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Abstract In this paper, we study alternative primal and dual formulations of multistage

stochastic convex programs (SP). The alternative dual problems which can be traced to

the alternative primal representations, lead to stochastic analogs of standard deterministic

constructs such as conjugate functions and Lagrangians. One of the by-products of this

approach is that the development does not depend on dynamic programming (DP) type

recursive arguments, and is therefore applicable to problems in which the objective function is

non-separable (in the DP sense). Moreover, the treatment allows us to handle both continuous

and discrete random variables with equal ease. We also investigate properties of the expected

value of perfect information (EVPI) within the context of SP, and the connection between

EVPI and nonanticipativity of optimal multipliers. Our study reveals that there exist optimal

multipliers that are nonanticipative if, and only if, the EVPI is zero. Finally, we provide

interpretations of the retroactive nature of the dual multipliers.

Keywords Stochastic Programming . Duality . EVPI

1. Introduction

Stochastic programming (SP) is a powerful modeling paradigm that allows decision making

models to incorporate uncertain parameters. One of the main strengths of the SP methodology

is its ability to consider the impact of a variety of scenarios when evaluating a proposed

solution, in contrast to the more restrictive approach of deterministic optimization models, in

which only a single scenario is considered. Also, despite the large scale nature of stochastic

optimization models, several successful applications of SP models have been reported in the

literature (e.g., Cariño et al, 1994; Sen, Doverspike and Cosares, 1994). Notwithstanding

these successes, there remain some conceptual and computational barriers which restrict our

current understanding of SP models and algorithms. In an effort to overcome some of these
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barriers, this paper is devoted to characterizations of dual problems for multistage stochastic

convex programs.

In order to preview our results in an economic context, consider an SP model that attempts

to study national farm output by minimizing total expected cost of production subject to

demand constraints. It is not difficult to envision a multistage stochastic program in which

the states of nature (“wet” or “dry”) are incorporated using random variables that evolve over

time. Note that farmers devise plans for planting prior to observing the state of nature. Crop

yields are a consequence of the eventual state of nature and the planting decisions adopted

earlier in the season. Since planting decisions are made prior to observing the state of nature,

they are said to be nonanticipative. The dual problem we study focuses on relaxing primal

constraints that impose nonanticipativity of planting decisions. The dual variables provide a

“tax system” in which taxes (collected) and subsidies (paid out) are required to balance each

other out across the various scenarios for future weather patterns. Consequently the SP dual

requires that from any point in time, the conditional expected value of taxes minus subsidies

in future years must be zero. When interpreted in this setting, it is not surprising that the

taxes and subsidies depend on the state of nature. For instance, if a certain year is classified

as a “dry year”, then farmers may be entitled to subsidies on certain crops, whereas, in “wet

years”, taxes may be levied. Since the precise rates for any given year are applied only after

the season (wet or dry) is observed, the rates (taxes/subsidies) are anticipative. It follows that

the dual variables studied in this paper are anticipative. We note that this conclusion, which

we illustrate with a simple computational example, is at odds with previously published

suggestions that at optimality, such variables are nonanticipative (Dempster, 1981, 1988).

As in other areas of optimization, duality has implications for both SP modeling as well

as the development of SP algorithms (see e.g. Rockafellar and Wets, 1991; Higle and Sen,

1996a). Our focus in this paper is essentially conceptual; we examine equivalent forms of

primal and dual multistage stochastic programs in which information regarding uncertain

parameters unfolds over time. Within our framework, we make no distinctions regarding the

nature of the random variables involved; discrete and continuous random variables are con-

sidered under a common umbrella. Although algorithms typically work with discretizations

of continuous distributions (e.g., Birge, 1985a; Rockafellar and Wets, 1991, 1992; Mulvey

and Ruszczynski, 1995), this discretization is a potential source of error when the continuous

nature of the random variables is essential to model validity. From a computational view-

point, such error analysis is also useful for approximations of SP (e.g. Birge 1982, 1985b;

and Zipkin, 1980) as well as successive refinement algorithms such as those presented in

Frauendorfer (1992). More recently, Frauendorfer (1996) has applied two-stage duality in a

recursive manner to show convergence of a multistage successive refinement algorithm.

Wright (1994) develops symmetric dual problems for multistage stochastic linear pro-

grams which permit both discrete and continuous random variables. Our approach is more

direct, and in line with the papers of Rockafellar and Wets, 1976a, b, 1992). The earlier

paper (Rockafellar and Wets, 1976a) develops the dual problem using recursive arguments,

as in dynamic programming. The more recent paper (Rockafellar and Wets, 1992) is algo-

rithmically motivated, and deals only with the case of discrete random variables. While our

setup also focuses on the nonanticipativity requirements of the primal, our proof is based

directly on stochastic analogs of deterministic mathematical programming. Hence, no DP

recursion is invoked in our proofs. An important by-product of this approach is that we are

able to handle instances in which the DP recursion does not apply (e.g., when the stagewise

returns are non-separable). We also observe that our treatment of duality does not distinguish

between discrete and continuous random variables. All of this is made possible by studying

the multistage stochastic convex programs in infinite dimensional spaces. Thanks to the work
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of Rockafellar, Clarke, Hiriart-Urruty and others (see Clarke, 1983) subdifferential calculus

in this setting is well understood, and leads to a much more comprehensive treatment than

available from previous studies. Furthermore, we provide a clarification of the connection

between EVPI (the expected value of perfect information) and the nonanticipativity multipli-

ers. In particular, we provide a counter-example which establishes that contrary to previous

assertions (e.g., Dempster, 1981, 1988), the multipliers associated with the nonanticipativity

restrictions are anticipative except for the extremely special case in which perfect informa-

tion has no value. Furthermore, this example also counters Dempster’s claim regarding a

supermartingale structure associated with the nonanticipativity multipliers (Dempster, 1981,

1988).

This paper is organized as follows. In §2, we present a generic formulation for a multistage

stochastic program. Following a discussion of the nature of the nonanticipativity requirement,

we offer two alternate representations of these constraints: the state vector formulation and the

mean vector formulation. Assuming convexity of the objective function and the feasible set,

in §3 we present a stochastic version of a multistage conjugate dual, as well as a stochastic

Lagrangian dual. As may be expected, the two dual problems are equivalent, and more

importantly, strong duality holds between these problems and the alternative primal problems

in §2. In §4, we illustrate the anticipative nature of the dual variables, using an example for

which all optimal dual solutions are anticipative. From this example, we present a relationship

between the dual variables and the expected value of perfect information (EVPI). In addition,

we use this example to note that the dual solutions do not, in general, have an established

martingale form. This section highlights the points of divergence between our results and

those in Dempster (1981). Finally, in §5, we present various interpretations of the dual

multipliers, and our conclusions.

2. Primal formulations

In what follows, we consider a problem in which “decisions”, which we denote as x , and

random data, which we denote as ω̃, are interwoven over time. An initial decision is made,

after which relevant data are observed. In response to the observation, a subsequent decision

is made, after which another observation is made, etc. As a result of the multistage nature

of the problems that we consider, our model is one in which both randomness and decisions

evolve over time. In stage 1, we have the current (certain) data, denoted ω1. Data beyond the

first stage is uncertain and is modelled through a sequence of random variables ω̃2, . . . , ω̃T .

We use the index t to denote a stage in the decision problem, t = 1, . . . , T , whereas x and

ω̃ are associated with decisions and data, respectively. In this sense, xt indicates a decision

made in stage t and ωt indicates a realization of the data obtained in stage t . In general, the

random data in stage t is denoted as ω̃t . The stochastic data process, ω̃ = {ω̃t }T
t=1, is defined

on a probability space {�,A,P}. Although we consider “randomness” as exogenous to the

problem, so that a particular choice of x = {xt }T
t=1 does not have a distributional impact

on ω̃, a feasible choice of x is nonetheless dependent upon ω̃. Thus, for each possible data

realization ω ∈ �, there is a set of feasible solutions, X (ω), and an objective function g(x, ω)

which influences the choice of x . Finally, throughout our development we will assume that

all vectors are appropriately dimensioned and that with probability one, g(·, ω̃) is a convex

function and X (ω̃) is a convex set.

Within the stochastic programming literature, a realization of ω̃ is commonly referred to

as a scenario. For each scenario ω ∈ �, we may define a problem, which we refer to as the

“scenario problem”, as follows
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Min{g(x, ω) | x ∈ X (ω) ⊆ �n}. (Pω)

Note that (Pω) is stated as a typical mathematical program with x ∈ �n . By considering all

possible data scenarios, one could define the following, which is often referred to as the “wait

and see” problem

E[Min{g(x(ω̃), ω̃) | x(ω̃) ∈ X (ω̃) ⊆ �n a.s.}]. (1)

Note the explicit representation of the dependence of the “decision”, x , upon the data ω̃.

Formally, we have x ∈ L∞(�,A,P, �n). Note that (1) offers a model of “posterior” opti-

mization, in which optimization occurs after the data sequence, ω̃, has been revealed (hence

the term “wait and see”). A solution to (1) may be described as a vector that is a function of ω̃.

The problem is separable in ω, so that it decomposes into the collection of problems {Pω}ω∈�,

each of which may be solved independently of the others. As such, solutions to (1) allow

the sequence of decisions made to vary with the scenario. Of course, these solutions will be

somewhat optimistic in that they are derived with full knowledge of the manner in which

the future will unfold. Perhaps more importantly, such decisions cannot be implemented

because one must know the complete evolution of the data sequence over all T stages before

any decision can be implemented. In order for these plans to be implementable, we must

ensure that scenarios that share a common history up to some point in time implement the

same decision at that time. Hence, it is necessary to add constraints which ensure that a de-

cision made in stage t depends only upon the information regarding the data process which

is available at that time. These constraints are known as the nonanticipativity constraints

(aka, “implementability constraints”), and form a characteristic component of a stochastic

programming model. If we let N denote the linear subspace of L∞(�,A,P, �n) consisting

of all nonanticipative elements, we may amend (1) to formulate a stochastic programming

model as follows:

Min E[g( x(ω̃), ω̃)]

x(ω̃) ∈ X (ω̃) a.s.

x(ω̃) ∈ N
(SP)

There are a variety of ways in which the nonanticipativity requirements may be mod-

eled. Formally, xt (·) should be At -measurable, where At is the sub-σ -algebra generated by

(ω̃1, ω̃2, . . . , ω̃t ). In essence, the constraint x(ω̃) ∈ N ensures that while xt (ω) ∈ �nt (where

n = ∑T
t=1 nt ), the decision made in period t under the scenario ω, may vary with ω1, . . . , ωt ,

it must be conditionally independent of ωt+1, . . . , ωT . Notationally, letHt denote an operator

that truncates a sequence at the t th stage. Then

Htω = (ω1, ω2, . . . , ωt )

reflects the evolution of the scenario ω through the first t periods. Alternatively, we see that

Htω yields the ‘history’ associated with scenario ω available in the t th stage. Moreover, if

x = (x1, x2, . . . , xT ), denotes a sequence of decisions, then Ht x = (x1, x2, . . . , xt ) denotes

the subsequence of decisions implemented through the t th stage. In this sense, At is the

P-completed σ -field defined by the history Ht ω̃ of the data process. Next, define the point-

to-set map

H−1
t ωt = {ω ∈ � | Htω = ωt },
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so that H−1
t ωt is the set of all possible realizations of ω̃ whose history at t is ωt . Suppose

that ωi ∈ �, i = 1, 2. Clearly, if the first t components of ω1 and ω2 are identical, then ω2 ∈
H−1

t (Htω
1). In this case, nonanticipativity requires that Ht x(ω1) = Ht x(ω2). Equivalently,

we require

xs(ω1) = xs(ω2) s = 1, . . . , t. (2)

Note that

Htω
1 = Htω

2 ⇐⇒ Hsω
1 = Hsω

2 ∀s ≤ t,

so that the requirement in (2) can equivalently be stated as

xs(ω1) = xs(ω2) whenever Hsω
1 = Hsω

2.

There are a variety of ways in which this requirement may be modeled. In this paper, we

consider the implications associated with two alternate representations of the nonanticipa-

tivity constraints. The first, which we refer to as the “state vector” representation involves

the introduction of “state variables” for each possible value of Ht ω̃, t = 1, . . . , T . To begin,

let z ∈ L∞(�,A,P, �n), where z = (zt )
T
t=1 and zt : Ht� → �nt . We refer to zt (Htω) as

the period t state variable when the history of the data process at that time is Htω. That is,

there is one such variable for each possible “state” of ω̃ at each stage. Nonanticipativity is

ensured by constraining the appropriate subsets of the decision variables, {{xt (ω)}ω∈�}T
t=1,

to be equal to these state variables. Note that in case of two stage problems with finitely

many outcomes, this state variable formulation reduces to the “split variable” formulation

(Dempster, 1988). The state vector representation of the nonanticipativity constraints may

be written as x(ω̃) − z(ω̃) = 0 a.s., or equivalently

xt (ω̃) − zt (Ht ω̃) = 0 a.s., t = 1, . . . , T . (3)

Note that (3) explicitly requires that xt (ω) be almost surely constant for all scenarios that

share a common history through period t .
We assume that the constraints, x(ω̃) ∈ X (ω̃), have relatively complete recourse, so that if

X (ω̃) = X1(ω̃) × X2(ω̃) × . . . × XT (ω̃), then Xt (ω̃) is At -measurable. That is, we assume

that if xt (ω̃) appears to be feasible on the basis of all decisions and observations made through

time t , it cannot be rendered infeasible as a result of some event that can only be observed at a

later time. This constraint qualification is common in the stochastic programming literature,

and appears, for example, in Rockafellar and Wets (1976a,b, 1982), Dempster (1988), and

Wets (1989).

Prior to introducing the second representation of the nonanticipativity constraints, we note

that throughout this paper we will depend heavily upon arguments derived using conditional

expectations. Suppose that f : � → �m is a P-measurable function. Then

E[ f (ω̃)] =
∫

�

f (ω)P(dω).
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We may write the expectation by conditioning on Htω, so that

E[ f (ω̃)] =
∫

�

E[ f (ω̃) | ω̃ ∈ H−1
t (Htω)]P(dω)

= E{E[ f (ω̃) | ω̃ ∈ H−1
t (Ht ω̃

′)]},
= E{E[ f (ω̃′) | ω̃′ ∈ H−1

t (Ht ω̃)]},

where ω̃ and ω̃′ are defined on the same probability space.

The second representation of the nonanticipativity constraints, which we refer to as the

“mean vector” representation replaces the state vector zt (Ht ω̃) in (3) with the conditional

expectation of the vectors with which it is associated. That is,

xt (ω̃) − E
[
xt (ω̃

′) | ω̃′ ∈ H−1
t (Ht ω̃)

] = 0 a.s., t = 1, . . . , T, (4)

where ω̃ and ω̃′ are defined on the same probability space. One can easily note that both

(3) and (4) ensure that xt (ω) is constant for almost every ω ∈ H−1
t (Htω

′), for almost every

ω′ ∈ � and thus specify the same set of nonanticipative solutions to (SP). It follows that

equivalent problems result when either of them are used in the formulation of (SP).

In order to focus our study on the implications of the specific form of the nonanticipativity

constraints used, we introduce the following extended real-valued function

φ(x(ω), ω) =
{

g(x(ω), ω) if x(ω) ∈ X (ω)

∞ otherwise.
(5)

With this function, we may now specify the state vector and mean vector formulations of a

multistage stochastic program as follows.

State vector formulation

Min
(x,z)∈L∞(�,A,P,�2n )

E[φ(x(ω̃), ω̃)] (P–SV)

s.t. xt (ω̃) − zt (Ht ω̃) = 0 a.s., t = 1, . . . , T .

Mean vector formulation

Min
x∈L∞(�,A,P,�n )

E[φ(x(ω̃), ω̃)] (P–MV)

s.t. xt (ω̃) − E
[
xt (ω̃

′) | ω̃′ ∈ H−1
t (Ht ω̃)

] = 0 a.s., t = 1, . . . , T .

The mean vector formulation is the more common problem addressed in the SP literature,

and appears for example in Dempster (1988). However in the development that follows, the

state vector formulation provides a more convenient avenue into duality.

3. Dual problems

As with the primal problems P-SV and P-MV, the dual problems we study are valid for both

continuous and discrete random variables. In this section, we propose stochastic analogs of

conjugate, as well as Lagrangian, dual problems. One of the key features that distinguish

these duals from their deterministic counterparts is the role played by multipliers associated
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with the nonanticipativity constraints (Wets, 1975). In the development that follows, it will be

convenient to study the duality between the stochastic conjugate dual and the primal problem

stated as P-SV under the assumption of convexity. Consequently, we will refer to this dual

as D-SV. On the other hand, the connections between the stochastic Lagrangian dual will

be more readily apparent via its relationship to P-MV. Consequently, we shall refer to the

stochastic Lagrangian dual as D-MV.

Throughout our development, we will introduce a number of “variables” which are actually

measurable functions of random variables. For example, {x(ω)}ω∈�, or equivalently, x(ω̃),

is one such measurable function mapping � to �n . For notational convenience, let L∞
n and

L1
n denote L∞(�,A,P, �n) and L1(�,A,P, �n), respectively. For ξ ∈ L1

n and x ∈ L∞
n we

define the following linear operation:

ξ ◦ x =
∫

�

ξ (ω)�x(ω)P(dω) = E[ξ (ω̃)�x(ω̃)], (6)

which we recognize as the expected value of the traditional counterpart from deterministic

mathematical programming.

A Stochastic Conjugate Dual
Consider the function φ defined in (5) and its conjugate function

φ∗(σ, ω) = sup
x∈�n

{σ�x − φ(x, ω)}, (7)

where σ = (σ1, . . . , σT ) ∈ �n . In what follows, we assume that φ(·, ω) is a convex function

on its effective domain and verify that the following problem is dual to P-SV.

sup
σ∈L1

n

−E[φ∗(σ (ω̃), ω̃)] (D − SV)

s.t. E
[
σt (ω̃) | ω̃ ∈ H−1

t (Ht ω̃
′)
] = 0 a.s. t = 1, . . . , T,

where ω̃ and ω̃′ are defined on the same probability space. The rationale for calling it a

dual problem is found in Theorem 3. We begin the development with the following lemma

which provides a characterization of the primal and dual feasible solutions for the state vector

formulation.

Lemma 1. If x ∈ L∞
n and σ ∈ L1

n satisfy the constraints of P-SV and D-SV, respectively,
then E[σ (ω̃)�x(ω̃)] = 0 (equivalently, σ ◦ x = 0).

Proof: Note that σ (ω)�x(ω) = ∑T
t=1 σt (ω)�xt (ω), so that

E[σ (ω̃)�x(ω̃)] =
T∑

t=1

E
[
σt (ω̃)�xt (ω̃)

]
=

T∑
t=1

E
{

E
[
σt (ω̃)�xt (ω̃)

∣∣ ω̃ ∈ H−1
t (Ht ω̃

′)
]}

,

where ω̃ and ω̃′ are defined on the same probability space. By hypothesis, x(ω̃) is feasible to

P-SV, so that xt (ω) is almost surely constant on subsets of � for which the scenarios share

a common history through period t . That is, for some zt (·), it follows that xt (ω) = zt (Htω
′)
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for almost every ω ∈ H−1
t (Htω

′), for almost every ω′ ∈ �. Thus, we have

E
[
σt (ω̃)�xt (ω̃)

∣∣ ω̃ ∈ H−1
t (Htω)

] = E
[
σt (ω̃)�zt (Htω)

∣∣ ω̃ ∈ H−1
t (Htω)

]
= E

[
σt (ω̃)

∣∣ ω̃ ∈ H−1
t (Htω)

]�
zt (Htω)

for almost every ω ∈ �, t = 1, . . . , T . In addition, σ (ω̃) is feasible to D-SV, which ensures

that E[σt (ω̃) | ω̃ ∈ H−1
t (Htω)] = 0, for almost every ω ∈ �. Thus, for t = 1, . . . , T ,

E
[
σt (ω̃)�xt (ω̃)

∣∣ ω̃ ∈ H−1
t (Htω)

] = 0

for almost every ω ∈ �. It follows that

E[σt (ω̃)�xt (ω̃)] = 0, t = 1, . . . , T

and thus

E[σ (ω̃)�x(ω̃)] = 0. �

Next we characterize the normal cone associated with the feasible solutions to the con-

straints in (3). Of course, since (3) involves only linear equality constraints, this cone is

identical for all feasible solutions.

Lemma 2. Let x = (x1, . . . , xT ) and z = (z1, . . . , zT ), such that xt ∈ L∞
nt

and zt ∈ L∞
nt

(
∑T

t=1 nt = n), and

S = {(x, z) | xt (ω̃) − zt (Ht ω̃) = 0 a.s. t = 1, . . . , T }.

Let ηx = (ηx
1 , . . . , ηx

T ), ηz = (ηz
1, . . . , η

z
T ), with ηx

t ∈ L1
nt

and ηz
t ∈ L1

nt
. Let η = (ηx , ηz) and

define

NS = {
(ηx , ηz) ∈ L1

2n

∣∣ E
[
ηx

t (ω̃) + ηz
t (ω̃)

∣∣ ω̃ ∈ H−1
t (Ht ω̃

′)
] = 0, a.s. t = 1, . . . , T

}
where ω̃ and ω̃′ are defined on the same probability space. Then NS is the normal cone to S
at any point (x, z) ∈ S.

Proof: Suppose that (x, z) ∈ S, and that ω̃ and ω̃′ are defined on the same probability space,

(�,A,P). Using (6) we have

(ηx , ηz) ◦ (x, z) = ηx ◦ x + ηz ◦ z

=
T∑

t=1

(
ηx

t ◦ xt + ηz
t ◦ zt

)
=

T∑
t=1

E
[
ηx

t (ω̃)�xt (ω̃) + ηz
t (ω̃)�zt (Ht ω̃)

]
=

T∑
t=1

E
{

E
[
ηx

t (ω̃)�xt (ω̃) + ηz
t (ω̃)�zt (Ht ω̃) | ω̃ ∈ H−1

t (Ht ω̃
′)
]}

.
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Since (x, z) ∈ S, xt (ω̃) = zt (Ht ω̃) a.s., and thus xt (ω) = zt (Htω) = zt (Htω
′) for almost

every ω ∈ H−1
t (Htω

′), for almost every ω′ ∈ �, t = 1, . . . , T . Thus,

E
[
ηx

t (ω̃)�xt (ω̃) + ηz
t (ω̃)�zt (Ht ω̃)

∣∣ ω̃ ∈ H−1
t (Htω

′)]

= E
[ (

ηx
t (ω̃) + ηz

t (ω̃)
) ∣∣ ω̃ ∈ H−1

t (Htω
′)
]�

zt (Htω
′)

Thus,

(ηx , ηz) ◦ (x, z) = 0 ∀(x, z) ∈ S

if, and only if

E
[
ηx

t (ω̃) + ηz
t (ω̃)

∣∣ ω̃ ∈ H−1
t (Ht ω̃

′)
] = 0 a.s. t = 1, . . . , T

and the result follows. �

With Lemmas 1 and 2, we may now establish the primal-dual relationship between P-SV

and D-SV. The duality result presented below draws upon the extended calculus presented

in Clarke (1983) (see Section 2.9). We note that in this development the subdifferential is a

subset of L1
n .

Theorem 1. Let φ(·, ω̃), as defined in (5), be a convex normal integrand, and assume that
P-SV has relatively complete recourse. Let vp and vd denote the optimal values of P-SV and
D-SV, respectively. Then
a) vp ≥ vd .
b) Let P-SV possess an optimal solution denoted (x̂, ẑ), and assume that ∂φ(x̂(ω̃), ω̃) is

non-empty (a.s). Then there exists σ̂ (ω̃) ∈ ∂φ(x̂(ω̃), ω̃) a.s., such that

E
[
σ̂t (ω̃)

∣∣ ω̃ ∈ H−1
t (Ht ω̃

′)
] = 0 (a.s.),

where ω̃ and ω̃′ are defined on the same probability space. Furthermore,
−E[φ∗(σ̂ (ω̃), ω̃)] = vd = vp.

Proof:
a) If D-SV is infeasible, vd = −∞ and the result follows. Similarly, if P-SV is infeasible,

vp = +∞ and the result follows. Thus, suppose that x and σ are feasible in P-SV and D-SV,

respectively. It follows from the definition of φ∗ in (7) that

φ∗(σ (ω), ω) ≥ σ (ω)�x(ω) − φ(x(ω), ω) ∀ ω ∈ �

⇒ E[φ∗(σ (ω̃), ω̃)] ≥ E[σ (ω̃)�x(ω̃)] − E[φ(x(ω̃), ω̃)].

As a result of Lemma 1, feasibility of σ and x ensures that E[σ (ω̃)�x(ω̃)] = 0, so that

E[φ∗(σ (ω̃), ω̃)] ≥ −E[φ(x(ω̃), ω̃)]

⇒ E[φ(x(ω̃), ω̃)] ≥ −E[φ∗(σ (ω̃), ω̃)]

for all feasible x and σ , and thus
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vp ≥ vd . (8)

b) For notational convenience, let 	(x) = E[φ(x(ω̃), ω̃)] and note that ∂	(x) ⊂ L1
n . For

(x, z) ∈ L∞
2n , let

ψ(x, z) =
{

0 if xt (ω̃) − zt (Ht ω̃) = 0, a.s., t = 1, . . . T

∞ otherwise.

Note that (x, z) is feasible to P-SV if, and only if, ψ(x, z) = 0. Furthermore, (x̂, ẑ) is an

optimal solution to P-SV, if, and only if, it is an optimal solution to

Min
(x,z)∈L∞

2n

	(x) + ψ(x, z).

Let ∂xφ and ∂zφ denote the projection of ∂φ on the x and z coordinates, respectively. Then

following Clarke (1983), we have

0 ∈ (∂	(x̂) + ∂xψ(x̂, ẑ), ∂zψ(x̂, ẑ)).

Here the “0” denotes an element in L1
2n that is equal to zero almost surely. From convex

analysis, it is well known that ∂ψ(x̂, ẑ) = NS , the normal cone associated with the set S
which provides the state-variable formulation of non-anticipativity (see Lemma 2). Thus,

there exists (ηx , ηz) ∈ NS and σ̂ ∈ L1
n such that σ̂ ∈ ∂	(x̂) almost surely, and

(σ̂ (ω̃) + ηx (ω̃) , ηz(ω̃)) = 0 a.s.

Thus,

σ̂t (ω̃) + ηx
t (ω̃) = 0 a.s., t = 1, . . . , T

and

ηz
t (ω̃) = 0 a.s., t = 1, . . . , T .

Appealing to Lemma 2, we see that

σ̂t (ω̃) = −ηx
t (ω̃) a.s., t = 1, . . . , T

⇒ E
[
σ̂t (ω̃)

∣∣ ω̃ ∈ H−1
t (Ht ω̃

′)
] = −E

[
ηx

t (ω̃)
∣∣ ω̃ ∈ H−1

t (Ht ω̃
′)
]

= E
[
ηz

t (ω̃′)
∣∣ ω̃ ∈ H−1

t (Ht ω̃
′)
]

a.s. t = 1, . . . , T

= 0 a.s. t = 1, . . . , T,

so that σ̂ is feasible to D-SV. Finally, given our assumption of relatively complete recourse

and the finiteness of 	(x̂), Rockafellar and Wets (1982) ensures that

∂	(x̂) =
∫

�

∂φ(x̂(ω), ω)P(dω),

Springer



Ann Oper Res (2006) 142: 129–146 139

so that σ̂ (ω̃) ∈ ∂φ(x̂(ω̃), ω̃) a.s. It follows that

x̂(ω̃) ∈ argmax
L∞

n

{σ̂ (ω̃)�x(ω̃) − φ(x(ω̃), ω̃)}, a.s.

so that

φ∗(σ̂ (ω̃), ω̃) = σ̂ (ω̃)� x̂(ω̃) − φ(x̂(ω̃), ω̃) a.s.

Thus,

−vd ≤ E[φ∗(σ̂ (ω̃), ω̃)] = E[σ̂ (ω̃)� x̂(ω̃)] − E[φ(x̂(ω̃), ω̃)] ≤ E[σ̂ (ω̃)� x̂(ω̃)] − vp.

From Lemma 1, E[σ̂ (ω̃)� x̂(ω̃)] = 0, so that vd ≥ vp. In combination with (8), it follows that

vd = −E[φ∗(σ̂ (ω̃), ω̃)] = E[φ(x̂(ω̃), ω̃)] = vp. �

Note that the stochastic programming constraint qualification of relatively complete re-

course implies that no induced constraints are necessary to ensure feasibility, so that the

operations of expectation and subdifferentiation may be interchanged. For an example that

violates these conditions, we refer the reader to Wets (1989), where multipliers associated

with induced constraints become necessary.

A Stochastic Lagrangian Dual
Recall that it is a trivial matter to establish the equivalence between the two primal

statements of (SP), P-SV and P-MV. By the same token, there is an equivalent dual problem

that can be motivated by a certain Lagrangian dual associated with P-MV, which we denote

as D-MV.

For μ ∈ L1
n , we define μ̄ as follows:

μ̄(ω) = {μ̄t (Htω)}T
t=1, where μ̄t (ω) = E

[
μt (ω̃)

∣∣ ω̃ ∈ H−1
t (Htω)

]
. (9)

That is, μ̄(ω) yields the stagewise conditional expectations associated with μ(ω̃), given the

scenario ω. Note that with this definition, the constraints (4) in P-MV may equivalently be

stated as

x(ω̃) − x̄(ω̃) = 0 a.s.

The following Lemma will prove useful in establishing a Lagrangian dual for P-MV.

Lemma 3. Suppose that μ ∈ L1
n and x ∈ L∞

n and that μ̄ and x̄ are defined from μ and x,
respectively, as in (9). Then using (6)

μ ◦ x̄ = μ̄ ◦ x̄ = μ̄ ◦ x .
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Proof: Let ω̃ and ω̃′ be defined on the same probability space. Then

μ ◦ x̄ = E[μ�(ω̃)x̄(ω̃)]

=
T∑

t=1

E
[
μ�

t (ω̃)x̄t (ω̃)
]

=
T∑

t=1

E
{

E
[
μ�

t (ω̃)x̄t (ω̃)
∣∣ ω̃ ∈ H−1

t (Ht ω̃
′)
]}

=
T∑

t=1

E
{

E
[
μ�

t (ω̃)
∣∣ ω̃ ∈ H−1

t (Ht ω̃
′)
]
x̄t (Ht ω̃

′)
}

=
T∑

t=1

E
{
μ̄�

t (ω̃′)x̄t (ω̃
′)
}

= μ̄ ◦ x̄ .

A symmetric argument yields μ̄ ◦ x = μ̄ ◦ x̄ , and the result follows. �

As a result of Lemma 4, μ ◦ (x − x̄) = (μ − μ̄) ◦ x . Thus, from P-MV we define the

following Lagrangian function.

L(μ, ω) = sup
x∈�n

{(μ(ω) − μ̄(ω))�x − φ(x, ω)}. (10)

We offer the following equivalent dual

sup
μ∈L1

n

−E[L(μ(ω̃), ω̃)]. (D−MV)

The equivalence between D-SV and D-MV is easily established. Note that for any σ that

is feasible to D-SV, σ̄ (ω̃) = 0 almost surely, where σ̄ is defined from σ as in (9). Moreover,

for a given μ, μ − μ̄ is feasible to D-SV. Thus, solutions to the unconstrained D-MV are

easily converted to feasible solutions to D-SV. This observation, coupled with the fact that

(7) and (10) yield

L(μ, ω) = φ∗(μ(ω) − μ̄(ω), ω)

establishes the equivalence of D-SV and D-MV. Given the equivalence of the primal problems

P-SV and P-MV as well as the equivalence of D-SV and D-MV, Theorem 3 ensures that D-

MV is a dual for the multistage stochastic convex program. For the sake of completeness,

we state this result as a corollary to Theorem 3.

Corollary 1. Let φ(·, ω̃), as defined in (5), be a convex normal integrand, and assume that
P-MV has relatively complete recourse. Let vp and vd denote the optimal values of P-MV
and D-MV, respectively.
a) If σ̂ solves D-SV, then σ̂ solves D-MV. Similarly, if μ̂ solves D-MV, then μ̂ − ¯̂μ solves

D-SV.
b) Let P-MV possess an optimal solution denoted x̂ , and assume that ∂φ(x̂, ω̃) is non-

empty (a.s.). Then there exists μ̂ ∈ L1
n such that μ̂(ω̃) − ¯̂μ(ω̃) ∈ ∂φ(x(ω̃), ω̃) a.s., and

−E[L(μ̂, ω̃)] = vd = vp.
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4. Nonanticipativity and the expected value of perfect information

The dual variables σ and μ may be seen as multipliers for the nonanticipativity constraints

for the primal problems P-SV and P-MV respectively. In interpreting these multipliers, it

is of interest to study whether these quantities are nonanticipative. Dempster (1981) was

among the first to address this question, and concluded the existence of multipliers that are

nonanticipative. In the following, we illustrate that in general, the multipliers σ and μ are

anticipative, and moreover, nonanticipativity of these multipliers arises only under extremely

restrictive circumstances.

Example. Consider a three stage LP, which serves as the basis for our example:

Min
3∑

t=1

ct xt

s.t. xt − xt+1 ≥ 0 t = 1, 2

−1 ≤ xt ≤ 1 t = 1, 2, 3

Within this example, the objective coefficients are random variables, with c1 = 1, c2 ∈
{−1, 1}, and c3 ∈ {−1, 1}, so that there are four possible outcomes for the vector of cost

coefficients,

(c1, c2, c3) ∈ � = {(1, −1, −1), (1, −1, 1), (1, 1, −1) (1, 1, 1)}.

Notationally, we will denote these scenarios as corresponding to {ωi }4
i=1. That is, c2(ω1) =

−1, while c3(ω2) = 1, etc. With regard to the evolution of the random variables, we note that

H1ω
i = 1, i = 1, 2, 3, 4, H2ω

i = (1, −1), i = 1, 2, H2ω
i = (1, 1), i = 3, 4, and H3ω

i =
ωi , i = 1, 2, 3, 4. We note also that

H−1
1 (1) = {(1, −1, −1), (1, −1, 1), (1, 1, −1), (1, 1, 1)} = {ωi }4

i=1 (11a)

H−1
2 (1, −1) = {(1, −1, −1), (1, −1, 1)} = {ω1, ω2} (11b)

H−1
2 (1, 1) = {(1, 1, −1), (1, 1, 1)} = {ω3, ω4}. (11b)

In the stochastic programming formulation, we associate decision variables with each possible

outcome {(x1(ωi ), x2(ωi ), x3(ωi ))}4
i=1. Thus, from the groupings of the possible outcomes

associated with the cost coefficients in (11), nonanticipativity restrictions require that

x1(ω1) = x1(ω2) = x1(ω3) = x1(ω4)

x2(ω1) = x2(ω2) and x2(ω3) = x2(ω4).

These restrictions arise from the commonality of the data sequence (i.e., c1(ωi ) = 1 for all i ,

while c2(ω1) = c2(ω2), and c2(ω3) = c2(ω4)). Note that the nonanticipativity requirements

depend upon the structure of the possible evolution of the realizations of the data, and are

not dependent upon the probability distribution associated with these realizations. In our

example, we assume that all four outcomes are equally likely.

Using the mean vector formulation, P-MV, we obtain
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Min
4∑

i=1

1

4

{
3∑

t=1

ct (ω
i )xt (ω

i )

}
(12)

s.t. xt (ω
i ) − xt+1(ωi ) ≥ 0 t = 1, 2 i = 1, ..., 4

−1 ≤ xt (ω
i ) ≤ 1 t = 1, 2, 3, i = 1, ..., 4

x1(ωi ) − 1
4

4∑
i=1

x1(ωi ) = 0 i = 1, ..., 4 (13)

x2(ωi ) − 1
2
(x2(ω1) + x2(ω2)) = 0 i = 1, 2 (14a)

x2(ωi ) − 1
2
(x2(ω3) + x2(ω4)) = 0 i = 3, 4 (14b)

Of course, for i ∈ {1, 2, 3, 4}, we could simply define

X (ωi ) = {x ∈ �3 | 1 ≥ x1 ≥ x2 ≥ x3 ≥ −1}

and

φ(x, ωi ) =
{∑3

t=1 ct (ω
i )xt if x ∈ X (ωi )

∞ otherwise.

In this case, we would simply state the problem as Min{ 1
4

∑4
i=1 φ(x(ωi ), ωi )}, subject to the

constraints (13) and (14). We note also that the nonanticipativity constraints, (13) and (14),

contain redundant constraints.

The solution for which xt (ω
i ) = −1 for t = 1, 2, 3, i = 1, ..., 4 is an optimal solution

with an objective value of −1. Of greater interest is the value of the dual multipliers on the

constraints (13) and (14). Notationally, let μt (ω
i ) denote the multiplier associated with the

nonanticipativity constraint in which xt (ω
i ) appears outside of the expectation calculations.

A dual solution associated with the indicated primal solution is

μ1(ω1) = 0 μ1(ω2) = −0.25 μ1(ω3) = 0 μ1(ω4) = 0

μ2(ω1) = 0 μ2(ω2) = 0.75 and μ2(ω3) = −0.25 μ2(ω4) = 0

Note that this dual solution does not yield common values corresponding to any of the groups

of constraints (13), (14a) or (14b). That is, even at points at which the cost coefficients are

identical, the dual variables disagree. This particular solution is anticipative. In order to

determine whether there exists an optimal solution that is nonanticipative, one may append

constraints to the dual of (12) to explicitly enforce

μ1(ω1) = μ1(ω2) = μ1(ω3) = μ1(ω4)

μ2(ω1) = μ2(ω2) and μ2(ω3) = μ2(ω4).

Note that the above constraints can be equivalently characterized with conditional expecta-

tions. In any event, the addition of such constraints renders the objective value (−1) infeasible.

It follows that there is no optimal dual solution that is nonanticipative.
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Conclusion. In general, the optimal values of the nonanticipativity multipliers are anticipa-

tive. Furthermore, using the conditional expectation operator (on these vectors) to enforce

nonanticipativity may result in the loss of optimality of dual vectors.

In some cases, a nonanticipative dual solution may result, as the following result indicates.

Theorem 2. Suppose that the primal-dual pair, P-MV and D-MV, are feasible. Under the
conditions of Corollary 5, there exists a dual solution, μ∗, that is nonanticipative if, and only
if, the expected value of perfect information is zero.

Proof: First, the expected value of perfect information, EVPI, is defined as the difference

between the value of the stochastic program, (SP) and the “wait and see” problem, (1). From

the definition of the conjugate function, the value of the “wait and see” problem may be

represented as −E[φ∗(0, ω̃)]. Hence, given a primal optimal solution x∗, we have

EVPI = E[φ(x∗(ω̃), ω̃)] + E[φ∗(0, ω̃)].

If μ∗ is nonanticipative, then for t = 1, . . . , T ,

μ∗
t (ω) = E

[
μ∗

t (ω̃)
∣∣ ω̃ ∈ H−1

t (Htω)
]

for almost every ω ∈ �. That is, using the definition in (9), nonanticipativity of μ∗ is repre-

sented by μ∗(ω̃) = μ̄∗(ω̃), almost surely. Thus, if μ∗ is nonanticipative,

L(μ∗, ω) = φ∗(μ∗(ω) − μ̄∗(ω), ω)

= φ∗(0, ω)

⇒ E[L(μ∗, ω̃)] = E[φ∗(0, ω̃)].

It follows that if μ∗ is a nonanticipative optimal solution to D-MV, then 0 is an optimal

solution to D-SV (note that 0 is the only possible nonanticipative solution to D-SV), and as

a result of Theorem 3,

E[φ(x∗(ω̃), ω̃)] = −E[φ∗(0, ω̃)]

⇒ EVPI = 0.

Of course, the converse is obvious, and hence the result. �

One may verify that the expected value of perfect information in our numerical example is

0.5, which explains the absence of a nonanticipative optimal dual solution. It is also of interest

to note that due to the equality of primal and dual optimal values (under the assumptions of

Theorem 3), the EVPI can be calculated entirely in terms of the dual problem D-SV. Thus,

using the state variable representation,

EVPI = −E[φ∗(σ̂ (ω̃), ω̃)] + E[φ∗(0, ω̃)],

where σ̂ (ω̃) denotes an optimal dual solution. One of the advantages of this point of view is

that one can obtain bounds on the value of EVPI. That is, for any dual feasible solution, σ ,

EVPI ≥ −E[φ∗(σ (ω̃), ω̃)] + E[φ∗(0, ω̃)]. (15)
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Table 1 Alternate dual optima
μt (ω

1) μt (ω
2) μt (ω

3) μt (ω
4)

Solution 1:

t = 1 −0.125 −0.125 0 0

t = 2 −0.125 −0.125 −0.125 0.125

Solution 2:

t = 1 −0.125 −0.375 −0.125 −0.125

t = 2 −0.375 −0.125 −0.25 0

Solution 3:

t = 1 0 −0.25 0 0

t = 2 −0.5 0 −0.25 0

Solution 4:

t = 1 0 −0.25 0 0

t = 2 0 −0.5 −0.25 0

We note that the lower bound on EVPI provided by the right hand side of (15) is a function

of the dual multipliers. In large scale problems, this bound may be useful if we have good

heuristics to generate dual feasible multipliers. Another interesting observation arises from

studying the subgradients of the bound. Note that if x(ω) ∈ argmax{σ (ω)�x − φ(x, ω)},
then,

−E[x(ω̃)] (16)

provides a subgradient of the lower bound on EVPI at σ .

Before concluding this section, we return to our example with an eye toward the nature

of the dynamic process that governs the values of the dual variables. Of particular interest is

the evolution of the dual variables over time along scenarios that share a common history.

Dempster (1981, 1988) claims that it is a supermartingale process, although his proof of this

claim depends upon the nonanticipativity of the process. We have already seen that the process

is anticipative, except in the most trivial of cases. The question remains as to whether or not

there is a readily discernible form of dependence among the dual variables. For example, given

that ω1 and ω2 share a common history through period 2, the relationships between μ1(ωi )

and 1
2
(μ2(ω1) + μ2(ω2)) i = 1, 2 is of interest (as are the relationships between μ1(ωi ) and

1
2
(μ2(ω3) + μ2(ω4)) i = 3, 4. If

μ1(ωi ) =
{

1
2
(μ2(ω1) + μ2(ω2)) i = 1, 2

1
2
(μ2(ω3) + μ2(ω4)) i = 3, 4

(17)

the process is a martingale. If the equality in (17) becomes an inequality, the process is a

submartingale or supermartingale, depending on the direction of the inequality (see Ross

1983).

As one might expect, there are multiple dual optima associated with this example. In

Table 1, we list a few of the alternate dual solutions to the example.

One may easily verify that solution 1 is a martingale solution. Similarly, solution 2 is a

submartingale while solution 3 is a supermartingale. Finally, solution 4 does not satisfy a
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martingale definition. In general, the dual variable process seems to be somewhat arbitrary,

insofar as martingales are concerned.

5. Interpretations and conclusions

In this paper, we have studied alternate representations of primal multistage stochastic convex

programming problems as well as their duals. We note that the stochastic conjugate function

(7) and the stochastic Lagrangian function (10) are convenient analogs of their deterministic

counterparts, and hope that these stochastic versions become as popular. We have provided a

unified framework for problems involving discrete as well as continuous random variables,

and furthermore, the dual problems involve measurable functions of the random variables

in the SP model. Consequently, dual approximations can be constructed without appealing

to specific primal approximations, thus making it possible to allow optimality tests with

“out-of-sample” scenarios as in Higle and Sen (1996b).

In addition to studying dual problems, this paper also clarifies the role of the multipliers

associated with the nonanticipativity constraints. Despite previous claims to the contrary, our

investigation reveals that these multipliers are, in general, anticipative. Only for the special

case in which perfect information has no value are the multipliers nonanticipative. This may

come as a surprise to some practitioners of optimization, since anticipative decisions are

thought to be unimplementable. In order to put the reader at ease with the possibility of

anticipative multipliers, we recall the analogy between them and a tax/subsidy rate in a “tax

system”. Just as the farmer is given federal subsidies after the outcome (e.g., a flood) is

revealed, the nonanticipativity multipliers are obtained after the outcome has been revealed.

Thus the marginal values provided by nonanticipativity multipliers are to be implemented on

a retroactive basis. Another way to interpret the nonanticipativity multipliers is by likening

them to a refund rate (as in a tax system). Clearly, this is feasible.

Finally we comment on the possiblity of interpreting these multipliers as the “marginal

EVPI process”, as in Dempster (1981). This moniker is something of a misnomer. Note

that the dual multipliers help equilibrate plans that may be associated with scenarios, and

consequently, each σ (ω) provides a subgradient of an outcome φ(x(ω), ω) at an optimal plan.

As in the previous section, it is therefore clear that these multipliers refer to marginal values

with respect to changes in plans (x), rather than marginal values with respect to changes in

information (ω̃). Similarly, as shown in Section 4, the subgradients in (16) provide marginal

values with respect to σ , rather than ω̃. Nevertheless, the EVPI as well as its lower bound

are separable in σ , and may be used to estimate EVPI.
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