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Abstract In this paper, we consider a BMAP/G/1 retrial queue with a server subject to

breakdowns and repairs, where the life time of the server is exponential and the repair time is

general. We use the supplementary variable method, which combines with the matrix-analytic

method and the censoring technique, to study the system. We apply the RG-factorization of a

level-dependent continuous-time Markov chain of M/G/1 type to provide the stationary per-

formance measures of the system, for example, the stationary availability, failure frequency

and queue length. Furthermore, we use the RG-factorization of a level-dependent Markov

renewal process of M/G/1 type to express the Laplace transform of the distribution of a first

passage time such as the reliability function and the busy period.

Keywords Retrial queues . Batch Markov arrival processes (BMAP) . Markov chains of

M/G/1 type . Markov renewal processes of M/G/1 type . Supplementary variable method .

Matrix-analytic method . Censoring technique . RG-factorization . Reliability

1. Introduction

A retrial system consists of a primary service facility and an orbit. Customers arrive at

the service facility either from outside the system or from the orbit. Upon the arrival of a

customer, if the server is busy or under repair, the arrival will join the retrial group in the

orbit and try its luck again at some time later. Queueing systems with retrial customers are

good mathematical models for telephone switch systems, digital cellular mobile networks

and computer networks etc. During the last two decades considerable attention has been paid
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to studying retrial queues, which has been well documented, for example, by survey papers

of Yang and Templeton (1987), Falin (1990) and Kulkarni and Liang (1997), by a book of

Falin and Templeton (1997) and by a bibliography of Artalejo (1999).

The batch Markov arrival process (BMAP) is a useful mathematical model for describing

bursty traffic in modern communication networks and others. Readers may refer to recent

publications for details, among which are Ramaswami (1980), Chapter 5 in Neuts (1989),

Lucantoni (1991, 1993), Lucantoni and Neuts (1994), Lucantoni, Choudhury and Whitt

(1994), Neuts (1995), Chakravarthy (2000) and Ferng and Chang (2001). In particular, Lee

and Jeon (1999) and Lee (2000) used the supplementary variable method, which combined

with the embedded Markov chain, to analyze the BMAP/G/1 queues with finite or infinite

waiting room.

The censoring technique has been successfully applied to discrete-time block-structured

Markov chains and block-structured Markov renewal processes. Examples include Grass-

mann and Heyman (1990), Latouche and Ramaswami (1999), Zhao (2000), Li and Zhao

(2002), Li and Zhao (2004) and Li and Zhao (2003). Dudin and Klimenok (2000) used the

censoring technique to provide an approximate algorithm for calculating the stationary prob-

ability vector of an asymptotically quasi-Toeplitz 2-dimensional Markov chain. This paper

applies the censoring technique to study a continuous-time level-dependent Markov chain

of M/G/1 type and level-dependent Markov renewal processes of M/G/1 type, some new

results are listed due to necessity for more applications.

Retrial queues have been studied by some authors in terms of the matrix-analytic method.

Readers may refer to Neuts and Rao (1990), Diamond and Alfa (1995, 1998, 1999), Choi,

Yang and Kim (1999), He, Li and Zhao (2000), Dudin and Klimenok (1999, 2000), Choi,

Chung and Dudin (2001), Breuer, Dudin and Klimenok (2002), Chakravarthy and Dudin

(2002, 2003) among others.

Queues with servers subject to breakdowns and repairs are often encountered in many

practical applications such as in computer, manufacturing systems and communication net-

works. Because system performance deteriorates seriously by server breakdowns and the

limitation of repair capacity, the study of queues with server breakdowns and repairs is not

only important for theoretic investigations but also necessary for engineering applications.

Such systems have been considered by some authors both from queueing viewpoint and

from reliability viewpoint. Examples include the following four classes of important results

in the literature. (i) To calculate queueing indices, some researchers proposed the so called

generalized service time for unreliable queueing systems. Using the generalized service time,

a unreliable queueing system can be simplified to an equivalent model, which is a reliable

and ordinary queue. Therefore, the queueing indices, e.g., queue length, waiting time and

busy period, are directly derived in terms of those results given in a corresponding ordinary

queue with the generalized service time. Readers may further refer to Mitrany and Avi-Ttzhak

(1968), Neuts and Lucantoni (1979) and Kulkarni and Choi (1990) among others. (ii) For the

generalized service time, it has been illustrated that the life time of the server is a most cru-

cial factor. When the life time of the server is exponential, the distribution of the generalized

service time was given in Cao and Chen (1982) and Gnedenko and Kovalenko (1989). When

the life time of the server is non-exponential and phase type, the distribution of the gener-

alized service time was provided in Li (1996) for an M/SM(P H/SM)/1 repairable queue

and Li, Tan and Sun (1999) for a SM/P H (P H/P H )/1 repairable queue. (iii) Reliability

analysis of the server is very important in the study of unreliable queueing systems. Since the

reliability indices are irrelevant to the computations of the queueing indices, the generalized

service time is not helpful for computing the reliability indices. The stationary availability

and the stationary failure frequency were given in Cao and Chen (1982), Li (1996), Li, Shi
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and Chao (1997), Li, Tan and Sun (1999) and Wang, Cao and Li (2001). (iv) For a block-

structured repairable queue, Li (1997), Li (1996), Li, Tan and Sun (1999) and Li and Cao

(2000) applied the matrix-analytic method to derive the stationary availability and failure

frequency. On the other hand, Li (1997) and Hsu, Yuan and Li (2000) provided a uniformly

convergent algorithm for computing the reliability function. This paper, to our best knowl-

edge, first provides an analytic expression for the Laplace transform of the reliability function

by means of the RG-factorization of a level-dependent Markov renewal processes of M/G/1
type.

Retrial queues with unreliable servers have been discussed by some researchers, among

whom are Kulkarni and Choi (1990), Yang and Li (1994), Artalejo (1994), Aissani (1994),

Aissani and Artalejo (1998), Artalejo and Gómez-Corral (1998) and Wang, Cao and Li

(2001). In this paper, a BMAP/G/1 retrial queue with server breakdowns and repairers is

considered both from the queueing viewpoint and from the reliability viewpoint, which is a

more general class of retrial queues than those in literature.

The purpose of this paper is twofold. The first one is to provide expressions for both the

reliability indices of the server and the queueing indices of the system. The expressions can

be grouped into two classes as follows: i) Expressions based on the stationary probability

vector of the system, for example, the stationary availability, failure frequency and queue

length, and ii) expressions based on the Laplace transform of the distribution of a first passage

time, for example, the reliability function and the busy period.

The other purpose is to extend the supplementary variable method (see Lee and Jeon

(1999), Lee (2000)) to study more general block-structured queueing systems including the

BMAP/G/1 retrial queue. The key of successfully using the supplementary variable method is

the new treatment suggested in this paper for boundary conditions of the system of differential

equations for the model. The generalized approach reveals the underlying block structure by

relating boundary conditions to a continuous-time level-dependent Markov chain of M/G/1

type or a level-dependent Markov renewal process of M/G/1 type. Therefore, the matrix-

analytic method and the censoring technique can be fully utilized in the analysis and the

RG-factorization of a continuous-time level-dependent Markov chain of M/G/1 type or

a level-dependent Markov renewal process of M/G/1 type can then be established for a

boundary solution.

The remainder of this paper is organized as follows. In the next section, we give a mod-

eling description on the retrial BMAP/G/1 queue with server breakdowns and repairs. In

Section 3, we set up the system of stationary differential equations. In Section 4, we apply

the censoring technique to solve the system of stationary differential equations, where the

RG-factorization is a key. In Section 5, we derive three reliability indices of the server: The

stationary availability, the stationary failure frequency and the reliability function. In Section

6, we express two queueing indices: The stationary queue length and the busy period. In Sec-

tion 7, we propose two approximate algorithms and analyze their computational complexity.

In Section 8, we give some numerical examples. Some concluding remarks are given in

Section 9.

2. Model description

In this section, we describe the BMAP/G/1/1 retrial queue with a server subject to break-

downs and repairs, which will be analyzed in this paper. The model is described as

follows.
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2.1. The arrival process

The arrivals to the retrial queue are modelled by a BMAP with m phases described by

coefficient matrix sequence {Dk, k ≥ 0}. The matrix D0 has strictly negative diagonal entries

and nonnegative off-diagonal entries, and is invertible. For k ≥ 1, Dk ≥ 0, we assume that∑∞
k=1 k Dk is finite, and D = ∑∞

k=0 Dk is an irreducible infinitesimal generator with De = 0,

where e is a column vector of ones. Let σ be the stationary probability vector of D. Then

λ = σ
∑∞

k=1 k Dke is the stationary arrival rate.

2.2. The service times

The service times {χn,n ≥ 1} of the customers are assume to be i.i.d. random variables. The

distribution function of the service time is expressed by

B (t) = P {χn ≤ t} = 1 − exp

{
−

∫ t

0

μ (v) dv

}
.

We assume that E [χn] = 1/μ < +∞.

2.3. The life time and the repair time

The life time X of the server is exponential with mean life time 1/α and does not change

during the idle period of the server. The repair time Y of the server has the distribution

function

V (y) = P {Y ≤ y} = 1 − exp

{
−

∫ y

0

β (v) dv

}

with E [Y ] = 1/β < +∞.

2.4. The retrial rule

We assume that there is no waiting space in the retrial queue and the size of the orbit is infinite.

If an arrival, either a primary or a retrial customer finds that there is no customer in the server,

then it enters the server immediately and receives service, otherwise it enters the orbit and

makes a retrial at a later time. Returning customers behave independently of each other and

are persistent in the sense that they keep making retrials until they receive their requested

service. Successive inter-retrial times {ξk, k ≥ 1} are i.i.d. exponentially distributed random

variables with mean inter-retrial time 1/θ .

2.5. The service discipline

If the server is busy at the arrival epoch, then all these calls join the orbit, whereas if the

server is free, then one of the arriving customers begins its service and the other calls join

the orbit.
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2.6. The repair discipline

When the server fails, it enters the state of failure and undergoes repair immediately. The

customer who has been partially served has to wait to continue its service. As soon as the repair

of the server is completed, the server enters the working state immediately and continues to

serve the customer. We assume that the repaired server is as good as new and the service time

is cumulative.

2.7. The independence

We assume that all the random variables defined above are independent.

Remark 1. Kulkarni and Choi (1990) considered a more general assumption on breakdowns:

The server may be subject to either an active breakdown in the busy period or a passive

breakdown in the idle period. As shown in Sections 2 and 3, the passive breakdowns only

change those finitely-many equations corresponding to the idle period. Therefore, the passive

breakdowns do not increase any difficulty in the analysis of such retrial queueing models

with an unreliable server. For simplicity, in this paper we consider a model only with the

active breakdowns.

3. The system of differential equations

In this section, we introduce several supplementary variables to make the model Markovian

and set up the system of stationary differential equations for the model.

Let χ̃n be the generalized service time of the nth customer, which is the length of time since

the beginning of the service for the nth customer until the completion of the service. Clearly,

χ̃n includes the down time of the server due to server failures during the service period of the

nth customer. It is easy to see, for example from Cao and Chen (1982), that the sequence χ̃n for

n ≥ 1 are i.i.d. random variables and E[χ̃n] = 1
μ

(1 + α
β

). It follows from Theorem 3 of Dudin

and Klimenok (2000) or Liang and Kulkarni (1993) that if ρ = λE[χ̃n] = λ
μ

(1 + α
β

) < 1,

then the queueing system is stable. In the rest of this paper, we consider a stable system.

For the repairable BMAP/G/1 retrial queue defined above, we denote by N (t) the number

of calls in the orbit at time t , and define the states of the server as

L (t) =
⎧⎨⎩

I, if the server is idle at time t ,
W, if the server is working at time t ,
R, if the server is under repair at time t .

We introduce three variables J (t), S (t) and R (t) representing the phase of the arrival process,

the elapsed service time and the elapsed repair time at time t , respectively. Then {(L (t), N (t),
J (t), S (t), R (t)): t ≥ 0} is a Markov process with state space expressed as


 = {(I, k, j) : k ≥ 0, 1 ≤ j ≤ m} ∪ {(W, k, j, x) : k ≥ 0, 1 ≤ j ≤ m, x ≥ 0}
∪ {(R, k, j, x, y) : k ≥ 0, 1 ≤ j ≤ m, x ≥ 0, y ≥ 0} ,

where k, j , x and y denotes the number of customers in the orbit, the phase of the arrival

process, the amount of the elapsed service time and the elapsed repair time, respectively.
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For k ≥ 0, we define

P(I,k, j) (t) = P {L (t) = I, N (t) = k, J (t) = j} ,

P(W,k, j) (t, x) dx = P {L (t) = W, N (t) = 1 + k, J (t) = j, x ≤ S (t) < x + dx}

and

P(R,k, j) (t, x, y) dy = P {L (t) = R, N (t) = 1 + k, J (t) = j, S (t)

= x, y ≤ R (t) < y + dy} .

Write the above probabilities into vector form as

PI,k (t) = (
P(I,k,1) (t) , P(I,k,2) (t) , . . . , P(I,k,m) (t)

)
,

PW,k (t, x) = (
P(W,k,1) (t, x) , P(W,k,2) (t, x) , . . . , P(W,k,m) (t, x)

)
and

PR,k (t, x, y) = (
P(R,k,1) (t, x, y) , P(R,k,2) (t, x, y) , . . . , P(R,k,m) (t, x, y)

)
.

Since we are interested in the stationary behavior of the system, define

PI,k = lim
t→+∞ PI,k (t) , PW,k (x) = lim

t→+∞ PW,k (t, x) , PR,k (x, y) = lim
t→+∞ PR,k (t, x, y) .

The joint probability density
{

PI,k, PW,k (x) , PR,k (x, y) , k ≥ 0
}

satisfies the following

system of differential equations:

d

dx
PW,0 (x) = PW,0 (x) {D0 − [α + μ (x)] I } +

∫ +∞

0

β (y) PR,0 (x, y) dy, (1)

d

dx
PW,k (x) = PW,k (x) {D0 − [α + μ (x)] I } +

k−1∑
i=0

PW,i (x) Dk−i

+
∫ +∞

0

β (y) PR,k (x, y) dy, k ≥ 1, (2)

∂

∂y
PR,0 (x, y) = PR,0 (x, y) [D0 − β (y) I ] , (3)

∂

∂y
PR,k (x, y) = PR,k (x, y) [D0 − β (y) I ] +

k−1∑
i=0

PR,i (x, y) Dk−i , k ≥ 1, (4)
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with the boundary conditions

PI,k (kθ I − D0) =
∫ +∞

0

μ (x) PW,k (x) dx , k ≥ 0, (5)

PW,k (0) =
k∑

i=0

PI,i Dk+1−i + (k + 1) θ PI,k+1, k ≥ 0, (6)

PR,k (x, 0) = αPW,k (x) , k ≥ 0, (7)

and the normalization condition

∞∑
k=0

[
PI,k +

∫ +∞

0

PW,k (x) dx +
∫ +∞

0

∫ +∞

0

PR,k (x, y) dxdy

]
e = 1. (8)

4. Solving the system of differential equations

In this section, we provide an approach for solving the equations (1) to (8). There are two

crucial steps: We first express PW,k (x) and PR,k (x, y) in terms of boundary probabilistic

vectors PW,k (0) by recognizing a new BMAP, and then provide a method for obtaining

PI,k and PW,k (0) by converting boundary equations into the stationary equations of a level-

dependent Markov chain of M/G/1 type. This solution will be used to express interesting

performance measures of the system in later sections.

Let

D∗ (z) =
∞∑

k=0

zk Dk , ṽ(D∗ (z)) =
∫ +∞

0

exp
{

D∗ (z) y
}

dV (y) .

The following lemma recognizes a new BMAP, which appears in the process of solving

the system of differential equations.

Lemma 1. Let

�∗(z) =
∞∑

k=0

zk�k = D∗(z) − α[I − ṽ(D∗(z))]. (9)

Then �k for k ≥ 0 are coefficient matrices of a BMAP of size m.

Proof: To prove this lemma, we need to show that the following three conditions are satisfied:

(i) The diagonal entries of �0 are strictly negative, the off-diagonal entries are nonnegative,

and �0 is invertible. (ii) For k ≥ 1, �k ≥ 0 and
∑∞

k=1 k�k < +∞. iii) � = ∑∞
k=0 �k is

irreducible and �e = 0.

(i) It follows from (9) that

�0 = D0 − α [I − ṽ (D0)] . (10)
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It is clear from (10) that the off-diagonal entries of �0 are nonnegative, since ṽ (D0) ≥ 0.

Noting that the i th diagonal entry of the matrix ṽ (D0) is the conditional probability that the

BMAP returns to state i and no arrival occurs during a repair time, given that the BMAP

starts in state i , we obtain that the i th diagonal entry of the matrix I − ṽ (D0) is nonnegative.

Hence, the diagonal entries of �0 are strictly negative according to the assumption of D0.

Furthermore, the real parts of the eigenvalues of �0 are all strictly negative according to

Gerŝgorin Theorem (see Horn and Johnson (1985)), and so �0 is invertible.

(ii) It is clear that for k ≥ 1, dk

dzk [ṽ (D∗ (z))]|z=0 ≥ 0. Since

�k = Dk + α
1

k!

dk

dzk
[ṽ(D∗(z))]|z=0,

Dk ≥ 0 for k ≥ 1 and α > 0, we obtain that for k ≥ 1, �k ≥ 0. Using
∑∞

k=1 k Dk < +∞,

we obtain

∞∑
k=1

k�k =
[

I + α

∫ +∞

0

x exp {Dx} dV (x)

] ∞∑
k=1

k Dk < +∞.

(iii) Noting that

∞∑
k=0

�k = D + αṽ (D) − α I ,

it is clear that � is irreducible, since D is irreducible and ṽ (D) ≥ 0. Noting that De = 0 and

[I − ṽ (D)] e = 0, it is obvious that �e = 0. This completes the proof. �

Remark 2. The BMAP with coefficient matrix sequence {�k} may be regarded as a gener-

alized arrival process, which is composed of the sum of two parts: the first is the original

BMAP with coefficient matrix sequence {Dk} while the other is an additional BMAP with

coefficient matrix sequence{
−α [I − ṽ (D0)] , α

1

k!

dk

dzk
[ṽ(D∗(z))]|z=0, k = 1, 2, . . .

}
.

The additional BMAP is due to the server subject to breakdowns and repairs. Note that

Lemma 1 is crucial in computations of the reliability indices as demonstrated in Section 5.

For the two BMAPs having coefficient matrix sequences {Dk} and {�k}, let K D (t) and

K � (t) denote the numbers of arrivals in the time interval [0, t), respectively, and J D (t) and

J� (t) the phases at time t , respectively. We introduce the conditional probabilities for the

two BMAPs by

P D
j, j ′ (n, t) = P{K D(t) = n, J D(t) = j ′ | K D(0) = 0, J D(0) = j},

and

P�
j, j ′ (n, t) = P

{
K � (t) = n, J� (t) = j ′ | K � (0) = 0, J� (0) = j

}
.
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Let P D (n, t) and P� (n, t) be the matrices with entries P D
j, j ′ (n, t) and P�

j, j ′ (n, t) for 1 ≤ j ,

j ′ ≤ m, respectively. Then it follows from Neuts (1989) or Lucantoni (1991) that

P∗
D (z, t) =

∞∑
n=0

zn P D (n, t) = exp{D∗ (z) t} (11)

and

P∗
� (z, t) =

∞∑
n=0

zn P� (n, t) = exp{�∗ (z) t}. (12)

We write

B̄ (x) = 1 − B (x) , V̄ (y) = 1 − V (y) ,

P∗
W (z, x) =

∞∑
k=0

zk PW,k (x) , P∗
R (z, x, y) =

∞∑
k=0

zk PR,k(x, y).

Now, we solve the system of matrix equations (1) to (8). It follows from (3) and (4) that

∂

∂y
P∗

R (z, x, y) = P∗
R(z, x, y)[D∗(z) − β(y)I ],

hence from (7) we obtain

P∗
R(z, x, y) = P∗

R(z, x, 0) exp{D∗(z)y}V̄ (y)

= αP∗
W (z, x) exp{D∗(z)y}V̄ (y). (13)

It follows from (1) and (2), together with (13), that

∂

∂x
P∗

W (z, x) = P∗
W (z, x){D∗(z) − α[I − ṽ(D∗(z))] − μ(x)I }.

Hence,

P∗
W (z, x) = P∗

W (z, 0) exp{{D∗(z) − α[I − ṽ(D∗(z))]}x}B̄(x)

= P∗
W (z, 0) exp{�∗(z)x}B̄(x), (14)

which, together with (12), leads to

PW,k (x) =
k∑

i=0

PW,i (0) P� (k − i, x) B̄ (x) . (15)
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Similarly, (13), together with (11) and (15), leads to

PR,l (x, y) = α

l∑
k=0

PW,k (x) P D (l − k, y) V̄ (y)

= α

l∑
k=0

k∑
i=0

PW,i (0) P� (k − i, x) P D (l − k, y) B̄ (x) V̄ (y) . (16)

Equations (15) and (16) provide a solution for PW,k (x) and PR,k (x, y) in terms of PW,k (0),

k ≥ 0. In order to completely solve the system of differential equations, we still need to

determine the vectors PW,k (0) and PI,k for k ≥ 0 from the boundary equations (5) and (6),

and the normalization condition (8). Define

PI W = (
PI,0, PW,0 (0) , PI,1, PW,1 (0) , PI,2, PW,2 (0) , PI,3, PW,3 (0) , . . .

)
,

Ck =
∫ +∞

0

P� (k, x) d B (x) , k ≥ 0,

A(k)
0 =

(
0 kθ I

0 0

)
, k ≥ 1, (17)

A(k)
1 =

(
−kθ I + D0 D1

C0 −I

)
, k ≥ 0, (18)

Ak =
(

0 Dk

Ck−1 0

)
, k ≥ 2, (19)

and

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
1 A2 A3 A4 · · ·

A(1)
0 A(1)

1 A2 A3 · · ·
A(2)

0 A(2)
1 A2 · · ·

A(3)
0 A(3)

1 · · ·
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

According to the above definitions and the expression for PW,k (x) in (15), the boundary

equations (5) and (6) can be written as

PI W Q = 0. (21)

In what follows we show that the matrix Q is the infinitesimal generator of a continuous-

time positive recurrent Markov chain. Therefore, the unique stationary probability vector

X of Q can be used to determine the vectors PW,k (0) and PI,k for k ≥ 0. It is clear that

PI W = γ X . Let X = (x0, x1, x2, . . .), where xk = (
xk,1, xk,2

)
for k ≥ 0 and the size of each

vector xk, j , k ≥ 0 and j = 1, 2, is m. The normalization condition (8) and the expressions
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for PW,k (x) in (15) and PR,k (x, y) in (16) lead to

γ = 1
∞∑

k=0

k∑
i=0

(
xi,1 + xi,2 Fk−i

)
e + α

∞∑
l=0

l∑
k=0

k∑
i=0

xi,2 Fk−i Hl−k

, (22)

where

Fk =
∫ +∞

0

P� (k, x) B̄ (x) dx , Hk =
∫ +∞

0

P D (k, y) V̄ (y) dy. (23)

Theorem 1. The matrix Q is the infinitesimal generator of a continuous-time irreducible
positive recurrent Markov chain.

Proof: From the definition of Q, it can be easily verified that the matrix Q can be served as

the infinitesimal generator of a continuous-time irreducible Markov chain. In what follows

we only need to prove that it is positive recurrent.

For each k ≥ 1,

A(k)
0 + A(k)

1 +
∞∑

l=2

Al =
(

D0 − kθ I D+ + kθ I

C −I

)
,

where D+ = ∑∞
l=1 Dl and C = ∑∞

l=0 Cl . It is clear that the transition rate matrix A(k)
0 +

A(k)
1 + ∑∞

l=2 Al is irreducible and positive recurrent. Let (y(k)
1 , y(k)

2 ) be the stationary proba-

bility vector of A(k)
0 + A(k)

1 + ∑∞
l=2 Al . Then

(
y(k)

1 , y(k)
2

) (
D0 − kθ I D+ + kθ I

C −I

)
= 0,

hence, solving this equation gives

y(k)
1

[
1

kθ
(D0 + D+C) + C − I

]
= 0.

Noting that the matrix C is irreducible and stochastic, and the matrix D0 + D+ is an infinitesi-

mal generator, it is clear that 1
kθ

(D0 + D+C) + C − I is an irreducible infinitesimal generator

of size m for each k ≥ 1. Thus, for each k ≥ 1 the Markov chain 1
kθ

(D0 + D+C) + C − I is

positive recurrent. Let w(k) be the stationary probability vector of 1
kθ

(D0 + D+C) + C − I .

Then

y(k)
1 = w(k)

1 + kθ + w(k) D+e
and y(k)

2 = w(k) (D+ + kθ I )

1 + kθ + w(k) D+e
,

Noting that, as k → ∞,

1

kθ
(D0 + D+C) + C − I → C − I,
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it is clear that w(k) → w, as k → ∞, where w is the stationary probability vector of the

irreducible infinitesimal generator C − I . Thus, as k → ∞,

y(k)
1 = w(k)

1 + kθ + w(k) D+e
→ 0 and y(k)

2 = w(k) (D+ + kθ I )

1 + kθ + w(k) D+e
→ w.

As k → ∞, some simple computations lead to

(
y(k)

1 , y(k)
2

)
A(k)

0 e = kθy(k)
1 e = w(k)C

(
I − 1

kθ
D0

)−1
e

1 + 1
kθ

w(k)C
(
I − 1

kθ
D0

)−1
e

→ 1 (24)

and

(
y(k)

1 , y(k)
2

) ∞∑
l=2

(l − 1) Ale = y(k)
1

∞∑
l=2

(l − 1) Dle + y(k)
2

∞∑
l=2

(l − 1) Cl−1e

→ w

∞∑
l=2

(l − 1) Cl−1e = λ

μ
< 1 (25)

due to the stable condition ρ = λ
μ

(1 + α
β

) < 1. It follows from (24) and (25) that

lim
k→∞

(
y(k)

1 , y(k)
2

)
A(k)

0 e > lim
k→∞

(
y(k)

1 , y(k)
2

) ∞∑
l=2

(l − 1) Ale. (26)

Thus, there always exists a positive integer N Large enough such that for all k > N ,

(
y(k)

1 , y(k)
2

)
A(k)

0 e >
(

y(k)
1 , y(k)

2

) ∞∑
l=2

(l − 1) Ale. (27)

It is easy to check that

∞∑
l=2

(l − 1) Ale < +∞. (28)

Therefore, it is easy to see from (27) and (28) that the continuous-time irreducible Markov

chain Q is positive recurrent based on the principle of mean drift (for example, Proposition

4.6 in Asmussen (1987) for discrete-time case). �

What is left now is to efficiently determine the stationary probability vector X of Q. The

procedure here is based on the censoring technique and a RG-factorization. To do this, we
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write

Qk =

⎛⎜⎜⎜⎜⎜⎝
A(k)

1 A2 A3 · · ·
A(k+1)

0 A(k+1)
1 A2 · · ·

A(k+2)
0 A(k+2)

1 · · ·
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ , k ≥ 1.

For Qk we denote by (Q̂(k)
1,1

T , Q̂(k)
2,1

T , . . .)T the first block-column of its fundamental matrix

Q̂k = −Q−1
k , which is the minimal nonnegative inverse of −Qk . We define

R(k)
j =

∞∑
i=1

Ai+ j Q̂(k+1)
i,1 , k ≥ 0, j ≥ 1, (29)

G(k) = Q̂(k)
1,1 A(k)

0 , k ≥ 1, (30)

and

Uk = A(k)
1 + R(k)

1 A(k+1)
0 , k ≥ 0. (31)

Based on the censoring technique, or a similar argument employed in Lemma 4 of Li and

Zhao (2002), we can have the following Lemma.

Lemma 2. For k ≥ 1 and j ≥ 2,

Q̂(k)
j,1 = G(k+ j−1)G(k+ j−2) · · · G(k+1)

(−U−1
k

)
,

and

Uk = −
[

Q̂(k)
1,1

]−1

.

Lemma 3.

(i) For k ≥ 0 and l ≥ 1,

R(k)
l = [

Al+1 + Al+2G(k+2) + Al+3G(k+3)G(k+2) + · · ·] (−U−1
k+1

)
. (32)

(ii) For k ≥ 0,

Uk = A(k)
1 + A2G(k+1) + A3G(k+2)G(k+1) + A4G(k+3)G(k+2)G(k+1) + · · · . (33)

(iii) The matrix sequence {G(k)} is the minimal nonnegative solution to the system of matrix
equations

A(k)
0 + A(k)

1 G(k) + A2G(k+1)G(k) + A3G(k+2)G(k+1)G(k) + · · · = 0, k ≥ 1. (34)
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Proof: (i) It follows from Lemma 2 that

Q̂(k+1)
1,1 = −U−1

k+1

and

Q̂(k+1)
j,1 = G(k+ j)G(k+ j−1) · · · G(k+2)

(−U−1
k+1

)
, j ≥ 2.

Thus, (29) becomes

R(k)
l = [

Al+1 + Al+2G(k+2) + Al+3G(k+3)G(k+2) + · · ·] (−U−1
k+1

)
.

(ii) It follows from (31) that

Uk = A(k)
1 + A2G(k+1) + A3G(k+2)G(k+1) + A4G(k+3)G(k+2)G(k+1) + · · · .

(iii) Noting that (−Uk)
(−U−1

k

) = I and
(−U−1

k

)
A(k)

0 = G(k), we obtain (−Uk) G(k) = A(k)
0 ,

which is equivalent to

A(k)
0 + A(k)

1 G(k) + A2G(k+1)G(k) + A3G(k+2)G(k+1)G(k) + · · · = 0.

A similar discussion to the proof of Lemma 1.2.3 in Neuts (1989) leads to the conclusion

that {G(k)} is the minimal nonnegative solution to the system of matrix equations in (34).

This completes the proof. �

Remark 3. In principle, the matrix sequence {G(k)} can be numerically computed. Once

{G(k)} is given, we can obtain the R-measure {R(k)
l } and the matrix sequence {Uk} according

to Lemma 3. Readers may refer to Dudin and Klimenok (1999, 2000).

Theorem 2.

Q = (I − RU ) UD (I − GL ) , (35)

where

(I − RU ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −R(0)
1 −R(0)

2 −R(0)
3 · · ·

I −R(1)
1 −R(1)

2 · · ·
I −R(2)

1 · · ·
I · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Springer



Ann Oper Res (2006) 141: 233–270 247

UD is the diagonal matrix in block form with the diagonal entries equal to Uk for k ≥ 0, or
UD = diag (U0, U1, U2, . . .), and

(I − GL ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I

−G(1) I

−G(2) I

−G(3) I

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof: To prove (35), we first compute the right hand side of (35), and then compare it

with the left hand side. For the right hand side of (35), a) the entries of the first block-row

are U0 + R(0)
1 U1G(1) and −R(0)

l Ul + R(0)
l+1Ul+1G(l+1), l ≥ 1; and b) the entries of the kth

block-row are −Uk G(k), Uk + R(k)
1 Uk+1G(k+1) and −R(k)

l Uk+1 + R(k+1)
l+1 Uk+2G(k+2).

It follows from (32) that

R(0)
1 U1G(1) = − [

A2G(1) + A3G(2)G(1) + A4G(3)G(2)G(1) + · · ·]
and from (33) that

U0 + R(0)
1 U1G(1) = A(0)

1 .

It follows from (32) that

−R(0)
l Ul = Al+1 + Al+2G(l+1) + Al+3G(l+2)G(l+1) + Al+4G(l+3)G(l+2)G(l+1) + · · ·

and

R(0)
l+1Ul+1G(l+1) = − [

Al+2G(l+1) + Al+3G(l+2)G(l+1) + Al+4G(l+3)G(l+2)G(l+1) + · · ·] .

Hence,

−R(0)
l Ul + R(0)

l+1Ul+1G(l+1) = Al+1.

Similarly, for the kth block-row we can obtain

−Uk G(k) = A(k)
0 ,

Uk + R(k)
1 Uk+1G(k+1) = A(k)

1

and

−R(k)
l Uk+1 + R(k+1)

l+1 Uk+2G(k+2) = Al+1.

Therefore, the right hand side of (35) is the same as its left hand side. This completes the

proof. �
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The equation (35) is called the RG-factorization for continuous-time level-

dependent Markov chains of M/G/1 type.

Remark 4. Zhao (2000) applied the censoring technique to provide the RG-factorization

for an irreducible Markov chain of GI/G/1 type. While we use the same technique in this

paper to derive the RG-factorization for an irreducible continuous-time level-dependent

Markov chain of M/G/1 type, which is always very useful in modeling and analyzing

some practical systems. As seen from those block-entries in (17) and (18), the continuous-

time level-dependent Markov chain of M/G/1 type given in (20) can not be rewritten as a

discrete-time Markov chain of G I/G/1 type as in Zhao (2000).

The following corollary expresses the stationary probability vector of Q in terms of the

RG-factorization. The proof is clear according to a solving procedure provided in Subsection

5.1 of Li and Zhao (2002).

Corollary 3. The stationary probability vector of Q is given by

⎧⎪⎨⎪⎩
x0 = τ z0,

xk =
k−1∑
i=0

xi R(i)
k−i , k ≥ 1,

where z0 is the stationary probability vector of the transition rate matrix U0 and the scalar
τ is uniquely determined by

∑∞
k=0 xke = 1.

The solution of the system of differential equations for the vectors PI,k , PW,k (x) and

PR,k (x, y) for k ≥ 0 based on the above discussion is summarized into the following theorem.

Theorem 4. If the system is stable, then for k ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PI,k = γ xk,1,

PW,k (x) = γ

k∑
i=0

xk,2 P� (k − i, x) B̄ (x) ,

PR,k (x, y) = αγ

k∑
l=0

l∑
i=0

xi,2 P� (l − i, x) P D (k − l, y) B̄ (x) V̄ (y) ,

where γ and xk = (
xk,1, xk,2

)
for k ≥ 0 are given in (22) and Corollary 3, respectively.

Remark 5. The method proposed in this section can be used in principle to deal with a retrial

queue with a more general total retrial rate, where the total retrial rate is a function f (n, θ ),

n is the number of customers in the orbit and θ is a parameter. For example, f (n, θ ) =∑M
i=0 ai (θ ) ni or f (n, θ ) = C1 ln n + C2enθ . The case with linear retrial rate f (n, θ ) =

nθ + γ was studied in Dudin and Klimenok (2000).
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5. Reliability indices

In this section, we explicitly express three reliability indices of the server: The stationary

availability, the stationary failure frequency and the reliability function.

To obtain the stationary availability and the stationary failure frequency of the server, we

need the following lemma.

Lemma 4. If the system is stable, then

(i) the probability that the server is idle is PI = 1 − λ
μ

(1 + α
β

),

(ii) the probability that the server is working is PW = λ
μ

,

(iii) the probability that the server is under repair is PR = λ
μ

α
β

.

Proof: It follows from (5) and (14) that

θ z
d

dz
P∗

I (z) − P∗
I (z) D0 = P∗

W (z, 0) b̃
(
�∗ (z)

)
, (36)

where

P∗
I (z) =

∞∑
k=0

zk PI,k , b̃
(
�∗ (z)

) =
∫ +∞

0

exp
{
�∗ (z) x

}
d B (x) .

It follows from (6) that

P∗
W (z, 0) = 1

z
P∗

I (z)
[
D∗ (z) − D0

] + θ
d

dz
P∗

I (z) . (37)

From (36) and (37) we obtain

P∗
W (z, 0) = P∗

I (z) D∗ (z)
[
z I − b̃

(
�∗ (z)

)]−1
.

Noting that∫ +∞

0

exp
{
�∗ (z) x

}
B̄ (x) dx = [

I − b̃
(
�∗ (z)

)] [−�∗ (z)
]−1

and∫ +∞

0

exp
{

D∗ (z) x
}

V̄ (x) dx = [
I − ṽ

(
D∗ (z)

)] [−D∗ (z)
]−1

,

using (13), (14) and (37) yields

P∗ (z) = P∗
I (z) +

∫ +∞

0

P∗
W (z, x) dx +

∫ +∞

0

∫ +∞

0

P∗
R (z, x, y) dxdy

= P∗
I (z)

{
I + D∗ (z)

[
z I − b̃

(
�∗ (z)

)]−1 [
I − b̃

(
�∗ (z)

)] [−�∗ (z)
]−1

×{
I + α

[
I − ṽ

(
D∗ (z)

)] [−D∗ (z)
]−1 }}

. (38)
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For z ≥ 0, we denote by χ (z) and e (z) the eigenvalue with maximal real part of the matrix

D∗ (z) and the associated right eigenvector with the first entry normalized to one, respectively.

It is obvious that limz→1 χ (z) = 0, limz→1 χ ′ (z) = λ and limz→1 e (z) = e. It follows from

(38) that

P∗ (z) e (z) = P∗
I (z) e (z)

z − 1

z − b̃ (χ (z) − α [1 − ṽ (χ (z))])
. (39)

Noting that, after some calculations,

lim
z→1

z − 1

z − b̃ (χ (z) − α [1 − ṽ (χ (z))])
= 1

1 − λ
μ

(
1 + α

β

)
and

lim
z→1

P∗ (z) e (z) = 1,

we obtain

PI = P∗
I (1) e (1) = 1 − λ

μ

(
1 + α

β

)
.

We can similarly obtain that PW = λ
μ

and PR = λ
μ

α
β

. This completes the proof. �

Remark 6. This lemma shows that we can determine the scalar function P∗ (z) e (z) by (36)

to (39). However, we can not explicitly obtain the vector function P∗ (z). This is the main

reason why it is necessary for us to provide an approach for solving the equations (1) to (8) in

Section 4. Meanwhile, it is also easy to see the basic difficulty of using the standard method

(e.g., see Subsection 1.2.2 in Falin and Templeton (1997)) to deal with the BMAP/G/1 retrial

queue and more generally, retrial queues of M/G/1 type.

Let

A (t) = P {the server is up at time t}

and define the stationary availability of the server as A = limt→+∞ A (t). We denote by W f

the stationary failure frequency of the server.

Theorem 5. If the system is stable, then

(i) the stationary availability of the server is given by

A = 1 − λ

μ

α

β
;

(ii) the stationary failure frequency of the server is given by

W f = α
λ

μ
.
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Proof: Noting that

A =
∞∑

k=0

[
PI,k +

∫ +∞

0

PW,k (x) dx

]
e =

[
P∗

I (1) +
∫ +∞

0

P∗
W (1, x) dx

]
e = PI + PW

and

W f = α

[ ∞∑
k=0

∫ +∞

0

PW,k (x) dx

]
e = α

∫ +∞

0

P∗
W (1, x) dxe = αPW .

This completes the proof. �

Remark 7. It is easy to see from (13) to (16) that Lemma 1 is a key to express the vector

generating function P∗
W (z, x), which is necessary to derive the two reliability indices: The

stationary availability and failure frequency, as shown in the proof of Theorem 5.

Now, we derive the reliability function of the server. Let ξ be the time to the first failure

of the server. We write


 (t) = P {ξ > t} ,

which is called the reliability function of the server.

To derive the expression for 
 (t), we first treat all the states of failure of the server as

an absorbing state ‘∗’, we then obtain a transient Markov process {(L (t) , N (t), J (t), S (t)):
t ≥ 0} on state space


0 = {(I, k, i) : k ≥ 0, 1 ≤ i ≤ m} ∪ {(W, k, i, x) : k ≥ 0, 1 ≤ i ≤ m, x ≥ 0} ∪ {∗} .

If we use the same notation in Section 2, then the systems of differential equations are given

by

d

dt
PI,k (t) = PI,k (t) [D0 − kθ I ] +

∫ +∞

0

μ (x) PW,k (t, x) dx , k ≥ 0,

(40)(
∂

∂t
+ ∂

∂x

)
PW,0 (t, x) = PW,0 (t, x) {D0 − [α + μ (x)] I } , (41)(

∂

∂t
+ ∂

∂x

)
PW,k (t, x) = PW,k (t, x) {D0 − [α + μ (x)] I }

+
k−1∑
i=0

PW,i (t, x) Dk−i , k ≥ 1. (42)

The boundary conditions are given by

PW,k (t, 0) =
k∑

i=0

PI,i (t) Dk+1−i + (k + 1) θ PI,k+1 (t) , k ≥ 0, (43)

Springer



252 Ann Oper Res (2006) 141: 233–270

and the initial conditions are given by

PI,0 (t) = σ0δ (t) , (44)

where δ (t) is the delta function, σ0 is the initial probability vector that the system is in the

state set {(I, 0, i) : 1 ≤ i ≤ m} at time 0,

PI,k (0) = 0, k ≥ 1, (45)

PW,k (0, x) = 0, k ≥ 0. (46)

Let

P̃I,k (s) =
∫ +∞

0

e−st PI,k (t) dt , P̃W,k (s, x) =
∫ +∞

0

e−st PW,k (t, x) dt , k ≥ 0,

and

Q̃∗
W (z, s, x) =

∞∑
k=0

zk P̃W,k (s, x) .

It follows from (41) and (42) that

∂

∂x
Q̃∗

W (z, s, x) = Q̃∗
W (z, s, 0)

{
D∗ (z) − [s + α + μ (x)] I

}
.

Hence

Q̃∗
W (z, s, x) = Q̃∗

W (z, s, 0) exp
{

D∗ (z) x
}

e−(s+α)x B̄ (x) .

It is easy to see that

P̃W,k (s, x) =
k∑

i=0

P̃W,i (s, 0) P D (k − i, x) e−(s+α)x B̄ (x) , k ≥ 0. (47)

To determine the row vectors P̃W,k (s, 0) for k ≥ 0, we introduce

Ãk (s) =
∫ +∞

0

P D (k, x) e−(s+α)x d B (x) , k ≥ 0,

B(l)
1 (s) =

(
D0 − (s + lθ ) I D1

Ã0 (s) −I

)
, l ≥ 0,

and

B(l)
0 =

(
0 lθ I

0 0

)
, Bk (s) =

(
0 Dk

Ãk−1 (s) 0

)
, k ≥ 2.
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We write

PI W (s) = (
P̃I,0 (s) , P̃W,0 (s, 0) , P̃I,1 (s) , P̃W,1 (s, 0) , P̃I,2 (s) , P̃W,2 (s, 0) , . . .

)
.

It follows from (40), (43) to (47) that

PI W (s) Q (s) = − (σ̂ , 0, 0, . . .) , (48)

where σ̂ = (σ0, 0) and

Q (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(0)
1 (s) B2 (s) B3 (s) B4 (s) · · ·
B(1)

0 B(1)
1 (s) B2 (s) B3 (s) · · ·
B(2)

0 B(2)
1 (s) B2 (s) · · ·
B(3)

0 B(3)
1 (s) · · ·
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

To solve the equation (48), we write

Qk (s) =

⎛⎜⎜⎜⎜⎜⎝
B(k)

1 (s) B2 (s) B3 (s) · · ·
B(k+1)

0 (s) B(k+1)
1 (s) B2 (s) · · ·

B(k+2)
0 (s) B(k+2)

1 (s) · · ·
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ , k ≥ 1.

We denote by (Q̂(k)
1,1 (s)T , Q̂(k)

2,1 (s)T , . . .)T the first block-column of the fundamental matrix

Q̂k (s) = −Q−1
k (s), which is the minimal nonnegative inverse of −Qk (s).

We define

R(k)
j (s) =

∞∑
i=1

B(k)
i+ j (s) Q̂(k+1)

i,1 (s) , k ≥ 0, j ≥ 1, (50)

G(k) (s) = Q̂(k)
1,1 (s) B(k)

0 (s) , k ≥ 1, (51)

and

Uk (s) = B(k)
1 (s) + R(k)

1 (s) B(k+1)
0 (s) , k ≥ 0. (52)

Similar discussions to that of Theorem 2, the following theorem is obvious.

Theorem 6.

Q (s) = [I − RU (s)] UD (s) [I − GL (s)] , (53)
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where

I − RU (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −R(0)
1 (s) −R(0)

2 (s) −R(0)
3 (s) · · ·

I −R(1)
1 (s) −R(1)

2 (s) · · ·
I −R(2)

1 (s) · · ·
I · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

UD (s) = diag (U0 (s) , U1 (s) , U2 (s) , U3 (s) , . . .) ,

I − GL (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I

−G(1) (s) I

−G(2) (s) I

−G(3) (s) I

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The equation (53) is called the RG-factorization of level-dependent Markov renewal

processes of M/G/1 type. In fact, the RG-factorization holds for more general irre-

ducible Markov renewal processes. Readers may refer to Li and Zhao (2004) for more

details.

Let

X (l)
1 (s) = R(l)

1 (s) , l ≥ 0, (54)

X (l)
k+1 (s) = R(l)

1 (s) X (l+1)
k (s) + R(l)

2 (s) X (l+2)
k−1 (s)

+ · · · + R(l)
k (s) X (l+k)

1 (s) , l ≥ 0, k ≥ 1, (55)

and

Y (l)
k (s) = G(l) (s) G(l−1) (s) · · · G(l−k+1) (s) , l ≥ 1, k ≥ 1. (56)

Lemma 5. If s > 0, then I − RU (s), UD (s) and I − GL (s) are invertible,

[I − RU (s)]−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I X (0)
1 (s) X (0)

2 (s) X (0)
3 (s) · · ·

I X (1)
1 (s) X (1)

2 (s) · · ·
I X (2)

1 (s) · · ·
I · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (57)

UD (s)−1 = diag
(
U0 (s)−1 , U1 (s)−1 , U2 (s)−1 , U3 (s)−1 , . . .

)
(58)
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[I − GL (s)]−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

Y (1)
1 (s) I

Y (2)
2 (s) Y (2)

1 (s) I

Y (3)
3 (s) Y (3)

2 (s) Y (3)
1 (s) I

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (59)

Proof: We first prove that the three matrices I − RU (s), UD (s) and I − GL (s) are invertible.

Note that the two matrices I − RU (s) and I − GL (s) are obviously invertible, we only need

to show that the matrix UD (s) is invertible. Since the Markov chain Q (s) is transient for

s > 0, the censored Markov chain U0 (s) to level 0 is also transient. Hence, the matrix U0 (s)

is invertible. Based on the censoring property that the matrix Uk (s) is invertible for each

k ≥ 1, it is easy to see that the matrix UD (s) is invertible.

Then, we provide the expressions for the inverses of the matrices I − RU (s), UD (s) and

I − GL (s). To do this, we only prove (57) and the other two can be proved similarly. Noting

that [I − RU (s)] [I − RU (s)]−1 = I , by induction we can obtain

(i) the (l, l + 1)st block-entry of [I − RU (s)]−1 is

X (l)
1 (s) = R(l)

1 (s) , l ≥ 0;

(ii) the (l, l + k + 1)st block-entry of [I − RU (s)]−1 is

X (l)
k+1 (s) = R(l)

1 (s) X (l+1)
k (s)

+ R(l)
2 (s) X (l+2)

k−1 (s) + · · · + R(l)
k (s) X (l+k)

1 (s) , l ≥ 0, k ≥ 1.

This completes the proof. �

Now, we solve equation PI W (s) Q (s) = − (σ̂ , 0, 0, . . .). It follows from (53) and Lemma

5 that

PI W (s) = (σ̂ , 0, 0, . . .) [I − GL (s)]−1 [−UD (s)]−1 [I − RU (s)]−1

= σ̂ [−U0 (s)]−1
(

I, X (0)
1 (s) , X (0)

2 (s) , . . .
)

.

Therefore, we can express the vectors P̃I,k (s) and P̃W,k (s, 0) for all k ≥ 0 as

(
P̃I,0 (s) , P̃W,0 (s, 0)

) = σ̂ [−U0 (s)]−1

and

(
P̃I,k (s) , P̃W,k (s, 0)

) = σ̂ [−U0 (s)]−1 X (0)
k (s) , k ≥ 1.
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Theorem 7. The Laplace transform of the reliability function of the server is given by


̃ (s) =
∞∑

k=0

[
P̃I,k (s) e +

k∑
i=0

P̃W,i (s, 0) C̃k−i (s) e

]
,

where

C̃k (s) =
∫ +∞

0

e−(s+α) P D (k, x) B̄ (x) dx.

The mean of the first failure time of the server is given by

MTTFF =
∞∑

k=0

[
P̃I,k (0) e +

∞∑
i=0

P̃W,i (0, 0) C̃k−i (0) e

]
. (60)

Proof: Noting that


̃ (s) =
∞∑

k=0

[
P̃I,k (s) e +

∫ +∞

0

P̃W,i (s, x) dxe

]

and

MTTFF = 
̃ (0) ,

simple computations lead to the proof. �

6. Queueing indices

In this section, we express the distributions of the stationary queue length and the busy period.

If the system is stable, we write

pk = lim
t→+∞ P {N (t) = k} , k ≥ 0.

Theorem 8. If the system is stable, then

p0 = γ x0,1e,

pk = γ

(
xk,1e +

k−1∑
i=0

xi,2 Fk−1−i + α

k−1∑
j=0

j∑
i=0

xi,2 Fj−i Hk−1− j

)
e, k ≥ 1,

where Fk and Hk are defined in (23), γ and xk = (
xk,1, xk,2

)
for k ≥ 0 are given in (22) and

Corollary 3, respectively.
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Proof: If the system is stable, we write

p(I )
k = lim

t→+∞ P {L (t) = I, N (t) = k} , k ≥ 0,

p(W )
k = lim

t→+∞ P {L (t) = W, N (t) = k} , k ≥ 1,

p(R)
k = lim

t→+∞ P {L (t) = R, N (t) = k} , k ≥ 1.

Noting that

p0 = p(I )
0 , pk = p(I )

k + p(W )
k + p(R)

k , k ≥ 1,

it follows from Theorem 4 that

p(I )
0 = pI,0e, p(I )

k = pI,ke, k ≥ 1,

p(W )
k =

∫ +∞

0

PW,k−1 (x) dxe, p(R)
k =

∫ +∞

0

∫ +∞

0

PR,k−1 (x, y) dxdy, k ≥ 1.

Therefore, simple computations can complete this proof. �

Remark 8. The approach, provided in the above, for obtaining the distribution of the station-

ary queue length at an arbitrary epoch is different from that in Dudin and Klimenok (2000),

where the distribution of the stationary queue length at the service completion epochs is first

determined in terms of the embedded Markov chain, and the distribution of the stationary

queue length at an arbitrary epoch is then determined by the associated Markov renewal

process.

In what follows we consider the busy period. A busy period is defined as the period that

starts at a time epoch at which a customer enters an empty system (where the server is free

and there is no retrial customer) and ends at the departure epoch at which the system is left

empty for first time. The busy period defined in this way consists of alternating periods of

the generalized service period and the period during which the server is free and there exists

at least one retrial customer in the orbit.

Let B be the length of a busy period, B(t) = P{B > t} and B̃(s) = ∫ +∞
0

e−stB(t)
dt . To derive the complementary distribution B(t), we first treat all the states (I, 0, i) for

1 ≤ i ≤ m as an absorbing state ‘∗’, hence the busy period is a first passage time of the

Markov process {(L(t), N (t), J (t), S(t), R(t)): t ≥ 0} defined in Section 2. Based on this, the

computational procedure of B̃(s) is the same as that used in Theorem 7 for calculating the

Laplace transform of the reliability function. For simplicity, we only give the main results

with respect to B̃(s) while the detailed derivations are omitted.

Let

Ã�
k (s) =

∫ +∞

0

P� (k, x) e−sx d B (x) , k ≥ 0,

B
(k)
1 (s) =

(
−I Ã�

1 (s)

(k + 1) θ D0 − [s + (k + 1) θ ] I

)
, k ≥ 0,
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B0 (s) =
(

0 Ã�
0 (s)

0 0

)
, Bk (s) =

(
0 Ã�

k (s)

Dk−1 0

)
, k ≥ 2,

and

Q (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B
(0)
1 (s) B2 (s) B3 (s) B4 (s) · · ·

B0 (s) B
(1)
1 (s) B2 (s) B3 (s) · · ·

B0 (s) B
(2)
1 (s) B2 (s) · · ·

B0 (s) B
(3)
1 (s) · · ·
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For the matrix Q(s), we define the R-measure {R(k)
j }, the G-measure {G(k)} and the matrix

sequence {Uk}, as defined in (50), (51) and (52), respectively. We write

X
(l)
1 (s) = R

(l)
1 (s), l ≥ 0,

X
(l)
k+1(s) = R

(l)
1 (s)X

(l+1)
k (s) + R

(l)
2 (s)X

(l+2)
k−1 (s) + · · · + R

(l)
k (s)X

(l+k)
1 (s), l ≥ 0, k ≥ 1,

and

Y
(l)
k (s) = G(l)(s)G(l−1)(s) · · · G(l−k+1)(s), l ≥ 1, k ≥ 1.

Let

θB = (θB1, θB2, θB3, . . .),

with θBk = (
PI,0 Dk

PI,0 D+e , 0) for k ≥ 1 are of size 2m,

(
P̃W,0 (s, 0) , P̃I,1 (s)

) =
[
θB1 +

∞∑
i=2

θBi Y
(i−1)
i−1 (s)

]
[−U0 (s)]−1

and for k ≥ 2,

(P̃W,k−1(s, 0), P̃I,k(s)) =
k−1∑
l=2

[
θBl +

∞∑
i=l+1

θBi+lY
(i−1)
i−l (s)

]
[−Ul−1 (s)]−1 X

(l−1)
k−l (s)

+
[
θBk +

∞∑
i=k+1

θBi Y
(i−k)
i−k (s)

]
[−Uk−1 (s)]−1 .
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Theorem 9. The Laplace transform of B (t) is given by

B̃ (s) =
∞∑

k=1

P̃I,k (s) e +
∞∑

k=0

k∑
i=0

P̃W,i (s, 0) C̃k−i (s) e

+
∞∑

l=0

l∑
k=0

k∑
i=0

P̃W,i (s, 0) C̃k−i (s) D̃l−k (s) e,

where

C̃k (s) =
∫ +∞

0

e−sx P� (k, x) B̄ (x) dx, D̃k (s) =
∫ +∞

0

e−sx P D (k, y) V̄ (y) dy.

The mean of the busy period is given by

E [B] =
∞∑

k=1

P̃I,k (0) e +
∞∑

k=0

k∑
i=0

P̃W,i (0, 0) C̃k−i (0) e

+
∞∑

l=0

l∑
k=0

k∑
i=0

P̃W,i (0, 0) C̃k−i (0) D̃l−k (0) e. (61)

Remark 9. Theorem 9 applies the RG-factorization of a level-dependent Markov renewal

process of M/G/1 type to provide a novel method for calculating the Laplace transform of

the complementary distribution of the busy period in a block-structured queue, although this

method is standard for an M/G/1 (retrial) queue.

7. Two algorithms

In this section, we provide two algorithms: The first one is used to compute the stationary

probability vector of the continuous-time level-dependent Markov chain of M/G/1 type,

and the second one is to calculate the mean of the first passage time of this Markov chain.

The two algorithms are based on the R-measure, which is a key to express both the stationary

probability vector and the Laplace transform of a first passage time.

In the class of asymptotically quasi-Toeplitz 2-dimensional Markov chains (see Section

4 in Dudin and Klimenok, 2000), Neuts and Rao (1990) proposed an approximate algorithm

to compute the stationary probability vector of a positive recurrent level-dependent QBD

process. With this algorithm, one first needs to modify the level-dependent QBD process to

a corresponding level-independent QBD process; then use the matrix-geometric solution of

the modified process to approximate the stationary probability vector. Dudin and Klimenok

(2000) generalized this algorithm to deal with a level-dependent Markov chain of M/G/1

type. When the level-dependent Markov chain is modified as the level-independent case, they

used the censoring technique to construct a system of finitely-many linear equations whose

solution approximates the stationary probability vector.

Our algorithm is different from that of Dudin and Klimenok (2000), although both al-

gorithms use the same censoring technique. The algorithm given in Dudin and Klimenok

(2000) is a direct truncation method. One drawback of the direct truncation method is that

Springer



260 Ann Oper Res (2006) 141: 233–270

computational accuracy heavily depends on the truncation size of the censored matrix for

some heavy-traffic cases. Noting that in this paper the stationary probability vector of a

positive recurrent Markov chain of M/G/1 type can be expressed by the R-measure, our

algorithm effectively use all the subvectors in the stationary probability vector, including

those corresponding to the censored chain as in Dudin and Klimenok (2000). Therefore, our

algorithm improves that in Dudin and Klimenok (2000). For a probabilistic interpretation of

the improved algorithm, we would like to note that Neuts and Rao (1990) proposed a similar

way for improving the direct truncation method by using the matrix-geometric solution.

For a level-dependent QBD process, which may not be a asymptotically quasi-Toeplitz

2-dimensional Markov chain, Bright and Taylor (1995) proposed a method based on sample

path truncations to compute the truncated R-measure {Rk, 1 ≤ k ≤ K ∗ − 1} and the truncated

stationary probability vector {πk, 1 ≤ k ≤ K ∗}. Also, they illustrated how to choose the

number K ∗. Bright and Taylor (1995) improved the direct truncation method.

We now present the first algorithm in five steps:

Step 1. A crucial number

We need to modify matrix Q in (20) to a level-independent infinitesimal generator. Let

N be a positive integer such that the modified Markov chain beginning from level N is

level-independent. The following rule determines the number N .

Let Gn be the minimal nonnegative solution to the matrix equation

A(n)
0 + A(n)

1 Gn +
∞∑

k=2

Ak Gk
n = 0. (62)

Using (62) and letting n → ∞, we obtain

(
1

nθ
I

I

)
A(n)

0 →
(

0 I

0 0

)
,

(
1

nθ
I

I

)
A(n)

1 →
(

−I 0

C0 −I

)
,

(
1

nθ
I

I

)
Ak →

(
0 0

Cl−1 0

)
, k ≥ 2.

Let G∞ be the minimal nonnegative solution to the equation

(
0 I

0 0

)
+

(
−I 0

C0 −I

)
G∞ +

∞∑
l=2

(
0 0

Cl−1 0

)
(G∞)l = 0. (63)

Then G∞ = limn→∞ Gn . Hence, there always exists a sufficiently large positive integer N
such that for all n ≥ N , ||Gn − G∞|| < ε, where ε > 0 is a predetermined smaller number

and || · || denotes norm of matrix.

Step 2. A modified level-independent Markov chain of M/G/1 type
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Once N is found in Step one, the matrix Q can be modified to

Q̃N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(N−1)
1 C

(N−1)
2 C

(N−1)
3 C

(N−1)
4 · · ·

C
(N )
0 A(N )

1 A2 A3 · · ·
A(N )

0 A(N )
1 A2 · · ·

A(N )
0 A(N )

1 · · ·
A(N )

0 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (64)

where

C
(N )
0 = (

0, 0, . . . , 0, A(N )
0

)
,

C
(N−1)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
1 A2 · · · AN−1 AN

A(1)
0 A(1)

1 · · · AN−2 AN−1

A(2)
0 · · · AN−3 AN−2

. . .
...

...

A(N−1)
0 A(N−1)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C

(N−1)
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

AN+k−1

AN+k−2

AN+k−3

...

Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, k ≥ 2.

Step 3. The R-measure

Using Theorem 1 in Li and Zhao (2002) we define

U = A(N )
1 +

∞∑
k=1

Ak+1Gk
∞

By (18) and (19) in Li and Zhao (2002), we have the R-measure

R0,k =
∞∑

i=1

C
(N−1)
k+i Gi−1

∞ (−U )−1

and

Rk =
∞∑

i=1

Ak+i G
i−1
∞ (−U )−1 , k ≥ 1.

Step 4. The matrix U0 and the vector x0

According to Theorem 1 in Li and Zhao (2002) we define

U0 = C
(N−1)
1 +

∞∑
k=1

C
(N−1)
k+1 Gk−1

∞ (−U )−1 C
(N )
0 .
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It is clear that U0 is the infinitesimal generator of the positive recurrent censored Markov

chain. Let x0 be the stationary probability vector of this censored Markov chain to level 0.

Then x0U0 = 0 and x0e = 1.

Let W = (U0 : e). Then x0W = (0 : 1) according to x0U0 = 0 and x0e = 1. Therefore,

we obtain

x0 = (0 : 1) WT
(
WWT

)−1
.

We may also use a stable algorithm to calculate the vector x0, which is an iterative method

based on sparse matrix algorithms. Let U0 = W − V , where the matrix W is needed to be

invertible. Thus, we obtain that x0W = x0V . This suggests the following iterative scheme

for computing x0.

x0 (0) = (α1, α2, . . . , αNm)

and

x0 (r + 1) W = x0 (r ) V,

where αk ≥ 0 and
∑Nm

k=1 αk = 1. It is clear that x0 = limr→∞ x0 (r ).

Step 5. The stationary probability vector

We denote by (π̃0, π̃1, π̃2, . . .) the stationary probability vector of the modified Markov

chain Q̃N , where the size of π̃0 is Nm and the size of π̃k is m for k ≥ 1. Using Subsection

5.1 of Li and Zhao (2002), we obtain

π̃0 = c x0,

π̃1 = π̃0 R0,1,

π̃k = π̃0 R0,k +
k−1∑
i=1

π̃i Rk−i , k ≥ 2,

where

c = 1

1 + x0 R0 (I − R)−1 e
,

with

R0 =
∞∑

k=1

R0,k and R =
∞∑

k=1

Rk .

Remark 10. Since the matrix G∞ can be numerically calculated from the matrix equation

(63) in terms of the well-known algorithms, e.g., see Neuts (1989, 1995), the matrices U0,

R0,k and Rk for k ≥ 1 can be numerically given. As such, the stationary probability vector
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can be provided. Therefore, the algorithm based on the R-measure is different from that in

Dudin and Klimenok (2000).

In what follows we estimate the computational complexity of the above algorithm. We

use Horner’s algorithm for matrix polynomials, and then measure the complexity by the

total number of multiplications and divisions of two floating point numbers. It is readily

seen that the computational complexity of the matrix Gn (or G∞) of size m is O(m3).

If we assume that the inverse of the matrix of size m is performed by some version of

Gaussian elimination, then it is well-known that the complexity of computing this inverse

is O(m3). Furthermore, we can easily give the complexity of computing the matrices U ,

Rk , R0,k , U0 and the vectors x0 and πk . Let N be the truncated number given in Step one

of this algorithm. Note that the size of the matrix U0 is Nm, it is clear from Step five in

this algorithm that the complexity of computing the vectors πk for k ≥ 1 is O(N 3m3). It

is easy to check that the computational complexity of the algorithm presented in Dudin

and Klimenok (2000) is O(N3m3), where the number N is the size of the censored matrix

(see (12) in Dudin and Klimenok, 2000). Note that N is not more than N under the same

precision, thus our algorithm improves the computational complexity of the algorithm given in

Dudin and Klimenok (2000).

We now describe the second algorithm for calculating the mean of the first passage time

of the level-dependent Markov chain of M/G/1 type. This algorithm can be modified to

compute high-order moments of the first passage time. For simplicity of description, we only

discuss the first failure time of the server.

It is seen from (60) that the mean of the first failure time of the server only depends on

the matrix Q (s) of (49) at s = 0. Hence, we modify the level-dependent Markov chain Q (0)

of M/G/1 type to its corresponding level-independent Markov chain, where the positive

integer N can be chosen by the same method as that using (62) and (63). Furthermore, the

matrix Q (0) is modified as

QN (0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(N−1)
1 (0) D

(N−1)
2 (0) D

(N−1)
3 (0) D

(N−1)
4 (0) · · ·

D
(N )
0 (0) B(N )

1 (0) B2 (0) B3 (0) · · ·
B(N )

0 (0) B(N )
1 (0) B2 (0) · · ·

B(N )
0 (0) B(N )

1 (0) · · ·
B(N )

0 (0) · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (65)

where

D
(N )
0 (0) =

(
0, 0, . . . , 0, B(N )

0 (0)
)

,
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D
(N−1)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(0)
1 (0) B2 (0) · · · BN−1 (0) BN (0)

B(1)
0 (0) B(1)

1 (0) · · · BN−2 (0) BN−1 (0)

B(2)
0 (0) · · · BN−3 (0) BN−2 (0)

. . .
...

...

B(N−1)
0 (0) B(N−1)

1 (0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

D
(N−1)
k (0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

BN+k−1 (0)

BN+k−2 (0)

BN+k−3 (0)

...

Bk (0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, k ≥ 2.

Let G be the minimal nonnegative solution to the matrix equation

B(N )
0 (0) + B(N )

1 (0) G +
∞∑

k=2

Bk (0) Gk = 0.

Using Theorem 1 in Li and Zhao (2002), we define

U = B(N )
1 (0) +

∞∑
k=1

Bk+1 (0) Gk

and

U0 = D
(N−1)
1 (0) +

∞∑
k=1

D
(N−1)
k+1 (0) Gk−1 (−U)−1 D

(N )
0 (0) .

By (18) and (19) in Li and Zhao (2002), we define a R-measure as

R0,k =
∞∑

i=1

D
(N−1)
k+i (0) Gi−1 (−U)−1 , k ≥ 1,

and

Rk =
∞∑

i=1

Bk+i (0) Gi−1 (−U)−1 , k ≥ 1.

Let

X (0)
1 = R0,1, X (l)

1 = R1, l ≥ 1,
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X (0)
k+1 = R0,1 X (1)

k + R0,2 X (2)
k−1 + · · · + R0,k X (k)

1 , k ≥ 1.

We denote by σ̂ a probability vector of size m. Note that the size of the censored matrix U0

is Nm, we write

(PI,0,PW,0,PI,1,PW,1, . . . ,PI,N−1,PW,N−1) =
(

σ̂ , 0, 0, . . . , 0︸ ︷︷ ︸
N−1 vector 0 of size m

)
(−U0)−1,

(
PI,N+k−1,PW,N+k−1

) =

⎛⎜⎝σ̂ , 0, 0, . . . , 0︸ ︷︷ ︸
N−1 vector 0 of size m

⎞⎟⎠ (−U0)−1 X (0)
k , k ≥ 1,

and

Ck =
∫ +∞

0

e−α P D (k, x) B̄ (x) dx .

Then the mean of the first failure time of the server is given by

MTTFF =
∞∑

k=0

[
PI,ke +

∞∑
i=0

PW,iCk−i e

]
.

Note that the computational complexity of the MTTFF is O
(
N 3m3

)
.

8. Numerical examples

In this section, we give some simple numerical examples to illustrate how the two algorithms

work.

The most laborious part in implementing our approximate algorithm is to compute the

matrix U0 and the R-measure
{

R0,k
}

and {Rk}. According to their expressions, we can

numerically obtain the stationary probability vector {π̃0, π̃1, π̃2, . . .} of the modified Markov

chain. Let (π0, π1, . . . , πN−1) = π̃0 and πN+k−1 = π̃k for k ≥ 1. Then the mean and variance

of the stationary orbit size including that customer being served are approximately given by

L =
∞∑

k=1

kπke and V =
∞∑

k=1

k2πke − L2,

respectively.

For the repairable BMAP/G/1 retrial queue, we let m = 2 and

D0 =
(

− (λ + 2) λ

1 −5

)
, D1 =

(
2 0

2 2

)
, Dk = 0, k ≥ 2,
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Fig. 1 The mean L depends on μ

where λ > 0. Obviously, the stationary arrival rate of the MAP is give by

r∗ = 4 − 6

3 + λ
< 4.

Let

B (t) =
∫ t

0

μ (μx)3

3!
e−μx dx .

Then the service time distribution is Erlang with expression E4 (μ), and also the mean of

the service time is 4
μ

. To simplify our numerical analysis, we consider the case with α = 0,

which shows that the server is always good and reliable, and numerically discuss the mean

and variance of the stationary queue length. It is not difficult that we may discuss other

performance measures in the queue and even more complicated queueing systems. It is easy

to check that the queue is stable if and only if ρ = 8(3+2λ)
μ(3+λ)

< 1.

Now, we provide some numerical discussions for the queueing model. The first example

is one-dimensional and the second one is two-dimensional.

Example 1. We use the following parameter values: θ = 1, λ = 21 and μ ∈ [15.1, 90]. In

this case, it is easy to check ρ ∈ [0.167, 0.993]. Figures 1 and 2 illustrate the dependence

of the mean L and the variance V on the parameter μ or the traffic intensity ρ, respectively.

Figures 1 and 2 shows that the mean L and the variance V are all decreasing in μ.
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Fig. 2 The variance V depends on μ

Example 2. θ = 1, λ ∈ [1, 10] and μ ∈ [15, 90]. In this case, it is easy to check ρ ∈
[0.11, 0.94]. Figure 3 shows that the mean L is decreasing in μ and increasing in λ. Figure

4 illustrates that the variance V is decreasing in μ and increasing in λ.

These examples validate our algorithms for computing the stationary probability vector

of the Markov chain Q of M/G/1 type. Moreover, our algorithms can conveniently deal with

the case of heavy traffic intensity. This is one reason why the introduction of the R-measure{
R0,k

}
and {Rk} to our algorithm improves the algorithm given in Dudin and Klimenok (2000).

Also, in these examples, the truncated number N = 20 is sufficiently large to guarantee the

computational precision.

9. Concluding remarks

In this paper, we considered the BMAP/G/1 retrial queue with server breakdowns and repairs.

We obtained (i) the reliability indices of the server: The stationary availability, the stationary

failure frequency and the reliability function, and (ii) the queueing indices of the system:

The stationary queue length and the busy period. In principle, the indices obtained in this

paper can be numerically computed based on the matrix-analytic method extensively studied

during the past two decades.

For retrial queueing systems of M/G/1 type, we showed that they can be stud-

ied by means of continuous-time level-dependent Markov chains of M/G/1 type

and level-dependent Markov renewal processes of M/G/1 type. We provided the

RG-factorizations for both continuous-time level-dependent Markov chains of M/G/1

type and for level-dependent Markov renewal processes of M/G/1 type. The RG-

factorizations can be applied not only to deal with the stationary probability vector and
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Fig. 3 The mean L depends on λ and μ
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Fig. 4 The variance V depends on λ and μ

the associated indices such as the stationary availability, failure frequency and queue

length, but also to discuss the first passage times and the associated indices such as the

reliability function and the busy period. We expect that the approach developed in this

paper can also be used to study other stochastic models with a level-dependent block

structure.
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