
Ann Oper Res (2007) 150:231–244

DOI 10.1007/s10479-006-0155-z

A note on the parametric maximum flow problem
and some related reoptimization issues

Maria Grazia Scutellà

Published online: 21 December 2006
C© Springer Science + Business Media, LLC 2007

Abstract In this paper, we will extend the results about the parametric maximum flow

problem to networks in which the parametrization of the arc capacities can involve both the

source and the sink, as in Gallo, Grigoriadis, and Tarjan (1989), and also an additional node.

We will show that the minimum cuts of the investigated networks satisfy a relaxed form of

the generalized nesting property (Arai, Ueno, and Kajitani, 1993). A consequence is that the

corresponding parametric maximum flow value function has at most n − 1 breakpoints. All

the minimum cut capacities can therefore be computed by O(1) maximum flow computations.

We will show then that, given O(n) increasing values of the parameter, it is possible

to compute the corresponding maximum flows by O(1) maximum flow computations, by

suitably extending Goldberg and Tarjan’s maximum flow algorithm.

Keywords Maximum flow . Parametric arc capacity

Introduction

The classical maximum flow problem calls for finding a maximum flow (or, equivalently, a

minimum cut) in a capacitated network. In several applications, often it is required to solve

a sequence of maximum flow problems. In particular, there are situations in which the arc

capacities are not fixed, but they are functions of a single parameter, and the goal is to compute

a maximum flow for a sequence of O(n) increasing values of the parameter, where n is the

cardinality of the set of nodes of the network. Hereafter we will refer to this problem as to

the parametric maximum flow problem.

Gallo, Grigoriadis, and Tarjan (1989) showed that an important class of the parametric

maximum flow problem can be solved via reoptimization techniques, by extending the maxi-

mum flow algorithm devised by Goldberg and Tarjan (1988), also known as the push-relabel
algorithm. The resulting algorithm has a worst-case time bound which is only a constant

M. G. Scutellà (�)

Dipartimento di Informatica, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

e-mail: scut@di.unipi.it

Springer

232 Ann Oper Res (2007) 150:231–244

factor greater than the time bound for the non-parametric problem. The particular parametric

maximum flow problem addressed by Gallo, Grigoriadis, and Tarjan (1989) is such that the

capacities of the arcs leaving the source node are nondecreasing functions of the parameter,

the capacities of the arcs entering the sink node are nonincreasing functions of the parameter,

whereas all the other arc capacities are constant. As observed by the authors, the proposed

algorithm also applies if the capacities of the arcs leaving the source are nonincreasing func-

tions of the parameter, the capacities of the arcs entering the sink are nondecreasing functions

of the parameter, and the values of the parameter are given in a decreasing order. See also

(Gusfield and Martel, 1992) for some algorithmic generalizations.

McCormick (1999) extended the results of Gallo, Grigoriadis, and Tarjan (1989) to more

general parametric networks. He considered the case in which the subgraph induced by the

arcs whose capacity is function of the parameter has the following arborescence-shaped

structure, which generalizes the one studied by Gallo, Grigoriadis, and Tarjan (1989). There

is an out-arborescence S rooted at the source (i.e., a tree directed away from the source),

where the (affine linear) arc capacities are nondecreasing function of the parameter, and

there is an in-arborescence rooted at the sink (i.e., a tree directed towards the sink), where

the (affine linear) arc capacities are nonincreasing function of the parameter. All the other

arc capacities are constant. Furthermore, there is a sort of superadditivity relation linking the

coefficients of the linear capacities, which will be formally described in Section 1. Also in

this case, the extension of the maximum flow algorithm devised by Gallo, Grigoriadis, and

Tarjan (1989) is able to solve the parametric maximum flow problem by O(1) maximum

flow computations.

A quite different situation has been addressed by Arai, Ueno, and Kajitani (1993). The

authors studied the case in which the set of arcs whose capacity depends on the parameter is

the set of arcs incident to a single node u∗ (other than the source and the sink of the maximum

flow network). Under the hypothesis that all these arc capacities are nondecreasing functions

of the parameter, Arai et al. showed that the parametric maximum flow algorithm mentioned

above can be used to determine all the minimum cut capacities (and so, all the maximum

flow values) by O(1) maximum flow computations. However, the authors did not discuss

how to compute the corresponding maximum flows.

The results mentioned above are strictly related to special properties concerning the mini-

mum cuts of the parametric networks. More specifically, the minimum cuts of the parametric

networks addressed by Gallo, Grigoriadis, and Tarjan (1989), and by McCormick (1999) sat-

isfy the so-called “nesting” property, whereas the minimum cuts of the parametric networks

studied by Arai, Ueno, and Kajitani (1993) satisfy a generalization of the nesting property.

These properties will be reviewed in Section 2.1.

In all cases, if one considers the maximum flow value (or, equivalently, the minimum cut

capacity) as a function of the parameter, the nesting and the generalized nesting properties

imply that the parametric maximum flow value function has at most n − 1 breakpoints (under

the assumption that the parametric arc capacities are affine linear functions). The extension of

the maximum flow algorithm devised by Gallo, Grigoriadis, and Tarjan (1989) allows one to

determine these O(n) breakpoints by O(1) maximum flow computations. Such an interesting

result may not hold when some arc capacities are nonincreasing functions of the parameter

(Carstensen, 1983).

Here we will extend the results about the parametric maximum flow problem to the case of

networks in which the parametrization of the arc capacities can involve both the source and

the sink, as in Gallo, Grigoriadis, and Tarjan (1989), and also a node u∗ other than the source

and the sink. More precisely, we will address the situation in which the capacities of the arcs

leaving the source are nondecreasing functions of the parameter, and the capacities of the

Springer

Ann Oper Res (2007) 150:231–244 233

arcs entering the sink are nonincreasing functions of the parameter. Furthermore, for a node

u∗ other than the source and the sink, the capacities of the arcs entering u∗ are nonincreasing

functions of the parameter, whereas the capacities of the arcs leaving u∗ are nondecreasing

functions of the parameter.

We will show that the minimum cuts of the investigated parametric networks satisfy a

relaxed form of the generalized nesting property introduced by Arai, Ueno, and Kajitani

(1993). A consequence of this property is that, also in this kind of networks, the parametric

maximum flow value function has at most n − 1 breakpoints. By the same arguments of Arai

et al., the parametric maximum flow algorithm of Gallo, Grigoriadis, and Tarjan (1989) can

therefore be used to determine all the minimum cut capacities (and so, all the maximum flow

values) by O(1) maximum flow computations.

Then, the results of Arai, Ueno, and Kajitani (1993) will be enhanced showing that, given

a sequence of O(n) increasing values of the parameter, for the studied kind of parametric

networks it is possible to compute the corresponding maximum flows in O(1) maximum

flow computations, by suitably extending Goldberg and Tarjan’s maximum flow algorithm.

Furthermore, we will show that a minor modification of the proposed algorithm is able to solve

the parametric maximum flow problem, with the same time complexity, for the parametric

networks of Arai, Ueno, and Kajitani (1993), so enforcing their result.

We want to emphasize that the studied parametric maximum flow problem fits into a

very general family of parametric problems, described by Brumelle, Granot, and Liu (2002),

which comprises both the cases investigated by Gallo, Grigoriadis, and Tarjan (1989) and by

Arai, Ueno, and Kajitani (1993), and, partially, the case studied by McCormick (1999). For

this family, necessary and sufficient conditions have been stated for the existence of a “totally

ordered selection” of minimum cuts, that is, the existence of minimum cuts which are totally

ordered with respect to the partial order � so defined: given two minimum cuts (X p, Yp)

and (Xq , Yq), (X p, Yp) � (Xq , Yq) if X p ⊆ Xq . Whereas the parametric networks of Arai,

Ueno, and Kajitani (1993) can be proved to satisfy the necessary and sufficient conditions

devised by Brumelle, Granot and Liu (2002) (that is, the generalized nesting property derives

from such conditions), it is not possible to exploit such conditions in order to decide, in

polynomial time, whether the parametric networks studied in this work do possess a totally

ordered selection of minimum cuts. Therefore, since the relaxed form of the generalized

nesting property, proved in this work, is not a special case of these conditions (it does not

imply the existence of a totally ordered selection of minimum cuts, although it implies the

existence of O(n) breakpoints for the parametric maximum flow value function), the results

of this note concerning minimum cuts can not be interpreted as a special case of known

results from the literature, and they have to be considered as original results.

The plan of the paper is the following. In Section 1 we will review the push-relabel

algorithm and the parametric maximum flow algorithms proposed in the literature sofar.

Then, in Section 2 we will describe the new parametric networks under investigation and the

related results.

1 The parametric maximum flow problem

1.1 The push-relabel algorithm

Let G = (V, E) be a directed graph, with |V | = n and |E | = m, having a distinguished source

node s and a distinguished sink node t . Let c(v, w) be the nonnegative capacity associated

with (v, w), ∀(v, w) ∈ E . A flow on G is a real-valued function on the arcs which satisfies

Springer

234 Ann Oper Res (2007) 150:231–244

the capacity constraints and the flow conservation constraints. The value of a flow is the net

flow entering the sink. A maximum flow is a flow of maximum value.

A cut (X, Y) is a node partition such that s ∈ X and t ∈ Y , and its capacity is c(X, Y) =∑
v∈X,w∈Y c(v, w). A minimum cut is a cut of minimum capacity. The max-flow min-cut

theorem of Ford and Fulkerson (1962) states that the maximum flow value is equal to the

minimum cut capacity.

The push-relabel algorithm of Goldberg and Tarjan maintains a flow relaxation called

“preflow”. A preflow f on G is a real-valued function on the arcs which satisfies the capacity

constraints and a relaxation of the flow conservation constraints, stating that the total flow

entering a node v other than s can be greater than or equal to the outgoing flow. Each

node v �= s can therefore have an excess of flow e(v) = ∑
(w,v) f (w, v) − ∑

(v,w) f (v, w). If

e(v) > 0, v is said to be an active node. The push-relabel algorithm starts with the preflow f
which saturates all the arcs leaving s and holds zero for all the other arcs, and tries to push

the excesses from the active nodes toward the sink along the residual graph associated with

f , in such a way to transform the preflow into a maximum flow.

In order to push the flow, the algorithm maintains a valid distance label d(v) for each node

v, where a valid distance d is a function on the nodes of G such that d(t) = 0, d(s) = n and

d(v) ≤ d(w) + 1 for each residual arc (v, w), i.e., each arc of the residual graph associated

with f ((v, w) is a residual arc if either it is an arc of G such that f (v, w) < c(v, w), or

(w, v) is arc of G such that f (w, v) > 0; in the first case the residual capacity of (v, w) is

r (v, w) = c(v, w) − f (v, w), while in the latter case it is r (v, w) = f (w, v)).

As proved by Goldberg and Tarjan (1988), the distance label d(v) estimates, from below,

the length of the shortest augmenting paths (i.e., the shortest paths in the residual graph)

from v to t . As a consequence, d(v) ≥ n implies that no augmenting path exists from v to

t . Indeed, it is immediate to prove that d(s) can be set to any value greater than or equal to

n in order to maintain all the properties of the valid distance functions. Hereafter we will

therefore consider such a more general definition of valid distance function.

In detail, in its more general form the push-relabel algorithm consists of selecting an active

node v and applying the appropriate operation, until there are no active nodes in G:� (push) if there is a residual arc (v, w) such that d(v) = d(w) + 1, then send a flow δ =
min{e(v), r (v, w)} along (v, w), and update e(v) and e(w);� (relabel) if there is no residual arc (v, w) such that d(v) = d(w) + 1, then increase the

distance label d(v) to min{d(w) + 1 : (v, w) is a residual arc}.

Observe that the distance labels increase as the flow excesses are pushed toward the sink;

specifically, they increase at most to the value d(s) + n (Goldberg and Tarjan, 1988).

Goldberg and Tarjan proved that their algorithm is correct; that is, when it terminates,

f is a maximum flow. Moreover, at termination a minimum cut can be easily obtained by

setting d(v) to the length of the shortest augmenting paths from v to t , for each node v for

which an augmenting path exists, and setting d(v) = n if the current label is less than n and

no augmenting path from v to t exists. This process can be performed via a breadth-first

visit of the residual graph starting from t , in O(m) time. Then, a minimum cut (X, Y) can be

computed by inserting to X each node v such that d(v) ≥ n, and inserting to Y all the other

nodes.

As far as the time complexity is concerned, the computational efficiency of push-relabel

depends on how the active nodes are selected. In the case of any selection order, the algorithm

computes a maximum flow in O(n2m) time. Specific selection orders lead to algorithms

running in O(n3), in O(n2
√

m), and in O(nmlog(n2/m) time (the latter version is based on

the dynamic tree data structure of Sleator and Tarjan (1983)). Additional details about the

Springer

Ann Oper Res (2007) 150:231–244 235

algorithm and the related proofs can be found in Goldberg and Tarjan (1988) and in Ahuja,

Magnanti, and Orlin (1993).

1.2 Extensions to parametric networks

In a parametric network, the arc capacities are functions of a real-valued parameter λ. Here-

after we will denote the parametric arc capacity function by cλ.

Gallo, Grigoriadis, and Tarjan (1989) made the following assumptions:� cλ(s, v) is a nondecreasing function of λ for each arc (s, v) (assuming v �= t);� cλ(v, t) is a nonincreasing function of λ for each arc (v, t) (assuming v �= s);� cλ(v, w) is constant otherwise.

The authors addressed the problem of computing the maximum flows (and the minimum

cuts) for each value of an increasing sequence of parameter values λ1 < λ2 < · · · < λh ,

where h is O(n), when successive values are given on-line. At this purpose, they extended

the push-relabel algorithm as follows. Suppose that, for some value λi , we have computed a

maximum flow f and a valid distance d using push-relabel. When the value of the parameter

increases to λi+1, the capacity of the arcs (s, v) may increase, whereas the capacity of the

arcs (v, t) may decrease. Let us modify the current maximum flow f by replacing f (v, t) by

min{cλi+1
(v, t), f (v, t)} for each (v, t) ∈ E , and replacing f (s, v) by max{cλi+1

(s, v), f (s, v)}
for each (s, v) ∈ E such that d(v) < n.

The modified f is a preflow. Furthermore, it is easy to verify that d is a valid distance for

the modified f . Therefore, it is possible to compute a maximum flow (and a minimum cut)

for λi+1 applying the push-relabel algorithm starting with the modified f and the current d .

Since the distance labels never decrease during the running of the algorithm, then the

total running time required by the h maximum flow computations is comparable to the time

needed to solve a single maximum flow problem via the push-relabel algorithm (Gallo,

Grigoriadis, and Tarjan, 1989). Therefore, depending on the order in which the active nodes

are examined, the parametric maximum flow problem can be solved in O(n2m), O(n3),

O(n2
√

m) or O(nmlog(n2/m) time (if one uses the dynamic tree implementation).

Furthermore, since the distance labels never decrease, the minimum cuts produced via the

procedure described in Section 1.1 satisfy the so-called “nesting” property, i.e., if (X1, Y1),

(X2, Y2) . . . , (Xh, Yh) denote the minimum cuts computed by the algorithm, then X1 ⊆
X2 ⊆ · · · ⊆ Xh . This implies that, when the capacities are affine linear functions of the

parameter, the parametric maximum flow value function, defining the maximum flow value

(and, equivalently, the minimum cut capacity) as a function of the parameter, has at most

n − 1 breakpoints. All the breakpoints can therefore be determined by O(1) maximum flow

computations (Gallo, Grigoriadis, and Tarjan, 1989).

Gusfield and Martel (1992) enhanced the results of Gallo et al. showing that, on the same

kind of parametric networks, the above described algorithmic ideas can be extended to work,

in the same time bound, even when the h values of the parameter are not presented in sorted

order, and the corresponding maximum flows have to be computed on-line.

McCormick (1999) extended the results of Gallo, Grigoriadis, and Tarjan (1989) to para-

metric networks in which the subset of arcs with parametric capacity has a more general

structure. The studied parametric networks come from some scheduling applications.

Consider a network with a distinguished out-arborescence S (i.e., a tree directed away from

its root) rooted at the source s, and with an in-arborescence T (i.e., a tree directed towards its

root) rooted at the sink t , where T is assumed to be arc-disjoint from S. Assume that, if w ∈ S,

w �= s, then the only arc entering w is the one in S. Similarly, if v ∈ T , v �= t , then the only

Springer

236 Ann Oper Res (2007) 150:231–244

arc outgoing from v is the one in T . Assume to have affine linear capacities cλ(v, w) =
p(v,w) + a(v,w)λ, such that cλ(v, w) is a nondecreasing function of λ for all (v, w) ∈ S,

cλ(v, w) is a nonincreasing function of λ for all (v, w) ∈ T , and cλ(v, w) is a constant for all

the other arcs (in his work, McCormick provided an equivalent description, where cλ(v, w)

is a nonincreasing function of λ for all (v, w) ∈ S, and cλ(v, w) is a nondecreasing function

of λ for all (v, w) ∈ T ; we have chosen the reversed presentation for the sake of uniformity

with the other approaches from the literature).

Finally, impose the following sort of superadditivity to the coefficients a(v,w):

� a(v,w) ≥ ∑
(w,i)∈S a(w,i), for each (v, w) ∈ S;� a(v,w) ≤ ∑
(i,v)∈T a(i,v), for each (v, w) ∈ T .

It is easy to observe that, when S is the set of arcs outgoing from s and T is the set of arcs

entering t , then the parametric networks studied by McCormick (1999) reduce to the ones

studied by Gallo, Grigoriadis, and Tarjan (1989).

Now, consider a value λi of the parameter, and solve the maximum flow problem us-

ing the push-relabel algorithm previously reviewed. Let f be the returned maximum flow,

and d be the corresponding valid distance. McCormick proved that, when the value of the

parameter increases to the value λi+1, it is possible to modify the current maximum flow

f in such a way to obtain a preflow. Also in this case, d remains a valid distance for the

modified f . Therefore, also in this case it is possible to compute a maximum flow (and a

minimum cut) for λi+1 applying the push-relabel algorithm starting with the modified f and

the current d, and the analysis performed by Gallo, Grigoriadis, and Tarjan (1989) works

again.

In particular, the problem of computing the maximum flows (and the minimum cuts) for

each value of an increasing sequence of parameter values λ1 < λ2 < · · · < λh , where h is

O(n) and the successive values are given on-line, can be solved in the same time bound

needed to solve a single maximum flow problem via the push-relabel algorithm.

Moreover, since the distance labels never decrease, the minimum cuts produced by the al-

gorithm satisfy the nesting property and, again, the parametric maximum flow value function

has at most n − 1 breakpoints.

Arai, Ueno, and Kajitani (1993) considered parametric networks where the capacities of

the arcs incident to a node u∗ (other than s and t) are nondecreasing functions of a parameter

λ, whereas the other arc capacities are constant. The authors proved that, for this family

of parametric networks, the minimum cuts satisfy a generalized nesting property, which

can be stated as follows. Given a sequence of parameter values λ1 < λ2 < · · · < λh , then

there exist corresponding minimum cuts (X1, Y1), (X2, Y2) . . . , (Xh, Yh) such that Xσ (1) ⊆
Xσ (2) ⊆ · · · ⊆ Xσ (h), for some permutation σ on {1, 2, . . . , h}. In other words, a “totally

ordered selection” of minimum cuts does exist (Brumelle, Granot, and Liu, 2002).

The first consequence is that also Arai et al.’s parametric networks are characterized

by O(n) different minimum cut capacities (and, so, O(n) different maximum flow values).

Therefore, when the arc capacities are affine linear functions of the parameter, the number

of breakpoints of the parametric maximum flow value function is O(n).

Furthermore, a suitable use of the push-relabel algorithm allows one to compute all the

minimum cut capacities (and, so, all the maximum flow values) by O(1) maximum flow

computations. Such a property will be better described in Section 2.1. At this regard, however,

we want to make in evidence that the authors did not discuss how to compute the maximum

flows themselves.

Springer

Ann Oper Res (2007) 150:231–244 237

2 A new extension

Here we will consider parametric networks such that:� cλ(s, v) is a nondecreasing function of λ for each arc (s, v);� cλ(v, t) is a nonincreasing function of λ for each arc (v, t);� cλ(u∗, v) is a nondecreasing function of λ for each arc (u∗, v) ∈ E leaving a critical node
u∗ �= s, t ;� cλ(v, u∗) is a nonincreasing function of λ for each arc (v, u∗) ∈ E entering the critical node

u∗;� cλ(v, w) is constant otherwise.

We will show that the minimum cuts of these parametric networks satisfy a relaxed form

of the generalized nesting property introduced by Arai, Ueno, and Kajitani (1993). Using this

property we will prove that, when the arc capacities are affine linear functions, the parametric

maximum flow value function has at most n − 1 breakpoints. By the same arguments of Arai,

Ueno, and Kajitani (1993) it is therefore possible to determine all the minimum cut capacities

(and so, all the maximum flow values) by O(1) maximum flow computations.

Then, we will enhance the results of Arai, Ueno, and Kajitani (1993) showing that, given

any sequence of O(n) increasing values of the parameter, it is possible to compute the

corresponding maximum flows themselves in O(1) maximum flow computations, by suitably

extending Goldberg and Tarjan’s maximum flow algorithm.

2.1 Finding all breakpoints

The purpose of this section is to show that the generalized nesting property of minimum

cuts, proved by Arai, Ueno, and Kajitani (1993) for the special kind of parametric networks

where the set of arcs whose capacity depends on the parameter is the set of arcs incident

to a single node u∗ (the capacities are nondecreasing functions of the parameter), holds

true for the parametric networks considered in this work, although in a relaxed form. More

precisely, the property states that, given any sequence of parameter values, there exists a set

of corresponding minimum cuts which can be dichotomized in such a way that, for each set

of the partition, the generalized nesting property holds true. In other words, for the studied

networks, two “totally ordered selections” of minimum cuts do exist (Brumelle, Granot, and

Liu, 2002). The proof is similar to the one devised by Arai, Ueno, and Kajitani (1993), and

it bases on the nesting property of minimum cuts proved by Gallo, Grigoriadis, and Tarjan

(1989). The nesting property will be therefore reviewed below.

Theorem 2.1 (Nesting property). Consider the parametric networks studied by Gallo,
Grigoriadis, and Tarjan (1989), where the arcs leaving the source have a nondecreasing
capacity function, the arcs entering the destination have a nonincreasing capacity function,
whereas the other arcs have a constant capacity. For those networks, given a sequence of
parameter values λ1 < λ2 < · · · < λh, there exist corresponding minimum cuts (X1, Y1),
(X2, Y2) . . . , (Xh, Yh) such that X1 ⊆ X2 ⊆ · · · ⊆ Xh.

Theorem 2.2 (Relaxed generalized nesting property). Given a sequence of parameter val-
ues λ1, λ2, . . . λh, in the parametric networks studied in this work there exist corresponding
minimum cuts (X1, Y1), (X2, Y2) . . . , (Xh, Yh) such that Xσ (1) ⊆ Xσ (2) ⊆ · · · ⊆ Xσ (q) and
Xσ (q+1) ⊆ Xσ (q+2) ⊆ · · · ⊆ Xσ (h), for some permutation σ on {1, 2, . . . , h}.

Springer

238 Ann Oper Res (2007) 150:231–244

Proof: Without loss of generality, assume that the critical node u∗ belongs to the cutset

Yi for i = 1, . . . , q, λ1 < λ2 < · · · < λq , whereas u∗ belongs to the cutset X j , for j =
q + 1, . . . , h, λq+1 < λq+2 < · · · < λh .

Let Gtu∗ be the network obtained from the original network G by identifying the nodes t
and u∗ as the new destination node. That is, Gtu∗ is the network formed by shrinking t and u∗

into a single node, eliminating loops and combining multiple arcs by adding their capacities

(see also (Gallo, Grigoriadis, and Tarjan, 1989)). Similarly, let Gsu∗ be the network obtained

from G by identifying the nodes s and u∗ as the new source node.

In Gtu∗ , the arcs leaving the source have a nondecreasing capacity function, whereas the

ones entering the destination (the one obtained shrinking t and u∗) have a nonincreasing

capacity function. Therefore, from Theorem 2.1, in Gtu∗ there exist minimum cuts (Xi , V \
Xi \{u∗}) relative to the parameter values λi , i = 1, 2, . . . , q, such that X1 ⊆ X2 ⊆ · · · ⊆ Xq .

Similarly, always from Theorem 2.1, in Gsu∗ there exist minimum cuts (Zi , V \Zi \{u∗})
relative to the parameter values λi , i = q + 1, q + 2, . . . , h, such that Zq+1 ⊆ Zq+2 ⊆ · · · ⊆
Zh . Let Xi = Zi ∪ {u∗}, i = q + 1, q + 2, . . . , h. Clearly it is Xq+1 ⊆ Xq+2 ⊆ · · · ⊆ Xh .

It is easy to show that (Xi , V \Xi) are minimum cuts in the original network G (obtained

from Gtu∗ by distinguishing node u∗ from node t) for λi , i = 1, 2, . . . , q. Similarly, (Xi , V \
Xi) are minimum cuts in G for λi , i = q + 1, q + 2, . . . , h. The thesis follows. �

If we assume the affine linearity of the arc capacities, from the above result we get:

Corollary 2.1. The parametric maximum flow value function corresponding to the networks
studied in this work has at most n − 1 breakpoints.

Proof: For each value of the parameter, the maximum flow value is given either by the

parametric maximum flow value function corresponding to Gtu∗ , or by the parametric maxi-

mum flow value function corresponding to Gsu∗ (as follows from the proof of Theorem 2.2).

Therefore, the parametric maximum flow value function for the parametric network G is

given by the minimum of these two parametric maximum flow value functions. Since both

functions have O(n) breakpoints, such a minimum function also has O(n) breakpoints. �

Furthermore:

Corollary 2.2. The O(n) breakpoints can be computed by O(1) maximum flow computations.

Proof: Let us determine the O(n) breakpoints of the parametric maximum flow value func-

tions corresponding to the parametric networks Gtu∗ and Gsu∗ , respectively, using the para-

metric maximum flow algorithm as suggested by Gallo, Grigoriadis, and Tarjan (1989). This

can be obtained by performing O(1) maximum flow computations.

Since the parametric maximum flow value function for the original network G, and its

breakpoints, can be obtained by computing the minimum of the two functions corresponding

to Gtu∗ and Gsu∗ , the thesis follows. �

2.2 The new parametric maximum flow algorithm

An interesting question is how we can suitably extend the push-relabel algorithm in order to

solve the parametric maximum flow problem on the networks introduced in Section 2.

As in the previous situations, consider the problem of computing the maximum flows (and

the corresponding minimum cuts) for each value of an increasing sequence of parameter

Springer

Ann Oper Res (2007) 150:231–244 239

values λ1 < λ2 · · · < λh , where h is O(n). Successive values can be given on-line. At this

purpose, let us extend the push-relabel algorithm as follows.

At the first step, compute a maximum flow f and a valid distance d for the value of the

parameter λ1, using the classical push-relabel algorithm as proposed by Goldberg and Tarjan

(1988). Let k be the distance label of the critical node u∗ (d(u∗) = k).

When the value of the parameter increases to λ2, the capacity of the arcs of type (s, v) and

(u∗, v) may increase, whereas the capacity of the arcs of type (v, t) and (v, u∗) may decrease.

As a consequence, the flow modifications suggested by Gallo et al. may not work. Assume,

in fact, to modify f by replacing f (v, t) by min{cλ2
(v, t), f (v, t)} for each (v, t) ∈ E , and

replacing f (s, v) by max{cλ2
(s, v), f (s, v)} for each (s, v) ∈ E .

Furthermore, assume to extend the above modifications to the arcs incident node u∗, by

replacing f (v, u∗) by min{cλ2
(v, u∗), f (v, u∗)} for each (v, u∗) ∈ E , and replacing f (u∗, v)

by max{cλ2
(u∗, v), f (u∗, v)} for each (u∗, v) ∈ E .

With respect to the previous analysed parametric networks, the modified f is not neces-

sarily a preflow. In fact, after the flow transformation, either u∗ remains a balanced node, and

in such a case we still have a preflow, or u∗ can become a destination node, in the sense that

the total flow outgoing from u∗ can be strictly greater than the total entering flow.

Furthermore, the current d is not necessarily a valid distance for the modified f , due to

the following types of residual arcs:� residual arcs (v, u∗) corresponding to arcs (u∗, v) ∈ E ; this can happen only if the flow on

(u∗, v) was zero before increasing the parameter value to λ2;� residual arcs (v, s) corresponding to arcs (s, v) ∈ E ; this can happen only if the flow on

(s, v) was zero before increasing the parameter value to λ2 (observe that we modified the

flow of each arc (s, v) independently of the label of node v).

In order to overcome these difficulties, which prevent the application of the “pure” push-

relabel algorithm starting with the modified f and the current d, we propose to perform the

following step, consisting in suitably modifying d:

(initialization step) if d(u∗) = k < n, set d(u∗) = n; in any case, increase the distance label

of the source node s, d(s) = n, to the value n + d(u∗).

In our approach, such a step is performed once, that is the first time, after the execution

of the flow modifications, the total flow outgoing from u∗ is strictly greater than the total

entering flow (before that, we can apply the parametric maximum flow algorithm devised by

Gallo et al.). W.l.o.g., we will assume here that the above described condition concerning

node u∗ verifies at the second maximum flow computation, i.e., in correspondence of the

value λ2 of the parameter.

After the initialization step, the proposed parametric algorithm performs the following

flow modifications:

(flow modification step):� replace f (v, t) by min{cλ2
(v, t), f (v, t)} for each (v, t) ∈ E , and replace f (s, v) by

max{cλ2
(s, v), f (s, v)} for each (s, v) ∈ E such that d(v) < d(s);� replace f (v, u∗) by min{cλ2

(v, u∗), f (v, u∗)} for each (v, u∗) ∈ E , and replace f (u∗, v) by

max{cλ2
(u∗, v), f (u∗, v)} for each (u∗, v) ∈ E such that d(v) < n,

and applies the push-relabel algorithm by managing the critical node u∗ as a destination

node; in other words, u∗ will be never selected by the push-relabel algorithm.

Springer

240 Ann Oper Res (2007) 150:231–244

The first observation is that, since u∗ is handled as a destination node, then the modified f
can be interpreted as a preflow (with respect to the two destinations t and u∗). Furthermore,

thanks to the initialization step, d is a valid distance function for the modified f . This is

true for each residual arc, with the only (possible) exception of the residual arcs (u∗, v)

corresponding to arcs (v, u∗) of G: in fact, since d(u∗) is augmented to n when the original

value k was < n, then for, those arcs, it may be d(u∗) > d(v) + 1. Observe however that,

since u∗ will be handled as a destination node, the residual arcs leaving u∗ will be never

selected by the push-relabel algorithm, and so they can be (temporarily) removed from the

residual graph.

Due to the above considerations, we can properly apply the push-relabel algorithm starting

with the modified f and d .

Informally speaking, we have transformed the problem of computing a maximum flow

from s to t after the modification of the arc capacities (due to the setting λ = λ2) into the

problem of sending the maximum amount of flow, from s and from the nodes v adjacent to u∗

(i.e., the nodes v such that (u∗, v) ∈ E), towards t and towards u∗. We will prove that, thanks

to the setting of d(s) made by the initialization step, the excesses of flow in the network

are sent towards t and towards u∗ by giving priority to the destination t ; in other words, the

excesses of flow are sent towards u∗ only if no residual path exists from the selected active

node to t . Moreover, the flow excess is rerouted towards s only if no residual path exists

either towards t or towards u∗. As a consequence, the proposed variation of the push-relabel

algorithm correctly sends the maximum amount of flow from s and from the nodes adjacent

to u∗ towards t (with priority) and towards u∗.

When the push-relabel algorithm terminates, the resulting f is not necessarily the maxi-

mum flow corresponding to the value λ2 of the parameter, due to node u∗. In fact, by the way

in which this special node is handled, it may happen that the flow outgoing from u∗ exceeds

the one pushed towards u∗, or viceversa. We will refer to it as a maximum pseudoflow. In both

cases, it is necessary to balance node u∗, by reducing the flow sent to t , in the first case, and

sending back to s the surplus of flow, in the second case (by looking at the original network

G). So doing, the resulting f will be converted into a maximum flow relative to λ = λ2.

The proposed approach therefore considers separately the phase in which the maximum

pseudoflow is computed, from the one in which the maximum pseudoflow is converted into

a maximum flow. The major motivation is that the parametric maximum flow algorithm

begins the next iteration, devoted to the computation of the maximum flow corresponding

to the value λ3 of the parameter, starting with the maximum pseudoflow f (i.e., the flow
modification step is applied to such a maximum pseudoflow), and with the corresponding

valid distance d, found for λ = λ2. In fact, the transformation of the maximum pseudoflow

into a maximum flow, via the sending of the excess of flow at u∗ back to s, or the reduction

of flow from u∗ to t , migth invalidate the current valid distance d, and so prevent its use for

the next maximum flow computation. On the other hand, when the maximum pseudoflow is

modified by the flow modification step due to the setting λ = λ3, then d remains valid for f .

Observe that, after the flow modification step for λ = λ3, the critical node u∗ could become

active, balanced, or it could have a deficit of flow. In our approach, we will treat u∗ as a

destination in every situation (that is, we will push the maximum amount of flow from u∗,

and compute the maximum amount of flow towards u∗, which can not be pushed directly

to t), in order to be able to use, at each step, the previously computed valid distance d , so

amortizing the computing time spent over all the values of the parameter.

In conclusion, after the maximum flow computation for λ = λ1 and after the initialization

step, the two phases are iterated for each value of the sequence λ2 < · · · < λh . More

precisely, at each iteration, the first phase is applied to the maximum pseudoflow f , and

Springer

Ann Oper Res (2007) 150:231–244 241

to the corresponding valid distance d , computed for the previous value of the parameter,

by suitably modifying f as indicated by the flow modification step (in the case λ = λ2,

such a maximum pseudoflow is the maximum flow found for λ = λ1). Then, the second

phase converts the computed maximum pseudoflow into a maximum flow. The parametric

maximum flow algorithm is sketched below:

Parametric maximum flow algorithm� compute a maximum flow f and a valid distance d for λ = λ1 applying the classical

push-relabel algorithm;� perform the initialization step;� for λ = 2, . . . , h:

1. (first phase) modify f by performing the flow modification step and apply the variant

of the push-relabel algorithm (where u∗ is managed as a destination node), returning a

maximum pseudoflow f and a corresponding valid distance d;

2. (second phase) convert f into a maximum flow.

In the following section we will prove the correctness of the two phases. Then, we will

suggest some implementation issues, and derive the time complexity of the whole algorithmic

approach.

2.3 The algorithm correctness

Given a value of the parameter, consider the first phase of the proposed approach, consisting

of applying the push-relabel algorithm starting with the modification of the current maximum

pseudoflow flow f (via the flow modification step) and the corresponding valid distance d .

Remember that the first phase handles the critical node u∗ as a destination node.

The following properties hold true.

Property 2.1. The algorithm sends flow towards t and towards u∗ by giving priority to the
destination t; in other words, the excesses of flow are sent towards u∗ only if no residual path
exists from the selected active node to t.

Proof: Consider an active node v. Since d is a valid distance function, then d(v) estimates,

from below, the length of the shortest augmenting paths from v to t . Therefore, if d(v) ≥ n,

then no residual path exists from v to t . Now, the algorithm can push flow from v to u∗,

along a residual path, only if d(v) ≥ d(u∗). Due to the setting of d(u∗), this can happen only

if d(v) ≥ n, that is, no residual path exists from v to t . �

Property 2.2. The algorithm reroutes flow towards u∗ only if it is not possible to push further
flow from u∗ to t . Moreover, the algorithm reroutes flow towards s only if it is not possible to
push further flow from s towards t or towards u∗.

Proof: At the beginning, the algorithm saturates each arc (u∗, v) such that d(v) < n (since,

otherwise, no residual path exists from v to t). During the algorithm running, flow can be

rerouted towards u∗, along a residual arc (v, u∗), only if d(v) = d(u∗) + 1 > n. Therefore,

this happens only if no residual path exists from v to t .
Similarly, at the beginning the algorithm saturates each arc (s, v) such that d(v) < d(s) =

d(u∗) + n (since, otherwise, no residual path exists towards the two destinations: neither

from v to t , nor from v to u∗). During the algorithm running, flow can be rerouted towards s,

Springer

242 Ann Oper Res (2007) 150:231–244

along a residual arc (v, s), only if d(v) = d(s) + 1 = d(u∗) + n + 1. Therefore, this happens

only if no residual path exists from v either to t or to u∗. �

The above properties can be used to state the following result:

Theorem 2.3. The proposed variation of the push-relabel algorithm correctly sends the
maximum amount of flow from the active nodes adjacent to s, and from the active nodes
adjacent to u∗, towards t. Moreover, the algorithm sends to u∗ the maximum amount of flow
which can not be sent directly to t .

Proof: It follows from Property 2.1 and from Property 2.2. �

Therefore:

Corollary 2.3. After the balancing of node u∗, performed during the second phase, the
resulting flow f is a maximum flow from s to t for the given value of the parameter.

Proof: From Theorem 2.3, the first phase determines a cut (X, Y) such that both s and u∗

belong to X , node t belongs to Y , and such that all the arcs from X to Y are saturated, whereas

the arcs from Y to X have a zero flow. If node u∗ is balanced during the second phase by

sending the additional entering flow back to s, then the flow crossing (X, Y) does not change:

(X, Y) is therefore a minimum cut, and the returned flow is a maximum flow. Consider now

the case in which node u∗ has an excess of outgoing flow, and therefore it is balanced during

the second phase by reducing flow from u∗ to t . Always from Theorem 2.3, the first phase

determines an alternative cut, say (Z , W), such that s belongs to Z , u∗ and t belong to W ,

and such that all the arcs from Z to W are saturated, whereas the arcs from W to Z have

a zero flow. If u∗ is balanced by reducing flow from u∗ to t , then the flow crossing (Z , W)

does not change: (Z , W) is therefore an alternative minimum cut, and the returned flow is a

maximum flow. The proof follows. �

2.4 The computational time complexity

For each node v, d(v) never decreases during the running of the first phases. Therefore, the

O(n) first phases totally require O(1) maximum flow computations. Specifically, as for the

parametric networks previously analyzed, these phases can be performed in O(n2m), O(n3),

O(n2
√

m) or O(nmlog(n2/m) time, depending on the order in which the active nodes are

selected in order to perform the push-relabel operations.

As far as the second phases are concerned, each phase of this type can be implemented in

O(nm) time (Goldberg and Tarjan, 1986). This can be achieved by performing push-relabel

operations which are simpler than the ones previously described, because the arc flows need

only to be reduced and never increased. In this way, the overall time complexity of the

proposed parametric maximum flow algorithm is O(n2m).

However, as observed in Goldberg and Tarjan (1986), it is possible to refine this result

as follows. At the end of each first phase, firstly eliminate the cycles of flows from the

returned pseudoflow, so converting the subgraph of G induced by the arcs with a positive

flow to an acyclic graph, say G∗. This can be performed in O(mlogn) time by means of

an algorithm proposed by Sleator and Tarjan (1985). Then, convert the pseudoflow into a

flow by processing the nodes of G∗ in a reverse topological order, in O(m) time. Using this

Springer

Ann Oper Res (2007) 150:231–244 243

more sophisticated implementation, the overall time complexity of the proposed parametric

maximum flow algorithm becomes O(nmlogn). Therefore:

Theorem 2.4. The parametric maximum flow problem on the extended parametric networks
can be solved in O(nmlogn) time.

A final observation follows. Consider the parametric networks introduced by Arai,

Ueno, and Kajitani (1993). Let us modify the initialization step of the proposed parametric

algorithm as follows:

(modified initialization step) set d(u∗) to max{k, n, l − 1}, where l = max{d(v) : (v, u∗) ∈
E}; increase the distance label of the source node s, d(s) = n, to the value n + d(u∗),

and perform the following simplification of the flow modification step:

(simplified flow modification step):� replace f (u∗, v) by max{cλ2
(u∗, v), f (u∗, v)} for each (u∗, v) ∈ E such that d(v) < n.

It is easy to observe that the resulting variation of the parametric algorithm is able to solve

the parametric maximum flow problem, with the same time complexity, when applied to the

parametric networks of Arai et al. Theorem 2.4 thus applies also to those kinds of networks.

3 Conclusion

The paper addressed a parametric maximum flow problem where the parametric arc capacities

are associated with the arcs leaving the source and entering the sink, as in Gallo, Grigoriadis,

and Tarjan (1989), and with the arcs incident a critical node. For such a node, the entering

arcs have a nonincreasing capacity, whereas the leaving arcs have a nondecreasing capacity.

We showed that, on this type of parametric networks, the parametric maximum flow problem

can be solved via O(1) maximum flow computations, by suitably extending the preflow-push

method of Goldberg and Tarjan. A variation of the proposed algorithm is able to solve the

parametric maximum flow problem, via O(1) maximum flow computations, also for the

parametric networks of Arai, Ueno, and Kajitani (1993).

Observe that the proposed parametric algorithm could be useful within a reoptimization

context, when some arc capacities are modified for some arcs incident the source, the sink,

or a certain critical node, and the maximum flow has to be computed for O(n) changes of the

arc capacities. Provided that the arc capacities vary along the scheme addressed in this work,

the parametric maximum flow algorithm allows one to solve this kind of maximum flow

reoptimization in O(nmlogn) time. Note that the same result holds true in the case in which

the values of the parameter are given in a decreasing order, and the parametric network is

reversed with respect to the described representation; in other words, the parametric network

is such that the capacities of the arcs leaving the source are nonincreasing, the capacities of

the arcs entering the sink are nondecreasing, and the critical node is such that the capacities

of the entering arcs are nondecreasing, whereas the ones of the leaving arcs are nonincreasing

(to obtain that, reverse the direction of the arcs, and compute a maximum flow from t to s,

as suggested in Gallo, Grigoriadis, and Tarjan (1989)).

In order to conclude this note, observe that it is not immediate to generalize the obtained

results neither to parametric networks in which the capacities of the arcs incident the critical

node vary in a different way (for example, they are all decreasing), nor to parametric networks

Springer

244 Ann Oper Res (2007) 150:231–244

in which there are more critical nodes. The main motivation is that, in those cases, flow

modifications like the ones suggested in this paper may create more “destination” nodes:

such nodes can not be managed independently, but they have to co-operate in sending the

flow. We plan to analyze these more general parametric networks, in order to look for special

cases for which the parametric maximum flow problem (as well as the related arc capacity

reoptimization problem) can be efficiently solved. As suggested by an anonymous referee,

another interesting avenue of research might be to analyse the all pairs maximum flow values

under some arc capacity variations.

Acknowledgments We thank Prof. D. Granot and Prof. S.T. McCormick for their comments on a previous

version of this note.

References

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. (1993). Network Flows: Theory, Algorithms and Applications.

Englewood Cliffs, NJ: Prentice Hall.

Arai, T., S. Ueno, and Y. Kajitani. (1993). “Generalization of a Theorem on the Parametric Maximum Flow

Problem.” Discrete Applied Mathematics, 41, 69–74.

Brumelle, S., D. Granot, and L. Liu. (2002). “Ordered Optimal Solutions and Parametric Minimum Cut

Problems.” Working paper.

Carstensen, P.J. (1983). “Complexity of Some Parametric Integer and Network Programming Problems.”

Mathematical Programming, 26, 64–75.

Ford Jr., L.R. and D.R. Fulkerson. (1962). Flows in Networks. Princeton, NJ: Princeton University Press.

Gallo, G., M.D. Grigoriadis, and R.E. Tarjan. (1989). “A Fast Parametric Maximum Flow Algorithm and

Applications.” SIAM J. Comp., 18(1), 30–55.

Goldberg, A.V. and R.E. Tarjan. (1986). “A New Approach to the Maximum Flow Problem.” Proc. 18th Annual
ACM Symposium on Theory of Computing, 136–146.

Goldberg, A.V. and R.E. Tarjan. (1988). “A New Approach to the Maximum Flow Problem.” JACM, 35(4),

921–940.

Gusfield, D. and C. Martel. (1992). “A Fast Algorithm for the Generalized Parametric Minimum Cut Problem

and Applications.” Algorithmica, 7, 499–519.

McCormick, S.T. (1999). “Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric

Maximum Flow.” Operations Research, 47(5), 744–756.

Sleator, D.D. and R.E. Tarjan. (1983). “A Data Structure for Dynamic Trees.” J. Comput. System Sci., 24,

362–391.

Sleator, D.D. and R.E. Tarjan. (1985). “Self-Adjusting Binary Search Trees.” JACM, 32, 652–686.

Springer

