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Abstract We investigate the quality of solutions obtained from sample-average approxima-

tions to two-stage stochastic linear programs with recourse. We use a recently developed

software tool executing on a computational grid to solve many large instances of these prob-

lems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality

of the computed solutions in various ways.
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1. Introduction

Consider the following stochastic programming problem

min
x∈X

{ f (x) := EP [F(x, ξ (ω))]} , (1)

where F(x, ξ ) is a real valued function of two vector variables x ∈ Rn and ξ ∈ Rd , X is a

subset of Rn , and ξ (ω) is viewed as a random vector having probability distribution P, which

is assumed to be known. Often we omit the subscript P and simply write E[F(x, ξ (ω))]. In

this paper, we discuss sampling techniques for obtaining and verifying approximate solutions

of (1), and we present results for several standard problems from the literature. Some of the

ideas presented here are applicable to the general form (1), while others apply specifically to

two-stage stochastic linear programs with recourse.

The two-stage stochastic linear program with recourse can be written in standard form as

follows:

min
x

cT x + Q(x) subject to Ax = b, x ≥ 0, (2)

where Q(x) := E[Q(x, ξ (ω))] and Q(x, ξ ) is the optimal value of the second-stage problem

min
y

qT y subject to T x + W y = h, y ≥ 0. (3)

Here some or all elements of the data vector ξ = (q, h, T, W ) can be random (that is, can

depend on ω). In problems with fixed recourse, the matrix W is fixed (deterministic). If we

define

F(x, ξ ) := cT x + Q(x, ξ ), X = {x : Ax = b, x ≥ 0},

and assume that the optimal value of the second-stage problem (3) is finite for all x ∈ X and

almost every ξ , then problem (2) becomes a particular case of problem (1).

We report computational results in this paper for problems of the form (2), (3) with fixed

recourse. We consider problems where the probability distribution of ξ (ω) has finite support;
that is, ξ (ω) has a finite number of possible realizations, called scenarios {ξ1, ξ2, . . . ξK } with

respective probabilities pk ∈ (0, 1), k = 1, 2, . . . , K . For such problems, the expected value

function Q(x) can be written as the finite sum

Q(x) =
K∑

k=1

pk Q(x, ξk), (4)

where Q(x, ξ ) is once again the optimal value of (3) and ξk denotes the data vector

(qk, hk, Tk, W ), k = 1, 2, . . . , K . By defining yk to be the instance of the second-stage vari-

able vector corresponding to scenario k, we can combine (2), (3) into a single linear program
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as follows:

min
x,y1,y2,... ,yK

cT x +
K∑

k=1

pkqT
k yk subject to (5a)

Ax = b, x ≥ 0, (5b)

W yk = hk − Tk x, yk ≥ 0, k = 1, 2, . . . , K . (5c)

In many applications, K is an astronomically large number. This situation can arise when

each component of the random data vector ξ has a number of possible values, independent

of the other components. The total number of scenarios is then the product of the number

of possible values for each component of ξ . For example, if ξ has 100 components, each of

which has two possible values, then the total number of scenarios is 2100, or approximately

1030. In such situations, it is not practical to solve (2), (3), or equivalently (5), directly. It

is not even possible to evaluate the function Q(x), for a given x, by using formula (4) in

a reasonable amount of time, since the number of second-stage linear programs (3) to be

solved is just too large.

We can however use sampling techniques, which consider only randomly selected subsets

of the set {ξ1, ξ2, . . . , ξK } to obtain approximate solutions. Sampling techniques can be ap-

plied in different ways. One approach uses sampling in an “interior” fashion. Such algorithms

aim to solve the original problem (1), but resort to sampling whenever the algorithm requires

an (approximate) value of f (·) or subgradient information for f (·) at some point x. Typically,

a different sample is used each time function or subgradient information is required. We

mention in particular the L-shaped method with embedded sampling of Dantzig and Infanger

(1991), the stochastic decomposition method of Higle and Sen (1991, 1996), and stochastic

quasi-gradient methods (see Ermoliev, 1988). A second fundamental approach to sampling

is an “exterior” approach, in which a sample is selected from {ξ1, ξ2, . . . , ξK } and a cor-

responding approximation to f (·) is defined from this sample. This approximate objective,

known as a sample-average approximation of f (·), is then minimized using a deterministic

optimization algorithm; no further sampling is performed. This approach is known variously

as sample-path optimization (Gürkan, Özge, and Robinson, 1994; Plambeck et al., 1996) or

the stochastic counterpart method (Rubinstein and Shapiro, 1990, 1993).

In scenario-based algorithms, each scenario can often be considered independently from

other scenarios. This makes such algorithms well suited to implementation on parallel com-

puting platforms, where different processors execute the independent portions of the com-

putation in parallel.

Our computational experiments are performed on an unusual platform—a large federation

of nondedicated, heterogeneous, loosely coupled processors, known as a computational grid
or a metacomputer (Foster and Kesselman, 1999; Livny et al., 1997). The grid represents an

extremely powerful computing resource that can provide large amounts of computing power

over extended time periods, yet is also inexpensive, especially since we use only idle time

on many of the workstations and PCs that make up the grid. We needed the computational

power of the grid to determine optimal and near-optimal solutions to two-stage stochastic

linear programs with recourse, and to test the convergence behavior of sample average ap-

proximations of f (·). Zakeri (2000) has also used a computational grid to verify the quality

of a given solution to a stochastic programming instance. Other recent use of computational
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grids to solve large, complex optimization problems have been described by Anstreicher et

al. (2002), Goux and Leyffer (2002), and Chen, Ferris, and Linderoth (2001).

The remainder of the paper is structured as follows. Section 2 defines the construction

of sample-average approximations using different sampling techniques. In Section 3, we

summarize results from Shapiro and Homem-de-Mello (1998) concerning convergence of

the minimizer of the sample-average approximation to the exact minimizer of the original

problem under certain circumstances. In Section 4, we describe techniques for estimating

lower and upper bounds on the optimal value of the problem (1), and for estimating the

gap between these bounds. We describe several tests for optimality or near-optimality of a

candidate solution in Section 5. In Section 6 we focus on the two-stage stochastic linear

programming problem with recourse (2), outlining the software that we used to solve this

problem. (A fuller description can be found in Linderoth and Wright (2003).) Section 7

briefly highlights the characteristics of the computational grid we used in this work. Section 8

describes the benchmark problems used in our computational tests, while Section 9 describes

and analyzes the results obtained from our tests.

2. Sample-average approximations

Suppose that a random sample ξ 1, ξ 2, . . . ξ N ∼ P of N (not necessarily independent) real-

izations of the random vector ξ (ω) is generated. By replacing f (·) by an approximation based

on this sample, we approximate the problem (1) by

min
x∈X

{
f̂N (x) := N−1

N∑
i=1

F(x, ξ i )

}
. (6)

The function f̂N is a sample-average approximation (SAA) to the objective f of (1). We

denote by v̂N the optimal value and by x̂N an optimal solution of (6).

Since the random realizations ξ i have the same probability distribution P, it follows that

f̂N (x) is an unbiased estimator of f (x), for any x. If we perform Monte Carlo sampling, in

which all ξ i are independent of each other, then Var [ f̂N (x)] = σ 2(x)/N , where σ 2(x) :=
Var[F(x, ξ (ω))].

We also used Latin Hypercube sampling (LHS) to construct the sample average function

f̂N . In this technique, initially proposed by McKay, Beckman, and Conover (1979), a sample

of size N is constructed by dividing the interval (0, 1) into N subintervals of equal size and

picking one number randomly from each subinterval. These N numbers are then shuffled, and

the resulting sequence is used to generate random variates for a given distribution, possibly

by performing an inverse transform. Assuming that the components of the random vector are

independently distributed, the procedure is repeated for each component, yielding a stratified

sample of size N for that vector. The sample-average function f̂N so obtained is an unbiased

estimator of f, but its variance Var [ f̂N (x)] often is considerably less than that obtained

from Monte Carlo sampling. Further discussion of LHS and its properties can be found in

Avramidis and Wilson (1996, Section 1.2.2), Stein (1987), and Owen (1997). In stochastic

programming, LHS methodology was used in Diwekar and Kalagnanam (1997) and Bailey,

Jensen, and Morton (1999). Some other variance reduction techniques have been described

in Higle (1998). Importance sampling variance reduction has been described by Dantzig and

Infanger (1991).
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From a computational point of view, one can regard the SAA problem (6) as a stochastic

programming problem with a finite number of scenarios ξ 1, ξ 2, . . . , ξ N each with equal prob-

ability pi = N−1. Therefore, any numerical algorithm suitable for solving the corresponding

stochastic problem with a discrete distribution can be applied to the SAA problem.

3. Convergence of the SAA solution to the exact solution set

A fundamental question central to any sampling-based solution approach is how large must

the sample size be so that the solution to the sampled instance is a good (or optimal) solution

for the true instance. In this section, we review a theory, developed recently in Shapiro

and Homem-de-Mello (1998), Kleywegt, Shapiro, and Homem-de-Mello (2001), Shapiro,

Homem-de-Mello, and Kim (2002), concerning the rate of convergence of the solutions x̂N

of the SAA problem (6) to the optimal solution set of the original problem (1). This theory

suggests that for certain instances, the sample size necessary to obtain excellent solutions is

small compared to the size of the whole sample space.

Unless stated otherwise, we make the following assumptions on the problem (1) throughout

the remainder of the paper:

(A1) The distribution of ξ (ω) has finite support, say � = {ξ1, ξ2, . . . , ξK };
(A2) For every ξ ∈ �, the function F(·, ξ ) : X → IR is convex and piecewise linear;

(A3) The set X is polyhedral:

(A4) The set S of optimal solutions of (1) is nonempty and bounded.

Assumption (A1) means that we deal with random data having a finite, although possibly

very large, number of realizations (scenarios). In the case of two-stage linear programs of

the form (2), (3) we have that F(x, ξ ) < +∞ if the corresponding second stage problem

is feasible. We also have that F(·, ξ ) is convex and piecewise linear, and hence F(·, ξ ) is

bounded from below if F(x, ξ ) > −∞ for at least one x. Therefore, assumption (A2) is

satisfied by stochastic two-stage linear programs provided that the recourse is relatively

complete, that is, for every x ∈ X and ξ ∈ �, the second stage problem (3) is feasible. For

the problems used in our experiments, the set X is defined by linear constraints, and hence is

polyhedral, and consequently assumption (A3) holds. For the problems considered, the final

assumption (A4) is satisfied as well. Assumptions (A1) and (A2) imply that the expected

value function f (·) is finite valued, piecewise linear and convex on X. These assumptions

together with (A3) imply that the set S is convex and polyhedral.

For ε ≥ 0 we denote by Sε the set of all ε-optimal solutions of (1), that is, the set of points

x̄ ∈ X such that f (x̄) ≤ v∗ + ε, where v∗ is the optimal objective value in (1). In particular,

for ε = 0 the set Sε coincides with the set S of optimal solutions of (1).

Under assumptions (A1)–(A4), we have that for each ε ≥ 0 there exist constants Cε > 0

and βε > 0 such that the inequality

1 − P(x̂N ∈ Sε) ≤ Cεe−βε N (7)

holds for all N ∈ N. Note that the choice of the optimal solution x̂N of (6) here is arbitrary,

so that the probability P(x̂N ∈ Sε) actually refers to the probability that the set of optimal

solutions of the SAA problem (6) is included in the set Sε. It follows from (7) that

lim sup
N→∞

1

N
log[1 − P(x̂N ∈ Sε)] ≤ −βε. (8)
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In other words, the probability that x̂N is an ε-optimal solution of the true (expected value)

problem (1) approaches 1 exponentially fast in N. The above result (7), and hence (8), is

a consequence of the upper bound of Cramér’s Large Deviation Theorem and the assumed

polyhedral structure of the problem (cf., Shapiro and Homem-de-Mello 2000, Theorem 3.2

and Kleywegt, Shapiro, and Homem-de-Mello 2001, Section 2.2). By using the lower bound

of Cramér’s Large Deviation Theorem, it is possible to show that a limit in the left hand side

of (8) is attained, so that “lim sup” can be replaced by “lim”.

The estimates (7) and (8) hold in particular for ε = 0, that is, for Sε = S. Of course, the

probability P(x̂N ∈ Sε) increases with ε, and hence for larger values of ε the exponential

constant βε is larger. In the case in which the solution to (1) is a singleton (that is, S = {x0}
for some x0 ∈ X ), there exists β > 0 such that

lim
N→∞

1

N
log[1 − P(x̂N = x0)] = −β. (9)

We can refine the expression (9) by quantifying the conditioning of the singleton solution.

Denote by TX (x0) the tangent cone to the feasible set X at x0 and by F ′
ω(x0, d) and f ′(x0, d)

the directional derivatives of F(·, ω) and f (·), respectively, at x in the direction d. Because of

the assumed polyhedral structure of problem (1) and since the optimal solution x0 is unique,

we have by the theory of linear programming that it is sharp, that is

f ′(x0, d) > 0, ∀d ∈ TX (x0)\{0}. (10)

Furthermore, from Shapiro and Homem-de-Mello (2000), we have the following property:

There exists a finite set � ⊂ TX (x0)\{0} of directions, independent of the sample, such that

if f̂ ′
N (x0, d) > 0 for every d ∈ �, then x̂N = x0. We call

κ := max
d∈�

= Var[F ′
ω(x0, d)]

[ f ′(x0, d)]2
(11)

the condition number of the true problem (1). The above definition is motivated by the result

which states that the sample size N required to achieve a given probability of the event

“x̂N = x0” is roughly proportional to the condition number κ . Specifically, for large N, we

have from Shapiro, Homem-de-Mello, and Kim (2002, Theorem 1) that the probability of

this event can approximated as follows:

P(x̂N = x0) ≈ 1 − νe−N/(2κ)

√
4π N/(2κ)

, (12)

where ν ≥ 1 is a small constant depending on the problem. It follows by comparing this

expression with (9) that for large κ , the exponential constant β is small, and therefore that

one needs a large sample to attain a given probability of the event “x̂N = x0”. Such problems

can be be viewed as ill conditioned. Note that for a given d, the expression in the right hand

side of (11) is the ratio of the variance of F ′
ω(x0, d) to its squared expected value.

It is impractical to try to compute the numerical value of the condition number κ . (For

one thing, it depends on the optimal solution x0 which, of course, is not known a priori.)

Rather, the value of the above analysis is conceptual. It indicates that instances that possess

a sharp optimal solution will be well conditioned and can be solved exactly with a small

sample size. In other problems, the objective function is flat near the minimizer. These cases

correspond to a very large value of κ from (11). The value of κ may even be infinite, since
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the directional derivative of f (·) may be zero in some directions. (This happens if the set

of optimal solutions of the true problem is not a singleton.) For these instances, the sample

size necessary to obtain a good solution to the true instance could be quite large. One of the

goals of this paper is to test the convergence behavior of the sample average approximation

on a number of real stochastic programming instances to empirically verify if this conceptual

analysis extends to practice.

4. Estimating the optimal value

Although the results discussed in the previous section indicate a high probability of identifying

an exact optimal solution of (1) under certain circumstances, they have little to say about

identifying the optimal objective value v∗. Even when N is large and x̂N is identical to x∗

for different samples of size N, the corresponding optimal objective values v̂N of (6) will in

general be different for each sample. Further, the expected value of v̂N is an underestimate

of v∗, as we discuss in Section 4.1.

Sampling methodology can be used to obtain estimates of upper and lower bounds on the

optimal value v∗ of the true problem (1). In this section, we give details on obtaining these

estimates (with approximate confidence intervals).

4.1. Lower Bound Estimates

Denote by v∗ and v̂N the optimal values of the true (1) and SAA (6) problems, respectively.

It is well known, and can be easily shown, that

E[v̂N ] ≤ v∗. (13)

The expected value E[v̂N ] can be estimated as follows. Generate M independent samples.

ξ 1, j , . . . , ξ N , j , j = 1, . . . , M , each of size N, and solve the corresponding SAA problems

min
x∈X

{
f̂ j

N (x) := N−1
N∑

i=1

F(x, ξ i, j )

}
, (14)

for each j = 1, . . . , M . Let v̂
j
N be the optimal value of problem (14), and compute

L N ,M := 1

M

M∑
j=1

v̂
j
N . (15)

The estimate L N ,M is an unbiased estimate of E[v̂N ]. Because of the property (13), it

provides a statistical lower bound for the true optimal value v∗.

When the M batches ξ 1, j , ξ 2, j , . . . , ξ N , j , j = 1, . . . , M , are i.i.d. (although the elements

within each batch do not need to be i.i.d.; they can for instance be obtained by LHS), we have

by the Central Limit Theorem that

√
M[L N ,M − E(v̂N )] ⇒ N

(
0, σ 2

L

)
, as M → ∞, (16)
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where σ 2
L = Var[v̂N ] and “⇒” denotes convergence in distribution. The sample variance

estimator of σ 2
L is

s2
L (M) := 1

M − 1

M∑
j=1

(
v̂

j
N − L N ,M

)2
. (17)

Defining zα to satisfy P{N (0, 1) ≤ zα} = 1 − α, and replacing σL by sL (M), we can

obtain an approximate (1 − α)-confidence interval for E[v̂N ] to be[
L N ,M − zα/2sL (M)√

M
, L N ,M + zα/2sL (M)√

M

]
. (18)

Note that the above confidence interval is based on the asymptotic result (16), and therefore

is approximate. For small values of M, one can use tα/2,M−1 critical values instead of zα/2,

which will produce slightly bigger confidence intervals.

The idea of the statistical lower bound (15), and statistical upper bounds discussed in

the next section, was introduced by Norkin, Pflug, and Ruszczyński (1998) and developed

further by Mak, Morton, and Wood (1999).

4.2. Upper Bound Estimates

An upper bound can be obtained by noting that for any x̂ ∈ X , we have immediately from

(1) that f (x̂) ≥ v∗. Hence, by choosing x̂ to be a near-optimal solution (possibly obtained by

solving an SAA problem (6)), and by using some unbiased estimator of f (x̂), we can obtain

an estimate of an upper bound for v∗. In particular, we can generate T independent batches

of samples of size N̄ , denoted by ξ 1, j , ξ 2, j , . . . .ξ N̄ , j , j = 1, 2, . . . , T , where each batch has

the unbiased property, namely

E

[
f̂ j

N̄ (x) := N̄−1
N̄∑

i=1

F(x, ξ i, j )

]
= f (x), for all x ∈ X. (19)

We can then use the average value defined by

UN̄ ,T (x̂) := T −1
T∑

j=1

f̂ j
N̄ (x̂), (20)

as an estimate of f (x̂). By applying the Central Limit Theorem again, we have that

√
T [UN̄ ,T (x̂) − f (x̂)] ⇒ N

(
0, σ 2

U (x̂)
)
, as T → ∞, (21)

where σ 2
U (x̂) := Var

[
f̂ N̄ (x̂)

]
. We can estimate σ 2

U (x̂) by the sample variance estimator

s2
U (x̂ ; T ) defined by

s2
U (x̂ ; T ) := 1

T − 1

T∑
j=1

[
f̂ j

N̄ (x̂) − UN̄ ,T (x̂)
]2

. (22)
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By replacing σ 2
U (x̂) with s2

U (x̂ ; T ), we can proceed as above to obtain a (1 − α)-confidence

interval for f (x̂):[
UN̄ ,T (x̂) − zα/2sU (x̂ ; T )√

T
, UN̄ ,T (x̂) + zα/2sU (x̂ ; T )√

T

]
. (23)

4.3. Estimating a Bound on the Gap

For a given feasible solution x̂ ∈ X we may wish to estimate the optimality gap f (x̂) − v∗.

Consider the difference

GapN ,M,N̄ ,T (x̂) := UN̄ ,T (x̂) − L N ,M , (24)

between the upper and lower bound estimates, defined in (20) and (15), respectively. By the

Law of Large Numbers we have that UN̄ ,T (x̂) tends to f (x̂) with probability one as N̄ T tends

to ∞, and L N ,M tends to E[v̂N ] with probability one as M tends to ∞. Moreover, under

the assumptions (A1), (A2) and (A4), E[v̂N ] tends to v∗ as N tends to ∞. It follows that

GapN ,M,N̄ ,T (x̂) tends to f (x̂) − v∗ with probability one as N , M, N̄ , and T all tend to ∞.

Of course, if x̂ is not an optimal solution, then f (x̂) − v∗ is strictly positive. Three factors

contribute to the error in the statistical estimator GapN ,M,N̄ ,T (x̂) of the gap f (x̂) − v∗. These

factors are

(i) variance of UN̄ ,T (x̂);

(ii) variance of L N ,M ;

(iii) bias v∗ − E[v̂N ].

Note that UN̄ ,T (x̂) and L N ,M are unbiased estimators of f (x̂) and E[v̂N ], respectively. Vari-

ances of these estimators can be estimated from the generated samples and may be reduced

by increasing the respective sample sizes N̄ , M and T. We have here that GapN ,M,N̄ ,T (x̂) is

an unbiased estimator of f (x̂) − E[v̂N ], and that

f (x̂) − E[v̂N ] ≥ f (x̂) − v∗.

That is, GapN ,M,N̄ ,T (x̂) overestimates the true gap f (x̂) − v∗, and has bias v∗ − E[v̂N ].

The bias constitutes the most serious problem in estimating f (x̂) − v∗. We have by the

Central Limit Theorem that N 1/2( f̂N (x) − f (x)) converges in distribution to Y (x), where

each Y (x) is a random variable having normal distribution with mean zero and the same

covariance structure as F(x, ξ (ω)). Furthermore, it is known that N 1/2(v̂N − v∗) converges

in distribution to minx∈S Y (x) (see Shapiro, 1991). Under mild additional conditions, we have

that the expected value of N 1/2(v̂N − v∗) converges to the expected value of minx∈S Y (x).

Although each Y (x) has mean (expected value) zero, the mean of the minimum of these

random variables could be negative and would tend to be smaller for problems with a larger

set S of optimal solutions. For a finite sample size N, one may expect that problems having a

large set of nearly optimal solutions will exhibit a similar behavior. That is, for ill conditioned

problems, this bias may be relatively large and tends to zero at a rate of O(N−1/2). The bias

can be reduced by increasing the sample size N of the corresponding SAA problems or by

sampling more intelligently (by using LHS, say). Of course, an increase in N leads to a

larger problem instance to be solved, while increases in N̄ , M and T to reduce components

(i) and (ii) of the error lead only to more instances of the same size to be solved. (See
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Kleywegt, Shapiro, and Homem-de-Mello 2001, Section 3.3] for a further discussion of the

bias problem.)

5. Testing for (Approximate) optimality

5.1. Testing for a Unique Solution with Repeated Independent Samples

Perhaps the simplest scheme for optimality verification is to ascertain whether a phenomenon

predicted by the results discussed in Section 3 occurs; that is, to see if the solutions of (6) for

a number of different samples of a given size N yield identical solutions x̂N . For stochastic

two-stage linear programs with unique optimal solution, we would expect to see the same

minimizer x̂N for almost all samples, for sufficiently large N. Although this test will not in

general yield coincident values of x̂N if the solution set S is not a singleton, or if the problem

is poorly conditioned and does not allow identification of the true solution for any reasonable

value of N, we can still sometimes use the minimizers x̂N to learn about the dimensionality

of S and its diameter.

Our implementation of this test is as follows. We choose N, and solve a single SAA

problem (6) for this N, terminating the algorithm when an upper bound on the estimated

relative decrease in the objective function attainable at the next iteration falls below a very

tight tolerance. We use the solution x̂N so calculated as a starting point for solving a number

(say, 10) of SAAs for the same N, with different samples, again using a tight convergence

tolerance. If all these SAAs terminate without moving away from the starting point x̂N , we

conclude that it is likely that x̂N coincides with x∗. If not, we repeat the entire process for a

larger value of N.

5.2. Comparing several points with repeated independent samples

Given two candidates x0, x1 ∈ X for an optimal solution of the problem (1), we can validate

whether one of these points has a significantly smaller value of the objective function by

using the statistical (paired) t-test. We generate T independent batches of samples of size N̄ ,

denoted by ξ 1, j , ξ 2, j , . . . , ξ N̄ , j , j = 1, 2, . . ., T , where each batch has the unbiased property

(19). We have from this property that

E
[

f̂ j
N̄ (x1) − f̂ j

N̄ (x0)
]

= E

[
N̄−1

N̄∑
i=1

(
F(x1, ξ i, j ) − F(x0, ξ i, j )

)] = f (x1) − f (x0) ,

so the average value defined by

DN̄ ,T (x0, x1) := T −1
T∑

j=1

[
f̂ j

N̄ (x1) − f̂ j
N̄ (x0)

]
(25)

can be used as an estimate of f (x1) − f (x0). By applying the Central Limit Theorem again,

we have that

√
T

[
DN̄ ,T (x0, x1) − ( f (x1) − f (x0))

] ⇒ N
(
0, σ 2

D(x0, x1)
)
, as T → ∞, (26)
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where σ 2
D(x0, x1) := Var[ f̂ N̄ (x1) − f̂ N̄ (x0)]. We can use the sample variance estimator

s2
D(x0, x1; T ) defined by

s2
D(x0, x1; T ) := 1

T − 1

T∑
j=1

[
f̂ j

N̄ (x1) − f̂ j
N̄ (x0) − DN̄ ,T (x0, x1)

]2

to construct a (1 − α)-confidence interval for f (x1) − f (x0), as follows:

[
DN̄ ,T (x0, x1) − zα/2sD(x0, x1; T )√

T
, DN̄ ,T (x0, x1) + zα/2sD(x0, x1; T )√

T

]
. (27)

Mak, Morton, and Wood (1999) use a common-random numbers technique like that

described above in connection with estimating the optimality gap defined in Section 4.3.

5.3. Testing KKT conditions I

In discussing the tests of optimality in this section, we assume that the feasible set X for the

problem (1) and the SAA problem (6) is defined by linear constraints, that is,

X := {
x ∈ Rn : aT

i x + bi ≤ 0, i ∈ I
}
, (28)

where I is a finite index set. It follows that X is polyhedral.

Another test for near-optimality of a candidate solution to (1) is based on statistical verifica-

tion of the first-order Karush-Kuhn-Tucker (KKT) optimality conditions, using subgradients

from the sample-average approximations (6) to build up an approximation to the subdiffer-

ential of f (·) in the vicinity of the candidate solution x̂ . Higle and Sen (1996, Section 3)

discuss a test that is related to the one described below. It differs in that it does not attempt

to calculate explicitly the distance between the subdifferential of f and the normal cone to X
at x̂ , but rather uses a kind of sampling technique to estimate this distance.

We discuss first the situation in which f (·) is differentiable at x̂ : that is, its subdifferential

∂ f (x̂), at x̂ , is a singleton. In the case of two-stage linear stochastic programming the (optimal

value) function Q(·, ξ ) is convex, and since it is assumed that the corresponding expected

value function is real valued, the subdifferential of f (x) can be taken inside the expectation

operator (see, e.g., Ioffe and Tihomirov, 1979, Theorem 4, page 381). It follows that ∂ f (x̂)

is a singleton if ∂ Q(x̂, ξ (ω)) is a singleton with probability one. This typically holds if the

involved probability distributions are continuous. On the other hand if the number of scenarios

is finite, then the expected value function is piecewise linear and cannot be differentiable

everywhere except in the trivial case in which it is affine. Nevertheless, it may still be

differentiable at the considered point x̂ .

Assuming that F(·, ξ (ω)) is differentiable at a given point x with probability one, we can

(under mild regularity conditions and, in particular, if F(·, ξ (ω)) is convex and f (·) real

valued) take the derivatives inside the expected value, that is,

∇ f (x) = E[∇x F(x, ξ (ω))]. (29)
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The following first-order optimality conditions hold at an optimal solution x∗ of the true

problem (1). There exist Lagrange multipliers λi ≥ 0, i ∈ I(x∗), such that

0 ∈ ∂ f (x∗) +
∑

i∈I(x∗)

λi ai , (30)

where

I(x∗) := {
i ∈ I : aT

i x∗ + bi = 0
}

is the index set of constraints active at x∗. In particular, if f (·) is differentiable at x∗, that

is, ∂ f (x∗) = {∇ f (x∗)} is a singleton, then the conditions (30) can be written in the familiar

KKT form:

∇ f (x∗) +
∑

i∈I(x∗)

λi ai = 0. (31)

We can also write (31) in the form

−∇ f (x∗) ∈ NX (x∗), (32)

where NX (x∗), the normal cone to X at x∗, can be written as follows:

NX (x∗) =
{ ∑

i∈I(x∗)

λi ai : λi ≥ 0, i ∈ I(x∗)

}
. (33)

Given a candidate solution x̂ , we propose in our KKT test to estimate the distance

δ(x̂) := dist(−∇ f (x̂), NX (x̂)) ,

where dist (a, C) denotes the distance from point a to set C. The KKT conditions hold at x̂
if and only if δ(x̂) = 0.

Assuming that equation (29) holds at the point x̂ , the gradient ∇ f̂N (x̂) of the sample-

average function provides an unbiased and consistent estimator of ∇ f (x̂). It follows that the

quantity δ̂N (x̂) defined by

δ̂N (x̂) := dist(−∇ f̂N (x̂), NX (x̂)) (34)

gives a consistent estimator of δ(x̂). Moreover, the covariance matrix of ∇ f̂N (x̂) can be

estimated, allowing a confidence region for ∇ f (x̂) to be constructed, and therefore allowing

a statistical validation of the KKT conditions. This test is discussed in detail in Shapiro and

Homem-de-Mello (1998).

Consider now the case in which the function f (·) in (1) is convex but is not differentiable

everywhere, as typically happens in the two-stage linear problem with recourse when the

distribution is discrete. We can write the first-order conditions (30) as follows:

∃γ ∈ ∂ f (x∗) such that −γ ∈ NX (x∗). (35)
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Defining

�(x̂) := inf
γ∈∂ f (x̂)

dist(−γ, NX (x̂)) , (36)

we have that �(x̂) = 0 if and only if x̂ satisfies the conditions (30). Similarly to (34), we

estimate �(x̂) by �̂N (x̂) defined as follows:

�̂N (x̂) := inf
γ∈∂ f (x̂)

dist(−γ, NX (x̂)). (37)

It is known that the Hausdorff distance between ∂ f (x) and its sample-average estimate ∂ f̂N (x)

converges with probability 1 to zero, and moreover the convergence is uniform in x on any

compact subset of Rn if the distribution of ξ (ω) has a finite support (Shapiro and Homem-

de-Mello, 2000, Lemma 2.4). In this sense, ∂ f̂N (x) provides a consistent estimator of ∂ f (x),

and it follows that �̂N (x̂) is a consistent estimator of �(x̂).

It is, of course, impractical to calculate the entire subdifferential ∂ f̂N (x̂). However, when f
is convex and piecewise linear (as in the case of two-stage linear programs with recourse), then

in the neighborhood of any point x̂ there exist a finite number of points x1, x2, . . ., x� such

that Q is differentiable at these points and ∂ f (x̂) = conv{∇ f (x1), ∇ f (x2), . . ., ∇ f (x�)}.
This observation suggests the following test.

(i) Generate M points x j , j = 1, 2, . . ., M , randomly distributed in a small neighborhood

of x̂ .

(ii) Calculate an estimate γ̂ j of a subgradient of f at each point x j . This can be done either

by using a common sample for all subgradients, that is, γ̂ j ∈ ∂ f̂N (x j ), where f̂N is

defined by the same sample for each argument x j ; or by using a different sample for

each point x j .

(iii) Calculate the minimal distance of the convex hull of γ̂ j , j = 1, 2, . . ., M , to −NX (x̂),

given by the optimal value δ̂M
N (x̂) of the following problem:

minα dist
(
− ∑M

j=1 α j γ̂ j , NX (x̂)
)

, subject to (38)

∑M

j=1
α j = 1, α j ≥ 0, j = 1, 2, . . . , M.

The convex hull of γ̂ j , j = 1, 2, . . ., M . converges (in the Hausdorff metric) to ∂ f (x̂) with

probability 1 as N and M both tend to infinity. It follows that (38) yields a consistent estimate

of δ(x̂).

Note that the convex hull of γ̂ j , j = 1, 2, . . ., M , actually converges to the convex hull

of the set ∪‖x−x̂‖≤ε∂ f (x), where ε > 0 defines a small neighborhood of x̂ . Although, since

f (·) is piecewise linear, for ε sufficiently small this set will coincide with ∂ f (x̂), we should

in practice choose ε to be a value corresponding to the error we are prepared to tolerate in x̂ .

That is, if we wish only to verify that x̂ is within ε of an exact solution, it suffices to use this

value of ε in the test.

5.4. Testing KKT conditions II

Here we consider a variant of the test proposed in the previous section. As above, the aim

is to estimate the quantity �(x̂) defined by (36). Rather than building up an estimate of the

Springer



228 Ann Oper Res (2006) 142: 215–241

subgradient by taking randomly distributed points in a small neighborhood of x̂ , we use

different samples of size N to generate different elements of the true subdifferential ∂ f (x̂).

The approach is as follows.

(i) For given N and M, choose M samples of size N that is, {ξ i, j , ξ 2, j , . . . , ξ N , j }, j =
1, 2, . . ., M .

(ii) For each j = 1, 2, . . ., M , and defining f̂ j
N as in (14), calculate an element γ̂ j ∈

∂ f̂ j
N (x̂).

(iii) Calculate the minimal distance of the convex hull of γ̂ j , j = 1, 2, . . ., M , to −NX (x̂)

by solving (38).

Note that this test is “stricter” than the test of the previous section, because it constructs

an approximation to ∂ f (x̂) by sampling subgradients at the fixed point x̂ . Consequently,

unless ∂ f (x̂) is a singleton, there is no guarantee that the convex hull of γ̂ j , j = 1, 2, . . ., M ,

converges (in the Hausdorff metric) to ∂ f (x̂) with probability one as N and M tend to infinity.

Hence, in general, this test is not a consistent KKT test.

6. An algorithm for two-stage stochastic linear programs with recourse

In this section, we focus our attention on two-stage stochastic linear programs with recourse

over a discrete scenario space, which are the subjects of our computational experiments. We

discuss briefly the algorithm used in the experiments, referring the reader to Linderoth and

Wright (2003) for further details.

The problem we consider is (2), with second-stage problems defined by (3), with fixed

recourse, and with a finite number K of scenarios. We thus have Q defined by (4), where ξk

defines the data vector (qk, hk, Tk, W ), k = 1, 2, . . . , K . The optimality conditions for each

second-stage problem (3) with ξ = ξk are that there exists a vector πk such that

0 ≤ qk − W T πk ⊥ yk ≥ 0, W yk = hk − Tk x̂ .

(The symbol ⊥ represents a complementarity condition, which we can also state as requiring

that the inner product of these two nonnegative vectors must be zero.) It can be shown that

−T T
k πk ∈ ∂ Q(x, ξk).

From Rockafellar (1970, Theorem 23.8), we have that

c +
K∑

k=1

pk∂ Q(x, ξk) = c + ∂Q(x),

and therefore

c −
K∑

k=1

pk T T
k πk ∈ c + ∂Q(x). (39)

Since the evaluation of each Q(x, ξk) requires solution of (3) and since πk is simply

the dual solution of this linear program, it follows that we can obtain an element of the
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subdifferential for the objective function in (2) for little more than the cost of evaluating the

function alone.

Our tests require the solution of several SAA problems (6), which have the same form as

described above except that we work with a subset of N (instead of K) scenarios, and the

probabilities pk = 1/N .

The algorithm described in Linderoth and Wright (2003) uses subgradient information

to construct a lower bounding piecewise-linear approximation to the objective function in

(2). Candidate iterations are generated by finding the minimizer of this model subject to the

constraints Ax = b, x ≥ 0 from (2) and a trust-region constraint of the form ‖x − x I ‖∞ ≤ �,

where x I is the “incumbent” (roughly speaking, the best point found so far), and � is a trust-

region radius. This bundle-trust-region subproblem can be formulated as a linear program and

therefore solved efficiently. Convergence to a solution (existence of a solution is specified in

the assumption (A4)) is assured by means of rules for adjusting the value of �, for accepting

candidate iterates as the new incumbent or rejecting them, and for managing the subgradient

information. The algorithm is terminated when an upper bound on the relative improvement

in the objective function attainable at the next iteration falls below a specified tolerance.

7. Computational grids

The algorithm described in Section 6 is implemented to run on a computational grid built using

Condor (Livny et al., 1997). The Condor system manages distributively owned collections of

workstations known as Condor pools. A unique and powerful feature of Condor is that each

machine’s owner specifies the conditions under which jobs from other users are allowed to

run on his machine. The default policy is to terminate a Condor job when a workstation’s

owner begins using the machine, and migrate it to some other machine. Under this policy,

Condor jobs use only compute cycles that would have otherwise been wasted. Because of

the minimal intrusion of the Condor system, workstation owners often are quite willing

to contribute their machines to Condor pools, and large pools can be built. Table 1 gives

summary statistics about the resources that made up the computational grid used in many of

the experiments of Section 9.

The pool of workers typically grows and shrinks dynamically during the computation, as

some workers become available to the job and others are reclaimed by their owners or by

other Condor users. It is important for algorithms using this platform to be able to handle

the dynamism of the environment, the possibility that the computations on some workers

may never be completed, and the high latencies in transferring information between master

and workers. To help implement our algorithm on the Condor platform, we used the runtime

support library MW (Goux et al., 2000, 2001), which supports parallel computations of the

master-worker type on the computational grid.

Table 1 Computational Grid
used for Experiments Number Type of Machine Location

414 Intel/Linux PC Argonne

579 Intel/Linux PC Wisconsin

31 Intel/Solaris PC Wisconsin

133 Sun/Solaris Workstation Wisconsin

512 Intel/Linux PC New Mexico
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Table 2 Test Problem Dimensions

Name Application Scenarios First-Stage Size Second-Stage Size

20term Vehicle Assignment 1.1 × 1012 (3, 64) (124, 764)

gbd Aircraft Allocation 6.5 × 105 (4, 17) (5, 10)

LandS Electricity Planning 106 (2, 4) (7, 12)

ssn Telecom Network Design 1070 (1, 89) (175, 706)

storm Cargo Flight Scheduling 6 × 1081 (185, 121) (528, 1259)

A typical computation in this environment proceeds as follows: A master processor (typi-

cally the user’s workstation or a powerful server) maintains a queue of tasks which it wishes

the worker processors to solve, and a list of currently available workers. MW manages these

queues and takes responsibility for assigning tasks to available workers. When a worker

completes its task, it returns the results to the master, which performs some computation in

response, possibly generating more tasks for the task queue.

Parallelism in the algorithmic approach of Section 6 arises in two places. First, solution

of the second-stage linear programs can be carried out independently for each scenario ξk .

Typically, we group these scenarios into “chunks” and assign the solution of each chunk to a

worker processor. The master processor manages the function and subgradient information

returned by the workers. The second source of parallelism arises from considering more

than one candidate iterate at a time. We maintain a “basket” of possible new incumbents;

at any given time, tasks for evaluating the objective function for each iterate in the basket

are being performed on the workers. When evaluation of the function for a point in the

basket is completed, the master decides whether or not to make it the new incumbent and

solves a trust-region subproblem to generate a new candidate. Consideration of more than

one candidate at a time makes the algorithm less “synchronous,” making it less sensitive to

slow or unreliable workers.

For the statistical tests that do not require the solution of a master problem, the batches or

scenarios can be processed completely independently of each other. No centralized control

is needed, except to gather statistics and results of the runs. Such solution approaches lend

themselves extremely well to computing platforms where the processors themselves are

diverse and loosely coupled, such as the computational grid used in our experiments.

8. Test problems

Here we briefly describe the test problems used in our experiments. All are two-stage stochas-

tic linear programs with recourse obtained from the literature, though in some cases we refined

the scenario distribution to increase the total number of scenarios. The input data sets we

used, in SMPS format, can be obtained from the following site:

www.cs.wisc.edu/∼swright/stochastic/sampling/

8.1. 20term

This problem is described by Mak, Morton, and Wood (1999). It is a model of a motor freight

carrier’s operations, in which the first-stage variables are positions of a fleet of vehicles at

the beginning of a day, and the second-stage variables move the fleet through a network to
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satisfy point-to-point demands for shipments (with penalties for unsatisfied demands) and to

finish the day with the same fleet configuration as at the start.

8.2. gdb

This problem is derived from the aircraft allocation problem described by Dantzig (1963,

Chapter 28). Aircraft of different types are to be allocated to routes in a way that maxi-

mizes profit under uncertain demand. Besides the cost of operating the aircraft, there are

costs associated with bumping passengers when the demand for seats outstrips the capac-

ity. In this model, there are four types of aircraft flying on five routes, and the first-stage

variables are the number of aircraft of each type allocated to each route. (Since three of the

type-route pairs are infeasible, there are 17 variables in all.) The first-stage constraints are

bounds on the available number of aircraft of each type. The second-stage variables indi-

cate the number of carried passengers and the number of bumped passengers on each of the

five routes, and the five second-stage constraints are demand balance equations for the five

routes. The demands (the right-hand sides of the five demand balance equations) are ran-

dom. In the original model, there are a total of only 750 scenarios. By refining the possible

demand states (to allow between 13 and 17 states on each route), we obtain a model with

646, 425 scenarios.

8.3. LandS

Our test problem LandS is a modification of a simple problem in electrical investment plan-

ning presented by Louveaux and Smeers (1988). The four first stage variables represent ca-

pacities of different new technologies, and the 12 second-stage variables represent production

of each of three different modes of electricity from each of the four technologies technolo-

gies. First-stage constraints represent minimum total capacity and budget restrictions. The

second-stage constraints include capacity constraints for each of the four technologies, and

three demand constraints, which have the form

4∑
i=1

yi j ≥ ξ j , j = 1, 2, 3,

where ξ1, ξ2, and ξ3 are the (possibly uncertain) demands. All other data is deterministic.

In [25], ξ2 and ξ3 are fixed at 3 and 2, respectively, while ξ1 takes on three possible values.

The total number of scenarios is therefore 3. We modified the problem to allow 100 different

values for each of these random parameters, namely,

ξ j = .04(k − 1), k = 1, 2, . . . , 100, j = 1, 2, 3,

each with probability .01. Since we assume independence of these parameters, the total

number of scenarios is 106, each with equal probability 10−6.

8.4. SSN

The SSN problem of Sen, Doverspike, and Cosares (1994) arises in telecommunications

network design. The owner of the network sells private-line services between pairs of nodes

Springer



232 Ann Oper Res (2006) 142: 215–241

in the network. When a demand for service is received, a route between the two nodes with

sufficient bandwidth must be identified for the time period in question. If no such route is

available, the demand cannot be satisfied and the sale is lost. The optimization problem is to

decide where to add capacity to the network to minimize the expected rate of unmet requests.

Since the demands are random (the scenarios are based on historical demand patterns), this

is a stochastic optimization problem.

The formulation in Sen, Doverspike, and Cosares (1994) is as follows:

minQ(x) subject to eT x ≤ b, x ≥ 0, (40)

where x is the vector of capacities to be added to the arcs of the network, e is the vector

whose components are all 1, b (the budget) is the total amount of capacity to be added,

and Q(x) is the expected cost of adding capacity in the manner indicated by x . We have

Q(x) = Ep Q(x, d(ω)), where

Q(x, d) := min
f,s

{eT s : A f ≤ x + c, E f + s = d(ω), ( f, s) ≥ 0}. (41)

Here, d = d(ω) is the random vector of demands; e is the vector whose components are

all 1; the columns of A are incidence vectors that describe the topology of the network; f is

the vector whose components are the number of connections between each node pair that use

a certain route; c is the vector of current capacities; s is the vector of unsatisfied demands

for each request; and the rows of E have the effect of summing up the total flow between a

given node pair, over all possible routes between the nodes in that pair.

In the data set for SSN, there are total of 89 arcs and 86 point-to-point pairs; that is, the

dimension of x is 89 and of d(ω) is 86. Each component of d(ω) is an independent random

variable with a known discrete distribution. Specifically, there are between three and seven

possible values for each component of d(ω), giving a total of approximately 1070 possible

complete demand scenarios.

8.5. Storm

This problem is based on a cargo flight scheduling application described by Mulvey and

Ruszczyński (1995, p. 486 et seq.). The aim is to plan cargo-carrying flights over a set of

routes in a network, where the amounts of cargo are uncertain. Each first-stage variable

represents the number of aircraft of a certain type assigned to a certain route. The first-stage

equations represent minimum frequencies for flights on each route and balance equations

for arrival and departure of aircraft of each type at the nodes in the network. Second-stage

variables include the amounts of cargo to be shipped between nodes of the network, the

amounts of undelivered cargo on each route, and the unused capacity on each leg of each

route. Second-stage constraints include demand constraints and balance equations. Only

the demands (the right-hand sides of the 118 demand constraints) are random. Mulvey and

Ruszczyński (1995) generate scenarios from a uniform distribution of ±20% around the

basic demand forecast. In our data set, we used five scenarios for each demand, namely, the

multiples .8, .9. 1.0, 1.1 and 1.2 of the basic demand. Each scenario was assigned a probability

of 0.2. Since the demand scenarios were allowed to vary independently, our model has a total

of 5118 scenarios, or approximately 6 × 1081.
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9. Computational results

9.1. Optimal value estimates

Summaries of our experiments to determine upper and lower bounds on the optimal objective

values are shown in Tables 3 and 4. Our experimental procedure is as described in Sections 4.1

and 4.2. For lower bound estimates, we calculated values of v̂
j
N (see (14)) for j = 1, 2, . . . , M ,

with M between 7 and 10, and N = 50, 100, 500, 1000, 5000. The 95% confidence interval

(18) for E[v̂N ] is tabulated for each problem and for each sample size N in Tables 3 and

4. Monte Carlo (MC) was used to select the samples in Tables 3, while Latin Hypercube

sampling (LHS) was used in Table 4.

These tables also show upper bound estimates. For the computed minimizer x̂ j
N in each

of the lower-bound trials j = 1, 2, . . . , M , we estimated of f (x̂ j
N ) by sampling T = 50

Table 3 Lower and Upper Bound Estimates for v∗, Monte Carlo Sampling

Problem N E v̂N Best f (x̂ j
N )

(95% conf. int.) (95% conf. int.)

20term 50 253361.33 ± 944.06 254317.96 ± 19.89

20term 100 254024.89 ± 800.88 254304.54 ± 21.20

20term 500 254324.33 ± 194.51 254320.39 ± 27.36

20term 1000 254307.22 ± 234.04 254333.83 ± 18.85

20term 5000 254340.78 ± 85.99 254341.36 ± 20.32

gbd 50 1678.62 ± 66.73 1655.86 ± 1.34

gbd 100 1595.24 ± 42.41 1656.35 ± 1.19

gbd 500 1649.66 ± 13.60 1654.90 ± 1.46

gbd 1000 1653.50 ± 12.32 1655.70 ± 1.49

gbd 5000 1653.13 ± 4.37 1656.40 ± 1.31

LandS 50 227.19 ± 4.03 225.71 ± 0.12

LandS 100 226.39 ± 3.99 225.55 ± 0.12

LandS 500 226.02 ± 1.43 225.61 ± 0.12

LandS 1000 225.96 ± 0.76 225.70 ± 0.13

LandS 5000 225.72 ± 0.52 225.70 ± 0.12

ssn 50 4.11 ± 1.23 12.68 ± 0.05

ssn 100 7.66 ± 1.31 11.20 ± 0.05

ssn 500 8.54 ± 0.34 10.28 ± 0.04

ssn 1000 9.31 ± 0.23 10.09 ± 0.03

ssn 5000 9.98 ± 0.21 9.86 ± 0.05

storm 50 15506271.7 ± 22043.4 15499092.17 ± 845.26

storm 100 15482549.9 ± 19213.8 15499056.00 ± 623.30

storm 500 15498139.8 ± 4152.8 15498468.02 ± 684.65

storm 1000 15500879.4 ± 4847.1 15498893.02 ± 695.90

storm 5000 15498121.3 ± 1879.0 15498646.89 ± 696.08
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Table 4 Lower and Upper Bound Estimates for v∗, Latin Hypercube Sampling

Problem N E v̂N Best f (x̂ j
N )

(95% conf. int.) (95% conf. int.)

20term 50 254307.57 ± 371.80 254328.69 ± 4.73

20term 100 254387.00 ± 252.13 254312.50 ± 5.77

20term 500 254296.43 ± 117.95 254315.82 ± 4.59

20term 1000 254294.00 ± 95.22 254310.33 ± 5.23

20term 5000 254298.57 ± 38.74 254311.55 ± 5.56

gbd 50 1644.21 ± 10.71 1655.628 ± 0.00

gbd 100 1655.62 ± 0.00 1655.628 ± 0.00

gbd 500 1655.62 ± 0.00 1655.628 ± 0.00

gbd 1000 1655.62 ± 0.00 1655.628 ± 0.00

gbd 5000 1655.62 ± 0.00 1655.628 ± 0.00

LandS 50 222.59 ± 2.75 225.647 ± 0.004

LandS 100 225.57 ± 0.16 225.630 ± 0.004

LandS 500 225.65 ± 0.05 225.628 ± 0.004

LandS 1000 225.64 ± 0.03 225.633 ± 0.005

LandS 5000 225.62 ± 0.02 225.624 ± 0.005

ssn 50 10.10 ± 0.81 11.380 ± 0.023

ssn 100 8.90 ± 0.36 10.542 ± 0.021

ssn 500 9.87 ± 0.22 10.069 ± 0.026

ssn 1000 9.83 ± 0.29 9.996 ± 0.025

ssn 5000 9.84 ± 0.10 9.913 ± 0.022

storm 50 15497683.7 ± 1078.8 15498722.14 ± 17.97

storm 100 15499255.3 ± 1011.7 15498739.40 ± 18.34

storm 500 15498661.4 ± 280.8 15498733.67 ± 17.71

storm 1000 15498598.1 ± 148.5 15498735.73 ± 19.93

storm 5000 15498657.8 ± 73.9 15498739.41 ± 19.11

batches of N̄ = 20000 scenarios, thereby deriving an estimate UN̄ ,T (x̂ j
N ) from the formula

(20). We then selected the point x̂ j
N with the lowest value of UN̄ ,T (x̂ j

N ), and generated a

new, independent set of T = 50 batches of N̄ = 20000 scenarios, to obtain a new estimate

UN̄ ,T (x̂ j
N ) and a 95% confidence interval from (23). These are the intervals reported in the

last columns of Tables 3 and 4.

Further details of these experiments are given in the appendix of the technical report

(Linderoth, Shapiro, and Wright, 2002), which is an expanded version of this paper.

Several comments about these results are in order. The use of LHS produced significant

improvements over MC sampling on all problems; in fact, the improvements were dramatic

for all problems except SSN. The bias v∗ − E[v̂N ], which can be estimated by comparing the

corresponding entries in the last two columns of Tables 3 and 4, is significantly better with

the LHS scheme of Table 4. For the two smaller problems gbd and LandS, the results from

Table 4 strongly suggest that the optimal solution value is identified exactly; we discuss this

issue further in Section 9.2. For 20term and storm, the relative gap appears small, with storm
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showing a remarkable improvement in the variance of the lower bound estimate v̂N with the

use of LHS. For 20term, gbd, LandS, and storm, the upper bound estimate is remarkably

unaffected by the value of N, suggesting that the approximate solutions x̂ j
N obtained even

for sample sizes N = 100 are of similar quality to this obtained for N = 5000. This fact is

particularly notable in the case of storm, a problem with a huge number of scenarios.

The conditioning of SSN is significantly worse than than of the other problems. A sample

size of at least N = 500 was required to identify approximate solutions of reasonable quality,

and the quality continues to improve as N is increased to 1000 and 5000. LHS produces

improvements in both the optimality gap and the variance of the upper- and lower-bound

estimates, and our results indicate strongly that the true optimal value is about 9.90.

These experiments were run over a number of weeks on the computational grid detailed

in Table 1. Our goal was not to maximize the efficiency of these runs (which is a difficult

task, in any case, on a dynamic computational platform such as this one). Nevertheless, a

few words on the computational effort are in order. The number of processors used at any

one time was typically fewer than 100. The wall clock time required to solve a single SAA

problem ranged from less than one minute (for gbd with N = 50) to around 30–45 minutes

(for SSN with N = 5000). (Recall that 7–10 such problems are solved per line of Tables 3

and 4.) For each line in the last column of Table 3. T N̄ = 106 second-stage linear programs

were solved. Each such instance typically required 25–45 processors and 15–30 minutes of

wall clock time. The upper bound estimates using Latin Hypercube samples (shown in the last

column of Table 4) required considerably more effort. Rather than generate all the scenarios

and pass them to the workers (which would have required too much communication), we

send only a random seed for each batch to each worker, and require the worker to generate the

full set of scenarios, stopping once it has calculated its own “slice” of scenarios. Hence, the

runtimes are dominated by sampling computations rather than by optimization calculations.

To compute each line of the last column in Table 4, about 80–120 processors and 0.5–3 hours

of wall clock time were typically required,

9.2. Convergence of approximate solution

Taking the approximate solutions x̂ j
N , j = 1, 2, . . . , M in the Latin Hypercube experiments

with N = 5000, we calculated pairwise distances between six of these solutions, for the

problems 20term, gbd, LandS, SSN, and storm. The resulting “distance matrices” are shown

in Tables 5–9. Table 6 confirms that we appear to have identified an exact solution for gbd;

that is, x̂ j
N ≡ x∗, where {x∗} = S is the unique solution of (2), (3), (4). For 20term and SSN,

Tables 5 and 8 suggest an “ill conditioned” problem—one in which a small change to the

data results in a large change to the solution set S. For these problems, it is quite possible

that S is a set with a fairly large diameter. It is even more likely that S lies in a shallow

basin; that is, there is a large, feasible neighborhood of S within which the value of f is not

much different from the optimal value v∗. For the storm problem, on the other hand, Table

9 indicates that the approximate solutions x̂ j
N , j = 1, 2, . . . , M are quite close together for

N = 5000, suggesting that they may be converging to a unique minimizer x∗ that will be

identified at a larger sample size N. We report below on further investigations of this issue,

but note here that the result is somewhat surprising; given the very large number of scenarios

for this problem we might have expected it to display similar symptoms of ill conditioning

to 20term or SSN.

We performed the repeated sampling test of Section 5.1 on the gbd, LandS, and storm

problems. For gbd and LandS, we solved an SAA with N = 5000 (using LHS), then solved 10

more different instances with different samples of the same size, with a very tight convergence
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Table 5 Distance Matrix for Six
SAAs of 20term with N = 5000,
Latin Hypercube Sampling

0.000 16.1 26.5 296 278 263

16.1 0.000 20.3 297 279 264

26.5 20.3 0.000 291 273 259

296 297 291 0.000 49.2 67.0

278 279 273 49.2 0.000 31.9

263 264 259 67.0 31.9 0.000

Table 6 Distance Matrix for Six
SAAs of gbd with N = 5000,
Latin Hypercube Sampling

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

Table 7 Distance Matrix for Six
SAAs of LandS with N = 5000,
Latin Hypercube Sampling

0.000 0.0566 0.0980 0.0566 0.0566 0.0800

0.0566 0.000 0.0980 0.000 0.000 0.0566

0.0980 0.0980 0.000 0.0980 0.0980 0.1497

0.0566 0.000 0.0980 0.000 0.000 0.0566

0.0566 0.000 0.0980 0.000 0.000 0.0566

0.0800 0.0566 0.1497 0.0566 0.0566 0.000

Table 8 Distance Matrix for Six
SAAs of SSN with N = 5000,
Latin Hypercube Sampling

0.00 19.9 13.3 22.0 16.9 21.8

19.9 0.00 21.6 27.3 23.0 18.1

13.3 21.6 0.00 22.4 19.5 22.3

22.0 27.3 22.4 0.00 26.4 30.6

16.9 23.0 19.5 26.4 0.00 26.7

21.8 18.1 22.3 30.6 26.7 0.00

tolerance of 10−12. The results are as expected from the observations above; all 10 additional

trials terminated without stepping away from their starting point, effectively confirming that

all instances have the same solution x̂N .

For storm, we tried repeated sampling with sample sizes N = 20000 and N = 50000

(with LHS), but did not obtain convergence of the solution of the SAA to an identical value.

Close examination of the solutions, however, suggested a solution set S with a very specific

structure. In the 10 trials for N = 20000, the 10 solutions were essentially identical in all

but one of their 121 components. The exception was the 112th component, which varied

between 1.46003333 and 1.47593333. In the 10 trials for N = 50000, the 10 solutions were

again identical in all components except the 112th, which took values between 1.46123333

and 1.47210000. It seems likely that the condition number κ as defined by (11) is very large

(possibly infinite), yet this problem is quite well behaved, in that for small ε, the ε-optimal

solution set Sε is close to being a short line segment, rather than a large multidimensional

basin.
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Table 9 Distance Matrix for Six
SAAs of storm with N = 5000,
Latin Hypercube Sampling

0.000 0.0187 0.0037 0.0105 0.0147 0.0069

0.0187 0.000 0.0153 0.0095 0.0078 0.0124

0.0037 0.0153 0.000 0.0069 0.0122 0.0033

0.0105 0.0095 0.0069 0.000 0.0097 0.0036

0.0147 0.0078 0.0122 0.0097 0.000 0.0105

0.0069 0.0124 0.0033 0.0036 0.0105 0.000

For SSN, we tested with two SAAs at each sample size N = 10000, 20000, and 40000,

all using LHS, but found that the two solutions obtained for each value of N differed. We

conclude that either the solution set S for SSN is not a singleton, or else that the values of N
we tried were not large enough to identify the unique solution x∗.

9.3. Comparison of several points

We performed a comparison of several candidate solution points for the SSN problem, using

the technique described in Section 5.2. We compared three points. The first point x0 was

obtained by solving an SAA with sample size N = 250000, generated using LHS. To obtain

the second point x1, we generated an SAA with a different sample of size N = 250000, and

applied our trust-region algorithm starting from the first point x0, with initial trust-region

radius 10−3. The point x1 was the first point accepted by this algorithm as having a lower

value of f̂N for this sample. For the point x2, we used the same SAA as was used to obtain

x1, but this time applied our algorithm with an initial trust-region radius of 1. The point x2

was the first point accepted by the algorithm. (At the time it was generated, the trust-region

radius had been reduced to .4 by the algorithm.)

We applied the test of Section 5.2 N̄ = 25000 (samples generated by LHS) and T =
2000 to obtain confidence intervals for the function values at x0, x1, and x2, and the gaps

f (x1) − f (x0) and f (x2) − f (x0). Results are shown in Table 10. They show that x0 almost

certainly has the lowest function value of the three. In this sense, the second SAA (which was

used to obtain x1 and x2) appears to give a less accurate approximation to the true function f
in the vicinity of these three points than does the first SAA (for which x0 was the minimizer).

It also confirms the impression gained from Table 4 that the optimal value x∗ for SSN is very

close to 9.90. We can also conclude that the solution set for SSN is flat in the neighborhood

of the optimal solution.

Table 10 Confidence Intervals
for Function Values and Gaps for
SSN at Three Points

Quantity Estimate (95% conf. int.)

f (x0) 9.9016607 ± .0035396

f (x1) 9.9016731 ± .0035396

f (x2) 9.9043870 ± .0035302

f (x1) − f (x0) 1.24118 × 10−5 ± 2.910 × 10−7

f (x2) − f (x0) 2.72648 × 10−3 ± 4.96724 × 10−5
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Table 11 Discrepancy in KKT
Conditions for 20term Using Test
of Section 5.3

M δ̂M
N (x̂) λ

50 1065 (−111.9,0,0)

500 53.08 (−100, −7 × 10−12, 0)

1000 10.89 (−100, −1 × 10−11, 0)

2000 3.53 (−100, −8 × 10−14, 0)

9.4. KKT tests for near-optimality

We now report on the KKT tests described in Sections 5.3 and 5.4, applied to the problems

20term and SSN.

For 20term, we set x̂ to be a computed solution of an SAA with N = 100000. The two

first-stage equality constraints were active at this point, of course, but the single inequality

constraint was inactive. We calculated approximations to the distances δ̂M
N (x̂) defined in (38)

using an �1 norm, since this allowed us to formulate the distance calculation as a linear

program, which we solved with a simple AMPL model (Fourer, Gay, and Kernighan, 2003).

For the test of Section 5.3, we generated each of the M subgradients γ̂i , i = 1, 2, . . . , M , at

points x in a neighborhood of radius 10−2 around x̂ . We used MC sampling with N = 100000

to generate the subgradients, using a different sample for each point.

Results are shown for different values of M in Table 11. The final column contains the

values of λ, the multiplier vector for the active constraints at the nearest point in NX (x̂) to the

approximate subdifferential of f. The third component of λ is uniformly zero since the third

constraint is inactive, while the first two components are clearly converging to −100 and 0,

respectively. The distance to the subdifferential approximation appears to converge toward

zero as more gradients are gathered, as we would expect, since the convex hull covers the

subdifferential more fully as the number of gradients increases.

Although useful in verifying near-optimality, it is clear that this test is not a practical

termination test for an algorithm, because the time required to compute enough gradients to

verify optimality is too great.

For SSN, we performed the test described in Section 5.4 to the point x0 discussed in Section

9.3. A subgradient was generated at each of the T = 2000 SAAs used in the experiment of

Section 9.3, where each SAA has N̄ = 25000 and is obtained by LHS. The single inequality

constraint in (40) is active at this solution, as are a number of the lower bounds of zero on

the components of x. We performed this test using different values M for the size of the

subgradient bundle. In each case we chose simply the first M of the 2000 subgradients in the

list.

Results are shown in Table 12. The second column indicates the distance between the

convex hull of the subgradient bundle and the normal cone of the constraints, and the third

Table 12 Discrepancy in KKT
Conditions for SSN Using Test of
Section 5.4

M δ̂M
N (x̂) λ

5 .254847 .050000

20 .250329 .050000

250 .238522 .049774

1000 .237175 .049733

2000 .236541 .049878
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column indicates the Lagrange multiplier for the inequality constraint eT x ≤ b in (40). We

see that the distance does not shrink to zero as M increases, indicating either that the point

x0 is some distance from optimality, or that the convex hull of the subgradient bundle is not

converging to ∂ f (x0). We conjecture that the latter is the case, since we have good evidence

from the other tests that x0 is close to optimal, and we know in general that Hausdorff

convergence of the subgradient bundle to ∂ f (x0) need not occur. Our experience with this

test indicates that it is not valuable.

10. Conclusions

We have described experiments with sample-average approximations to five two-stage

stochastic linear programs with recourse. We obtained confidence intervals for upper and

lower bounds on the optimal value of these five problems, by solving several SAA instances

for different sample sizes, using two different sampling techniques. We then investigated

the optimality of various candidate solutions using a number of tests motivated by recently

developed theory, including tests that are applicable to problems with a singleton solution

set and tests based on satisfaction of the Karush-Kuhn-Tucker conditions for optimality. We

found that the five test problem varied widely in difficulty, in that good approximations to

the true optimal solutions could be obtained with small sample sizes in some cases, while

larger sample sizes were needed in others.

The main finding of this study is that in all examined problems it was possible to compute

a good solution, with a proven accuracy, of the true problem with a reasonable computational

effort. This is especially notable since the last two problems (ssn and storm) were large,

both in the number of random variables and the number of scenarios. As it is predicted by

the theory, ill conditioned problems are more difficult to solve. For such problems a larger

sample is required and the bias problem of the lower statistical bound is more serious. In that

respect we found that the ssn problem is ill conditioned with a large set of optimal or nearly

optimal solutions. Yet with a sample size of N = 1000 it was possible to solve this problem

with a proven accuracy of about 0.5% of the relative error. It was also interesting to observe

that even very large problems can be well conditioned and that a small sample is sufficient

to solve such problems exactly.

All these experiments were made possible by the availability of the ubiquitous computing

power of the computational grid, and by software tools such as Condor and MW that enable

us to run practical computations on the grid. All these ingredients, along with an algorithm

that runs effectively on the grid, were necessary in building the software tool ATR (described

comprehensively in Linderoth and Wright (2003), which was needed to solve the multitude

of instances required by this study.
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