper Res (2007) 153: 9–27 15

− On the other hand, let Q be positive definite. Then L(·, u) is maximized at the unique
xu = Q−1

(
b − A�u

)
and the dual function is obtained by plugging xu into the La-

grangian:

θ(u) = 1

2

(
b − A�u

)�
Q−1

(
b − A�u

) + a�u.

A dual optimal u is characterized by ∇θ(u) = AQ−1(A�u − b) + a = 0. Then the cor-
responding xu satisfies Axu = AQ−1(b − A�u) = a: in view of Sect. 1(jjj), this xu is
primal optimal.

In the present situation, solving the dual readily provides a primal optimal solution,
the key being that xu is unique (remember Remark 3(iv); and note that this property is
not shared by linear programming).

− Between these two extremes, we have the case of Q � 0 but not invertible—which in-
cludes linear programming Q = 0. To say that the equation Qx = b − A�u has a so-
lution (i.e. that L(·, u) has a finite maximum) is to say that u satisfies the constraints
b − A�u ∈ ImQ; the domain of θ is an affine subspace. For u dual-feasible, the possible
xu’s also make up an affine subspace, parallel to KerQ. Needless to say, minimizing θ

and computing the primal optimal solution(s) amounts to solving a linear system, which
is just the optimality condition of the original quadratic problem.

2.5 Homogeneous quadratic constraints; max-cut

Now take m + 1 symmetric matrices and dualize the problem

sup
1

2
x�Q0x,

1

2
x�Qjx = aj , j = 1, . . . ,m ; (9)

we do not consider any linear terms in this example; this greatly simplifies the calculations.
The Lagrangian is

L(x,u) = 1

2
x�Q(u)x + u�a with Q(u) := Q0 −

m∑
j=1

ujQj .

Clearly we can have θ(u) < +∞ only when Q(u) is negative semidefinite. In this case, the
maximum of L(·, u) is attained for x arbitrary in KerQ(u) (which may reduce to {0}). In a
word, the dual problem of (9) is

infa�u,

m∑
j=1

ujQj − Q0 � 0,

a so-called semi-definite programming problem (SDP).
An instance of (9) is to find a maximal cut in a graph, which we write1

supx�Qx, x ∈ R
n, x2

i = 1, i = 1, . . . , n. (10)

1See (Goemans 1997; Lemaréchal and Oustry 1999). In fact, partition the node set of a graph into two subsets
(a cut); take xi = 1 (resp. −1) if node i lies in the first (resp. second) subset. If −Qij is the value of arc (i, j),

the value of the partition is
∑

i<j
1
2 (−Qij)(1 − xixj); maximizing this is to maximize

∑
ij xiQij xj .

16 Ann Oper Res (2007) 153: 9–27

Calling D(u) the diagonal matrix formed by the vector u ∈ R
n, the Lagrangian is L(x,u) =

x�(Q − D(u))x + e�u, where e ∈ R
n is the vector of all ones. The dual of (10) then comes

readily:

inf e�u, u ∈ R
n, D(u) − Q � 0. (11)

The next subsection will reveal an interesting outcome of this duality scheme.

2.6 Conic and SDP duality

The case of inequality constraints c(x) ≤ 0 of (5) is just a particular case of

supf (x), x ∈ X, c(x) ∈ K, (12)

where K is a closed convex cone; in Sect. 2.1, K = −R
m+ (and in (1), K = {0}). Introducing

again the slack variable y = c(x) ∈ K and the slackened Lagrangian f (x) − u�(c(x) − y),
the dual function of (3) becomes

sup
{
f (x) − u�c(x) + u�y: x ∈ X,y ∈ K

} = θ(u) + sup
y∈K

u�y.

It is easy to see that

sup
y∈K

u�y =
{

0 if u�y ≤ 0 for all y ∈ K,

+∞ otherwise;

this reveals the dual feasible set [those u such that u�y ≤ 0 for all y ∈ K], which is a familiar
object in convex analysis: the polar cone K◦ of K . In summary, the dual problem is now

inf
u∈K◦ θ(u).

Thus, we generalize Sect. 2.1 as follows: when (1) is replaced by (12), just take the same
Lagrangian (2); this yields the same dual function (3) but introduces the dual constraint
u ∈ K◦. With respect to Sect. 2.1, observe that (−R

m+)◦ = R
m+ (and for (1), {0}◦ = R

m).
Most representative examples of such conic duality are SDP programs, which have the

general form

supb�x, x ∈ R
n, Q0 +

n∑
i=1

xiQi � 0;

here the Qi ’s lie in the space S of p × p symmetric matrices. Just as (12), this problem
does enter our general framework (1). Let us introduce a slack variable Y (or rather a slack
matrix), formulate the problem as

supb�x, x ∈ R
n, Y � 0, Y = Q0 +

∑
i

xiQi,

and reproduce the above reasoning:

− The environment space X is R
n × S+, where S+ is the positive semidefinite cone in S .

− The constraint to be dualized is c(x,Y) = Q0 + ∑
i xiQi − Y .

− This constraint takes its values in S , so we need an inner product in that space—
remember Remark 1(iii). The most convenient one turns out to be 〈U,Y 〉 := ∑

i,j UijYij ,

Ann Oper Res (2007) 153: 9–27 17

− so that the slackened Lagrangian is b�x − 〈U,Q0 + ∑
i xiQi − Y 〉.

− Its maximization w.r.t. x unconstrained imposes to cancel the coefficient of each xi : U

must satisfy bi − 〈Qi,U〉 = 0.
− Its maximization w.r.t. Y � 0 forces U in the polar of the cone of S+. A result of linear

algebra says that this is the cone of negative semidefinite matrices: S◦+ = −S+ (Horn and
Johnson 1989, Corollary 7.5.4, for example).

Changing signs for the sake of elegance,2 our dual problem is

sup〈Q0,U〉, U � 0, 〈Qi,U〉 + bi = 0, i = 1, . . . , n.

Let us apply this duality scheme to the dual (11) of maxcut (beware that the variable U is
already a dual variable! in a way, we make up a bidual problem; so the notation X is natural
for the (bi)dual variable). With appropriate selection of signs, we obtain

sup〈Q,X〉, X � 0, Xii = 1, i = 1, . . . , n.

We recognize the SDP relaxation of Goemans and Williamson (1995). At this point we
mention that the celebrated ϑ number of Lovász can likewise be obtained by a dualization à
la Sect. 2.5, followed by the present SDP dualization. Known SDP bounds in combinatorial
optimization (max cut, ϑ) seem to have been derived via Lagrangian relaxation already in
the 80’s, by N.Z. Shor: see for example (Stetsenko and Shor 1984). Such derivations have
been made systematic since then, in (Alizadeh 1995; Poljak et al. 1995; Vandenberghe and
Boyd 1996) among others. The technique is probably best explained in (Lemaréchal and
Oustry 1999).

2.7 A decomposable problem: unit-commitment

In decomposable problems, one has to optimize a sum of functions, over a Cartesian
product of sets, with constraints that are also of the sum type. An illustrative example
is to optimize the daily production of electrical power plants 1, . . . , I , over a time period
1, . . . , T ; see (Fisher 1973; Muckstadt and Koenig 1977; Bertsekas et al. 1983) among oth-
ers; (Lemaréchal and Renaud 2001) takes a point of view similar to the present paper and
contains recent bibliographical references.

The problem is to compute a production schedule xi = (xi
1, . . . , x

i
T) for each plant i. Each

xi is to be taken in a set Xi of feasible schedules (the technological constraints defining
Xi are fairly complicated; and different plants—thermal, hydraulic, etc.—have of course
completely different feasible schedules). Besides, each feasible schedule xi induces a cost
ci(xi). Now, call pi

t (x
i) the power delivered by schedule xi at time t ; the total power thus

delivered must meet at time t the total demand dt (assumed known; remember that electricity
can hardly be stored). The problem is therefore

⎧⎪⎨
⎪⎩

inf
∑I

i=1 ci(xi),

xi ∈ Xi for i = 1, . . . , I,∑I

i=1 pi
t (x

i) ≥ dt for t = 1, . . . , T .

(13)

2Note that a + sign can be used instead of − in (2); or u can be changed to −u; or (1) could be a minimization
problem, etc. While these operations imply some mental agility, none of them changes the essence of the dual
problem.

18 Ann Oper Res (2007) 153: 9–27

Clearly, the demand constraints link the plants together. Were these constraints not
present, each plant could be optimized separately. As a result, form the Lagrangian

L(x,u) :=
I∑

i=1

ci(xi) −
T∑

t=1

ut

(
I∑

i=1

pi
t (x

i) − dt

)

(remember footnote,2 we leave it as an exercise to realize that the ut ’s must be nonnegative!).
Its minimization with respect to x reduces to I independent optimization problems

inf
xi∈Xi

ci(xi) −
T∑

t=1

utp
i
t (x

i).

3 Minimal convex analysis

Having thus introduced and motivated Lagrangian relaxation, we now turn to some theory:
how the dual problem can be solved, and what it is good for, in terms of the primal.

3.1 The dual problem

The following result is the basis for solving the dual problem:

Theorem 8 The dual function θ is convex. If xu maximizes L(·, u), then gu := −c(xu) is a
subgradient of θ at u:

gu ∈ ∂θ(u), i.e. θ(v) ≥ θ(u) + g�
u (v − u) for all v ∈ R

m. (14)

It is important to realize that this result holds without any assumption on the data (X,f, c)

in (1). From a numerical point of view, it clearly shows the following:

Lagrangian relaxation, and therefore column generation,
both amount to minimizing a convex function

with the help of the information delivered by the oracle of Fig. 1 (i.e. function- and
subgradient-values).

Two consequences are worth mentioning for combinatorial optimization:

− Convex optimization is admittedly an “easy” problem. Complexity of the dual prob-
lem (4) therefore reduces to complexity of the Lagrangian problem (3). Via the ellipsoid
algorithm, both are indeed [polynomially] equivalent; see (Grötschel et al. 1981).

− Lagrangian relaxation definitely belongs to the (nonlinear) continuous world. More pre-
cisely, its theoretical aspects (studied in the present Sect. 3) rely a lot on convex analysis,
while numerical aspects form the quasi entirety of nondifferentiable or nonsmooth opti-
mization, the subject of Sect. 4 below.

3.2 Primal–dual relations

The aim of the present section is to study the question: how good is it to solve the dual,
in terms of the primal? Naturally, the ultimate answer lies in the duality gap and we are
interested in whether this duality gap is zero.

Ann Oper Res (2007) 153: 9–27 19

The filling property Here comes a technical concept concerning a converse to (14). Indeed
the vector gu singled out in Theorem 8 is the partial derivative of L (with respect to u) at
the point (xu, u). There are (at least) as many such “derivatives” as possible maximizers
of L(·, u); all of them contribute to the subdifferential of θ at u. It is then relevant to ask
whether they suffice to describe this set:

Definition 9 (Filling property) Define the set made up of the image by ∇uL = −c of all the
possible maximizers of L(·, u):

Gu := {gu = −c(xu): L(xu,u) = θ(u)}. (15)

We say that the filling property holds at u when the subdifferential of θ at u is the convex
hull of Gu: ∂θ(u) = convGu.

In words: if the oracle of Fig. 1 were able to output every possible xu maximizing the
Lagrangian, then any subgradient could be constructed by taking all possible convex com-
binations of the constraints at these xu’s.

Remark 10 Reasonable assumptions generally ensure the filling property; cases where it
does not hold can be considered as pathological. In the applications of Sect. 2, for example,
delicate situations occur only

− in column generation, when X of (7) is neither bounded nor polyhedral;
− in SDP programming of Sect. 2.6, because the cone of positive semidefinite matrices is

not polyhedral;
− in a “general” problem such as in Sect. 2.7.

Indeed the filling property automatically holds in (1) whenever X is a compact set (for
example finite), over which f and c are continuous functions. Establishing results of this
sort is a fairly technical domain of convex analysis; see for example (Hiriart-Urruty and
Lemaréchal 2001, Sect. D.4.4).

Implications of the filling property Now take a u such that the filling property does hold.
When L(·, u) is maximized at a unique xu ∈ X, then ∂θ(u) = Gu = {−c(xu)} is a single-

ton. This means that θ is differentiable at u, its gradient being ∇θ(u) = −c(xu). Nondiffer-
entiability of θ occurs when xu is not unique.

Let in particular u minimize θ . In the differentiable case, ∇θ(u) = 0, i.e. the correspond-
ing (unambiguous) xu from Fig. 1 has c(xu) = 0; hence

θ(u) = L(xu,u) = f (xu) − u�c(xu) = f (xu)

and xu solves (1) in view of weak duality; remember (jjj) in Sect. 1. This observation is
important: with no assumption on the data (X,f, c), [filling property and] uniqueness of xu

from the oracle at a dual optimal u guarantees primal optimality of this xu.
More generally, the mere characterization 0 ∈ ∂θ(u) = convGu of an optimal u gives

directly a fundamental relation:

Theorem 11 Let û minimize θ over R
m and assume the filling property at û. Then there

exist

− primal points {x̃k} maximizing L(·, û) over X, and

20 Ann Oper Res (2007) 153: 9–27

− corresponding convex multipliers {αk} (αk ≥ 0,
∑

k αk = 1)

such that
∑

k αkc(x̃k) = 0.

Again this result makes no assumption on the data in (1), other than the filling property. It
blatantly reveals a convexification effect of dualization and explains what relevant properties
(X,f, c) should enjoy for Lagrangian relaxation to work:

− If X is a convex set, we can define the primal point x̂ := ∑
k αkx̃k ; it lies in X.

− If, in addition, the constraints are affine: c(x) = Ax − a; then c(x̂) = c(
∑

k αkx̃k) =∑
k αkc(x̃k) = 0; hence x̂ is feasible in (1).

− Finally, if also f is a concave function on X, then L(·, û) is concave as well, hence

L(x̂, û) ≥
∑

k

αkL(x̃k, û) = θ(û);

because we already know that f (x̂) = L(x̂, û) (c(x̂) = 0), weak duality tells us that x̂ is
primal optimal.

In a word,

to prove optimality of a dual û

is to construct a primal x̂
(16)

which does solve (1) if appropriate convexity properties hold: convexity of X, affinity of
the dualized constraints, concavity of f . When they do not hold, x̂ still solves a relaxed
problem, obtained by convexifying (1); a result essentially due to (Geoffrion 1974; Magnanti
et al. 1976):

Theorem 12 Suppose c(x) = Ax − a in (1) and let a dual optimum û satisfy the filling
property. Then the above x̂ maximizes, under the same constraints Ax = a, the function fX

obtained by taking the concave hull of f on the convex hull of X.

When c is not affine, the convexified problem takes a definitely more complicated form;
see (Feltenmark and Kiwiel 2000; Lemaréchal and Renaud 2001) for some indications along
these lines.

3.3 The case of column generation

In view of its equivalence with Lagrangian relaxation, column generation has to solve the
dual problem—even though its aim is primarily to solve the primal problem (7): (16) can be
stated equivalently as

primal optimality of a solution of the restricted master (8)
is dual optimality of the corresponding multiplier uK .

In fact, the column generation mechanism stops when the satellite produces a new column
x̃K+1 already lying in XK . If x̂K is an optimal solution of (8), this means that

θ(uK) = max
x∈XK

L(x,uK) = b�x̂K

Ann Oper Res (2007) 153: 9–27 21

where the second equality comes from standard LP theory. Therefore [x̂K is an optimal
solution of (7) and] uK minimizes θ .

Besides, the definition of θ implies

θ(uK) ≥ L(x̃k, uK) = b�x̃k − u�
K(Ax̃k − a), for k = 1, . . . ,K.

Express x̂K as
∑

k αkx̃k and suppose strict inequality holds for some k with αk > 0. By
summation we obtain the contradiction

θ(uK) >

K∑
k=1

αk

[
b�x̃k − u�

K(Ax̃k − a)
] = b�x̂K .

Thus, L(x̃k, uK) = θ(uK) for each such k: solving (8) appears as an attempt to computing
the (x̃k, αk)’s of Theorem 11.

Generalizing column generation from (7) to (1) is then a natural operation: the restricted
master (8) then becomes

sup
K∑

k=1

αkf (x̃k),

K∑
k=1

αkc(x̃k) = 0,

K∑
k=1

αk = 1, αk ≥ 0.

This is usually called generalized linear programming.

3.4 The case of conic constraints

Adapting the development in Sect. 3.2 to the more general situation of Sects. 2.1, 2.6 is an
interesting and useful exercise.

Simple inequalities First consider the formulation (6). The set of partial derivatives of the
slackened Lagrangian is here Gu + Nu, where Gu is defined in (15) and Nu ⊂ R

m is defined
coordinatewise by:

−y ∈ Nu ⇐⇒ yj

{= 0 if uj > 0,

is arbitrary ≥ 0 if uj = 0,
for j = 1, . . . ,m.

Take an optimal û satisfying the filling property: ∂θ(û) = conv (Gu + Nu); it is not difficult
to check that conv (Gu + Nu) = (convGu) + Nu. Thus (Theorem 11), optimality of û is
characterized by the existence of

− primal points x̃k maximizing L(·, û),
− corresponding convex multipliers αk ,
− and ŷ ∈ −Nu,

such that 0 = −∑
k αkc(x̃k) − ŷ.

Then reproduce the reasoning of Sect. 3.2:

− If X is a convex set, the primal point x̂ := ∑
k αkx̃k lies in X.

− If, in addition, each cj is a convex function over X, then

cj (x̂) ≤
∑

k

αkc
j (x̃k) = −

∑
k

αkŷ
j = −ŷj ≤ 0,

so x̂ is feasible in (5).

22 Ann Oper Res (2007) 153: 9–27

− Finally, if f is a concave function on X, then L(·, û) is concave as well (remember that
u ≥ 0), hence

L(x̂, û) ≥
∑

k

αkL(x̃k, û) = θ(û).

− At this point, we invoke one more argument: from the properties of ŷ, either ûj = 0 or
cj (x̂) = −ŷj = 0, hence û�c(x̂) = 0 and L(x̂, û) = f (x̂). Weak duality tells us as before
that x̂ is optimal.

Naturally, the pair (x̂, û) satisfies complementary slackness:

û ∈ R
m
+, c(x̂) ∈ −R

m
+, û�c(x̂) = 0.

General cones This development is put in perspective by the more intrinsic formulation
(12), whose dual problem is to minimizes θ(u) for u ∈ K◦. Then invoke convex analysis
(Hiriart-Urruty and Lemaréchal 1993, Chap. VII, for example): an optimal û is character-
ized by a subgradient ĝ ∈ ∂θ(û) (possibly nonzero but) whose opposite lies in the so-called
normal cone3 to K◦ at û. This normal cone is easily seen to be the set of ν ∈ K which are
orthogonal to û. Thus, admitting the filling property, we have at a dual optimum û:

− a set of primal points x̃k maximizing L(·, û),
− a set of corresponding convex multipliers αk ,
− and a normal ν̂ to K◦ at û,

such that
∑

k αkc(x̃k) = ν̂.
Once again:

− Assume convexity of X, so that x̂ := ∑
k αkx̃k lies in X.

− For simplicity, assume c is affine, so that c(x̂) = ∑
k αkc(x̃k) = −ν̂.

− Assume concavity of f —hence of L(·, û)—so that L(x̂, û) ≥ θ(û).
− Remembering that c(x̂) = ν̂ is orthogonal to û, we finally have f (x̂) = L(x̂, û) ≥ θ(û);

by virtue of weak duality, x̂ is primal optimal.

Note the property

û ∈ K◦, c(x̂) ∈ K, û�c(x̂) = 0,

which generalizes complementary slackness, remembering that K = −R
m+ and K◦ = R

m+
in the situation of (5). The above development can of course be particularized to the case
where K is the SDP cone S+; then make use of a result of linear algebra: the polar cone to
S+ is −S+.

4 Dual algorithms

The task of a dual algorithm is to minimize the convex function θ of (4), with the help of the
oracle of Fig. 1. Theorem 8 makes it clear that θ is nonsmooth at points u such that several
c(xu) could be answered by the oracle: a dual algorithm must be a nonsmooth optimization

3The normal cone to a set S at û ∈ S is the set of ν such that ν�(u − û) ≤ 0 for all u ∈ S. Note that, if S is a
cone, its polar is its normal cone at 0.

Ann Oper Res (2007) 153: 9–27 23

algorithm. From this point of view, the only relevant information delivered by the oracle
is the value of the dual function and the subgradient, which we will denote by g. The fact
that θ and g depend on some primal variable is of little importance for a dual algorithm.
Nevertheless, we will sometimes need the primal point computed by the black box; then it
will be denoted by x̃.

Thus, a call to the oracle at some point uk ∈ R
m yields a number θ(uk) and an

m-vector gk . They have primal counterparts:

c(x̃k) = −gk, f (x̃k) = θ(uk) + u�
k c(x̃k) = θ(uk) − u�

k gk. (17)

4.1 Subgradient methods

One often (wrongly) takes “Lagrangian relaxation” and “subgradient method” as equivalent
concepts. The simplest subgradient algorithm defines the sequence of iterates by the formula
uK+1 = uK − tKgK , where tK is a stepsize “suitably chosen”.

The main advantage of the subgradient method is to be extremely simple. Besides, it
has given birth to the important ellipsoid method, and to the lesser known, though more ef-
ficient, r-algorithm; see (Shor 1985). In these subgradient methods, convergence of {uK}
to a dual solution is proved (at least as a subsequence); as predicted by (16), recover-
ing a primal relaxed solution as in Sect. 3.2 is therefore possible (Larsson et al. 1999;
Anstreicher and Wolsey 1993). This, however, is not classical and the more recent volume
algorithm (Barahona and Anbil 2000) was precisely motivated by this question; as shown in
(Sagastizábal et al. 2002), it is close in spirit to the bundle approach of Sect. 4.3 below.

4.2 Method of Kelley, or Cheney–Goldstein

Every call to the oracle defines via (14) an affine function minorizing the dual function.
This allows the construction, at the current iteration, of a polyhedral function θ̂ (u) :=
supk [θ(uk) + g�

k (u − uk)] ≤ θ(u), which estimates the real θ from below.
The method then consists in minimizing θ̂ . The next iterate therefore solves

inf r, r ≥ θ(uk) + g�
k (u − uk), k = 1, . . . ,K, (18)

a linear program with as many constraints as iterations already done.
This method is known to be desperately slow: see in (Hiriart-Urruty and Lemaréchal

1993, Sect. XV.1.1) a counterexample due to Nemirovski (1983), showing that the error after
k iterations can be as bad as m

√
1/k. Yet, it is fairly interesting. Remember (17), consider the

linear case (f (x) = b�x, c(x) = Ax − a) and dualize (18), calling αk the multipliers (with
respect to (1) or (7), we rather do a bidualization); direct calculations give

supb�x, Ax = a, x =
∑

k

αkx̃k, αk ≥ 0,
∑

k

αk = 1. (19)

One recognizes the restricted master program (8), as written in Remark 6.
Two conclusions entail: (i) column generation and subgradient just solve identical

problems—but via different algorithms; (ii) Dantzig–Wolfe is nothing more than a desper-
ately slow algorithm for convex optimization.

24 Ann Oper Res (2007) 153: 9–27

4.3 Bundle methods

Two approaches are known to improve the previous method. One—ACCPM of (Goffin et
al. 1992)—adopts a philosophy of interior points. The other—bundle method, going back to
(Lemaréchal 1974; Wolfe 1975)—can be considered as improving the subgradient method
as well; it works basically as follows.

Call û the iterate among the uk’s that yielded the best value of the dual function. Then
add to the lower estimate θ̂ a quadratic term to penalize the deviation from û; (18) becomes

inf r + 1

2
|u − û|2, r ≥ θ(uk) + g�

k (u − uk), k = 1, . . . ,K,

which has a unique solution u+. Before performing the next iteration, we just update û to u+
if θ(u+) < θ(û).

Just as with (18), it is interesting to dualize the above quadratic program. Assume again
linear f and c for simplicity; the calculations are made as in Sect. 2.4 and produce the
modified (19) {

sup
(
b�x − û�(Ax − a) − 1

2 |Ax − a|2),
x = ∑

k αkx̃k, αk ≥ 0,
∑

k αk = 1.
(20)

This allows an interpretation of bundle methods in the context of column generation:
we replace the linear restricted master (19) by a quadratic one, based on augmented La-
grangian—a classical technique in nonlinear programming, see (Bertsekas 1995, Sect. 4.2).
In fact, (20) amounts to maximizing over the XK of (8) the augmented Lagrangian x �→
L(x, û) − 1

2 |Ax − a|2. The solution x̂ of (20) is not feasible; it is only asymptotically that
Ax̂ → a, alongside with the convergence of û to a dual solution.

Let us mention here that our description is oversimplified: û is not exactly the best dual
point uk and the quadratic stabilizing term is tuned via a coefficient tK > 0. Besides, a mech-
anism can be inserted to clean the bundle {θ(uk), gk}k=1,...,K and keep its size reasonable.

Numerical illustrations We illustrate the bundle method—more precisely the implemen-
tation of (Lemaréchal and Sagastizábal 1997) (with the quadratic solver of Kiwiel 1986) on
the Held–Karp relaxation (Held and Karp 1971) of traveling salesman problems. Table 1
gives some results with a few problems from tsplib.

− The number m of dual variables is given by the problem’s name.
− The second column is the optimal dual value.
− Columns “2, 3, 4” (resp. ∞) give the number of iterations taken to obtain 2, 3, 4 exact

digits on θ (resp. the optimal value) (1 iteration = 1 resolution of (20) + 1 computation
of θ).

Table 1 Held–Karp relaxation of TSP solved by bundle

Problem θ(û) 2 3 4 ∞ � CPU % (20) % θ

gr120 1606.3125 3 72 102 132 40 1 s 35 44

pcb442 50499.499 30 77 261 556 109 151 s 64 28

pcb1173 56350.993 22 93 236 502 65 438 s 31 64

pcb3038 136587.50 28 146 782 4212 324 10 h 30 56

fnl4461 181569.21 21 120 840 6965 470 30 h? 8? 87?

Ann Oper Res (2007) 153: 9–27 25

− Column � gives the number of x̃k’s used to form x̂—the number of nonzero αk’s in the
last resolution of (20). This � is interesting for the following reason. At an optimal û,
m + 1 subgradients gk = −Ax̃k + a are a priori needed from the oracle to make up the 0
vector in ∂θ(û) (Carathéodory’s theorem); but � � m+1 are actually used. Alternatively,
the linear master (19) (formulated in terms of the α’s only) has a priori m + 1 positive
basic variables; but there exists an optimal basis with only � � m + 1 of them: the linear
master is highly degenerate. We see that the quadratic version (20) is not perturbed by
this degeneracy, which even becomes an advantage: the necessary number of iterations
for a bundle method is driven by �, rather than m.

− The last three columns give an idea of the computing time, and of the percentages of this
time spent respectively in the quadratic master (20) and in the oracle computing θ . These
informations, obtained by gprof, are moderately reliable, though; in particular for the
last problem fnl4461, which took nearly a week of computation, rather than 30 hours.

The tests were performed on a Sun Ultra 1 (167 MHz, 768 Mb).

Additional results Another application of Lagrangian relaxation is multicommodity flow
routing; see (Ouorou et al. 2000) for a review, and some recent developments in (Babonneau
and Vial 2007; Lemaréchal et al. 2006). For other applications in combinatorial optimiza-
tion, (Briant et al. 2005) contains comparative results between volume, Kelley and bundle on
various problems: cutting stock, vertex coloring, capacitated vehicle routing, multiple-item
lot sizing.

In some applications, maximizing L(·, u) can be NP-hard; a dual solver accepting
inaccurate oracles is then extremely useful. Because θ is the result of a maximiza-
tion process, the oracle will probably be able to compute underestimates θu ≤ θ(u) for
given u. Subgradient algorithms versions exist that cope with this situation: see (Nurmin-
skii and Zhelikhovskii 1977). It is well-known that Kelley is not affected by inaccuracies.
As for bundle, the recent work (Kiwiel 2006) has proposed an ingenious way to cope
with inaccurate oracles; efficiency of the resulting algorithm is assessed in (Kiwiel 2004;
Kiwiel and Lemaréchal 2006) on cutting-stock problems.

Conclusion We hope to have convinced the reader that Lagrangian relaxation is encoun-
tered again and again in optimization, and is a lot more than mere subgradient algorithms.
It inevitably calls for convex analysis and nonsmooth optimization, two subjects which are
unfortunately rather technical. First steps into them could be facilitated by (Grinold 1970;
Lasdon 1970, Appendix 8).

References

Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM Journal on Optimization, 5(1), 13–51.

Anstreicher, K., & Wolsey, L. A. (1993, in press). On dual solutions in subgradient optimization, Unpublished
manuscript, CORE, Louvain-la-Neuve, Belgium. Mathematical Programming.

Babonneau, F., & Vial, J. P. (2007, in press). Vial, Accpm with a nonlinear constraint and an active set strategy
to solve nonlinear multicommodity flow problems. Mathematical Programming.

Barahona, F., & Anbil, R. (2000). The volume algorithm: producing primal solutions with a subgradient
method. Mathematical Programming, 87(3), 385–399.

Bertsekas, D. P. (1995). Nonlinear programming. Athena Scientific.
Bertsekas, D. P., Lauer, G. S., Sandell, N. R., & Posberg, T. A. (1983). Optimal short-term scheduling of

large-scale power systems. IEEE Transactions on Automatic Control, 28, 1–11.

26 Ann Oper Res (2007) 153: 9–27

Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., & Vanderbeck, F. (2005, in press). Compar-
ison of bundle and classical column generation. RR 5453, INRIA. http://www.inria.fr/rrrt/rr5453.html.
Mathematical Programming.

Feltenmark, S., & Kiwiel, K. C. (2000). Dual applications of proximal bundle methods, including Lagrangian
relaxation of nonconvex problems. SIAM Journal on Optimization, 10(3), 697–721.

Fisher, M. L. (1973). Optimal solution of scheduling problems using Lagrange multipliers: part I. Operations
Research, 21, 1114–1127.

Geoffrion, A. M. (1974). Lagrangian relaxation for integer programming. Mathematical Programming Study,
2, 82–114.

Goemans, M. X. (1997). Semidefinite programming in combinatorial optimization. Mathematical Program-
ming, 79, 143–161.

Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 6, 1115–1145.

Goffin, J.-L., Haurie, A., & Vial, J.-P. (1992). Decomposition and nondifferentiable optimization with the
projective algorithm. Management Science, 38(2), 284–302.

Grinold, R. C. (1970). Lagrangian subgradients. Management Science, 17(3), 185–188.
Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica, 1, 169–197.
Held, M., & Karp, R. (1971). The traveling salesman problem and minimum spanning trees: part II. Mathe-

matical Programming, 1(1), 6–25.
Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex analysis and minimization algorithms. Heidelberg:

Springer.
Hiriart-Urruty, J.-B., & Lemaréchal, C. (2001). Fundamentals of convex analysis. Heidelberg: Springer.
Horn, R. A., & Johnson, C. R. (1989). Matrix analysis. Cambridge: Cambridge University Press (new edition,

1999).
Kiwiel, K. C. (1986). A method for solving certain quadratic programming problems arising in nonsmooth

optimization. IMA Journal of Numerical Analysis, 6, 137–152.
Kiwiel, K. C. (2004, in press). An inexact bundle approach to cutting stock problems. Technical report,

Systems Research Institute, Warsaw. INFORMS J. of Computing.
Kiwiel, K. C. (2006). A proximal bundle method with approximate subgradient linearizations. SIAM Journal

on Optimization, 16(4), 1007–1023.
Kiwiel, K. C., & Lemaréchal, C. (2006, submitted). An inexact conic bundle variant suited to column gener-

ation. Open archive http://hal.inria.fr/inria-00109402. Mathematical Programming.
Larsson, T., Patriksson, M., & Strömberg, A. B. (1999). Ergodic, primal convergence in dual subgradient

schemes for convex programming. Mathematical Programming, 86(2), 283–312.
Lasdon, L. (1970). Optimization theory for large systems. Macmillan series in operations research.
Lemaréchal, C. (1974). An algorithm for minimizing convex functions. In J. L. Rosenfeld (Ed.), Information

processing ’74 (pp. 552–556). Amsterdam: North-Holland.
Lemaréchal, C. (2001). Lagrangian relaxation. In M. Jünger, D. Naddef (Eds.), Computational combinatorial

optimization (pp. 112–156). Heidelberg: Springer.
Lemaréchal, C. (2003). The omnipresence of Lagrange. 4OR, 1(1), 7–25.
Lemaréchal, C., Ouorou, A., & Petrou, G. (2006). A bundle-type algorithm for routing in telecommunication

data networks. Technical report RR6010, INRIA. https://hal.inria.fr/inria-00110559.
Lemaréchal, C., & Oustry, F. (1999). Semi-definite relaxations and Lagrangian duality with application to

combinatorial optimization. Rapport de Recherche 3710, INRIA. http://www.inria.fr/rrrt/rr-3710.html.
Lemaréchal, C., & Renaud, A. (2001). A geometric study of duality gaps, with applications. Mathematical

Programming, 90(3), 399–427.
Lemaréchal, C., & Sagastizábal, C. (1997). Variable metric bundle methods: from conceptual to imple-

mentable forms. Mathematical Programming, 76(3), 393–410.
Magnanti, T. L., Shapiro, J. F., & Wagner, M. H. (1976). Generalized linear programming solves the dual.

Management Science, 22(11), 1195–1203.
Muckstadt, M. A., & Koenig, S. A. (1977). An application of Lagrangian relaxation to scheduling in power-

generation systems. Operations Research, 25, 387–403.
Nemirovskii, A. S., & Yudin, D. (1983). Problem complexity and method efficiency in optimization. Wiley-

Interscience Series in Discrete Mathematics. New York: Wiley-Interscience (Original Russian: Moscow
Nauka, 1979).

Nurminskii, E. A., & Zhelikhovskii, A. A. (1977). ε-Quasigradient method for solving nonsmooth extremal
problems. Cybernetics, 13(1), 109–114.

Ouorou, A., Mahey, P., & Vial, J.-P. (2000). A survey of algorithms for convex multicommodity flow prob-
lems. Management Science, 47(1), 126–147.

Ann Oper Res (2007) 153: 9–27 27

Poljak, S., Rendl, F., & Wolkowicz, H. (1995). A recipe for semidefinite relaxation for (0,1)-quadratic pro-
gramming. Journal of Global Optimization, 7, 51–73.

Reeves, C. R. (1993). Modern heuristic techniques for combinatorial problems. New York: Blackwell Scien-
tific.

Sagastizábal, C., Bahiense, L., & Maculan, N. (2002). The volume algorithm revisited: relation with bundle
methods. Mathematical Programming, 94(1), 41–69.

Shor, N. Z. (1985). Minimization methods for non-differentiable functions. Berlin: Springer.
Stetsenko, S. I., & Shor, N. Z. (1984). The connection between Lovász’ estimates with dual estimates in

quadratic Boolean problems. In Solutions methods of nonlinear and discrete programming, proceedings
of the seminar “National Council on Cybernetics”. Kiev: Institute of Cybernetics.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1), 49–95.
Vanderbeck, F. (2000). On Dantzig–Wolfe decomposition in integer programming and ways to perform

branching in a branch-and-price algorithm. Operations Research, 48(1), 111–128.
Wolfe, P. (1975). A method of conjugate subgradients for minimizing nondifferentiable functions. Mathemat-

ical Programming Study, 3, 145–173.
Wolsey, L. A. (1998). Integer programming. New York: Wiley-Interscience.

	The omnipresence of Lagrange
	Abstract
	The basic idea
	Examples
	Inequalities
	Linear programming
	Dualizing the linking constraints
	Dualizing all constraints

	Column generation
	Quadratic programming
	Homogeneous quadratic constraints; max-cut
	Conic and SDP duality
	A decomposable problem: unit-commitment

	Minimal convex analysis
	The dual problem
	Primal-dual relations
	The filling property
	Implications of the filling property

	The case of column generation
	The case of conic constraints
	Simple inequalities
	General cones

	Dual algorithms
	Subgradient methods
	Method of Kelley, or Cheney-Goldstein
	Bundle methods
	Numerical illustrations
	Additional results
	Conclusion

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

